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Retrieval function optimization1

I Retrieval functions have parameters.

I Retrieval effectiveness depends on parameters other than on model.

I Problem: To find the optimal parameters (i.e. those maximising a
measure of effectiveness or minimising a measure of risk).

I For example: Best Match N. 25 (BM25) has three parameters
(b, k1, k3) and the default values are often suboptimal for most
collections.

I Suppose a new retrieval function is to be evaluated.
I For example: another form of

saturation term of BM25 tf
K+tf

is
introduced and we wonder whether
and the degree to which it
improves effectiveness.

I We may use many different values
of K .

Perché ottimizzare?
• Supponiamo di voler valutare sperimentalmente 

l’efficacia di un nuova funzione di reperimento 
‣ introduciamo per la prima volta l’approccio basato su 

frequenza “saturata” del BM25 

11

‣ K=10

‣ K= 50

‣ K=100

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

tf

sa
tu

ra
ut

ed
 tftf

K + tf

1Thanks to Emanuele Di Buccio
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Why optimization?

I The comparison between the “new” retrieval function and the
baseline must be fair, that is, both must be evaluated at its
best condition.

I The optimal parameters may differ depending on collections,
queries, search tasks, users, language, etc., in general, on
context.
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Methodology

Step Action Example
1 To define an hypothesis Saturation term increases effectiveness
2 To select a baseline re-

trieval function
VSM, TFIDF

3 To select test collections TIPSTER, some TREC topic set
4 To select effectiveness

measure
MAP or NDCG

5 To optimize the retrieval
function w.r.t. the mea-
sure using the test collec-
tion

Find the K that maximises MAP using
TIPSTER

6 To test the hypothesis Wilcoxon’s test using the APs computed
for the baseline and the retrieval function
equipped with the saturation term
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Experimental data preparation (step 5)

I Per-query overfitting.
I For each query, find the optimal parameters.
I Used to optimize for the “few” frequent queries (remember

frequent query word distribution).
I Very computationally expensive yet very highly effective.

I Query set overfitting.
I For each query set, find the optimal parameters.
I Used to optimize for sets of “few” frequent queries.
I Computationally expensive yet highly effective.
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Experimental data preparation (step 5)

I Train/test split.
I Split the query set in training set and test set.
I Optimize using the training set and compare using the test set.
I Less computationally expensive yet still quite effective.
I For example:

I TREC 2004 robust track: 250 queries = 150 training queries
+ 100 test queries.

I TREC traditional ad-hoc tracks: n + 50 queries = n past
TREC queries + 50 current year queries.

I Cross validation.
I When the query set is small.
I To use the same measure and the same document set.

I Cross collection (a.k.a. transfer learning).
I To train using one test collection.
I To test using another test collection.
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Grid search
I Prepare a d-dimensional grid for d parameters and with

n1 × · · · × nd cells.
I Compute the effectiveness measure for each cell.
I BM25 example:

I d = 2 (b, k1)
I First dimension: b ∈ {0, 0.01, 0.02, . . . , 1.00}
I Second dimension: k1 ∈ {0, 0.1, . . . , 1, 1.1, . . . , 9.8, 9.9, 10}
I 100 runs for b× 100 for k1 = 10000 runs amouns to 8 hours

(3 seconds × per run using CACM).Grid Search 3/5
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The 375-parameter model
The 375-parameter model uses a large number of weak fea-
tures. These features are not described in detail here; the
object is to illustrate the process. As with the 9-parameter
model, the scoring function first calculates BM25F and then
combines the BM25F score in a weighted linear fashion with
the remaining features.

4. RESULTS
We investigate the relevance performance of the three

rankers described in the last section over a range of training
set sizes.

4.1 The 2-parameter ranker
With two parameters, we can plot an approximate e↵ec-

tiveness surface by running a full grid over the parameter
space. In Figure 1 we see three surfaces, based on the 64-
query training set and the 512-query test set, in the form
of contours. The three are: RNC on the selected pairs from
the training set; NDCG as calculated on the training set;
and NDCG as calculated on the test set.

The striking thing about this figure is the similarity be-
tween Figure 1a, the RNC computed from rated and random
sub-sampled documents from only 64 queries, and Figure 1c,
the target test set NDCG computed from all available docu-
ments from 512 queries. Both these surfaces appear smooth
(good for search- and gradient-based optimisation alike) and
seem to have very similar structure. In contrast, the train-
ing set NDCG surface in Figure 1b appears bumpy. This
gives us at least an intuitive feel for why direct optimisation
of the training set NDCG may give unpredictable results for
small training sets.

Armed with the derivatives of the RNC with respect to k, b
(see appendix), we ran line search on NDCG verses gradi-
ent descent optimisation on RNC over the range of training
query set sizes. We initialised both at k = 1.0 and b = 0.5.
Our principle result here is that that gradient descent and
line search performed almost identically over all query set
sizes. In all cases, the trained ranker gave a test set NDCG
of about 0.30 ± 0.023

In addition, we observed that the test set NDCG did not
improve significantly from the initial starting point. In other
words, we would have got similar test set NDCG perfor-
mance with the 2-parameter ranker set to its initial point,
with no optimization of BM25 parameters.

4.2 The 9-parameter ranker
As we increase the number of parameters, the ‘ground

truth’ represented by the grid search is not accessible to us.
We use the line search procedure described in section 2.2 as
a substitute baseline. Because it directly optimizes NDCG,
there is reason to believe that it should perform well against
the gradient descent approach.

With this ranker, we again compared the performance
of line search against gradient descent on the RNC, using
derivatives of RNC with respect to BM25F parameters pre-
sented in the appendix. We set identical initial BM25F
weights as ws = 1.0, bs = 0.5 (see appendix) and the initial

3This confidence limit is 95% on true population NDCG
value given the 512 sample size, and unless otherwise stated,
applies to all our results on the 512 query test set.
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Figure 1: Objective function contours for training
and test sets for the 2-parameter model: (a) RNC
in the training set; (b) NDCG in the training set; (c)
NDCG in the test set. (Training set of 64 queries.
RNC in the training set based on chosen pairs only;
Both NDCG plots, train and test, are based on all
documents.)
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Robust line search

One parameter (d = 1). See [1]

380 Parameter Optimisation

Fig. 5.1 Greedy Optimisation example: robust line search.

5.2 Multidimensional Optimisation

Any 1-D optimisation method can be generalised to n-D in several

ways. We have used two methods to do this, both of which worked well

in practice.

Greedy Robust Line Search: Imagine that we want to run the RLS

method on a 2-D problem, with parameters θ = (θ1,θ2). Let’s leave θ2 as

a subordinate variable and run RLS on θ1. Every time that we need to

compute the performance M(θ) at a given point θ1 = z, we would need

to fix the subordinate θ2 at its optimal value. To find out this value,

we can run a local RLS to optimise θ2 locally while keeping θ1 = z.

Generalising this, every line optimisation with i parameters fires off an

optimisation with i − 1 subordinate parameters and so on, recursively.

Of course this is a greedy approximation to the exhaustive (exponen-

tial) exploration of the parameter space, because we are running RLS.

However, this approach remains exponentially expensive with respect

to n because of its recursive nature, and therefore it is not practicable

for large n (e.g., n > 3).

Promising Directions: Another way we have used to carry out

searches in n dimensions is the following.2 Choose an initial point for

2 This method can be seen as a linear version of trusted region optimisation methods [4, 5];

it has the advantage of requiring much fewer function evaluations, which are extremely

expensive in our case.

Two parameters (d = 2).

1a Search b′ (k1 fixed).

1b Search k ′1 (b fixed).

1c Search (b′′, k ′′1 ) along the line
passing through (b, k1) and
(b′, k ′1).

2a Search b′′′ (k ′′1 fixed).

2b Search k ′′′1 (b′′ fixed).

2c Search (b′′′′, k ′′′′1 ) along the line
between (b′′, k ′′1 ) and (b′′′, k ′′′1 ).

5.2 Multidimensional Optimisation 381

each parameter (call the resulting the vector θ). Run n 1−D indepen-

dent searches, to find the optimum value θ′
i of each parameter when all

others are kept fixed at θ. Each of these optimal values found defines a

promising directions in parameter space. Now consider the vector going

from θ to θ′ = (θ′
1, . . . ,θ

′
n). We expect this vector to move through inter-

esting regions of space if there is correlation between features. There-

fore we do one more 1−D optimisation along this line. We do this by

re-parameterising the system with a new variable that moves all param-

eters linearly from θ to θ′. Finally we choose the best parameter setting

found so far and we re-start the process. An example optimisation is

illustrated in Figure 5.2, where we show the first two iterations (noted

1 and 2), each consisting of three line searches (noted a, b and c). The

total cost of an iteration is (n + 1) 1−D optimisations. Therefore, it

grows only linearly with n, but it may require very many iterations to

complete.

K1 Scaling: Note that in general k1 will depend on the weights

assigned to streams in BM25F, even if it is kept as a stream-independent

parameter. This is because the stream weights in effect rescale the tf

values, and k1 has to be adjusted accordingly. If we have a good kBM25
1

value for the regular BM25 function (no streams), we can propose a

good initial value of k1 for BM25F by scaling it according to the change

Fig. 5.2 Greedy optimisation example: promising directions.
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Summary

Hands-on Session
Retrieval function optimization
Experimenting retrieval function optimization
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Test collection
I The following files can be downloaded from

http://www.dei.unipd.it/~melo/ml-school/
I Communications of the ACM (CACM) test documents:

I XML (one file for each document). cacm.xml.zip
I Plain full text (one file for each document). cacm.txt.zip
I List of triples Term Frequency (TF) (doc. id., word).

freq.docid.word.txt
I List of triples TF (doc. id., word stem).

freq.docid.stem.txt

I Stop-list. stoplist.txt
I Test queries:

I Plain full text. queries.txt
I Plain full text in TREC format. query.trec.txt
I Query word pairs (query id., query word).

query-keyword.txt
I Query word stem pairs (query id., query word).

query-stem.txt

I Relevance assessments. qrels-treceval.txt

Massimo Melucci/12/ML School, 2015
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Programs

I Source code of the Text REtrieval Conference (TREC)
evaluation program. trec eval.8.1.zip

I One of these libraries:
I Based on C/C++:

I Lemur/Indri (http://sourceforge.net/projects/lemur/
?source=directory).

I Based on Java:
I Lucene (http://lucene.apache.org/).
I ElasticSearch (based on Lucene, https://www.elastic.co/).
I Galago (based on Lemur/Indri,

http://sourceforge.net/p/lemur/wiki/Galago/).

I Based on Python:
I PyLucene (wrapper for Lucene,

http://lucene.apache.org/pylucene/index.html).
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Document indexing

I Input: CACM document collection, stop-list.

I Output: index files (implemented depending on the software
library).

I Parameters: stemming and others depending on the software
library.
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Document ranking
I Input: index files, queries.
I Output: run formatted according to the TREC guidelines:

I One run is produced for each experiment and includes all the
ranked document list produced for the queries. It is
implemented as a file in which each row is formatted as follows:

QueryId Q0 DocId Rank Score RunLabel

where QueryId is the query identifier, DocId is the document
identifier, Rank is the rank of the document in the list of
document retrieved against the query, Score is the score of the
document in the list of document retrieved against the query,
RunLabel is an alphanumeric string that identifies the run; for
example:

...
53 Q0 1234 1000 0.7886 testrun01
54 Q0 768 1 3.5677 testrun01
54 Q0 1205 2 3.5640 testrun01
54 Q0 13 3 2.3490 testrun01
...
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Ranking evaluation

I Input: run and relevance assessment file.

I Output: evaluation measures.

I Procedure: type trec eval without parameters to get the
help.
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Install JCC

I Go to https://lucene.apache.org/pylucene/install.html

I Go to https://lucene.apache.org/pylucene/jcc/install.html

I mkdir temp;cd temp

I At prompt
svn co http://svn.apache.org/repos/asf/lucene/pylucene/trunk/jcc jcc

I cd jcc

I python setup.py build

I sudo python setup.py install (sudo may correspond something
different in windows)

I cd ..
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Install PyLucene

I Download through
http:

//www.apache.org/dyn/closer.lua/lucene/pylucene/

I Untar or unzip the package

I Open the package

I cd to the PyLucene source directory

I Edit Makefile and uncomment the lines of your system (check
python version, OS version, Java version, etc.). Check also
the paths (for example, where python is installed).

I make

I make test (recommended)

I sudo make install (you need admin or root password)
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Indexing using pylucene

I Download Indexer, Searcher, Runner, Grid Searcher from the website

I Download
http://www.dei.unipd.it/~melo/ml-school/cacm.txt.zip

I mkdir docs;cd docs

I unzip ../cacm.txt.zip

I cd ..

I Indexing:
python IndexFiles.py docs

and the IndexFiles.index directory will created
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Searching using pylucene

I Searching:
python SearchFiles.py

and input a query
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Running using pylucene

I Download
http://www.dei.unipd.it/~melo/ml-school/queries.txt

I Batch running using the standard Lucene scoring:
python RunTFIDF.py runtag < queries.txt

I For writing a run file:
python RunTFIDF.py runtag < queries.txt > runfile.txt

I runtag and runfile should be changed when changing
configuration (e.g. free parameters)

I Batch running using BM25:
python RunBM25.py 1.2 0.75 runtag < queries.txt where
b = 1.2 and k1 = 0.75.
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Grid searching using pylucene

I Download http:

//www.dei.unipd.it/~melo/ml-school/qrels-treceval.txt

I Check and adapt GridSearchBM25.py

I Grid searching:
python GridSearchBM25.py and wait...

I For each runfile, run trec eval:
Using Unix, for example, from the prompt: for b in

{0..50..50}; do for k1 in {0..100..50}; do trec eval

qrels-treceval.txt BM25-b=$b-k1=$k1.txt; done; done

I To store the evaluation measures, add >

trec eval$b-k1=$k1.txt after .txt;
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