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Why a session on positive systems now?

• The foundations of (linear) Positive System Theory were laid
down a long time ago by David Luenberger (D.L. "Introduction
to dynamical systems", Wiley 1979), deeply relying on the rich
Perron Frobenius theory.

• Research in the eighties and nineties mainly focused on two
problems: reachability/controllability and positive realization.
At the same time, there was extensive research on monotone
systems that generalize positive systems and find quite
meaningful applications in biology, pharmacokinetics,
thermodynamics, etc.
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Why a session on positive systems now?

• Approximately ten years ago, a new boost was given by
positive switched systems

: their interesting applications
stimulated a large stream of research aiming to provide a solid
theoretical analysis of properties, such as stability,
stabilizability, etc.

• More recently, research on positive systems revealed that
many results obtained for positive systems, in particular those
regarding stability and stabilization with performances that can
be expressed in terms of norms, can be fruitfully used to deal
with large scale and interconnected systems. Indeed, such
properties can be checked by resorting to algorithms/
conditions that scale linearly with the system dimension.
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The Tutorial Session structure

• First Talk: Elena Valcher (30 min)
Positive systems and positive switched systems: basic
theoretical results and main applications. An overview.

• Second Talk: Anders Rantzer (30 min)
Control synthesis for large scale positive systems, with
application to infrastructure networks

• Third Talk: Yoshio Ebihara (30 min)
L1-induced norm analysis of positive systems and its
application to stabilization of large-scale interconnected
positive systems

• Fourth Talk: Patrizio Colaneri (30 min)
Optimal scheduling of positive switched systems:
application examples.
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Notation

Motivating examples (1)

Positive systems are commonly used to model dynamics of
buffer networks. Each state represents the content of a buffer.

Content can be transferred from one buffer to another via the
network links. The content of a buffer can also change as a
result of local production or consumption (see A. Rantzer’s talk).
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Notation

Motivating examples (2)

In a fluid network of the open-channel type, the fluid is stored in
various reservoirs and transported from one reservoir to
another by means of pipelines.

This situation is typical, for
instance, of water supply networks. The flow from one reservoir
to another depends solely on the level of the upper reservoir
(see Y. Ebihara’s talk).
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Notation

Motivating examples (3)

A traffic control problem:

G
G

G

G

x x

x
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R

A B

C

3 1

2

Three main roads (A,B and
C) converge into a “triangular
connection" governed by traffic
lights. The buffer variable xi rep-
resents the vehicles waiting at
the ith traffic light inside the tri-
angular loop.
If only one pair of adjacent traffic
lights is red at any time, we have
three different positive systems
and hence a positive switched
system (see P. Colaneri’s talk).

M.E. Valcher Positive Systems and Positive Switched Systems 8/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

Notation

Motivating examples (3)

A traffic control problem:

G
G

G

G

x x

x

R

R

A B

C

3 1

2

Three main roads (A,B and
C) converge into a “triangular
connection" governed by traffic
lights. The buffer variable xi rep-
resents the vehicles waiting at
the ith traffic light inside the tri-
angular loop.
If only one pair of adjacent traffic
lights is red at any time, we have
three different positive systems
and hence a positive switched
system (see P. Colaneri’s talk).

M.E. Valcher Positive Systems and Positive Switched Systems 8/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

Notation

Motivating examples (3)

A traffic control problem:

G
G

G

G

x x

x

R

R

A B

C

3 1

2

Three main roads (A,B and
C) converge into a “triangular
connection" governed by traffic
lights. The buffer variable xi rep-
resents the vehicles waiting at
the ith traffic light inside the tri-
angular loop.

If only one pair of adjacent traffic
lights is red at any time, we have
three different positive systems
and hence a positive switched
system (see P. Colaneri’s talk).

M.E. Valcher Positive Systems and Positive Switched Systems 8/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

Notation

Motivating examples (3)

A traffic control problem:

G
G

G

G

x x

x

R

R

A B

C

3 1

2

Three main roads (A,B and
C) converge into a “triangular
connection" governed by traffic
lights. The buffer variable xi rep-
resents the vehicles waiting at
the ith traffic light inside the tri-
angular loop.
If only one pair of adjacent traffic
lights is red at any time, we have
three different positive systems
and hence a positive switched
system (see P. Colaneri’s talk).

M.E. Valcher Positive Systems and Positive Switched Systems 8/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

Notation

Notation (1)

• A matrix A (a vector v) is nonnegative A ≥ 0 (v ≥ 0) if all
its entries are nonnegative

• A matrix A (a vector v) is positive A > 0 (v > 0) if
nonnegative and and at least one entry is nonzero

• A matrix A (a vector v) is strictly positive A� 0 (v� 0) if
all its entries are positive

• A matrix A is Metzler if all its off-diagonal entries are
nonnegative
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Notation

Notation (2)

• 1n is the n-dimensional vector with all unitary entries

• A square matrix A is Hurwitz if all its eigenvalues have
negative real part

• A square matrix A is Schur if all its eigenvalues have
modulus strictly smaller than 1

• A symmetric matrix P is positive (semi)definite
P � 0 (P � 0) if for every x 6= 0, x>Px > 0 (x>Px ≥ 0)
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Positive systems (1)

A positive system is a system whose describing variables are
positive.

Most of the literature on positive systems has focused
on (positive) linear state-space models, i.e.,

x(t+ 1) = Ax(t) +Bu(t), (1a)
y(t) = Cx(t) +Du(t), t ∈ Z+, (1b)

in the discrete-time case, and

ẋ(t) = Ax(t) +Bu(t), (2a)
y(t) = Cx(t) +Du(t), t ∈ R+, (2b)

in the continuous-time case. In these equations x represents
the n-dimensional state variable, u the m-dimensional input
variable and y the r-dimensional output variable.
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Positive systems (2)

A linear state-space model is (internally) positive if{
x(0) ≥ 0

u(t) ≥ 0, ∀ t ≥ 0
⇒

{
x(t) ≥ 0
y(t) ≥ 0

∀ t ≥ 0

(Internal) Positivity:

For discrete-time systems: A,B,C and D are nonnegative
matrices

For continuous-time systems: A is Metzler, B,C and D are
nonnegative matrices
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Stability (1)

Proposition 1 For a positive matrix A ∈ Rn×n, the following are
equivalent:

(1.1) A is Schur;
(1.2) ∃ ξ � 0 such that Aξ � ξ;
(1.3) ∃ z� 0 such that z>A� z>;
(1.4) ∃ a diagonal P � 0 such that A>PA− P ≺ 0;
(1.5) (In −A)−1 exists and has nonnegative entries.

For a Metzler matrix A ∈ Rn×n, the following are equivalent:
(2.1) A is Hurwitz;
(2.2) ∃ ξ � 0 such that Aξ � 0;
(2.3) ∃ z� 0 such that z>A� 0;
(2.4) ∃ a diagonal P � 0 such that A>P + PA ≺ 0;
(2.5) −A−1 exists and has nonnegative entries.
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Positive systems
Positive switched systems

Stability (2)

It is interesting to remark that:

1) Asymptotic stability is defined in the usual way, but for linear
positive systems it can be checked by restricting the attention to
positive initial conditions x(0) > 0

2) By the monotonicity property of positive systems, asymptotic
stability is equivalent to the convergence to zero of the state
trajectory corresponding to x(0) = 1n

3) Conditions (1.4) and (2.4) amounts to saying that a positive
(continuous-time or discrete-time) system is asymptotically
stable if and only if it admits a diagonal quadratic Lyapunov
function.
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Positive switched systems

Copositive Lyapunov functions (1)

Definition 1 A function V : Rn → R is said to be copositive if
V (x) > 0 for every x > 0. A function V : Rn → R is said to be a
linear copositive function if V (x) = z>x, for some z� 0.

Conditions (1.3) and (2.3) in Proposition 1 correspond to saying
that a positive matrix (a Metzler matrix) is Schur (Hurwitz) if and
only if it admits a linear copositive Lyapunov function, i.e., there
exists V (x) = z>x, with z� 0, such that ∆V (x) < 0 (V̇ (x) < 0)
for every x > 0.
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Positive systems
Positive switched systems

Copositive Lyapunov functions (2)

Conditions (1.2) and (2.2) correspond to the existence of a
Lyapunov function, with rectangular level curves:

V (x) = max
i∈[1,n]

xi
ξi
,

Figure: Level curves of Lyapunov functions - conditions (1.2), (1.3)
and (1.4) in Proposition 1.
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Positive systems
Positive switched systems

State-feedback stabilization: Problem statement

Positive stabilization problem: Given a matrix set S ⊂ Rm×n,

determine if there exists a state feedback matrix K ∈ S such
that the resulting feedback state-space model

ẋ(t) = (A+BK)x(t), t ∈ Z+,

is positive and asymptotically stable.

M.E. Valcher Positive Systems and Positive Switched Systems 17/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

State-feedback stabilization: Problem statement

Positive stabilization problem: Given a matrix set S ⊂ Rm×n,
determine if there exists a state feedback matrix K ∈ S such
that the resulting feedback state-space model
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Positive switched systems

State-feedback stabilization: LMI solution

Theorem 1 Given a continuous-time system and a set
S ⊂ Rm×n, the following facts are equivalent:

(1) The positive stabilization problem has a solution;
(2) There exist Y ∈ S and a positive diagonal matrix X, such

that
AX +BY is Metzler

and
(AX +BY )> +AX +BY ≺ 0.

When so, a solution to the stabilization problem is obtained
as K = Y X−1.
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that
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Positive switched systems

A continuous-time positive switched system is described by

ẋ(t) = Aσ(t)x(t), t ∈ R+,

while a discrete-time positive switched system is described by

x(t+ 1) = Aσ(t)x(t), t ∈ Z+,

where x is the n-dimensional state, and σ(t) is the switching
signal/sequence, a right- continuous and piece-wise constant
mapping taking values in the finite set {1, ...,M}
σ(t) takes some constant value ik ∈ {1, 2, . . . ,M} at every
t ∈ [tk, tk+1) and σ(tk) 6= σ(tk+1).
For every value i taken by σ, the system is a positive state
space model.
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ẋ(t) = Aσ(t)x(t), t ∈ R+,

while a discrete-time positive switched system is described by

x(t+ 1) = Aσ(t)x(t), t ∈ Z+,

where x is the n-dimensional state, and σ(t) is the switching
signal/sequence, a right- continuous and piece-wise constant
mapping taking values in the finite set {1, ...,M}
σ(t) takes some constant value ik ∈ {1, 2, . . . ,M} at every
t ∈ [tk, tk+1) and σ(tk) 6= σ(tk+1).

For every value i taken by σ, the system is a positive state
space model.

M.E. Valcher Positive Systems and Positive Switched Systems 20/28



Introduction to the Tutorial Session
Motivating examples

Positive systems
Positive switched systems

Positive switched systems

A continuous-time positive switched system is described by
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Stability of positive switched systems (1)

Definition 2 A continuous-time positive switched system is
(uniformly) exponentially stable if there exist real constants
C > 0 and β > 0

such that all its solutions satisfy

‖x(t;x(0), σ)‖ ≤ Ce−βt‖x(0)‖,

for every x(0) ∈ Rn+, t ≥ 0, and every switching signal σ.
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Stability of positive switched systems (2)

exponential stability
⇒
6⇐ A1, . . . , AM are Metzler Hurwitz

exponential stability
⇒
6⇐

all convex combinations
∑M

i=1 αiAi
are Metzler Hurwitz
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Positive switched systems

Lyapunov functions (1)

Definition 3 A differentiable function V (x) : Rn → R is a
Lyapunov function for the continuous-time (positive) switched
system if it is positive definite and

∇V (x)Aix < 0, ∀ x ∈ Rn,x 6= 0, ∀ i ∈ {1, 2, . . . ,M}.

Theorem 3 The following facts are equivalent:
i) the continuous-time positive switched system is

exponentially stable;
ii) there exists a (differentiable) Lyapunov function V for the

switched system, homogeneous of order 2 (i.e.,
V (αx) = α2V (x) for every α > 0 and every x ∈ Rn).
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Lyapunov functions (2)

Theorem 4 Given a continuous-time positive switched system,
the following facts are equivalent:

1) ∃ v� 0 such that V (x) = v>x is an linear copositive
Lyapunov function for the system;

2) ∃ P = P> of rank 1 such that V (x) = x>Px is a quadratic
copositive Lyapunov function for the system;

3) for each map π : {1, 2, . . . , n} → {1, 2, . . . ,M}, the matrix

Aπ :=
[
col1(Aπ(1)) col2(Aπ(2)) . . . coln(Aπ(n))

]
is Hurwitz.

If any of the previous conditions holds, the continuous-time
positive switched system is exponentially stable.
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Stabilization definitions

Theorem 5 Given a continuous-time positive switched system,
the following facts are equivalent:

1) ∃ x̄0 � 0 and a switching signal σ̄(t), t ∈ R+, such that the
trajectory x̄(t), t ∈ R+, generated corresponding to
x̄(0) = x̄0 and σ̄(t), t ∈ R+, exponentially converges to
zero.

2) The switched system is feedback stabilizable, i.e., there
exists a feedback law σ(t) = Ψ(x(t), t) such that the
trajectory starting from any x(0) > 0 exponentially
converges to zero.

3) The switched system is consistently stabilizable, i.e., there
exists a switching signal σ(t), t ∈ R+, that drives x(t) to
zero exponentially, independently of the positive initial
condition x(0) > 0.
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Control Lyapunov functions (1)

Definition 4 A copositive function V (x) is a control Lyapunov
function for the continuous-time positive switched system, if it is
decreasing along the system trajectories, provided that a
certain feedback switching strategy is applied.

Theorem 6 A continuous-time positive switched system is
stabilizable if and only it admits a concave copositive control
Lyapunov function V (x), positively homogeneous of order one
(i.e. V (αx) = αV (x) for every x ∈ Rn and every α > 0).
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Control Lyapunov functions (2)

Theorem 7 Given a continuous-time positive switched system,
the following facts are equivalent:

1) There exists a convex combination
∑M

i=1 αiAi that is
Hurwitz.

2) The system admits a linear copositive control Lyapunov
function.

If any of the previous equivalent conditions holds, the
continuous-time positive switched system is stabilizable.
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Conclusions

Thanks for your attention!
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