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CRYPTOGRAPHY AND DIGITAL SIGNATURE

A. LANGUASCO             A. PERELLI

The problem to assure a secure transmission of informations played a fundamental role in the
human history. During the centuries several different techniques was used; famous examples are
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the translitteration method of Julius Caesar and the Enigma machine (which was used by the
German army during the second world war). The methods used until the middle seventies of the
last century was not completely satisfactory (one should remind, for example, how the Enigma
code was broken in the fourties by the english mathematician A.Turing and his group [1]); in
1976 W. Diffie and M.E. Hellman proposed a revolutionary code (called public-key code)
which had the theoretical chance to assure security and authentication. Two years later R.L.
Rivest, A. Shamir e L.M. Adleman, using some well-known prime numbers properties, were
able to practically implement Diffie-Hellman’s idea. So we can say that modern cryptography
born in the seventies and, in few years, replace almost completely the methods obtained with
classic techniques.

Our goal here is to briefly present some underlying ideas on this topic, focusing our attention
on the theoretical differencies among classic and modern cryptography. Moreover, in the last
section, we say few words about one of the most important applications of the public-key
cryptography: the digital signature.

1. Cryptography

Cryptography’s field of investigation is the study of the methods that can be used to send
informations in a disguised form such that only the intended receiver can remove the disguise
and read the plain message. Denote  respectively with

M  = {plain messages}     and     C  = {enciphered messages}
the sets of  the plain messages and of the enciphered messages. A cryptographic transformation
is an injective function f :M öC. So the inverse function f –1 is well-defined and satisfies the
following diagram: 

      

† 

M
f

æ Æ æ f(M) f -1
æ Æ æ æ M .

We remark that the injectivity of  f  is very important since we don’t want any ambiguity in the
deciphering operations. We will call

f:  enciphering function and f –1 : deciphering function.

A  cryptosystem is the  quadruplet (M, C,  f,  f –1).

A short history.
One of the first cryptographic method was used by the Roman emperor Julius Caesar. Now

we can describe it as follows. It was based on the arithmetic in the modulus n (where n denotes
the number of letter of the used alphabet). Once one has fixed a bijective correspondence
between the alphabet and Ÿn, the enciphering operation was made by shifting the letters of a
fixed quantity  m; e.g., if n = 21 and m= 5, to process the message M (for simplicity we can
considered it of one letter) was used the enciphering function C  ª M+5 (mod 21) and the
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deciphering function M ª C-5 (mod 21). If  such a method is used on a sufficiently long text it
is easy to see that a frequence analysis on the letter of  the enciphered result would allow a third
person  to break the system (i.e., to obtain M from C by reconstructing the deciphering function
from the frequence analysis).

In the sixteenth century Blaise de Vigenère developed a variation of this method which is
harder to break. He considered k-letters block (every word corresponds with an element of
(Ÿn)k) and defined, as enciphering operation, the simultaneous shift of all the letters in the block
by a fixed “password” of  k-letters (i.e., we add, as vectors, the message Mœ (Ÿn)k  to a fixed

vector Bœ (Ÿn)k). As in the previous case, this system can be broken by a suitable frequence
analysis.

In 1931 Lester Hill defined as f  the product for an invertible matrix. Letting M = C = (Ÿn)k,
he used an invertible matrix A whose entries are in Ÿ n. The enciphering function is then
obtained multiplying  A and M œ M, while the deciphering one involves the product of C œ C

by A-1. Hill’s method can be broken using the linear algebra to the modulus n.

In the twenties a german entrepreneur, A. Scherbius, built the first version of a cryptographic
machine which later will be called Enigma. In fact the enciphering fuction was based on an
ingeniuous iteration of Julius Caesar’s method. Every single shift was realized by a rotor which
electromechanically connected the input letter with the output one; such an output letter was
then passed to another rotor which made another shift an so on until the final result. The first
versions of Enigma had three rotors, but in the most recent ones their complexity was increased
by using five rotors whose starting positions and operating sequences was interchangeable. The
german government was so sure of Enigma’s inviolability that based its whole reserved
information traffic, both military than commercial, on it. The polish mathematician M.
Rejewski was the first which found some weakness in Enigma. For some period of time he was
able to decipher the german messages doing calculations by hand. During the second world war,
the United Kingdom secret service recognised that breaking the Enigma code should be a
considerably strategic advantage. So they created a specialized cipher bureau, whose leader was
the english mathematician Alan Turing, to study the encrypted german traffic of informations.
Even if the complexity of Enigma was increased by the previously mentioned variations,
Turing’s group was able to develop some electromechanical computers (which in fact can be
considered the ancestors of the modern electronic computer) to analyze and, in many cases,
decipher the Enigma-coded messages. Many historical experts think that such a bureau played a
fondamental role to assure Allies’ victory in the second world war.
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In fact we can say that early cryptosystems used only elementary topics of Algebra and
Number Theory; essentially this was the situation until the seventies.

 Classic Cryptography.
The examples we have seen are from classic cryptography (also called secret-key

cryptography or symmetric cryptography). Anyone who has enough informations to encipher a
message can easily (or with a little effort) decipher it. Moreover who wants secretely
communicate has to agree (and to exchange in a secure way) on the enciphering and
deciphering keys. We remark that the classical methods has the following property: their
enciphering and deciphering transformations are computationally equivalent (i.e., their
computational complexities are equal or of the same order). Such a characteristic allow us to
made a classification based on computational complexity:

 Classic cryptography: the cryptosystems in which (after knowing the enciphering key) the
deciphering transormation can be implemented in approximatively the same computational
complexity needed to encipher.

 If the deciphering function f -1 has a computational complexity that has a larger order than
the corresponding enciphering function f, such a cryptosystem has the potential to be
transformed into a public-key system (in the following we will be more precise).

Public key cryptography.
 Public key cryptography (also called asymmetric) was discovered by W. Diffie and M.E.

Hellman [2] in 1976. To clarify the definition we gave in the previous paragraph, we remark
that in a public key cryptosystem who knows only how to encipher cannot use the enciphering
key to rebuild the deciphering one without performing a prohibitive amount of computations. In
other words,  f : Mö C can be easily evaluated  knowing KE (enciphering key), but, without an

additional information (the deciphering key KD), the evaluation of  f -1: f (M)ö M is an hard
computational problem. Such kind of functions are called one-way functions (o trap-door
functions).

At the present state of knowedge there’s no functions whose one-way property is proved
(even if, for some functions, commonly used in practice, it is conjectured that it holds). We also
remark that some of the functions that today can be considered one-way, could, in the next
future, loss (from a practical point of view) this characteristic due to the improvement of
microprocessors’ performances.
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Finally we note that a public key cryptosystem can also be used as a safe method for the key-
exchange problem of a classic system. In fact, usually, classic systems keys are shorter than the
public ones and so, using a public-key system to periodically exchange the classic keys, one can
have a comfortable security and a faster implementation (since, in practice, a shorter time is
needed to perform enciphering and deciphering).

RSA cryptosystem.
One of the most important examples of a conjectural one-way function (and also the first

developed public-key cryptosystem) was given R.L. Rivest, A. Shamir and L.M. Adleman [3] in
1978. They used the large (conjectural) difference among the computational complexities of
primality and factorization algorithms in Ÿ.

The RSA system can be briefly described as follows: every user X  have to
- choose randomly two big prime numbers p,q (at present 300 digital digits are considered a

safe choice) and calculate n=pq;
- calculate j(n)=(p-1)(q-1) = # Ÿn

*  (with #A we denote the cardinality of the set A);

- choose randomly an integer e, 1<  e < j(n), coprime with j(n);

- calculate d ª e-1 (mod  j(n)).

We firstly remark that one of the most important request to build a safe system is that the
needed choices should be done in a random way. Moreover, it can be easily verify that the
whole amount of computations in the previous design is low.

For every user X  of the cryptosystem are then defined the following quantities:
Public key KE  = (n,e): every other user can know it, so anyone of them can use it to encipher

the messages for X;
Private key KD = d : X has to keep it secret since it allows anyone who knows it to decipher

the messages for X ;
Enciphering function: f : Ÿn ö Ÿn defined by f (M) ª  M e (mod  n);

Deciphering function: f -1: Ÿn ö Ÿn defined by f -1(C) ª  C d(mod  n).

An user A who wishes to send a message M to the user B, can use B’s public key (nB,eB) to
compute

    

† 

C ≡  M eB (modnB)
and to send C to B.  B, after receiving C, can use his own secret key dB  to compute

† 

C  dB (mod nB ) ≡  Me B d B (mod nB ).
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Since eBdB ª1 (mod  j(nB)),  Fermat-Euler’s Theorem1 implies (in this case) that

    

† 

C dB (modnB )≡  M (modnB)
and hence B can read the clear text M.

To break the system RSA (i.e., to compute f -1 without knowing KD) one should be able to
compute d knowing only e and n; but if someone knows e, to evaluate d he should know j(n)

starting just by n. In this case the calculations needed to evaluate j(n) are computationally
equivalent  to the ones needed to factor n. Hence to break the RSA system one should be able to
efficiently factorize n (i.e., in a reasonable amount of time). As we will see in the following
paragraph, at present the computational complexity of  the primality algorithms (used to prove
the primality of p and q) is less than the one of  the factorization algorithms (used to compute
from n  his prime factors  p and q). For this reasons, in practice, the RSA system is considered a
safe one.

Some words about primality and factorization algorithms.
One of the crucial steps in RSA system is the choice of  n=pq. In fact one has not to choose p

and q  of a “special form” (e.g. classical special form are 2k -1 or 2k+1) because in such cases
there exist very fast factorization algorithm. Now we discuss some characteristics of the
primality algorithms (or tests). These algorihms can prove if a given integer n is prime (without
searching for its factors). First of all we remind that the number of digital digits of an integer n
is approximatively log n, that log n is used as the “measure unit” for the computational
complexity of the algorithms which work on the number n and that an algorithm is called
polynomial if its complexity is O(logc n) for some absolute constant   

† 

c> 0 .

Some of the best known primality tests are based on congruence properties and, in particular,
on Little Fermat Theorem: if n is prime then an-1ª1 (mod  n) for every aœŸn

*. But  such a
property does not hold only for prime numbers; in fact there exist the Carmichael numbers, i.e.,
composite integers n such that an-1ª1 (mod  n) holds for every aœŸn

*. For example, 561 =
3*11*17 is a Carmichael number, and in 1994 W.R. Alford, A. Granville and C. Pomerance [4]
proved that there are infinite Carmichael numbers. Hence, the easiest primality tests can furnish
just a  probabilistic estimate of the primality of n (in other words: the probabilty that n is prime
is very near to 1), even if the Miller-Rabin test (see [4]) can prove the primality of n with a
computational complexity O(log5 n). By the way such an algorithm assume that the Extended
Riemann Hypothesis (see Davenport [6]), a famous conjecture in number theory, holds. Without

                                                  
1 Euler-Fermat Theorem: Let n œ Õ, n≠0. If g.c.d.(a,n)=1 then aj(n) ª 1 (mod  n). Moreover, if n
is squarefree, then, for every a œ Ÿn, we get a1+kj (n) ª1 (mod  n) for every k œ Ÿ.
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assuming any unproved hypothesis, the best primality test nowadays known2 was developed in
1983 by L.M. Adleman, C. Pomerance and R. Rumely [7] and it has a computational
complexity (completely proved using some analytic number theory techniques)

O((log n) c log  log  log  n ),
where   

† 

c> 0 is a suitable absolute constant; in other words, such a test is “almost-polynomial”.

Now we consider the factorization algorithms. In the latest twenty years many researchers
tried to solve the problem of fast factorization of integers, but, even if some sophisticated
mathematical techniques were used, at present this problem seems to be essentially more
difficult than the primality one. In fact, the best factorization algorithm (J.M. Pollard [8] had the
main idea in 1993, and then other researchers improved it; see the book of H. Lenstra - A.K.
Lenstra [9]) has a computational complexity that is of higher order than the primality one. Such
a method is based on some properties of number fields and its (conjectural) computational
complexity is

      

† 

O(e c (logn)1/3(loglogn)2/3

)
where   

† 

c> 0 is a suitable absolute constant, which is considerably larger than the primality tests
one.

As a practical example, we remark that a personal computer that anyone of us can buy in a
computer store can construct a 140-decimal digits integer which is the product of two “general”
primes in few seconds. To factorize the same number, using parallel computers, a month of
computer time is needed! So it is a good idea to use sufficiently big integers; nowadays a 220-
decimal digits integer (product of two “general” primes) is considered a safe choice for a
personal use, but, for a professional use, larger integers are a better one. We finally remark that,
since the existence of sufficiently large lower bounds for the general case of the factorization is
an open problem, the RSA cryptosystem can, in fact, be considered a public-key system just
using a conjectural point of view, even if, in practice, it is commonly used.

2. Digital signature

During our life, frequently happens that one has to sign a document or a cheque. In these
cases (and in many others) the signature certifies our identity and, sometimes, it moreover
assures the non-ripudiability (as for a cheque). Our identity is then certified by our handwriting
since it is considered a personal identification. It is clear that we can realize it only on a piece of

                                                  
2 Remark (added in August 2002). Recently three indian researcher, M.Agrawal, N. Kayal and
N.Saxena, see [10], proved that there exists a unconditional deterministic primality algorithm
whose complexity is O((log n)12+e). The main tool used is a polynomial identity (in some sense
similar to Little Fermat Theorem) in a suitable subfield of Ÿp[x].
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paper and so the problem is: how to build a tool for some non-material support (as bits are)
which is easy to use and efficient? To this end a concept of digital signature was introduced to
certify any sequence of binary digits. Classic cryptography cannot be used for reach such an
authentication, so we have to use the public key one; in fact in this way an easy algorithm of
digital signature can be described (with general notations) as follows.

Let A and B two users of a public key system. We know that their enciphering functions fA

and fB are public and the corresponding deciphering functions fA
-1 are fB

-1 secret; we further
assume that fA  and fB  are bijective functions. If A wishes to send a M to B, he has to send fB(M)
and, to certify his identity, he also sends as an attachment the quantity fB(fA 

-1(nameA)).              fA
-1(nameA ) represents the digital signature of  and nameA  is a nickname of A. B deciphers the
message using fB

-1 (which is only known by himself) and  fB
-1(fB(M)) = M. To check if the sender

is really A, B applies fA  fB
-1 to the attachment and he obtains  fA fB

-1 (fB fA
-1(nameA)) = nameA .

Such a method runs well sinche only A can sign the message in this way (because he/she is the
only one who knows fA

-1).

But this design does not allow us to know if it is really A that signs using  fA
-1. A third person

C could public a key saying that A is its owner; C is a impostor and in this way could be able to
read the messages for A. Such a problem can be solved introducing a Public Key Certifier to
which every user can ask if the digital signature previously obtained coincides with the one
checked, certified and testified by the Certifier.

Moreover, it is also possible that an intruder can identify fA
-1(nameA ) using a wide number of

intercepted messages. A good idea is then to build a signature that depends also from the
message; the digital signature becomes fA

-1(markM), where markM is a bit-sequence of fixed
length (usually 160 binary digits) which is obtained from the message M using a suitable
function whose main characteristics are that none can rebuild M just knowing markM and that it
does not cause collisions with high probabilty (good functions are those whose probabilty that
markM = markM' with M ∫ M' is less than 10-50). Such functions are called hash functions and are
furnished to every user by the Certifier since just one of them is used for the whole
cryptosystem. B will check that the message was in fact sent by A and he will get markM ; to be
sure that, with high probability, there are no falsifications, B recompute the mark of  M using
the hash function of the cryptosystem.

 It it clear that this seems to introduce some weakness in a system that should be
inattackable; so why we don’t use the whole message as a mark of  itself? Surely the security
degree is, in this case, higher but, in practice, a longer time is needed to encipher and decipher.
One has to choose among an absolute safety with an high cost in time and a relative security
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(however of high degree) with a less amount of time. The choice depends essentially from the
kind of  information in M, and also by some personal preferences.

 There are some other kinds of digital signature in which time is preferred with respect to
security. For example some digital signature methods use fA

-1(markM) attached to the message M
which is sent as a clear text. Other methods assure only who is the sender without any grants on
the message integrity (one signs with fA

-1(nameA) attached to the message M sent as a clear text).

We finally remark that the introduction of the Certifier allow us to attach a time-mark to the
message; its importance is clear because the time provided by a computer is not significative. If
A needs a time-marking of a message, sends to the Certifier fB(fA

-1(markM)) (from that is not
possible to rebuild the clear text of the message); the Certifier attachs date and time and applies
its own enciphering function (which is private). The time-marked quantity is then sent back to
A which attachs it to the message M and sends all to B enciphering using the rules of the public
key system. In some sense the time-marking is an analogue of the authentication of a document
and assure that such a document cannot be changed with a different one.
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