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Introduction

@ Continuous-time

@ Discrete-time
x(k+1)= Ac(k)x(k)

A; are Metzler matrices (in continuous time), A; are nonnegative
matrices (in discrete-time), i =1,2,---, M. The signal o(.) is the
switching signal to be used for control purposes.

Positivity constraint
x>0
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CHAPTER 1

OPTIMAL CONTROL




Optimal control - switched systems

X(t‘) = Aa(t)x(t), X(O) =x0 >0

mcin J(xo) =c"x(tr), ©>0

Motivation: simplified model of the treatment of HIV infection dynamics, where x
represents the concentrations of various viral mutants in a patient, and ¢ represents
the selection of a suitable therapy. Alternatively, in the widespread Sl (Susceptible
Infective) models of epidemiology over a network, in the initial infection phase
(epidemic outbreak) the concentration of susceptible individuals is approximately
constant and the dynamics of infected individuals is linear.

Filippov trajectories, sliding modes?
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Optimal control - bilinear systems

Filippov-Wazewski relaxation: the set of possible trajectories of the
switched system is dense in the set of trajectories generated by the
bilinear system:

-
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Il

M
Alu(t))x(t) = (ZiAiUi(t)> x(t)

1 = 1Tu(t), symplex %
u(t) > 0 Vi
x(0) = xo

minJ(xo) =c'x(tf), €>0
u
The optimal solution does exist: the set of velocities F(x,u) := {A(u)x,u € Z} is
convex and the vector field is bounded by an affine function of the norm of the state

variable, i.e.||A(u)x|| < (14 [|x]])-
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Pontryagin triple

Optimal solutions satisfy:

x(t) = A(u(t))x(t), x(0)=xo

)T = BE)TAM(E), ) =c
u(t) = argminx(e) Aw)B(¢)
Jx) = B(0) %o

Hernandez-Varga, Colaneri, Middleton, Blanchini. Discrete-time control
for switched positive sstems with application to mitigating viral escape.
IJRN, 2011.
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Lyapunov Metzler differential equation

Matrix A is a Metzler matrix with A1 = 0.

N
—pi(t)" =p; (A + ) As(pf (t) —p; (1)) =0, pi(tr)=c
J#i

o(t)=arg min
Jjel(x(t

/ ())D+V, V(x,t) =minp, (t)x, J(x0) < minp;(0) xo

Important notice: For A= oA and ot — oo
o pi(t)—pj(t) =0

°
o u'(t)A=0
. i
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Are the Pontryagin solutions optimal?

Class of switched (bilinear) systems for which the necessary Pontryagin
conditions are also sufficient?

o First fact: The necessary condition for optimality given by
Pontryagin is also sufficient if the cost functional is convex wrt the
control u.

@ Second fact: 3
A=D+A

with D diagonal and M Metzler. Using the Trotter formula:

- k
exp(At) = limy_seo (exp(Dt/k)exp(At/k))

it is possible to prove that all entries of exp(At) are convex functions
of the diagonal entries of D.

P. Colaneri Miami, 2018



Main Result

o(t) affects only the diagonal entries of the Metzler matrices Ag(y), i.e.
Ai=Di+A i=12,...,M.

x(t) = Ax(t) + (Z Djui(t > x(t), J(xo,u) =c"x(tr)

Colaneri, Middleton, Chen, Caporale, Blanchini: Automatica 2014

The global optimal control exists

The cost J(xo,u) is convex with respect to u(.).
The optimal cost J° is concave with respect to xg.

Rantzer, Bo. Control of convex-monotone systems. CDC 2014
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Remarks

@ Thanks to convexity the optimal control u®(t) that minimizes
Jo(xo,u) can be found (numericaly) by discretization and gradient
methods.

@ In the same vein, the minimax problem min, maxy, J(xo,u) can be
solved.

Conjecture 3

3 A Metzler with A1 = 0 such that with the state-feedback switching rule
given by the differential Lyapunov-Metzler equations

N
—pi(t)" =p/ (DA + Y A5(p] (1) —p/ (£)) =0, pi(tr)=c
7

the optimal trajectory is found.

@ More complex cost function can be considered, for instance
T o7
J(xo) = € x(tr) + /O abox(t)dt, g >0
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Application example 1: HIV viral mitigation

@ Highly Active Antiretroviral Therapy (HAART) for treating HIV:
prevent immune deterioration, reduce morbidity and mortality, and
prolong the life expectancy of people infected with HIV. Virological
failure (HIV RNA levels less than 50 copies/ml), viral rebound,
emergence of resistance-conferring mutations within the viral
genome, virus with reduced susceptibility to one or more of the
drugs.

o Alternating HAART regimens would further reduce the likelihood of
the emergence of resistance. This proactive switching was evaluated
in a clinical trial called SWATCH (SWitching Antiretroviral Therapy
Combinations against HIV).

@ Once under treatment, and until virological failure, macrophage and
CD4+T cell counts are approximately constant. Under this
assumption, most non-linear HIV models are rendered linear.
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Simple model: 4 genotypes

x(t) = (diag(pi,cx(t)) - 8V’) x(t) + puMyx(t)

Oy is the viral clearance, p;; the replication rate of genotype i for
theraphy j, u the mutation rate, [M,]; = {0,1} the genetic connection
between genotypes.

Therapy 1 efficacy

010

Therapy 2 efficacy
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Simple model: 4 genotypes

Consider a system with 4 states, and two treatment options, m = 2, of
the following structure

A 0 0 0 0110
10 A 0 0 100 1
Ac=1 0 0 s 0 |TH]1 0 0 1

0 0 0 A 0110

with (symmetric case)
Ao1=232>0, A =231 <0, A1 —An+A31—A32=0

We want to minimize
J(xo) = CTX(tf)
with
c>0
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Simple model: 4 genotypes

C

X(t) = (diag(pi,o‘(t)) _ 5vl) x(t) + uMux(t) )
Aic = Pic — O,/

u = 10*
Moo= 019

A1 = A32=0.03

A31 = A2 =0.19
Ay = 0.03
tr = 50

X0

[10%5010°]
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Simulations

"Turnpike” solution. In the "symmetric case”, the optimal control goes as
fast as possible to a sliding mode and exit the sliding mode as closer as
possible to the final condition.
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Simulations

Table 1
Symmetric replication rates for viral variants.

Variant Therapy 1 Therapy 2

wild type (Xl) P11 = 0.05 P12 = 0.05
Genotype 1(x;) P21 =0.27 p2.2 = 0.05
Genotype 2 (x3) P31 = 0.05 p32 = 0.27
HR Genotype (x4) paq = 0.27 P42 = 0.27

—Switch on failure|
-- Optimal control
---SWATCH

Viral load (copies/ml)

0 2 4 6 8 10 12
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Extension - 16 genotypes

Z Adesayl

Therapy 1

Network for 16 genotypes and two drug combinations.
@ E. Hernandez Vargas, R. Middleton, and P. Colaneri. Switching strategies to
mitigate HIV mutation. IEEE Transactions on Control Systems Technology,

2014.
@ E. Hernandez Vargas, R. Middleton. Modelling the three stages in HIV infection.

Theoretical Biology 2013
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Extension

Infected (T*) and uninfected (T) CD4+T cells, infected (P*) and uninfected (P)
macrophages, viral load V; of the i-th genotype, total viral load V7.

7'_

T*

Vr

ST+7pTVT T- ikTiTVi—5TT
Crivr

i=

n
kT,'TV,'fsT*T,-*—Q—/J,ZmU\/JT
i=1

Sp+ﬂ i kpiPV; —6pP
Cp+ V7T =
n
kpi PV — 6p+ P + Z m;V;P

PT:T +ppiP 75V

Z Vi
=1

where st and sp are the generation rates of new T-cells and macrophages,
respectively, C+ and Cp are proliferation parameters, p1 and pp are the uninfected
cell replication rates, kr; and kp; represent the infection rates, whereas pr; and pp; are
the viral proliferation rates. The mutation rate is expressed by i, and the coefficients
mj; € [0,1] represent the genetics connection between genotypes. Finally, the
parameters § are the death rates for the relevant species.
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Linear approximation

x=[ T{P}Vy T3Psvs - TiPvi ]!
Ais O 0
0 Ay - O
X = : : : : X+ uMx
0 0 Anc
—O7+ 0 ki T miy - Mip 00 T
Aic = 0 —6p« kpiP |, M= : ®| 0 0 P
pri  ppi  —Ov Mpy - Mo 00 O
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Extension - 16 genotypes

@ Virological failure: Introduce a new regimen if there is detectable
viremia (HIV RNA > 1000 copies/ml), SWATCH: Alternate every 3
months.

Nonlinear

model TABLE 1

SIMULATION RESULTS AFTER SIX YEARS OF HAART

::::, Strategy Viral load | CD4+T cells
Switch on virologic failure 342 549
SWATCH 222 652
Observer based on Costate control 179 701
gutiched lneas Guaranteed Cost 234 696
model
MPC 7.5 857

Online controller

6 year treatment period and 3 month decision time: Proactive switching overperforms
the treatment based on virological failure. Linear switched strategies present values
close to the SWATCH treatment, where MPC exhibits the best performance compared
to the other strategies. See Hernandez-Varga, Middleton, Colaneri, IFAC 2011, for 64
genotypes, 3 drugs.
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CHAPTER 2

STABILIZATION




Stabilization: stable linear combination

@ There exists a Hurwitz linear combination of matrices A;, i.e.

M
A((X) = Z A,‘(X,‘
i=1

is Hurwitz. Then take p > 0 satisfying
p'A(a) <0
and switch according to

o(x(t)) = miin p' Aix(t)

There are stabilizable systems for which there are no Hurwitz matrices in
the convex hull of A;.
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Stabilization - Lyapunov-Metzler

@ There exist A Metzler, with A1 =0 such that
Agic(N) = diag(A7) + A" @1,

is Hurwitz. Then take p=[p{ p; ...p},]" > 0 satisfying

M
p'Apic(N) <0 <= p/A+Y Li(p; —p/) <0

i=1

and switch according to

o(x(th)) = in pan(t)AX(t
(x(tM)) argjeygxl?t))lva(t)( JAX(t),

There are stabilizable systems for which no feasible solution of the LM
inequalities exists.
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Stabilization - Lyapunov-Metzler with dwell-time

P/ A+ Y Aj(pj e —p]) <0, =12 N

J#i
State-feedback control law with dwell time
o(t) = i, telt,tx+T)
.
o(t) = i, ifx(t) p;i<x(t)'e” ijx(t) Vj#i,andt >ty + T
T
o(tir1) = argminx(tei1)' e ij, otherwise
J

L. Allerhand, U. Shaked. Robust State-Dependent Switching of Linear
Systems With Dwell Time. IEEE TAC 2013.

Conjecture 4

A positive switched linear system is stabilizable iff there exists T and A
Metzler with N1 = 0 such that the DTLM inequalities are feasible.
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Application example 2: Traffic junction




Simple model of a traffic junction

x(t) = Ag(r)x(t)

-1 0 0 0 0 2
0 20 0 0 O

o N O
o O o
o

@ There does not exist a Hurwitz stable linear combination of
A1, Az, As.

@ There exist no solution of the Lyapunov-Metzler inequalities for any
A.
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Periodic switching law

08

max(|P))

The matrix product F = e 72T eA3T is Schur stable for T > 1.257.

The switched system is stabilizable with a periodic switching law.

3, te[kT,kT+T)
o(t)=< 2, te[kT+T,kT+2T)
1, te[kT+2T,kT+3T)

Lyapunov Metzler inequalities with dwell time are feasible!
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T=2x=[111", x=Asx+1

with input flow
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CHAPTER 3

AIMD

Additive Increasing Multiplicative Decreasing




Classical AIMD

Distributed resource allocation problem: applications in the context of
smart grids and smart transportation systems.

Multiagent system with limited communication between agents and
limited feedback to the agents concerning aggregate utilization.

At time t the limited resource cannot be overused and each user
i=1,2,...,N receives a share p;(t) such that

N
Y pi(t) <P
=1

Chiu, Jain. Analysis of the increase and decrease algorithm for congestion
avoidance in computer networks. Computer networks and ISDN systems,
1989.
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Classical AIMD

In classical AIMD there is no explicit exchange between agents and
agents are informed via binary feedback when

This is called "capacity event”. Each agents operates an algorithm that
consists of a probing phase where an agents takes more and more
resource (additive increase phase, Al) and a response phase where agents
respond to the capacity events (multiplicative decrease phase, MD).
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Classical AIMD

In the Al phase each agents linearly increase, with slope o; > 0, their
share until the next capacity event. Upon the receipt of the CE signal,
each agents execute the multiplicative decrease phase by instantaneously
reducing their resorce share by a factor §; < 1.

pi(t) = Bipi() +ai(t — i), Tk <t < Tpqr

where T, denotes the time instant when the k-th CE occurs.

Dynamics at the capacity events. Column stochastic positive
discrete-time system:

P(Tk+1) = Ap(Tk)
A=diag(B)+ (1 a) la(l—B)"
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Simulations
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Classical AIMD: equilibrium

Equilibrium (Frobenius-Perron)

How to achieve a target p°:

o

B =1—diag(p°) 'an, n € (0, n*], n* = min %

1
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Place dependent stochastic AIMD systems

Random shares

N(tk+1) = As(e) (k)
As =diag(B,)+ (1" e) 'a(1-B,)
PrOb(A()-:A,|n:p):pl(p)’ i:1’2’...’M

Convergence of M(7x)? Under technical assumptions (p;(p) Lipshitz
continuous, As average contractive, As drop matrices), it can be shown
that M(7x) has a unique invariant (attractive) distribution M*.

M. Corless, C. King, R. Shorten, F. Wirth, "AIMD dynamics and
distributed resourses allocation”, SIAM book, 2015.
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Application example 3: EV public charging station

N Electrical vehicles. Energy required E; for each vehicle.

e Optimal total charging time

l’;—l
minZt,- : Z pi(k) = E}
P k=0

@ Optimal operation time
X

min max —-
pi 1 Pi

@ Optimal shares

E*
min L
Y zi:)/;P

. Yn=1
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Optimal shares

Optimal shares

Centralized solution

EF EF
L = Py E

B° =1 —diag(p°) las

How to implement a distributed adaptive algorithm? No knowledge of
the total available power. The algorithm can be implemented by each EV
without any communication at all, except that of a broadcast of the
capacity event notification (P reached).
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Stochastic distributed algorithm

Two values of B; € {BY,B2}. Let p; the probability that agent /i selects
BL. Then

Pi(Tis1) = pi(tk) — nfi(pi(tk), E;'. 8 (7))

where 87(7y)) is an estimate of the gradient of the utility function. Then
in the average E(p) = p°.

Shah, Incremona, Bolzern, Colaneri. Optimization Based AIMD
Saturated Algorithms for Public Charging of Electric Vehicles. EJC 20109.

Wirth, Stuedli, Yu, Yuan, Corless, Shorten. Nonhomogeneous
Place-Dependent Markov Chains, Unsynchronized AIMD, and Network
Utility Maximization. ACM, 2018.
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Three agents, N = 3. Capacity, P =7.5. p(0) =[2,5,0.5]. i =0.8 and
B2 =0.95. E=[2.19,5.22,8.58]. Furthermore, in order to examine the
process, 50000 iterations of the system are performed and ergodicity is
exploited. A histogram of the values p;, p» and p3 is then constructed.
This would be an estimate of the steady-state distribution of the random
variables Ny, M5 and [M3. The resulting histograms are illustrated in
Figure 1 together with the sample averages of the shares p;.
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Figure 2: Estimation
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of the steady state distribution of M;, i =1,2,3.
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4| [_mized AIMD — Centralized
3
2

0 1 2 3 4 5
time (s) x10*

2(t)

e =

0 1 2 3 4
time (s) x10*

ps(t)

0 1 2 3 1 :
time (s) x10°

Figure 3: Time evolution of the p;(t), i=1,2,3
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py  1.658 2.559 3.282

p;  1.691 2565 3.248

Figure 4: Comparizon between the centralized solution and the distributed
solution.
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Case study: public charging of electric vehicles

k)

Figure 5: Schematic representation of the considered AIMD infrastructure

Random arrival of vehicles. Each vehicle has random energy demand
(E}) and the total available power is equal to P =2.5NskW, with Ns =4
being the total number of available charging spots. Average arrival rate
of the vehicles = 3 vehicles per hour.
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Simulations

o

time (s) x10*

Connection  Suppli
e

I U T

Arrival

1R

time (s) x10*

0

Figure 6: Time evolution of the charge rates and supplied energy in a random
arrival scenario when the optimal share stochastic AIMD algorithm is used.
Flag signals equal to 1 indicate the connection or the arrival time instants.
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Conclusions

Application-driven theory of positive switched linear systems.

@ Optimal control (Virus load mitigtion)
o Stabilization (Traffic light scheduling)
e AIMD (EV distributed battery charge)
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Think positive
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