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Towards a Scalable Theory of Control

What do we need?

Scalable Synthesis

Scalable Verification

Scalable Modeling

Scalable Objectives
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A Scalable Stability Test

x1 x2 x3 x4

Stability of ẋ = Ax follows from existence of ξk > 0 such that



a11 a12 0 a14
a21 a22 a23 0

0 a32 a33 a32
a41 0 a43 a44




︸ ︷︷ ︸
A




ξ1
ξ2
ξ3
ξ4


 <




0

0

0

0




The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

. . .

Verification is scalable!
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Dynamic Buffer Networks

Producers, consumers and storages

Examples: water, power, traffic, data

Discrete/continuous, stochastic/deterministic

Multiple commodities, human interaction
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Control Synthesis for a Buffer Network
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4 3




ẋ1
ẋ2
ẋ3
ẋ4


 =




−1− {31 {12 0 0

0 −{12 − {32 {23 0

{31 {32 −{23 − {43 {34
0 0 {43 −4− {34







x1
x2
x3
x4


+




w1
w2
w3
w4




How do we select {i j to minimize some gain from w to x?
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Outline

Norms and Gains

Control Synthesis for Positive Systems

Nonlinear Monotone Systems

Bilinear Positive Systems
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Norms and Gains

Given x ∈ R
n
+ and p ∈ (0,+∞) define pxpp :=

(∑n
i=1 x

p
i

) 1
p and

pxp∞ := maxi∈[1,n] pxip.

Consider M ∈ R
l$m, f : R+ → R

n and p ∈ (0,+∞]. LetG be

an operator from Lmp to Lrp, while G(s) ∈ R(s)r$m is a proper

stable rational matrix. Then

qMqp−ind := sup
x:pxpp=1

pMxpp

q fqLp :=

(∫ +∞

0

p f (t)pppdt

) 1
p

q fqL∞ := ess supt≥0p f (t)p∞

qGqLp−Lp := sup
qwqLp=1

qGwqLp

qGqH∞ := sup
ω
qG(iω )q2−ind.
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Gains of Positive Systems

Suppose thatG is the input-output operator of an asymptotically

stable positive system. Then for p = 1, 2 and +∞ we have

qGqLp−Lp = qG(0)qp−ind

In particular, ifG1 andG2 have transfer functions G(s) and

G(s)s respectively, then

qG1qL1−L1 = qG2qL∞−L∞.

Moreover, if the system is SISO, i.e. r = m = 1, then

qGqLp−Lp = G(0), ∀ p ∈ [1,+∞].
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L∞ Gain Verification

Given the positive system (A, B,C,D) and any γ > 0, the

following statements are equivalent:

(1) A is Hurwitz and qGqL∞−L∞ < γ .

(2) A is Hurwitz and G(0)1m ≪ γ 1r.

(3) There exists ξ ≫ 0,ξ ∈ R
n, such that

[
A B

C D

] [
ξ
1m

]
≪

[
0

γ 1r

]
.
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L∞ Gain Verification

Given the positive system (A, B,C,D) and any γ > 0, the

following statements are equivalent:

(1) A is Hurwitz and qGqL∞−L∞ < γ .

(2) A is Hurwitz and G(0)1m ≪ γ 1r.

(3) There exists ξ ≫ 0,ξ ∈ R
n, such that

[
A B

C D

] [
ξ
1m

]
≪

[
0

γ 1r

]
.

Verfication by linear programming.
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L∞ Gain Verification

Given the positive system (A, B,C,D) and any γ > 0, the

following statements are equivalent:

(1) A is Hurwitz and qGqL∞−L∞ < γ .

(2) A is Hurwitz and G(0)1m ≪ γ 1r.

(3) There exists ξ ≫ 0,ξ ∈ R
n, such that

[
A B

C D

] [
ξ
1m

]
≪

[
0

γ 1r

]
.

In the scalar case: All Lp-gains are the same.
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L∞ Gain Verification

Given the positive system (A, B,C,D) and any γ > 0, the

following statements are equivalent:

(1) A is Hurwitz and qGqL∞−L∞ < γ .

(2) A is Hurwitz and G(0)1m ≪ γ 1r.

(3) There exists ξ ≫ 0,ξ ∈ R
n, such that

[
A B

C D

] [
ξ
1m

]
≪

[
0

γ 1r

]
.

More about L1-gain in Ebihara’s presentation.
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A ScalablSynthesis Method

Problem: Find {1, {2 ∈ [0, 1] to minimize L2-gain of

ẋ =




a11 − {1 a12 0 a14
a21 + {1 a22 − {2 a23 0

0 a32 + {2 a33 a34
a41 0 a43 a44


 x +




1

0

0

0


u

y =
[
0 0 1 1

]
x

Solution: Find {1, {2 with 0 ≤ µk ≤ ξk such that




a11ξ1 − µ1 a12ξ2 0 a14ξ4 1
a21ξ1 + µ1 a22ξ2 − µ2 a23ξ3 0 0

0 a32ξ2 + µ2 a33ξ3 a34ξ4 0
a41ξ1 0 a43ξ3 a44ξ4 0
0 0 ξ3 ξ4 0







1

1

1

1

1



≪




0

0

0

0

γ




and set {1 = µ1/ξ1 and {2 = µ2/ξ2. (Distributed lin. prog.)
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A ScalablSynthesis Method

Problem: Find {1, {2 ∈ [0, 1] to minimize L2-gain of

ẋ =




a11 − {1 a12 0 a14
a21 + {1 a22 − {2 a23 0

0 a32 + {2 a33 a34
a41 0 a43 a44


 x +




1

0

0

0


u

y =
[
0 0 1 1

]
x

Solution: Find {1, {2 with 0 ≤ µk ≤ ξk such that




a11ξ1 − µ1 a12ξ2 0 a14ξ4 1
a21ξ1 + µ1 a22ξ2 − µ2 a23ξ3 0 0

0 a32ξ2 + µ2 a33ξ3 a34ξ4 0
a41ξ1 0 a43ξ3 a44ξ4 0
0 0 ξ3 ξ4 0







1

1

1

1

1



≪




0

0

0

0

γ




and set {1 = µ1/ξ1 and {2 = µ2/ξ2. (Distributed lin. prog.)
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H∞ Optimal Control of Buffer Networks

Problem:

Given a graph (V ,E) and

ẋi = aixi +
∑

(i, j)∈E

(ui j − u ji) +wi i ∈V

find control law u = Kx that minimizes the H∞ norm of the

map from w to (x,u).

Solution:

An optimal control law when ai < 0 is given by

ui j = xi/ai − x j/a j (i, j) ∈ E.

The closed loop system is a positive system!
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Nonlinear Monotone Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is a monotone system if its linearization is a positive system.

x(0)

x(1)

x(2)

x(3)

y(0)

y(1)

y(2)

y(3)

Anders Rantzer, LCCC Linnaeus center Scalable synthesis for positive systems



Max-separable Lyapunov Functions

Let ẋ = f (x) be a globally asymptotically stable monotone

system with invariant compact set X ⊂ R
n
+. Then there exist

strictly increasing functions Vk : R+ → R+ for k = 1, . . . ,n with
d
dt
V (x(t)) = −V (x(t)) in X where V (x) is equal to

V (x) = max{V1(x1), . . . ,Vn(xn)}.

x1

x2

t = 0

t = 1

t = 2

t = 3
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Convex-Monotone Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is a monotone system if its linearization is a positive system. It

is a convex monotone system if every row of f is also convex.

Theorem.

For a convex monotone system ẋ = f (x,u), each component of

the trajectory φ t(a,u) is a convex function of (a,u).
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Example: Combination Therapy

Evolutionary dynamics:

ẋ =

(
A−

∑

i

uiD
i

)
x

Each state xk is the concentration of a mutant. (There can be

hundreds!) Each input ui is a drug dosage.

A describes the mutation dynamics without drugs, while

D1, . . . ,Dm ≥ 0 are diagonal matrices modeling drug effects.

Determine u1, . . . ,um ≥ 0 with u1 + ⋅ ⋅ ⋅+ um ≤ 1 such that x

decays as fast as possible!

[Hernandez-Vargas, Colaneri and Blanchini, JRNC 2011]
[Jonsson, Rantzer,Murray, ACC 2014]
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Example: District Heating

Energy balance for heat exchanger:

V
dT

dt
= (T̂ − T)q− P

Positive system when flows are constant.

Bilinear positive system when flows are controlled.
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Optimizing Decay Rate

Stability of the matrix A−
∑
i uiD

i + γ I is equivalent to

existence of ξ > 0 with

(A−
∑

i

uiD
i + γ I)ξ < 0

For row k, this means

Akξ −
∑

i

uiD
i
kξk + γ ξk < 0

or equivalently

Akξ

ξk
−
∑

i

uiD
i
k + γ < 0

Maximizing γ is convex optimization in (logξ i,ui,γ ) !
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Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex

monotone system:

d

dt
log xk(t) =

Akx(t)

xk(t)
−
∑

i

ui(t)D
i
k

Hence the decay of log xk is a convex function of the input and

optimal trajectories can be found even for large systems.
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