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Introduction

Continuous-time
ẋ(t) = Aσ(t)x(t)

Discrete-time
x(k + 1) = Aσ(k)x(k)

Ai are Metzler matrices (in continuous time), Ai are nonnegative
matrices (in discrete-time), i = 1,2, · · · ,M. The signal σ(.) is the
switching signal to be used for control purposes.

Positivity constraint
x� 0

P. Colaneri Miami, 2018
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CHAPTER 1

OPTIMAL CONTROL
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Optimal control - switched systems

ẋ(t) = Aσ(t)x(t), x(0) = x0� 0

min
σ

J(x0) = c>x(tf ), c� 0

Motivation: simplified model of the treatment of HIV infection dynamics, where x
represents the concentrations of various viral mutants in a patient, and σ represents
the selection of a suitable therapy. Alternatively, in the widespread SI (Susceptible
Infective) models of epidemiology over a network, in the initial infection phase
(epidemic outbreak) the concentration of susceptible individuals is approximately
constant and the dynamics of infected individuals is linear.

Filippov trajectories, sliding modes?

P. Colaneri Miami, 2018
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Optimal control - bilinear systems

Filippov-Wazewski relaxation: the set of possible trajectories of the
switched system is dense in the set of trajectories generated by the
bilinear system:

ẋ(t) = A(u(t))x(t) =

(
M

∑
i=1

Aiui (t)

)
x(t)

1 = 1>u(t), symplex U

ui (t) ≥ 0 ∀i

x(0) = x0

min
u

J(x0) = c>x(tf ), c� 0

The optimal solution does exist: the set of velocities F (x,u) := {A(u)x,u ∈U } is

convex and the vector field is bounded by an affine function of the norm of the state

variable, i.e.‖A(u)x‖ ≤ α(1 +‖x‖).

P. Colaneri Miami, 2018
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Pontryagin triple

Optimal solutions satisfy:

ẋ(t) = A(u(t))x(t), x(0) = x0

− ˙̃p(t)> = p̃(t)>A(u(t)), p̃(tf ) = c

u(t) = arg min
u∈U

x(t)>A(u)>p̃(t)

J(x0) = p̃(0)>x0

Hernandez-Varga, Colaneri, Middleton, Blanchini. Discrete-time control
for switched positive sstems with application to mitigating viral escape.
IJRN, 2011.

P. Colaneri Miami, 2018



pollo

Lyapunov Metzler differential equation

Matrix Λ is a Metzler matrix with Λ1 = 0.

−ṗi (t)> = p>i (t)Ai +
N

∑
j 6=i

λij(p
>
j (t)−p>i (t)) = 0, pi (tf ) = c

σ(t) = arg min
j∈I (x(t))

D+V , V (x , t) = min
i

p>i (t)x, J(x0)≤min
i

pi (0)>x0

Important notice: For Λ = αΛ̄ and α → ∞

pi (t)−pj(t)→ 0

pi (t)→ p̃(t)

u>(t)Λ̄ = 0

− ˙̃p(t)> = p̃(t)>A(u(t))

P. Colaneri Miami, 2018
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Are the Pontryagin solutions optimal?

Class of switched (bilinear) systems for which the necessary Pontryagin
conditions are also sufficient?

First fact: The necessary condition for optimality given by
Pontryagin is also sufficient if the cost functional is convex wrt the
control u.

Second fact:
A = D + Ã

with D diagonal and M Metzler. Using the Trotter formula:

exp(At) = limk→∞

(
exp(Dt/k)exp(Ãt/k)

)k

it is possible to prove that all entries of exp(At) are convex functions
of the diagonal entries of D.

P. Colaneri Miami, 2018
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Main Result

Assumption 1

σ(t) affects only the diagonal entries of the Metzler matrices Aσ(t), i.e.

Ai = Di + Ã, i = 1,2, . . . ,M.

ẋ(t) = Ãx(t) +

(
M

∑
i=1

Diui (t)

)
x(t), J(x0,u) = c>x(tf )

Colaneri, Middleton, Chen, Caporale, Blanchini: Automatica 2014

Theorem 2

The global optimal control exists

The cost J(x0,u) is convex with respect to u(.).

The optimal cost J0 is concave with respect to x0.

Rantzer, Bo. Control of convex-monotone systems. CDC 2014

P. Colaneri Miami, 2018
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Remarks

Thanks to convexity the optimal control uo(t) that minimizes
J0(x0,u) can be found (numericaly) by discretization and gradient
methods.

In the same vein, the minimax problem minu maxx0 J(x0,u) can be
solved.

Conjecture 3

∃ Λ Metzler with Λ1 = 0 such that with the state-feedback switching rule
given by the differential Lyapunov-Metzler equations

−ṗi (t)> = p>i (t)Ai +
N

∑
j 6=i

λij(p
>
j (t)−p>i (t)) = 0, pi (tf ) = c

the optimal trajectory is found.

More complex cost function can be considered, for instance

J(x0) = c>x(tf ) +
∫ tf

0
q>σ(t)x(t)dt, qi � 0

P. Colaneri Miami, 2018
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Application example 1: HIV viral mitigation

Highly Active Antiretroviral Therapy (HAART) for treating HIV:
prevent immune deterioration, reduce morbidity and mortality, and
prolong the life expectancy of people infected with HIV. Virological
failure (HIV RNA levels less than 50 copies/ml), viral rebound,
emergence of resistance-conferring mutations within the viral
genome, virus with reduced susceptibility to one or more of the
drugs.

Alternating HAART regimens would further reduce the likelihood of
the emergence of resistance. This proactive switching was evaluated
in a clinical trial called SWATCH (SWitching Antiretroviral Therapy
Combinations against HIV).

Once under treatment, and until virological failure, macrophage and
CD4+T cell counts are approximately constant. Under this
assumption, most non-linear HIV models are rendered linear.

P. Colaneri Miami, 2018
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Simple model: 4 genotypes

ẋ(t) =
(
diag(ρi ,σ(t))−δv I

)
x(t) + µMux(t)

δV is the viral clearance, ρi ,j the replication rate of genotype i for
theraphy j , µ the mutation rate, [Mu]ij = {0,1} the genetic connection
between genotypes.

✸

✷✶

✹

❚�✁✂✄☎✆ ✶ ✁✝✝✞✟✄✟✆

✠
✡
☛
☞✌
✍
✎
✏
☛
✑✑
✒✓
✌
✓
✎
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Simple model: 4 genotypes

Consider a system with 4 states, and two treatment options, m = 2, of
the following structure

Aσ =




λ1 0 0 0
0 λ2σ 0 0
0 0 λ3σ 0
0 0 0 λ4


+ µ




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




with (symmetric case)

λ21 = λ32 > 0, λ22 = λ31 < 0, λ21−λ22 + λ31−λ32 = 0

We want to minimize
J(x0) = c>x(tf )

with
c� 0

P. Colaneri Miami, 2018
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Simple model: 4 genotypes

ẋ(t) =
(
diag(ρi ,σ(t))−δv I

)
x(t) + µMux(t)

λiσ = ρi ,σ −δv I

µ = 104

λ1 = 0.19

λ21 = λ32 = 0.03

λ31 = λ22 = 0.19

λ4 = 0.03

tf = 50

x0 = [103 5 0 105]

P. Colaneri Miami, 2018
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Simulations

”Turnpike” solution. In the ”symmetric case”, the optimal control goes as
fast as possible to a sliding mode and exit the sliding mode as closer as
possible to the final condition.

P. Colaneri Miami, 2018
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Simulations

E.A. Hernandez-Vargas et al. / Automatica 49 (2013) 2874–2880 2879

where the inequality follows since for our case, (A1 J̄ − J̄A2) is
diagonal and non-negative. Our candidate optimal solution is
therefore

π(t) = eA2(tf −t)c, t ∈ [T3, tf ]

π(t) = eA1(T3−t)eA2(tf −T3)c, t ∈ [0, T3]
x(t) = eA1tx(0), t ∈ [0, T3]
x(t) = eA2(t−T3)eA1T3x(0), t ∈ [T3, tf ]
u1(t) = 1, t ∈ [0, T3)
u1(t) = 2, t ∈ (T3, tf ].

From the definition of T3, the candidate γ̄ (t) swaps sign at t = T3.
We now have to show that the proposed Pontryagin triple is
unique. Note that by the definitions of T1 and T2, for any Pontryagin
solution x2(t) < x3(t) for t ∈ [0, T1) and π2(t) > π3(t) for
t ∈ (T2, tf ].

Now consider three cases. Case (a): π2(0) ≤ π3(0). This then
leads to γ̄ < 0 and therefore π2 − π3 decreases. It can be shown
that this situation persists and therefore there is a contradiction
with the terminal condition, π(tf ) = c. Case (b): π2(0) > π3(0)
and γ̄ (0) > 0. This is part of the set R+1 which is positively
invariant, and yields a valid solution only when tf < T3 < T1. Case
(c): π2(0) > π3(0) and γ̄ (0) < 0. This yields ˙̄γ (0) > 0 and the
solution is as postulated wherein T3 < T1 < tf .

Reversing the argument to work backwards from t = tf , gives
the solution postulated, including possible cases where T3 exists,
but is outside the range (0, tf ). �

Remark 4. Theorem4 implicitly includes caseswhere one ormore
of T1, T2 and T3 are outside the range (0, tf ). �

Remark 5. Suppose µ = 0. Then, the matrices of the system
commute, and existing results (e.g. see Agrachev and Liberzon
(2001) and Margaliot (2007)) can be applied. In our case (diagonal
matrices), it is possible to prove that an optimal control is described
by a single switch of duration

Ts =
1

2(λ21 − λ22)
ln

x3(tf )σ=1

x2(tf )σ=1

where x(tf )σ=1 denotes the state vector at time tf evaluated with
σ = 1. This solution is non-unique, and for symmetric initial
conditions, and under Assumptions 2 and 3, the sliding mode
control, u1(t) = α is also optimal. �

4. Simulation results

HIV treatments are designed to require the accumulation of
three or more resistance mutations before the appearance of a
fully resistant variant. This would give a complex scenario with
a much higher degree of complexity. To illustrate the results of
Section 3, we propose a 4 variant, 2 drug treatment model, with
an initial condition vector x = [103, 5, 0, 10−5

] and a symmetric
cost function weighting as c = [1, 1, 1, 1]′. The viral clearance
rate is δV = 0.24 day−1, which corresponds to a half life of less
than 3 days (Perelson & Nelson, 1999). Notice that other authors
(Huang, Wu, & Acosta, 2010; Luo, Piovoso, Martinez-Picado, &
Zurakowski, 2012; Putter, Heisterkamp, Lange, & De Wolf, 2002)
suggest a slightly faster clearance rate, approximately 1 per day.
Viral mutation rates are of the order of µ = 10−4 (Mansky, 1996).
The various replication rates are described in the Table 1, these
numbers are of course idealized, however the general principles
are based on Hernandez-Vargas et al. (2010). For an optimal
treatment, using Theorem 3, therapy 2 is used for t < T1 = 12.2
days, then therapies alternate with high frequency as illustrated in

Table 1
Symmetric replication rates for viral variants.

Variant Therapy 1 Therapy 2

Wild type (x1) ρ1,1 = 0.05 ρ1,2 = 0.05
Genotype 1 (x2) ρ2,1 = 0.27 ρ2,2 = 0.05
Genotype 2 (x3) ρ3,1 = 0.05 ρ3,2 = 0.27
HR Genotype (x4) ρ4,1 = 0.27 ρ4,2 = 0.27

a

b

c

Fig. 6. Optimal trajectories (a) genotype dynamics (b) adjoint state variables (c)
switching rules.

Fig. 7. Different treatment strategies to mitigate the viral escape.

Fig. 6. The wild type virus is attenuated to undetectable levels (less
than 50 copies/ml). The highly resistant genotype grows slowly
which induces the final viral escape. Fig. 6(b) reveals how the
costate dynamics are similar to the state, but in reverse time.

Remark 6. Optimal trajectories are associated with chattering
switching laws that are of course not realistically applicable for HIV
treatment. However, this theoretical result provides an important
insight since it clarifies when the therapies have to be switched
more frequently in order to better control viral load. In order to
accommodate the need for a lower bound on the commutation
intervals, future works will address the problem of incorporating a
dwell time constraint for the switching signal. �

Using a switch on virological failure strategy, the therapy
is changed after 9 months (when viral load ≥1000 copies/ml).
Therefore, the population of the resistant genotype is large enough
that it that cannot be contained by the second therapy, see Fig. 7.
In contrast, proactive switching may reduce viral load to very low
levels during the whole treatment, 100 copies/ml, promoting a
larger delay in the viral escape. Notice that an open loop alternating
strategy and the optimal control present close performance for this
example. This means that a periodic oscillating strategy might be
effective in postponing viral escape without requiring a detailed
model, high computational time and full state measurements.
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Extension - 16 genotypes

18 Introduction and motivations

 

!"#$ %&'() Figure 1.2: The network for 16 genotypes gi and two drug combinations. The small
arrows indicate the admissible mutations. The direction of the big arrows represents
the strength of the therapy on the genotypes.Network for 16 genotypes and two drug combinations.

E. Hernandez Vargas, R. Middleton, and P. Colaneri. Switching strategies to
mitigate HIV mutation. IEEE Transactions on Control Systems Technology,
2014.

E. Hernandez Vargas, R. Middleton. Modelling the three stages in HIV infection.
Theoretical Biology 2013

P. Colaneri Miami, 2018
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Extension

Infected (T ?) and uninfected (T ) CD4+T cells, infected (P?) and uninfected (P)
macrophages, viral load Vi of the i-th genotype, total viral load VT .

Ṫ = sT +
ρTVT

CT +VT
T −

n

∑
i=1

kTiTVi −δTT

Ṫ ?
i = kTiTVi −δT ?T ?

i + µ

n

∑
i=1

mijVjT

Ṗ = sP +
ρPVT

CP +VT
P−

n

∑
i=1

kPiPVi −δPP

Ṗ?
i = kPiPVi −δP?P?

i + µ

n

∑
i=1

mijVjP

V̇i = pTiT
?
i +pPiP

?
i −δVVi

VT =
N

∑
i=1

Vi

where sT and sP are the generation rates of new T-cells and macrophages,
respectively, CT and CP are proliferation parameters, ρT and ρP are the uninfected
cell replication rates, kTi and kPi represent the infection rates, whereas pTi and pPi are
the viral proliferation rates. The mutation rate is expressed by µ, and the coefficients
mij ∈ [0,1] represent the genetics connection between genotypes. Finally, the
parameters δ are the death rates for the relevant species.

P. Colaneri Miami, 2018
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Linear approximation

x =
[

T ?
1 P?

1 V ?
1 T ?

2 P?
2 V ?

2 · · · T ?
nP?

nV ?
n

]>

ẋ =




A1σ 0 · · · 0
0 A2σ · · · 0
...

...
. . .

...
0 0 · · · Anσ


x + µMx

Aiσ =



−δT ? 0 kTiT

0 −δP? kPiP
pTi pPi −δV


 , M =




m11 · · · m1n
...

. . .
...

mn1 · · · mnn


⊗




0 0 T
0 0 P
0 0 0




P. Colaneri Miami, 2018
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Extension - 16 genotypes

Virological failure: Introduce a new regimen if there is detectable
viremia (HIV RNA > 1000 copies/ml), SWATCH: Alternate every 3
months.

HERNANDEZ-VARGAS et al.: SWITCHING STRATEGIES TO MITIGATE HIV MUTATION 1627

In Fig. 2, we can observe the dynamics of the most
representative genotypes during SWATCH. The wild type (g1)
is suppressed by both the therapies, yielding a strong reduction
of this genotype. Remarkably, the final viral escape is not due
to the highly resistant genotype (g16) as would be expected.
Instead, periodic oscillation promotes other fitter genotypes
(g4 and g14) to escape earlier the effects of therapies.

A. Switched Linear Model-Based Strategies

Laboratory tests perform during patient visits can be used to
stage HIV disease and assist in the selection of drug regimens
[1], these are genotypic resistance testing, CD4+T counts, and
viral load. Note that genotypic resistance testing has helped
physicians to optimize the management of patients infected
with drug-resistant HIV [24]. Then, the output for the system
(2) could be written in the following vector form:

y(t) =
[

y1(t)
y2(t)

]
=

[
T (t)

V1(t) . . . Vn(t)

]
. (13)

Drug treatments are introduced at fourth-year postinfection
for a period of six years. We consider frequent patient visits
to the hospital once a month, however, treatment regimens can
be switched only every three months [22]. Macrophage counts
are considered constant (700 cells/mm3). CD4+T cell counts
serve to update the switched linear model (3).

Remark 2: The control strategies proposed in this section
could be impractical due to common implementation issues
in biomedical problems: incomplete state measurement, irreg-
ularity of measurements, noise in observations, questionable
predictive power of models, and so on. To achieve a more
realistic simulation, we use a Luenberger observer based on
switched linear systems (3) to estimate the infected cells
variables (T ∗

i , M∗
i ) from the nonlinear model (2). The switched

observer is as follows:

˙̂x(t) = Aσ(t)x̂(t) + Kσ(t)(y2(t) − ŷ2(t)) (14)

where x̂ is the state estimated vector, Kσ(t) are the observer
gains, and ŷ2(t) is the estimated output vector for the genotype
distribution. Kσ(t) is an adaptation to positive systems based
on the algorithms provided in [25]. CD4+T cell counts serve
for updating the switched linear system (3).

We show the applicability of the proposed strategies based
on the following limitations: an observer based on the reduced
model (3), constant counts of macrophages, and infrequent
samples provided from the nonlinear model (2). Note that since
real macrophage counts are varying significantly in the non-
linear model (2), we may assume that the proposed strategies
provide certain robustness to incomplete measurements.

The following strategies based on the switched linear
model (3) were implemented, as shown in Fig. 3.

1) Costate Control: Compute the switching trajectory for
the interval [0, t f ] with the optimal switched linear
system (9). Then, using the trajectory of π(t) and the
estimations of the observer (14), we compute online the
switching signal σ at time t .

2) Guaranteed Cost Control: Compute the switching tra-
jectory with (10) for the interval [0, t f ]. Then, using the

Fig. 3. Control scheme.

TABLE I

SIMULATION RESULTS AFTER SIX YEARS OF HAART

trajectory of α(t) and the estimations of the observer
(14), we compute σ at time t .

3) MPC: Compute the switching trajectory using the sys-
tem (4) and update with the estimations of the observer
(14) as it described in Section III-A, we consider a
prediction horizon of one year.

Simulation results in Table I reveal not only that proactive
switching strategies may outperform the switched on virologic
failure, but also that the proposed switched strategies may
provide better results than SWATCH treatment. Note that
the costate control gives an optimal trajectory for the linear
system, which does not guarantee optimality for the nonlinear
case. MPC exhibits much less viral load (≤50 copies/mL) and
the highest CD4+T cell counts at the end of the treatment
compared with the other strategies.

Proactive switching appears to be important, nevertheless
this does not imply that therapies should alternate permanently,
see Fig. 4. For this example, MPC suggests that therapy 1
should be maintained for one year, then alternation between
treatments will promote undetectable levels in the viral load.
This example provides the insight that the alternation of
treatments should be design depending on the stage of the
infection and genotype distribution. High frequency in the
switching also minimizes somewhat the viral load, however,
this could promote bad drug adherence and health risks in
patients due to drug toxicity.

Observer estimations during MPC strategy are shown in
Fig. 4. Even though only one measurement per month and con-
stant counts for macrophages are considered, the observer (14)
provided somewhat good estimations of infected cells. Fig. 4
also shows that MPC switching inhibits quickly those cells
infected with the wild type (g1), whereas the other genotypes
are kept under very low levels (≤0.1 cell/mm3). As the therapy
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(g4 and g14) to escape earlier the effects of therapies.

A. Switched Linear Model-Based Strategies

Laboratory tests perform during patient visits can be used to
stage HIV disease and assist in the selection of drug regimens
[1], these are genotypic resistance testing, CD4+T counts, and
viral load. Note that genotypic resistance testing has helped
physicians to optimize the management of patients infected
with drug-resistant HIV [24]. Then, the output for the system
(2) could be written in the following vector form:

y(t) =
[

y1(t)
y2(t)

]
=

[
T (t)

V1(t) . . . Vn(t)

]
. (13)

Drug treatments are introduced at fourth-year postinfection
for a period of six years. We consider frequent patient visits
to the hospital once a month, however, treatment regimens can
be switched only every three months [22]. Macrophage counts
are considered constant (700 cells/mm3). CD4+T cell counts
serve to update the switched linear model (3).

Remark 2: The control strategies proposed in this section
could be impractical due to common implementation issues
in biomedical problems: incomplete state measurement, irreg-
ularity of measurements, noise in observations, questionable
predictive power of models, and so on. To achieve a more
realistic simulation, we use a Luenberger observer based on
switched linear systems (3) to estimate the infected cells
variables (T ∗

i , M∗
i ) from the nonlinear model (2). The switched

observer is as follows:

˙̂x(t) = Aσ(t)x̂(t) + Kσ(t)(y2(t) − ŷ2(t)) (14)

where x̂ is the state estimated vector, Kσ(t) are the observer
gains, and ŷ2(t) is the estimated output vector for the genotype
distribution. Kσ(t) is an adaptation to positive systems based
on the algorithms provided in [25]. CD4+T cell counts serve
for updating the switched linear system (3).

We show the applicability of the proposed strategies based
on the following limitations: an observer based on the reduced
model (3), constant counts of macrophages, and infrequent
samples provided from the nonlinear model (2). Note that since
real macrophage counts are varying significantly in the non-
linear model (2), we may assume that the proposed strategies
provide certain robustness to incomplete measurements.

The following strategies based on the switched linear
model (3) were implemented, as shown in Fig. 3.

1) Costate Control: Compute the switching trajectory for
the interval [0, t f ] with the optimal switched linear
system (9). Then, using the trajectory of π(t) and the
estimations of the observer (14), we compute online the
switching signal σ at time t .

2) Guaranteed Cost Control: Compute the switching tra-
jectory with (10) for the interval [0, t f ]. Then, using the

Fig. 3. Control scheme.

TABLE I

SIMULATION RESULTS AFTER SIX YEARS OF HAART

trajectory of α(t) and the estimations of the observer
(14), we compute σ at time t .

3) MPC: Compute the switching trajectory using the sys-
tem (4) and update with the estimations of the observer
(14) as it described in Section III-A, we consider a
prediction horizon of one year.

Simulation results in Table I reveal not only that proactive
switching strategies may outperform the switched on virologic
failure, but also that the proposed switched strategies may
provide better results than SWATCH treatment. Note that
the costate control gives an optimal trajectory for the linear
system, which does not guarantee optimality for the nonlinear
case. MPC exhibits much less viral load (≤50 copies/mL) and
the highest CD4+T cell counts at the end of the treatment
compared with the other strategies.

Proactive switching appears to be important, nevertheless
this does not imply that therapies should alternate permanently,
see Fig. 4. For this example, MPC suggests that therapy 1
should be maintained for one year, then alternation between
treatments will promote undetectable levels in the viral load.
This example provides the insight that the alternation of
treatments should be design depending on the stage of the
infection and genotype distribution. High frequency in the
switching also minimizes somewhat the viral load, however,
this could promote bad drug adherence and health risks in
patients due to drug toxicity.

Observer estimations during MPC strategy are shown in
Fig. 4. Even though only one measurement per month and con-
stant counts for macrophages are considered, the observer (14)
provided somewhat good estimations of infected cells. Fig. 4
also shows that MPC switching inhibits quickly those cells
infected with the wild type (g1), whereas the other genotypes
are kept under very low levels (≤0.1 cell/mm3). As the therapy

6 year treatment period and 3 month decision time: Proactive switching overperforms

the treatment based on virological failure. Linear switched strategies present values

close to the SWATCH treatment, where MPC exhibits the best performance compared

to the other strategies. See Hernandez-Varga, Middleton, Colaneri, IFAC 2011, for 64

genotypes, 3 drugs.
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CHAPTER 2

STABILIZATION
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Stabilization: stable linear combination

There exists a Hurwitz linear combination of matrices Ai , i.e.

A(α) =
M

∑
i=1

Aiαi

is Hurwitz. Then take p� 0 satisfying

p>A(α)� 0

and switch according to

σ(x(t)) = min
i

p>Aix(t)

There are stabilizable systems for which there are no Hurwitz matrices in
the convex hull of Ai .
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Stabilization - Lyapunov-Metzler

There exist Λ Metzler, with Λ1 = 0 such that

ABIG (Λ) = diag(Ai ) + Λ>⊗ In

is Hurwitz. Then take p = [p>1 p>2 . . .p>M ]>� 0 satisfying

p>ABIG (Λ)� 0 ⇐⇒ p>i Ai +
M

∑
i=1

λij(p
>
j −p>i )� 0

and switch according to

σ(x(t+)) = arg min
j∈I (x(t))

p>σ(t)(t)Ajx(t),

There are stabilizable systems for which no feasible solution of the LM
inequalities exists.

P. Colaneri Miami, 2018
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Stabilization - Lyapunov-Metzler with dwell-time

p>i Ai + ∑
j 6=i

λij (p
>
j eAjT −p>i ) < 0, i = 1,2, · · · ,N

State-feedback control law with dwell time

σ(t) = i , t ∈ [tk , tk + T )

σ(t) = i , if x(t)>pi ≤ x(t)>eA
>
j Tpjx(t) ∀j 6= i , and t > tk + T

σ(tk+1) = argmin
j

x(tk+1)>eA
>
j Tpj , otherwise

L. Allerhand, U. Shaked. Robust State-Dependent Switching of Linear
Systems With Dwell Time. IEEE TAC 2013.

Conjecture 4

A positive switched linear system is stabilizable iff there exists T and Λ
Metzler with Λ1 = 0 such that the DTLM inequalities are feasible.

P. Colaneri Miami, 2018
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Application example 2: Traffic junction

G
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Simple model of a traffic junction

ẋ(t) = Aσ(t)x(t)

A1 =



−1 0 0
0 0 0
0 2 0


 , A2 =




0 0 2
0 −1 0
0 0 0


 , A3 =




0 0 0
2 0 0
0 0 −1




There does not exist a Hurwitz stable linear combination of
A1,A2,A3.

There exist no solution of the Lyapunov-Metzler inequalities for any
Λ.

P. Colaneri Miami, 2018
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Periodic switching law

0 1 2 3 4 5 6 7 8 9 10

T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
ax

(|
6

i(F
)|

)

The matrix product F = eA1T eA2T eA3T is Schur stable for T > 1.257.

The switched system is stabilizable with a periodic switching law.

σ(t) =





3, t ∈ [kT ,kT + T )
2, t ∈ [kT + T ,kT + 2T )
1, t ∈ [kT + 2T ,kT + 3T )

Lyapunov Metzler inequalities with dwell time are feasible!
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Simulation

T = 2, x0 = [1 1 1]>
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Simulation

T = 2, x0 = [1 1 1]>
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Simulation

T = 2, x0 = [1 1 1]>, ẋ = Aσ x +1
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CHAPTER 3

AIMD

Additive Increasing Multiplicative Decreasing
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Classical AIMD

Distributed resource allocation problem: applications in the context of
smart grids and smart transportation systems.

Multiagent system with limited communication between agents and
limited feedback to the agents concerning aggregate utilization.
At time t the limited resource cannot be overused and each user
i = 1,2, ...,N receives a share pi (t) such that

N

∑
i=1

pi (t)≤ P

Chiu, Jain. Analysis of the increase and decrease algorithm for congestion
avoidance in computer networks. Computer networks and ISDN systems,
1989.
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Classical AIMD

In classical AIMD there is no explicit exchange between agents and
agents are informed via binary feedback when

N

∑
i=1

pi (t) = P

This is called ”capacity event”. Each agents operates an algorithm that
consists of a probing phase where an agents takes more and more
resource (additive increase phase, AI) and a response phase where agents
respond to the capacity events (multiplicative decrease phase, MD).
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Classical AIMD

In the AI phase each agents linearly increase, with slope αi > 0, their
share until the next capacity event. Upon the receipt of the CE signal,
each agents execute the multiplicative decrease phase by instantaneously
reducing their resorce share by a factor βi < 1.

pi (t) = βipi (τk) + αi (t− τk), τk < t ≤ τk+1

where τk denotes the time instant when the k-th CE occurs.

Dynamics at the capacity events. Column stochastic positive
discrete-time system:

p(τk+1) = Ap(τk)

A = diag(βββ ) + (1>ααα)−1
ααα(1−βββ )>

P. Colaneri Miami, 2018
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Simulations

Example 5

P = 10, βββ =




0.5
0.8
0.3


 , ααα =




1
0.5
2


 , p(τk)−→




2.72
3.40
3.88



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4.5

Figure 1: Dynamical behaviour of pi (t)P. Colaneri Miami, 2018
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Classical AIMD: equilibrium

Equilibrium (Frobenius-Perron)

Ap̄ = p̄

p̄i =
γi

∑
N
j=1 γj

P, γi =
αi

1−βi

How to achieve a target po :

βββ = 1−diag(po)−1
αααη , η ∈ (0, η∗], η∗= min

i

po
i

αi

P. Colaneri Miami, 2018
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Place dependent stochastic AIMD systems

Random shares

ΠΠΠ(τk+1) = Aσ(τk )ΠΠΠ(τk)

Aσ = diag(βββ σ ) + (1>ααα)−1
ααα(1−βββ σ )′

Prob(Aσ = Ai |ΠΠΠ = p) = ρi (p), i = 1,2, · · · ,M

Convergence of ΠΠΠ(τk)? Under technical assumptions (ρi (p) Lipshitz
continuous, Aσ average contractive, Aσ drop matrices), it can be shown
that ΠΠΠ(τk) has a unique invariant (attractive) distribution Π∗.

M. Corless, C. King, R. Shorten, F. Wirth, ”AIMD dynamics and
distributed resourses allocation”, SIAM book, 2015.

P. Colaneri Miami, 2018



pollo

Application example 3: EV public charging station

N Electrical vehicles. Energy required E ∗i for each vehicle.

Optimal total charging time

min
p

∑
i

ti :
ti−1

∑
k=0

pi (k) = E ∗i

Optimal operation time

min
pi

max
i

E ∗i
pi

Optimal shares

min
γi

∑
i

E ∗i
γiP

, ∑
i

γi = 1

P. Colaneri Miami, 2018
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Optimal shares

Optimal shares

min
γi

∑
i

E ∗i
γiP

, ∑
i

γi = 1

Centralized solution

γ
o
i =

√
E ∗i

∑i

√
E ∗i

→ po
i =

√
E ∗i

∑i

√
E ∗i

P̄

βββ
o = 1−diag(po)−1

αααε

How to implement a distributed adaptive algorithm? No knowledge of
the total available power. The algorithm can be implemented by each EV
without any communication at all, except that of a broadcast of the
capacity event notification (P reached).

P. Colaneri Miami, 2018
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Stochastic distributed algorithm

Two values of βi ∈ {β 1],β 2]}. Let ρi the probability that agent i selects
β 1. Then

ρi (τk+1) = ρi (τk)−ηfi (pi (τk),E ∗i ,δ f̂i (τk))

where δ f̂i (τk)) is an estimate of the gradient of the utility function. Then
in the average E (p) = po .

Shah, Incremona, Bolzern, Colaneri. Optimization Based AIMD
Saturated Algorithms for Public Charging of Electric Vehicles. EJC 2019.

Wirth, Stuedli, Yu, Yuan, Corless, Shorten. Nonhomogeneous
Place-Dependent Markov Chains, Unsynchronized AIMD, and Network
Utility Maximization. ACM, 2018.
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Example

Three agents, N = 3. Capacity, P = 7.5. p(0) = [2,5,0.5]. β [1] = 0.8 and
β [2] = 0.95. E = [2.19,5.22,8.58]. Furthermore, in order to examine the
process, 50000 iterations of the system are performed and ergodicity is
exploited. A histogram of the values p1, p2 and p3 is then constructed.
This would be an estimate of the steady-state distribution of the random
variables Π1, Π2 and Π3. The resulting histograms are illustrated in
Figure 1 together with the sample averages of the shares pi .
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Example

Figure 1: Estimate of the steady-state distribution of Π1, Π2 and Π3
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Figure 2: Estimation of the steady state distribution of Π̄i , i = 1,2,3.
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Example

Figure 2: Time evolution of the shares p1(t), p2(t) and p3(t)
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Figure 3: Time evolution of the pi (t), i = 1,2,3
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Example

Table 1: Comparison between the mixed AIMD and the corresponding centralized solution

i = 1 i = 2 i = 3

po
i 1.658 2.559 3.282

p̃i 1.691 2.565 3.248

CE Detector

EV2EV1

EV3EV4

Figure 3: Scheme of the considered AIMD based grid with four EVs

sample averages of the shares obtained via the proposed AIMD, and that of the optimal

centralized solution are reported in Table 1. As expected, for all the agents these values200

result to be very close.

5. Case Study: Public Charging of Electric Vehicles

In this section simulation results carried out relying on four EVs in a public charg-

ing scenario are reported in order to validate the proposed optimization based AIMD

approaches. Figure 3 illustrates a schematic representation of the considered AIMD205

infrastructure. However, note that the proposed scheme has general validity, even for

a greater number of EVs. The considered charging rate model is given by equations

(4) where the growth factors αi, i = 1, . . . , 4 are the same for all the EVs. As for

the decrease factors βi, each vehicle can suitably select them between two values β(1)

19

Figure 4: Comparizon between the centralized solution and the distributed
solution.
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Case study: public charging of electric vehicles

Table 1: Comparison between the mixed AIMD and the corresponding centralized solution

i = 1 i = 2 i = 3
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i 1.658 2.559 3.282

p̃i 1.691 2.565 3.248
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Figure 3: Scheme of the considered AIMD based grid with four EVs

sample averages of the shares obtained via the proposed AIMD, and that of the optimal

centralized solution are reported in Table 1. As expected, for all the agents these values200

result to be very close.

5. Case Study: Public Charging of Electric Vehicles

In this section simulation results carried out relying on four EVs in a public charg-

ing scenario are reported in order to validate the proposed optimization based AIMD

approaches. Figure 3 illustrates a schematic representation of the considered AIMD205

infrastructure. However, note that the proposed scheme has general validity, even for

a greater number of EVs. The considered charging rate model is given by equations

(4) where the growth factors αi, i = 1, . . . , 4 are the same for all the EVs. As for

the decrease factors βi, each vehicle can suitably select them between two values β(1)

19

Figure 5: Schematic representation of the considered AIMD infrastructure

Random arrival of vehicles. Each vehicle has random energy demand
(E ∗i ) and the total available power is equal to P = 2.5NskW , with Ns = 4
being the total number of available charging spots. Average arrival rate
of the vehicles = 3 vehicles per hour.
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Simulations

Figure 13: Time evolution of the charge rates and supplied energy in a random arrival scenario when the

mixed AIMD algorithm is used

27

Figure 6: Time evolution of the charge rates and supplied energy in a random
arrival scenario when the optimal share stochastic AIMD algorithm is used.
Flag signals equal to 1 indicate the connection or the arrival time instants.
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Conclusions

Application-driven theory of positive switched linear systems.

Optimal control (Virus load mitigtion)

Stabilization (Traffic light scheduling)

AIMD (EV distributed battery charge)
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Thanks

Think positive
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