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Stability and stabilizability of continuous-time
linear compartmental switched systems

Maria Elena Valcher Fellow, IEEE, and Irene Zorzan

Abstract—In this paper we introduce continuous-time linear
compartmental switched systems and investigate their stability
and stabilizability properties. By their nature, these systems are
always stable. Necessary and sufficient conditions for asymptotic
stability for arbitrary switching functions, and sufficient condi-
tions for asymptotic stability under certain dwell-time conditions
on the switching functions are proposed. Finally, stabilizability
is thoroughly investigated and proved to be equivalent to the
existence of a Hurwitz convex combination of the subsystem
matrices, a condition that for positive switched systems is only
sufficient for stabilizability.

Index Terms—Compartmental systems, Positive systems,
Switched systems, Stability and Stabilizability.

I. INTRODUCTION

L INEAR switched systems, with the positivity constraint
on the state and input variables, have been the object of

a significant number of contributions in the last ten years, e.g.
[2], [4], [10], [11], [12], [15], [22], [29], [28], [42]. The interest
in this class of systems is primarily motivated by the number
of application areas where they have been fruitfully employed.
To mention the most significant ones: wireless power control,
congestion control, system biology, HIV mitigation therapy
and pharmacokinetic [4], [17], [36], [46]. The investigation of
positive switched systems offers a good number of challenging
problems, since the positivity constraint on the state and input
variables makes it impossible to resort to techniques and
results based on finite-dimensional vector spaces, and demands
for the involvement of less settled approaches, based on cones
and polytopes. This is the case, for instance, when dealing with
reachability and controllability of positive switched systems,
two topics that are still mostly unexplored [33], [42].

When addressing stability and stabilizability problems,
on the other hand, the results obtained for standard linear
switched systems can be fruitfully employed but in general
they represent conservative results, and ad-hoc tools, based
on copositive (control) Lyapunov functions and on character-
izations involving the convex combinations of the subsystem
matrices, turn out to be more appropriate [2], [11], [12], [15],
[22], [28], [48].

In many cases, in every single operating mode, namely in
each of the configurations among which the system switches,
the unforced dynamics of a positive switched system evolves
in accordance with some conservation law (e.g. mass, energy,
fluid), governing the exchange of material between different
compartments. This is the case, for instance, when modeling
a fluid network: state variables represent fluid levels in the
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various tanks and each subsystem corresponds to a different
open/closed configuration of the pipes connecting the tanks
[4]. Analogously, a compartmental switched system is often-
times a well-suited choice for describing a thermal system that
may undergo different working conditions, related to the fact
that heat transmission coefficients may change (window/doors
may be open or closed) [4]. Other practical examples arise,
for instance, when describing economical systems [25] or
the lung dynamics [19], [23]. Two motivating examples, one
dealing with a thermal system and one dealing with the
respiratory function, have been presented in detail in [43].
We refer to positive switched systems whose subsystems are
described by autonomous compartmental state-space models
as compartmental switched systems.

In this paper we first introduce continuous-time compart-
mental switched systems and then investigate their properties.
Specifically, in Section II we investigate stability under arbi-
trary switching, and prove that for this class of systems the
Hurwitz property of all the subsystem matrices is a necessary
and sufficient condition for asymptotic stability. In Section
III we determine necessary and sufficient conditions for the
existence of quadratic positive definite Lyapunov functions
of special types. In Section IV we drop the assumption that
all the subsystem matrices are Hurwitz, and provide classes
of switching functions with special persistence and/or dwell-
time properties that ensure the asymptotic convergence of
the associated system trajectories, independently of the initial
condition. In Section V we introduce stabilizability and show
that it is equivalent to the existence of a Hurwitz convex
combination of the subsystems matrices. Also, by making
use of some recent results appeared in [2], we show that
stabilizability of compartmental switched systems may be
related to the existence of special classes of copositive control
Lyapunov functions. Finally, in Section VI conclusions are
drawn. A preliminary version of Section V will appear in the
conference paper [43], that will be presented at the next CDC
2015 conference.
Before proceeding we introduce some notation.

Notation. Given k, n ∈ Z, with k ≤ n, the symbol [k, n]
denotes the integer set {k, k+1, . . . , n}. R+ is the semiring of
nonnegative real numbers. In the sequel, the (i, j)th entry of
a matrix A is denoted by [A]ij . If A is block partitioned, we
denote its (i, j)th block by blockij [A]. In the special case of a
vector v, its ith entry is [v]i and its ith block is blocki[v]. A
matrix A+ with entries in R+ is a nonnegative matrix (A+ ≥
0); if A+ ≥ 0 and at least one entry is positive, A+ is a
positive matrix (A+ > 0), while if all its entries are positive
it is a strictly positive matrix (A+ � 0). The same notation is
adopted for nonnegative, positive and strictly positive vectors.
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We let ei denote the ith vector of the canonical basis in Rn
(where n is always clear from the context), whose entries are
all zero except for the ith one that is unitary. 1n is the n-
dimensional vector with all entries equal to 1, and 0n is the
n-dimensional vector with all entries equal to 0 (the dimension
n will be omitted if it is clear from the context). Given r
vectors v1, . . . ,vr ∈ Rn, by Cone(v1, . . . ,vr) we mean the
set of nonnegative combinations of the vectors v1, . . . ,vr. A
real square matrix A is Hurwitz if all its eigenvalues lie in the
open left complex halfplane. We denote by σ(A) the spectrum
of A.

A Metzler matrix is a real square matrix, whose off-diagonal
entries are nonnegative. If A is an n × n Metzler matrix,
then [39] it exhibits a real dominant eigenvalue, known as
Frobenius eigenvalue and denoted by λF (A). This means that
λF (A) > Re(λ),∀ λ ∈ σ(A), λ 6= λF (A), and there exists a
positive eigenvector (Frobenius eigenvector) vF corresponding
to λF (A). When no confusion may arise, we will use λF
instead of λF (A).

An n × n nonzero matrix A is reducible [13] “if we may
partition {1, . . . , n} into two non-empty subsets E,F such that
aij = 0 if i ∈ E, j ∈ F .” (see also [34]). This is equivalent to
saying that there exists a permutation matrix Π such that (s.t.)

Π>AΠ =

[
A11 A12

0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, other-
wise it is irreducible. It follows that 1 × 1 nonzero matrices
are always irreducible. In general, given a Metzler matrix A,
a permutation matrix Π can be found s.t.

Π>AΠ =


A11 A12 . . . A1`

0 A22 . . . A2`

...
. . .

...
0 . . . A``

 , (1)

where each diagonal block Aii, of size ni×ni, is either scalar
(ni = 1) or irreducible. (1) is usually known as Frobenius
normal form of A [14], [30].

A (linear) compartmental system is an autonomous linear
state-space model:

ẋ(t) = Ax(t), (2)

whose state matrix A ∈ Rn×n is Metzler and the entries
of each of its columns sum up to a nonpositive number,
i.e. 1>nA ≤ 0>. A square matrix endowed with these
two properties is called compartmental matrix. (Autonomous)
compartmental systems are used to describe material flows
between compartments. As xi(t), the ith entry of the state
variable, represents the content of the ith compartment at time
t, the system is intrinsically nonnegative and hence the matrix
A must be Metzler. On the other hand, as the total amount
of the material in the system

∑n
i=1 xi(t) = 1>nx(t) cannot

increase with time (since there is no inflow, but there may be
an outflow or losses) it follows that 1>n ẋ(t) = 1>nAx(0) ≤ 0
for every x(0) > 0, and hence 1>nA ≤ 0> (see [16], [38]).

For any such matrix the Frobenius eigenvalue λF is nonpos-
itive, and if λF = 0 then A is simply stable, by this meaning

that it has the constant mode associated with λF = 0 but no
unstable modes.

Given a Metzler matrix A ∈ Rn×n, we associate with it
[6], [7], [35], [41] a digraph D(A) = {V, E}, where V =
{1, . . . , n} is the set of vertices and E is the set of arcs (or
edges). There is an arc (j, `) ∈ E from j to ` if and only
if [A]`j > 0. If so, [A]`j represents the weight of the arc. A
sequence j1 → j2 → · · · → jk → jk+1 is a path of length
k from j1 to jk+1 provided that (j1, j2), . . . , (jk, jk+1) are
elements of E .

We say that vertex ` is accessible from j if there exists
a path in D(A) from j to ` (equivalently, ∃ k ∈ N s.t.
[Ak]`j 6= 0). Two distinct vertices ` and j are said to
communicate if each of them is accessible from the other. Each
vertex is assumed to communicate with itself. The concept of
communicating vertices allows to partition the set of vertices
V into communicating classes, say C1, C2, . . . , C`. Class Cj
accesses class Ci if there is a path from some vertex k ∈ Cj to
some vertex h ∈ Ci. Each class Ci has clearly access to itself.
A class Ci that has access to no other class except for itself is
called recurrent, otherwise it is called transient [21], [31]. If
C1, . . . , Cs are the recurrent classes of D(A) and Cs+1, . . . , C`
its transient classes, then there exists a permutation matrix Π
s.t.

Π>AΠ =



A11 . . . 0 A1s+1 A1`

. . . . . .
0 . . . Ass Ass+1 As`

As+1s+1 . . . As+1`

. . .
A`s+1 . . . A``


,

where Aii ∈ Rni×ni , i ∈ [1, `], are either scalar (ni = 1) or
irreducible matrices. D(A) is said to be strongly connected
if every pair of vertices ` and j communicate, and hence it
consists of a single communicating class. D(A) is strongly
connected if and only if A is irreducible.

An n×n symmetric matrix P = P> is said to be quadratic
positive definite (and when so, we use the notation P = P> �
0) if x>Px > 0 for every x ∈ Rn,x 6= 0, and quadratic
copositive if x>Px > 0 for every x ∈ Rn+,x 6= 0. Clearly, a
quadratic positive definite matrix is quadratic copositive, but
the converse is not true. Given a vector v ∈ Rn and a set
N ⊂ Rn, the distance of the vector v from the set N is
dist(v,N ) := infz∈N ‖v − z‖.

II. STABILITY UNDER ARBITRARY SWITCHING

In this paper, by a Continuous-time Compartmental
Switched System (CCSS) we mean a system described by the
following equation:

ẋ(t) = Aσ(t)x(t), t ∈ R+, (3)

where x(t) ∈ Rn+ denotes the value of the n-dimensional
state variable at time t, σ : R+ → [1,M ] is an arbitrary
switching function, and, for each i ∈ [1,M ], Ai is an n × n
compartmental matrix. We also assume that σ(·) is right
continuous and in every finite interval it has a finite number
of discontinuities.
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The definition of asymptotic stability for CCSSs is anal-
ogous to the one introduced for arbitrary switched systems.
In addition, as for all linear switched systems, asymptotic
stability is equivalent to exponential stability [37].

Definition 1. The CCSS (3) is asymptotically stable if for
every positive initial state x(0) and every switching function
σ : R+ → [1,M ] the state trajectory x(t), t ∈ Z+, converges
to zero.

As it is well-known, a necessary condition for the stability
under arbitrary switching of a linear switched system, and
hence of a CCSS described as in (3), is that all individual
subsystems are asymptotically stable. Hence, in this section
we will steadily assume that all matrices Ai, i ∈ [1,M ], are
Hurwitz. This implies, in particular, that 1>nAi < 0>, for every
i ∈ [1,M ] (see Appendix).

A. Hurwitz property of the subsystem matrices

In the general (i.e. noncompartmental) case, the Hurwitz
assumption on all the subsystem matrices is not sufficient to
guarantee stability under arbitrary switching, not even when
we deal with continuous-time positive switched systems and
hence all matrices Ai, i ∈ [1,M ], are Metzler [27]. In the
following we will show that for CCSSs stability under arbitrary
switching is equivalent to the fact that all the subsystem
matrices are Hurwitz.

Proposition 1. Let Ai ∈ Rn×n, i ∈ [1,M ], be compartmental
matrices. Then, the following facts are equivalent:

i) the CCSS (3) is asymptotically stable under arbitrary
switching;

ii) for every choice of αi ≥ 0, i ∈ [1,M ], with
∑M
i=1 αi = 1,

the convex combination
∑M
i=1 αiAi is Hurwitz.

iii) Ai is Hurwitz for every i ∈ [1,M ].

Proof. i)⇒ ii) It is a well known result for continuous-time
switched systems [4], [24].

ii)⇒ iii) It is obvious.
iii) ⇒ i) The common Lyapunov function V (x(t)) =

1>nx(t) is of class C1, copositive and such that:

∇V (x(t)) · ẋ(t) = 1>nAix(t) ≤ 0, ∀x(t) > 0,∀i ∈ [1,M ],

and hence V (x(t)) is a Common Weak Lyapunov Function
in the sense of Definition 3 in [1] (of course, adjusting such
definition to CCSSs, i.e. restricting it to the positive orthant
Rn+, entails no loss of validity). Then, Proposition 1 in [1]
ensures that the CCSS is stable under arbitrary switching (see
also [5], [9]). However, we want to prove that the system is
also asymptotically stable under arbitrary switching. To this
aim, define the set N as:

N : = {x ∈ Rn+ : ∃i ∈ [1,M ] s.t.∇V (x)Aix = 1>nAix = 0}

=

M⋃
i=1

Ni,

where Ni := {x ∈ Rn+ : 1>nAix = 0}. For every x ∈ N ,
x 6= 0, define as well

Ix := {i ∈ [1,M ] : x ∈ Ni} ,
dx := min

i/∈Ix
dist(x,Ni) > 0.

By the compartmental property of each subsystem (see the
proof of Proposition 9 in the Appendix), if x(0) ∈ Ni for some
i ∈ [1,M ], x(0) 6= 0, then for every τ > 0 sufficiently small
x(τ) /∈ Ni. So, by choosing τ > 0 sufficiently small we can
ensure that x(τ) /∈ Ni,∀i ∈ Ix(0). On the other hand, since
the distance dx(0) is finite, it is also true that if τ is sufficiently
small x(τ) /∈ Ni for every i /∈ Ix(0). Therefore x(τ) /∈ N .
This ensures that the only compact, weakly invariant set 1

contained in N is M = {0}, and by Theorem 1 in [1] every
state trajectory is attracted by M, i.e. converges to the origin.

B. Characterizations in terms of Lyapunov functions
First of all, we introduce the definition of common Lya-

punov function for the CCSS (3), as opposed to the notion
of control Lyapunov function that we will explore in the
following. Dealing with positive systems, we may loosen the
constraints on the Lyapunov functions we are considering,
by allowing them to take positive values only in the positive
orthant and hence to be copositive.

Definition 2. A function V : Rn → R is said to be copositive
if V (0) = 0 and V (x) > 0 for every x > 0. A continuous
and continuously differentiable copositive function V (x) is a
common Lyapunov function for the CCSS (3) if for every x >
0 and every i ∈ [1,M ] the derivative of V in x along the
direction of the ith subsystem is negative, namely

∇V (x)Aix < 0. (4)

In this paper we will focus on two classes of common
copositive Lyapunov functions: linear and quadratic positive
definite Lyapunov functions. For these functions, the definition
of Lyapunov function adjusts as follows.

Definition 3. Given a CCSS (3), a continuous and continu-
ously differentiable copositive function V (x) is
• a Common Linear Copositive Lyapunov Function (CLCLF)
for the CCSS (equivalently, for the matrices Ai, i ∈ [1,M ]) if
V (x) = v>x, for some strictly positive vector v ∈ Rn+, and

v>Ai � 0>, ∀i ∈ [1,M ];

• a Common Quadratic Positive Definite Lyapunov Function
(CQPDLF) for the CCSS (equivalently, for the matrices Ai, i ∈
[1,M ]) if V (x) = x>Px, for some n × n positive definite
matrix P = P> � 0, and

V̇i(x) = x>[A>i P + PAi]x < 0,

∀x > 0, ∀i ∈ [1,M ],

1Consistently with [1], [26], we say that a set M is weakly invariant with
respect to the ith mode of (3) if for every x ∈M there exists a real number
b > 0 such that the solution of ẋ(t) = Aix(t) corresponding to the initial
condition x(0) = x is such that x(t) ∈ M either for every t ∈ [0, b] or for
every t ∈ [−b, 0]. A compact set M is weakly invariant with respect to (3)
if for every x ∈M there exists an index i ∈ [1,M ] such that M is weakly
invariant with respect to the ith mode of (3).
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namely the (symmetric) matrices Qi := −[A>i P + PAi], i ∈
[1,M ], are quadratic copositive.

It is worth noticing that the function V (x) = 1>nx that we
have used in the proof of Proposition 1 is a CLCLF for the
CCSS but in a weak sense, since condition (4) holds with <
replaced by ≤.

First of all, we investigate the relationship between Linear
Copositive and Quadratic Positive Definite Common Lyapunov
functions. As a starting point, we have the following pre-
liminary result, inherited from the general class of positive
switched systems (see [4]).

Proposition 2. Given a CCSS described as in (3), the follow-
ing facts are equivalent:
(i) For every choice of M nonnegative diagonal matrices Di,

i ∈ [1,M ], with
∑M
i=1Di = In, the matrix

∑M
i=1AiDi

is Metzler Hurwitz;
(ii) the CCSS admits a CLCLF.
If any of the previous equivalent conditions holds, then
(iii) the CCSS admits a CQPDLF.
If (iii) holds, then
(iv) the CCSS is asymptotically stable under arbitrary switch-

ing.

For general positive switched systems, none of the latest
implications (ii) ⇒ (iii) ⇒ (iv) can be reversed. Under the
compartmental assumption, it is still true that (iii) does not
imply (ii), as the following example shows.

Example 1. Consider the CCSS (3) with M = 2 and

A1 =

[
−1 1
1 −2

]
, A2 =

[
−2 1
1 −1

]
.

As Qi := −[A>i + Ai] = −2Ai � 0, i = 1, 2, condition
(iii) holds for P = I2. However, the CCSS does not admit a
CLCLF, since for every v =

[
v1 v2

]> � 0, we have

v>A1 =
[
−v1 + v2 ?

]
� 0> =⇒ v2 < v1;

v>A2 =
[
? v1 − v2

]
� 0> =⇒ v1 < v2.

At the current stage of our research, it is not clear whether
condition (iv) is equivalent to condition (iii) or not, since we
have not been able to find either a counterexample or a proof.
In the next section we will show that under certain conditions
on the matrices of the CCSS, condition (iv) implies (iii),
namely the Hurwitz property of all the compartmental matrices
Ai, i ∈ [1,M ], guarantees the existence of a CQPDLF for the
associated CCSS.

III. CONVERSE RESULTS ABOUT CQPDLFS

If the compartmental matrices Ai, i ∈ [1,M ], are Hurwitz,
they all satisfy condition 1>nAi < 0>, and hence V (x) =
x>1n1

>
nx represents a Weak Common Quadratic Copositive

Lyapunov Function for the CCSS, since for every x > 0 and
every i ∈ [1,M ]:

V (x) = x>1n1
>
nx > 0,

V̇i(x) = −x>[A>i 1n1
>
n + 1n1

>
nAi]x ≤ 0.

However, in general this is not a CQPDLF, since there exist
indices i ∈ [1,M ] and vectors x > 0 such that V̇i(x) = 0. In
order to explore under what conditions the Hurwitz stability of
the matrices Ai, i ∈ [1,M ], allows to construct a CQPDLF, we
focus our attention on the class of positive definite Lyapunov
functions described as V (x) = x>Px with

P = P> = 1n1
>
n + εD � 0, (5)

where ε > 0 and D ∈ Rn×n+ is a diagonal matrix with positive
diagonal entries.

Before proceeding let us state a preliminary lemma that will
be used in the proofs of the following propositions.

Lemma 1. Let M = M> ∈ Rn×n have the following block
structure:

M =

[
A B
B> C

]
with A = A> ∈ Rk×k, B ∈ Rk×(n−k), C = C> ∈
R(n−k)×(n−k). If B ≥ 0 and both A and C are copositive,
then M is copositive.

Proof. For every nonzero vector x =
[
x>1 x>2

]>
, x1 ∈ Rk+,

x2 ∈ Rn−k+ , one has[
x>1 x>2

] [ A B
B> C

] [
x1

x2

]
=

= x>1 Ax1 + x>2 B
>x1 + x>2 Cx2 + x>1 Bx2

≥ x>1 Ax1 + x>2 Cx2 > 0,

where the last inequality follows from the properties of A and
C, and fact that either x1 or x2 (or both) are nonzero.

We can now provide a characterization of CCSSs admitting
a Common Quadratic Positive Definite Lyapunov function of
type (5). We first consider a single compartmental Hurwitz
matrix in Lemma 2 and then we generalize this result to the
case of a CCSS described as in (3).

Lemma 2. Let A ∈ Rn×n be a compartmental Hurwitz matrix
s.t.

1>nA = 1>n

[
A11 A12

A21 A22

]
=
[
0>k −v>

]
, v� 0,

with A11 ∈ Rk×k and v ∈ Rn−k+ . The following facts are
equivalent:
(i) ∃ ε̄ > 0 s.t., for every 0 < ε < ε̄, the matrix

P = 1n1
>
n + εIn defines a Quadratic Positive Definite

Lyapunov Function for A;
(ii) the matrix −(A11 +A>11) is copositive.

Proof. Set P := 1n1
>
n + εIn, with ε > 0, and notice that the

matrix Q := −(A>P + PA) takes the following form:

Q=−(A>P + PA)

=

[
0k×k 0k×(n−k)

v1>k v1>n−k

]
+

[
0k×k 1kv

>

0(n−k)×k 1n−kv
>

]
−ε
[
A11 +A>11 A12 +A>21

A>12 +A21 A22 +A>22

]
=

[
−ε(A11 +A>11) 1kv

> − ε(A12 +A>21)
v1>k − ε(A>12 +A21) (v1>n−k + 1n−kv

>)− ε(A22 +A>22)

]
.
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(i) ⇒ (ii) If there exists ε > 0 s.t. Q is copositive, then for
every positive vector x =

[
x>1 0>n−k

]>
it holds:

0 < −x>(A>P +PA)x = −εx>1 (A11 +A>11)x1, ∀x1 > 0,

and hence the matrix −(A11 +A>11) is copositive.
(ii) ⇒ (i) Assume that −(A11 +A>11) is copositive and notice
that there always exists ε̄ > 0 such that for every ε ∈ (0, ε̄)

1kv
> − ε(A12 +A>21) ≥ 0

(v1>n−k + 1n−kv
>)− ε(A22 +A>22) � 0.

Then, recalling that a symmetric strictly positive matrix is also
a copositive matrix, by Lemma 1, for every such ε, matrix Q
is copositive and hence P = 1n1

>
n + εIn defines a Quadratic

Positive Definite Lyapunov Function for A.

Remark 1. If the compartmental matrix A ∈ Rn×n is such
that 1>nA � 0>, then for every ε > 0 sufficiently small the
matrix P = 1n1

>
n + εIn defines a Quadratic Positive Definite

Lyapunov function for A since Q = −(A>P+PA) is a strictly
positive matrix. This immediately follows from the proof of the
previous proposition in the case k = 0.

Proposition 3. Consider the CCSS (3), and assume that
Ai ∈ Rn×n, i ∈ [1,M ], are compartmental Hurwitz matrices.
Define the following sets:

Ji := {j ∈ [1, n] : 1>n colj(Ai) = 0}, i ∈ [1,M ], (6)

and, if Ji 6= ∅, denote by AJi the submatrix of Ai obtained by
selecting rows and columns of Ai indexed by Ji. The following
facts are equivalent:
(i) ∃ ε̄ > 0 s.t., for all 0 < ε < ε̄, the matrix P = 1n1

>
n +

εIn defines a CQPDLF for the CCSS;
(ii) for every i ∈ [1,M ] with Ji 6= ∅ the matrix
−
(
A>Ji +AJi

)
is copositive.

Proof. If i ∈ [1,M ] is such that Ji = ∅, then P = 1n1
>
n +

εIn defines a Quadratic Positive Definite Lyapunov Function
for Ai for every ε > 0 sufficiently small (see Remark 1).
Otherwise, let Πi be a permutation matrix such that:

1>n Π>i AiΠi︸ ︷︷ ︸
Ãi

= 1>n

[
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

]
=
[
0>ki −v>i

]
,

with vi ∈ Rn−ki+ and vi � 0, and notice that A(i)
11 = AJi .

Moreover notice that P = P> � 0 defines a QPDLF for Ai,
i.e. −(A>i P + PAi) is copositive, if and only if the matrix

−Π>i (A>i P + PAi)Πi

is copositive. This, in turn amounts to saying that the
matrix −[(Π>i A

>
i Πi)(Π

>
i PΠi) + (Π>i PΠi) ·(Π>i AiΠi)] =

−(Ã>i P+PÃi) is copositive, and by Lemma 2 such condition
holds for every ε > 0 sufficiently small if and only if the
matrix −(A>Ji + AJi) is copositive. Hence, for every ε > 0
sufficiently small the matrix P = 1n1

>
n + εIn defines a

CQPDLF for the CCSS if and only if for every i ∈ [1,M ],
with Ji 6= ∅, the submatrix −(A>Ji +AJi) is copositive.

Corollary 1. Consider the CCSS (3), and assume that Ai ∈
Rn×n, i ∈ [1,M ], are compartmental Hurwitz matrices. If for

every i ∈ [1,M ] the matrix Ai is s.t. the vector 1>nAi < 0>

has at most one entry equal to 0, then ∃ ε > 0 such that
P = 1n1

>
n + εIn defines a CQPDLF for the CCSS.

Proof. If Ai is such that 1>nAi � 0>, then ∀ε > 0 sufficiently
small the matrix P = 1n1

>
n +εIn defines a Quadratic Positive

Definite Lyapunov Function for Ai (see Remark 1). If the
vector 1>nAi < 0> has exactly one entry, say the jth one,
equal to 0, then AJi = [Ai]jj . Since Ai is Metzler Hurwitz,
it must be [Ai]jj < 0, but then −

(
A>Ji +AJi

)
is copositive

and the thesis follows directly from Proposition 3.

Remark 2. In the particular case where Ai ∈ R2×2, i ∈
[1,M ], the previous corollary implies that there always exists
ε > 0 such that P = 121

>
2 + εI2 defines a CQPDLF for

the CCSS with subsystem matrices A1, . . . , AM . Indeed, since
each Ai is compartmental and Hurwitz, condition 1>2 Ai 6= 0>

ensures that 1>2 Ai has either zero or 1 entries equal to 0.
This proves that when dealing with two-dimensional CCSSs,
conditions (iii) and (iv) in Proposition 2 are equivalent.

We now explore a slightly bigger class of CQPDLFs with
respect to those addressed in the previous results, since we
replace the identity matrix in P with a diagonal matrix.

Proposition 4. Consider the CCSS (3), and assume that
Ai ∈ Rn×n, i ∈ [1,M ], are compartmental Hurwitz matrices.
Define the sets Ji, i ∈ [1,M ], as in (6). If Ji ∩ Jj = ∅
for every i 6= j, then there exists ε > 0 and a diagonal
matrix D, with positive diagonal entries, such that the matrix
P := 1n1

>
n + εD defines a CQPDLF for the CCSS.

Proof. Let i ∈ [1,M ] be such that Ji 6= ∅. Set ki := |Ji|. It
entails no loss of generality assuming that Ji is an ordered ki-
tuple, with entries sorted in ascending order. Since by Lemma
6 in the Appendix the submatrix AJi is compartmental and
Hurwitz, there always exists [18] a diagonal matrix DJi ∈
Rki×ki , with positive diagonal entries, such that

− [A>JiDJi +DJiAJi ] � 0, (7)

and hence, in particular, −(A>JiDJi +DJiAJi) is copositive.
Define the following positive diagonal matrix D ∈ Rn×n:

[
D
]
jj

=

{
1, if 6 ∃i ∈ [1,M ] s.t. j ∈ Ji;[
DJi

]
kk
, if j ∈ Ji and j is the kth entry of Ji.

Now we show that there always exists ε > 0 such that P =
1n1

>
n +εD defines a CQPDLF for the CCSS. Again, as in the

proof of Lemma 6, we can assume w.l.o.g. that Ji = [1, r],
r ∈ [1, n], and hence:

1>nAi = 1>n

[
AJi A

(i)
12

A
(i)
21 A

(i)
22

]
=
[
0>ki −v>i

]
,

for some vi ∈ Rn−ki+ ,vi � 0, and

D =

[
DJi

D̄i

]
, D̄i ∈ R(n−ki)×(n−ki)

+ .

The matrix Qi := −(A>i P + PAi) takes the form in (8).



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEBRUARY 2017 6

Qi = −(A>i P + PAi)

= −

([
0ki×ki 0ki×(n−ki)
−vi1>ki −vi1>n−ki

]
+

[
0ki×ki −1kiv>i

0(n−ki)×ki −1n−kiv>i

]
+ ε

[
A>JiDJi (A

(i)
21 )>D̄i

(A
(i)
12 )>DJi (A

(i)
22 )>D̄i

]
+

[
DJiAJi DJiA

(i)
12

D̄iA
(i)
21 D̄iA

(i)
22

])

=

 −ε
(
A>JiDJi +DJiAJi

)
−ε
(

(A
(i)
21 )>D̄i +DJiA

(i)
12

)
+ 1kiv

>
i

vi1
>
ki
− ε

(
(A

(i)
12 )>DJi + D̄iA

(i)
21

)
vi1
>
n−ki + 1n−kiv

>
i − ε

(
(A

(i)
22 )>D̄i + D̄iA

(i)
22

) . (8)

———————————————————————————————————————————————————

Notice that there always exists ε̄ > 0 s.t. the following
conditions are satisfied for every ε ∈ (0, ε̄):

−ε
(

(A
(i)
21 )>D̄i +DJiA

(i)
12

)
+ 1kiv

>
i ≥ 0;

vi1
>
n−ki + 1n−kiv

>
i − ε

(
(A

(i)
22 )>D̄i + D̄iA

(i)
22

)
� 0.

Since, by assumption, condition (7) holds, by making use of
Lemma 1 we can claim that for every ε > 0 sufficiently small
the matrix Qi is copositive, and hence P = 1n1

>
n +εD defines

a Common Quadratic Positive Definite Lyapunov Function for
Ai for every i ∈ [1,M ], such that Ji 6= ∅. On the other hand,
if i ∈ [1,M ] is such that Ji = ∅, then ki = 0 and

Qi = vi1
>
n + 1nv

>
i − ε(A>i D +DAi)� 0

for sufficiently small ε > 0. So, the result is proved.

IV. STABILITY UNDER DWELL-TIME SWITCHING

We have seen in Section II that if all matrices Ai, i ∈
[1,M ], are compartmental and Hurwitz, then for every ini-
tial condition x(0) > 0 and for every switching function
σ : R+ → [1,M ] the state trajectory of the CCSS asymptoti-
cally converges to 0. In this section we relax the assumption
that all the subsystem matrices are Hurwitz, and investigate
which switching functions drive to zero the state trajectory
independently of the initial condition.

To this purpose, we introduce the following ergodicity
condition [8], [26], [44], [49]) (a sort of dwell-time condition)
on the switching functions σ(·) we will consider:

Property 1. There exists a real number τσ > 0 and a subset
Ωσ ⊆ [1,M ] such that for every t̄ ≥ 0 and for every p ∈ Ωσ ,
consecutive switching instants tk+1 > tk ≥ t̄ can be found,
satisfying the following conditions:

a) tk+1 − tk ≥ τσ;
b) ∀t ∈ [tk, tk+1), σ(t) = p.

Notice that Property 1 amounts to requiring that the switch-
ing function σ(·) admits a set Ωσ ⊆ [1,M ] of persistent modes
(see Definition 2.1 in [26]).

Proposition 5. Consider a CCSS described as in (3). Define
the sets:

Ji := {j ∈ [1, n] : 1>n colj(Ai) = 0}, i ∈ [1,M ].

Then, ∀σ(·) satisfying Property 1 for a set Ωσ such that
∩i∈ΩσJi = ∅, the state trajectory x(t), t ∈ Z+, asymptotically
converges to 0, ∀x(0) > 0.

Proof. As remarked in Proposition 1, V (x(t)) = 1>nx(t) is a
Common Weak Lyapunov function. Let σ(·) be an arbitrary
switching function satisfying Property 1 for a set Ωσ such
that ∩i∈ΩσJi = ∅ and let p ∈ Ωσ be any (persistent) mode
of σ(·). Denote by Mp the largest weakly invariant set with
respect to the pth mode in Np := {x ∈ Rn+ : 1>nApx = 0} and
notice that Mp ⊆ Cone(ej , j ∈ Jp). Then, by Theorem 4.1
in [26], the state trajectory x(t) weakly approaches M∗p :=
Mp ∩ V −1(c), for some c, in the pth mode as t → +∞,
meaning that:

lim
t→+∞
t∈Wσ

p

dist(x(t),M∗p) = 0, (9)

where Wσ
p is the union of all the intervals [tk, tk+1) of length

at least τσ and such that σ(t) = p for every t ∈ [tk, tk+1).
Now, if np := |Jp| and ncp := n − np = |J cp |, J cp being the
complementary set of Jp in [1, n], denote by xJp ∈ Rnp+ and
xJ cp ∈ Rn

c
p

+ the vectors formed by selecting the components of
x indexed by the sets Jp and J cp , respectively. By definition of
Mp, for every x ∈M∗p we have xJ cp = 0, and hence equation
(9) implies that for every ε > 0 there exists tε > 0 such that
for every t ≥ tε with σ(t) = p we have 1>ncpxJ cp (t) < ε. But
then, since for every t ≥ 0 such that σ(t) 6= p the function
Vp(x(t)) = 1>ncpxJ cp (t) is not increasing, it must be:

lim
t→+∞

1>ncpxJ cp (t) = 0, (10)

and hence xJ cp (t) → 0 as t → +∞. Now, since this is true
for every p ∈ Ωσ , the thesis follows from the fact that by
hypothesis ∩i∈ΩσJi = ∅, i.e. (∩i∈ΩσJi)

c
= [1, n], and hence

by the De Morgan’s law ∪i∈ΩσJ ci = [1, n].

Example 2. Consider the matrices:

A1 =

[
0 0
0 −1

]
, A2 =

[
−1 0
0 0

]
and note that J1 = {1} and J2 = {2}. If σ̄(·) is a switching
function with a finite number of switchings, i.e. there exist
t̄ ≥ 0 and p ∈ {1, 2} such that σ̄(t) = p for every t ≥ t̄,
then Property 1 holds for Ωσ = {p}, but then ∩i∈ΩσJi =
Jp = {p} 6= ∅. Indeed, if we consider the state trajectory
starting from any initial condition x(0)� 0, clearly [x(t)]p =
[x(t̄)]p > 0 for every t ≥ t̄, and hence the state trajectory
cannot converge to zero, as shown in Figure 1, on the left.
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Figure 1. State trajectories corresponding to a switching function σ̄(·) with
a finite number of switchings (left) and to the switching function σ̂(·) (right).

Now consider the switching function:

σ̂(t) =

{
1, if t ∈

[
2k, 2k + 1 + 1

2k+1

)
, k = 0, 1, . . .

2, elsewhere.

and notice that in this case σ̂(·) satisfies Property 1 for the
set Ωσ = {1, 2} and ∩i∈ΩσJi = ∅. Therefore, by Proposition
5, the state trajectory corresponding to any positive initial
condition converges to the origin (see Figure 1, on the right).

In the special case when the set

IAS := {i ∈ [1,M ] : Ai is Hurwitz}

is not empty, we can derive a similar result to the one given in
Proposition 5, by considering all the switching functions σ(·)
for which the set Ωσ intersects IAS .

Proposition 6. Consider a CCSS described as in (3), for which
the index set IAS is not empty. Then, for every switching σ(·)
satisfying Property 1 for a set Ωσ ⊆ [1,M ], such that Ωσ ∩
IAS 6= ∅, the state trajectory x(t), t ∈ Z+, asymptotically
converges to 0, ∀ x(0) > 0.

Proof. The proof proceeds as the proof of Proposition 5, but
in this case we consider p ∈ Ωσ ∩ IAS as a persistent mode
of σ(·) and hence we can claim that Mp = {0}. Then,
by Theorem 4.1 in [26], the state trajectory x(t) weakly
approaches Mp in the pth mode as t → +∞, meaning that
limt→+∞

t∈Wσ
p

dist(x(t),Mp) = 0, where Wσ
p is the union of all

the intervals [tk, tk+1) of length at least τσ and such that
σ(t) = p for every t ∈ [tk, tk+1). This implies that for every
ε > 0 there exists tε > 0 such that for every t ≥ tε for which
σ(t) = p we have 1>nx(t) < ε. But then, since for every
t ≥ 0 such that σ(t) 6= p the function V (x(t)) = 1>nx(t) is
not increasing, it must be limt→+∞ 1>nx(t) = 0, and hence
x(t)→ 0 as t→ +∞.

Now we consider switching functions having a common
dwell-time τ∗ > 0, by this meaning that for every σ(·) and
every pair of consecutive switching instants tk and tk+1 we
have tk+1−tk ≥ τ∗ (this definition of dwell-time is consistent
with the one introduced in [4], [37], [47]).

Corollary 2 below follows directly from Proposition 6.

Corollary 2. Consider the CCSS (3) and consider any set
of switching functions Sdwell,AS satisfying the following two
conditions:
• there exists τ∗ > 0 such that all the switching functions

have dwell-time τ∗;
• for every σ(·) ∈ Sdwell,AS and every t̄ ≥ 0 it holds true
that µ ({t ≥ t̄ : σ(t) ∈ IAS}) 6= 0.
Then, ∀σ ∈ Sdwell,AS and ∀x(0) > 0, the state trajectories
of the CCSS converge to 0.

V. STABILIZABILITY

Definition 4. [12] The CCSS (3) is stabilizable if ∀ x(0) > 0
there exists a switching function σ : R+ → [1,M ] s.t. the
corresponding state trajectory x(t), t ∈ Z+, converges to zero.

Remark 3. Clearly, the stabilization problem is a non-trivial
one only if all matrices Ai, i ∈ [1,M ], are not Hurwitz, and
hence in the following we steadily make this assumption. On
the other hand, if all matrices Ai, i ∈ [1,M ], would fulfill
condition 1>nAi = 0>, stabilization would not be possible,
since at every time t ≥ 0 one would have 1>nx(t) = 1>nx(0),
and the state would never converge to zero. So, it must be
1>nAi < 0 for at least one index i ∈ [1,M ].

A. Existence of a Hurwitz convex combination

It is a well-known result that the existence of a Hurwitz
convex combination of the subsystem matrices Ai, i ∈ [1,M ],
is a sufficient condition for the stabilizability of the switched
system (3) even without any positivity assumption, namely
even when the matrices Ai are arbitrary n × n real matrices
[45]. In recent times, it has been proved [2] that, when dealing
with two-dimensional continuous-time positive switched sys-
tems, the existence of a Hurwitz convex combination of the
system matrices is equivalent to stabilizability, but this is no
longer the case when dealing with positive switched systems
of arbitrary dimension n [3].

In the following we will show that the compartmental
property of the system matrices makes the difference, and
hence stabilizability of a CCSS is equivalent to the existence of
a Hurwitz convex combination of the matrices Ai, i ∈ [1,M ].
To this end, we first consider, in Lemma 3, the case in which
the matrix sum

∑M
i=1Ai is irreducible and then we remove

this hypothesis in Lemma 4.

Lemma 3. Consider the CCSS (3) and assume that the
matrix sum A :=

∑M
i=1Ai of the compartmental matrices

Ai ∈ Rn×n, i ∈ [1,M ], is irreducible. If the CCSS is
stabilizable, then there exists a Hurwitz convex combination
of A1, . . . , AM , i.e. ∃ αi ≥ 0, i ∈ [1,M ], with

∑M
i=1 αi = 1,

such that
∑M
i=1 αiAi is Hurwitz.

Proof. Suppose by contradiction that for every choice of αi ≥
0, i ∈ [1,M ], with

∑M
i=1 αi = 1, the matrix

∑M
i=1 αiAi is not

Hurwitz. Then, in particular, this is the case if we impose that
all coefficients αi are positive. So, assume ᾱi > 0, i ∈ [1,M ],
with

∑M
i=1 ᾱi = 1, and consider the compartmental matrix

Ā :=
∑M
i=1 ᾱiAi. By assumption, Ā is irreducible, too, and

not Hurwitz. By Lemma 5 in the Appendix this implies:

0> = 1>n

(
M∑
i=1

ᾱiAi

)
=

M∑
i=1

ᾱi(1
>
nAi),
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and hence 1>nAi = 0> for all i ∈ [1,M ]. But this contradicts
(see Remark 3) the stabilizability assumption.

Lemma 4. If the CCSS (3) is stabilizable, then there exists a
Hurwitz convex combination of A1, . . . , AM .

Proof. If the matrix
∑M
i=1Ai is irreducible, then the statement

follows from Lemma 3. If
∑M
i=1Ai is reducible, there exists

a permutation matrix Π such that:

B := Π>

(
M∑
i=1

Ai

)
Π =

M∑
i=1

Π>AiΠ︸ ︷︷ ︸
B(i)

=


B11 B12 . . . B1`

0 B22 . . . B2`

...
. . .

...
0 . . . B``

 ,
where Bjj ∈ Rnj×nj , j ∈ [1, `], are irreducible matrices.
Notice that, accordingly, each B(i), i ∈ [1,M ], takes the
following form:

B(i) := Π>AiΠ =


A

(i)
11 A

(i)
12 . . . A

(i)
1`

0 A
(i)
22 . . . A

(i)
2`

...
. . .

...
0 . . . A

(i)
``

 .
We want to prove that, under the stabilizability assumption,
B is a Hurwitz matrix. To this aim, suppose by contradiction
that B is not Hurwitz and let k ∈ [1, `] be such that Bkk
is (irreducible) compartmental and not Hurwitz. By Lemma
5 in the Appendix it must be 1>nkBkk = 0> and hence∑M
i=1 1

>
nk
A

(i)
kk = 0>. Since all matrices A

(i)
jj , j ∈ [1, `],

i ∈ [1,M ], are compartmental, the previous identity implies:

1>nkA
(i)
kk = 0>, ∀i ∈ [1,M ]. (11)

Now consider the initial condition x̄(0) (w.r.t. to the new
coordinate system, namely x̄(0) = Π>x(0)) whose kth block
is 1nk , while all the other blocks are zero, i.e.

x̄(0) =
[
0> . . . 1>nk . . . 0>

]>
.

We want to show that, independently of the switching function
σ(·), the corresponding state trajectory x̄(t), t ≥ 0, cannot
converge to 0. Set x̄k(t) := blockk[x̄(t)], and notice that
its time evolution is described by the equation ˙̄xk(t) =

A
σ(t)
kk x̄k(t). By condition (11), for every t > 0 it holds:

0=

∫ t

0

1>nk
˙̄xk(τ)dτ = 1>nk x̄k(t)−1>nk x̄k(0) = 1>nk x̄k(t)−nk,

where nk is the dimension of Bkk. Hence, for every switch-
ing function σ(·), we have: 1>nk x̄k(t) = nk,∀t ≥ 0, that
contradicts stabilizability. Therefore, B must be Hurwitz and,
by similarity, also

∑M
i=1Ai is Hurwitz. Hence, the positive

convex combination
∑M
i=1

1
MAi is Hurwitz.

The previous lemmas immediately lead to the following
characterization of stabilizability.

Proposition 7. The following facts are equivalent:
(i) the CCSS (3) is stabilizable;
(ii) there is a Hurwitz convex combination of A1, . . . , AM .

Proof. i) ⇒ ii) follows from Lemma 4, while ii) ⇒ i) is a
well known result for switched systems [45].

B. Characterizations in terms of Lyapunov functions

In this section we aim to provide additional characteriza-
tions of stabilizability by making use of copositive control
Lyapunov functions.

Definition 5. A continuous and continuously differentiable
copositive function V (x) is a control Lyapunov function for
the CCSS (3) if for every x > 0 there exists i = i(x) ∈ [1,M ]
such that the derivative of V in x along the direction of the
ith subsystem is negative, namely (4) holds.

In [2] (see Theorem 3) the following result was proved.

Theorem 1. Consider the continuous-time switched system
(3), and assume that all the matrices Ai, i ∈ [1,M ], are
Metzler. The following facts are equivalent:
(i) There is a Hurwitz convex combination of of A1, . . . , AM ;
(ii) the positive switched system (3) admits a linear copositive
control Lyapunov function VL(x) = v>x, with v� 0.
(iii) the positive switched system (3) admits a quadratic
positive definite control Lyapunov function VQ(x) = x>Px,
with P = P> � 0.

Thanks to Proposition 7, conditions ii) and iii) in Theorem
1 become equivalent characterizations of stabilizability for
CCSS. By making use of them, we can provide an additional
characterization that allows to draw a very complete picture of
the nature of stabilizability for CCSSs. To this goal we need
a preliminary result.

Proposition 8. Let Ai ∈ Rn×n, i ∈ [1,M ], be compartmental
matrices. If there exist indices i1, . . . , in ∈ [1,M ] such that the
matrix Ã :=

[
col1(Ai1) . . . coln(Ain)

]
is Hurwitz, then

there exist αi ≥ 0, i ∈ [1,M ], with
∑M
i=1 αi = 1, such that

the convex combination
∑M
i=1 αiAi is Hurwitz.

Proof. Suppose, first, that Ã is irreducible. Let D(Ã) :=
(V, EÃ) and D(AΣ) := (V, EΣ) denote the digraphs associated
with Ã and AΣ :=

∑M
i=1Ai respectively, and notice that by

construction EÃ ⊆ EΣ. Recalling that a matrix is irreducible if
and only if its associated directed graph is strongly connected,
the irreducibility assumption on Ã guarantees that also AΣ is
irreducible. By hypothesis Ã is Hurwitz, and hence there exists
k ∈ [1, n] such that 1>n Ãek = 1>n colk(Aik) < 0, but then
1>n colk(AΣ) =

∑M
i=1 1

>
n colk(Ai) < 0. This in turn implies,

by Lemma 5 of the Appendix, that AΣ is Hurwitz, and hence
also the convex combination

∑M
i=1

1
MAi is Hurwitz.

If Ã is a reducible matrix, then the matrix AΣ :=
∑M
i=1Ai

may either be irreducible or not and in the following the two
cases will be considered separately. Assume first that AΣ is
irreducible and let Π be a permutation matrix that reduces Ã



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEBRUARY 2017 9

to Frobenius normal form:

Π>ÃΠ =


Ã11 Ã12 . . . Ã1`

0 Ã22 . . . Ã2`

...
. . .

...
0 . . . Ã``

 ,
where Ãii ∈ Rni×ni , i ∈ [1, `], are irreducible matrices.
Accordingly, all matrices Ai are replaced by Π>AiΠ. Since,
by hypothesis, Ã11 is Hurwitz, there exists k ∈ [1, n1] such
that 1>n1

colk(Ã11) < 0, but then also 1>n colk
(
Π>AΣΠ

)
=∑M

i=1 1
>
n colk(Π>AiΠ) < 0. This in turn implies, by Lemma

5 of the Appendix, that AΣ is Hurwitz, and hence also the
convex combination

∑M
i=1

1
MAi is Hurwitz.

Consider now the case when AΣ is reducible (this implies
that every Ai, i ∈ [1,M ], is reducible). Let Π be a permutation
matrix that reduces AΣ to Frobenius normal form:

ÂΣ := Π>AΣΠ =

M∑
i=1

Π>AiΠ︸ ︷︷ ︸
AΠ
i

=


Â11 Â12 . . . Â1`

0 Â22 . . . Â2`

...
. . .

...
0 . . . Â``

 ,
where Âii ∈ Rni×ni , i ∈ [1, `], are irreducible compartmental
matrices. By hypothesis there exist indices î1, . . . , în (related
to i1, . . . , in by the same permutation described by Π) such
that the matrix B̃ :=

[
col1(AΠ

î1
) . . . coln(AΠ

în
)
]

is Hurwitz

and reducible. Moreover, B̃ takes the following form:

B̃ =


B̃11 B̃12 . . . B̃1`

0 B̃22 . . . B̃2`

...
. . .

...
0 . . . B̃``

 ,
with B̃ii ∈ Rni×ni , i ∈ [1, `]. However, B̃ might not be in
Frobenius normal form and, if this is the case, there exists a
permutation matrix Π̃ such that:

B̄ := Π̃>B̃Π̃ =


B̄11 B̄12 . . . B̄1`

0 B̄22 . . . B̄2`

...
. . .

...
0 . . . B̄``

 ,
where each diagonal block B̄ii ∈ Rni×ni , i ∈ [1, `], has the
following form:

B̄ii =


B̄

(i)
11 B̄

(i)
12 . . . B̄

(i)
1si

0 B̄
(i)
22 . . . B̄

(i)
2si

...
. . .

...
0 . . . B̄

(i)
sisi

 ,
with B̄(i)

jj ∈ Rn̄
(i)
j ×n̄

(i)
j , j ∈ [1, si], irreducible compartmental

matrices and
∑si
j=1 n̄

(i)
j = ni. Now, notice that for every

j ∈ [1, si], i ∈ [1, `], the matrix B̄(i)
jj is Hurwitz. In particular,

B̄
(i)
11 is irreducible, compartmental and Hurwitz and therefore

1>
n̄

(i)
1

B̄
(i)
11 < 0>, i.e. there exists k̄ ∈ [1, n̄

(i)
1 ] such that

1>
n̄

(i)
1

colk̄

(
B̄

(i)
11

)
< 0. But then, there also exists k̃ ∈ [1, ni],

with k̃ possibly different from k̄, such that 1>nicolk̃
(
B̃ii

)
< 0.

Hence, it is also true that 1>nicolk̃
(
Âii

)
< 0 and this in turn

implies, by Lemma 5 of the Appendix, that every diagonal
block Âii, i ∈ [1, `], is Hurwitz. So, finally, the matrix ÂΣ and
also the convex combination

∑M
i=1

1
MAi are Hurwitz.

By putting together, Propositions 7 and 8, and Theorem 1,
we finally derive the following set of necessary and sufficient
conditions for stabilizability.

Theorem 2. The following facts are equivalent:
i) the CCSS (3) is stabilizable;

ii) there is a Hurwitz convex combination of A1, . . . , AM ;
iii) ∃ v� 0 s.t. for every x > 0 there exists i ∈ [1,M ] such

that v>Aix < 0;
iv) ∃ P = P> � 0 s.t. for every x > 0 there exists i ∈ [1,M ]

such that x>[A>i P + PAi]x < 0;
v) ∃ i1, . . . , in ∈ [1,M ] such that the matrix: Ã :=[

col1(Ai1) . . . coln(Ain)
]

is Hurwitz;
vi) there exist M nonnegative diagonal matrices Di, i ∈

[1,M ], with
∑M
i=1Di = In such that the matrix∑M

i=1AiDi is Hurwitz.

Proof. i) ⇔ ii) It follows from Proposition 7.
ii) ⇔ iii) ⇔ iv) It follows from Theorem 1.
iii) ⇒ v) Assume that a vector v � 0 can be found,

such that for every x > 0 there exists i ∈ [1,M ] such that
v>Aix < 0. Then, in particular, for every j ∈ [1, n], there
exists ij ∈ [1,M ] such that v>Aijej < 0. So, the matrix
Ã :=

[
col1(Ai1) . . . coln(Ain)

]
satisfies v>Ã� 0>, and

this ensures that Ã is Hurwitz.
v) ⇒ ii) It follows from Proposition 8.
v) ⇒ vi) For every i ∈ [1,M ] define the nonnegative

diagonal matrix Di as follows:

[Di]kk =

{
1, if i = ik,
0, otherwise,

and notice that
∑M
i=1Di = In. Moreover, Ã =

∑M
i=1AiDi

and hence by hypothesis it is Hurwitz.
vi) ⇒ v) By hypothesis the matrix

∑M
i=1AiDi is Hurwitz,

and hence there exists v� 0 such that

z> := v>

(
M∑
i=1

AiDi

)
� 0>,

i.e. for every k ∈ [1, n] it holds [z]k =
∑M
i=1[v>AiDi]k <

0. This implies that for every k ∈ [1, n] there is
ik ∈ [1,M ] such that [v>AikDik ]k < 0. As Dik

is a nonnegative diagonal matrix, the previous inequal-
ity implies that [v>Aik ]k = v>colk(Aik) < 0.
Hence, Ã :=

[
col1(Ai1) . . . coln(Ain)

]
is such that

v>
[
col1(Ai1) . . . coln(Ain)

]
� 0>, i.e. Ã is Hur-

witz.

Remark 4. Notice that in order to prove v) ⇒ vi) and
vi) ⇒ v) the compartmental assumption on the subsystem
matrices is not required, and hence the equivalence between
statements v) and vi) of Theorem 2 holds in the general (i.e.
non-compartmental) case.
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Remark 5. It is worth noticing an interesting conse-
quence of the characterization provided in Theorem 2.
Condition v) involves up to n matrices, since the indices
i1, i2, . . . , in ∈ [1,M ] are not necessarily distinct. If we
look into the proof of Proposition 8, we easily realize that
the existence of indices i1, i2, . . . , in ∈ [1,M ] such that[
col1(Ai1) . . . coln(Ain)

]
is Hurwitz allows to say that

the compartmental matrix
∑n
k=1

1
nAik is Hurwitz. Corre-

spondingly, we can find v� 0 such that for every x > 0

min
k∈[1,n]

v>Aikx < 0,

and therefore the switching law

σ(t) = argmink∈[1,n]v
>Aikx

is stabilizing. This shows that even when M > n, a stabilizable
CCSS can always be stabilized by switching among a number
of subsystems not bigger than the system dimension n.

The following corollary provides a sufficient condition for
the stabilizability of the CCSS (3).

Corollary 3. Let Ai ∈ Rn×n, i ∈ [1,M ], be compartmental
matrices. If for every j ∈ [1, n] there exists ij ∈ [1,M ] such
that 1>n colj(Aij ) < 0, then the CCSS (3) is stabilizable.

Proof. By hypothesis Ã :=
[
col1(Ai1) . . . coln(Ain)

]
satisfies 1>n Ã � 0>, and hence is Hurwitz. So, by Theorem
2, the CCSS (3) is stabilizable.

The sufficient condition stated in the previous Corollary 3
is not necessary, as shown by the following example.

Example 3. Consider the matrices:

A1 =

[
−1 1
1 −2

]
A2 =

[
−1 1
1 −3

]
and notice that every convex combination of A1 and A2 is
Hurwitz:

αA1 + (1− α)A2 =

[
−1 1
1 α− 3

]
, α ∈ [0, 1].

Hence, by Proposition 7, the CCSS (3) is stabilizable. How-
ever, the previous sufficient condition does not hold, since
1>2 col1(A1) = 1>2 col1(A2) = 0.

VI. CONCLUSIONS

In this paper we have investigated asymptotic stability
and stabilizability of continuous-time linear compartmental
switched systems. We have shown that asymptotic stability is
equivalent to the Hurwitz property of all the system matrices
Ai, i ∈ [1,M ]. Also, sufficient conditions for stability based
on the existence of various kinds of copositive Lyapunov
functions have been mutually related. On the other hand,
we have shown that even when the matrices Ai are not
(all) Hurwitz, convergence to zero can always be guaranteed,
for every choice of the initial conditions, by resorting to
switching functions that satisfy certain ergodicity/dwell time
properties. Finally, we have investigated stabilizability and
shown that it is equivalent to the existence of a convex Hurwitz

combination of the system matrices. In addition, stabilizability
can always be tested by resorting to linear copositive control
Lyapunov functions or quadratic positive definite control Lya-
punov functions. The question of whether asymptotic stability
implies the existence of a common quadratic positive definite
Lyapunov function is still an open problem that deserves
further investigation.
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APPENDIX

SOME TECHNICAL RESULTS ABOUT COMPARTMENTAL
MATRICES AND COMPARTMENTAL SYSTEMS

By definition, an n×n Metzler matrix A is compartmental if
1>nA ≤ 0>. Condition 1>nA� 0> ensures that A is Hurwitz
[18]. On the other hand, condition 1>nA = 0> means that 1n
is a left eigenvector of A corresponding to λF = 0 and hence
A is not Hurwitz. The intermediate case when 1>nA < 0>,
but at least one of the entries of 1>nA is zero, does not allow
to draw any conclusion on the Hurwitz property of A, unless
A is irreducible.

Lemma 5. [20], [40] An irreducible compartmental matrix
A ∈ Rn×n is Hurwitz if and only if 1>nA < 0>.

The following result is used in Section II.

Lemma 6. If A ∈ Rn×n is a compartmental Hurwitz matrix,
every principal submatrix of A is compartmental and Hurwitz.

Proof. Let AJ denote the principal submatrix of A obtained
by selecting rows and columns of A indexed by the set
J = {j1, . . . , jr} ⊆ [1, n], J 6= ∅. Since for every per-
mutation matrix Π the matrix Π>AΠ is still compartmental
and Hurwitz, it entails no loss of generality assuming that
J = [1, r], r ∈ [1, n], and hence the matrix A takes the
following form:

A =

[
AJ A12

A21 A22

]
.

Clearly, AJ is Metzler. Now notice that for every j ∈ J
it holds: 1>r colj(AJ ) ≤ 1>r colj(AJ ) + 1>n−rcolj(A21) =
1>n colj(A) ≤ 0, and hence AJ is compartmental. Moreover,
let [A]ii =: di, i ∈ [r + 1, n], and notice that the following
relation holds:

A ≥ Ā :=


AJ 01×(n−r)

0n−r

dr+1 . . . 0
...

. . .
...

0 . . . dn


Then, by the Metzler matrix properties and recalling that
A is Hurwitz, one has 0 > λF (A) ≥ λF (Ā) =
max{λF (AJ ), dr+1, . . . , dn}, and hence AJ is Hurwitz.

We now consider linear compartmental systems described as
in (2), for some compartmental matrix A ∈ Rn×n, and prove
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that when A is a Hurwitz matrix, the linear copositive Lya-
punov function V (x(t)) = 1>nx(t) is strictly decreasing along
the system trajectories independently of the positive initial
condition. We consider the irreducible case in Lemma 7 and
then we remove the irreducibility hypothesis in Proposition 9.

Lemma 7. Consider the compartmental system (2) and as-
sume that A ∈ Rn×n is an irreducible, compartmental,
Hurwitz matrix. Then, if x(0) 6= 0, the Lyapunov function
V (x(t)) = 1>nx(t) is strictly decreasing along the system
trajectories, independently of the positive initial condition, i.e.

1>nx(t) < 1>nx(0), ∀t > 0,∀x(0) > 0. (12)

Proof. Since A is an irreducible compartmental and Hurwitz
matrix, by Lemma 5, 1>nA < 0>. Now, if 1>nA � 0>, then
V̇ (x(t)) = 1>nAx(t) < 0 for every t > 0, independently
of x(0) > 0, and hence V (x(t)) is strictly decreasing along
the system trajectories, independently of the positive initial
condition, namely (12) holds.
If 1>nA < 0>, then, possibly by resorting to row and column
permutations on A, we can assume w.l.o.g. that it takes the
form 1>nA =

[
0>k −v>

]
,v ∈ Rn−k,v� 0. Set

N :=
{
x ≥ 0: V̇ (x) = 1>nAx = 0

}
(13)

= Cone (e1, e2, . . . , ek) .

We want to show that N contains no system trajectory except
for the zero trajectory, i.e. x(t) = 0 for all t ≥ 0. If x(0) ∈ N ,
x(0) 6= 0, then x(0)> =

[
x>10 01×k

]
,x10 ∈ Rn−k+ ,x10 >

0. By the irreducibility assumption on A, eAt � 0 for all
t > 0 [32], and hence for every t > 0 x(t) = eAtx(0) =[
x1(t)> x2(t)>

]
,> with x2(t) � 0. So, for every t > 0,

x(t) /∈ N , and therefore V (x(t)) is strictly decreasing over
any arbitrarily small time interval [0, t].

Proposition 9. Consider the compartmental system (2) and
assume that A ∈ Rn×n is a Hurwitz matrix. Then, if x(0) 6= 0,
the Lyapunov function V (x(t)) = 1>nx(t) is strictly decreas-
ing along the system trajectories independently of the positive
initial condition, i.e. (12) holds.

Proof. The case when A is irreducible has been addressed in
Lemma 7. So, we assume now that A is reducible. Consider
the directed graph associated with A, and let C1, . . . , Cs be its
recurrent classes and Cs+1, . . . , C` be its transient classes. It
entails no loss of generality assuming that

A =



A11 . . . 0 A1s+1 A1`

. . . . . .
0 . . . Ass Ass+1 As`

As+1s+1 . . . As+1`

. . .
A`s+1 . . . A``


,

where Aii ∈ Rni×ni , i ∈ [1, `], are irreducible matrices, since
we can always reduce ourselves to this situation by resorting
to a suitable permutation of the rows and columns of A that
does not affect the compartmental property of A. Accordingly

(see [32], Proposition 1) eAt takes the following form:

eAt =: A(t) =


A11(t) ... 0 A1s+1(t) A1`(t)

. . . . . .
0 ... Ass(t) Ass+1(t) As`(t)

As+1s+1(t) ... As+1`(t)

. . .
A`s+1(t) ... A``(t)

 ,
where, for every t > 0, the matrix Aij(t) = blockij [eAt] ∈
Rni×nj , i ∈ [1, s], j ∈ [s+1, `], is strictly positive if the class
Cj has access to the class Ci and the null matrix otherwise.
By definition of transient class, for every j ∈ [s+ 1, `], there
exists i ∈ [1, s] s.t. Aij(t) ∈ Rni×nj is strictly positive.
Moreover, since Aii, i ∈ [1, s], are irreducible matrices, the
matrices Aii(t) = eAiit, i ∈ [1, s], are strictly positive for
every t > 0. The state vector x(t) can be partitioned into `
blocks, according to the partition of A. Now, define the set
N as in (13), and let x(0) > 0 be in N . We first note that,
by the irreducibility assumption on Aii, i ∈ [1, s], in every set
of indices {(

∑i−1
k=0 nk) + 1, . . . , (

∑i−1
k=0 nk) + ni}, i ∈ [1, s],

(with n0 := 0), there is at least one index j such that
1>nAej < 0. This implies that if x(t) > 0 and [x(t)]j > 0
then 1>nAx(t) < 0, and hence x(t) 6∈ N . So, by the same
reasoning adopted in Lemma 7, we can claim that every
x(0) ∈ N ,x(0) > 0, whose nonzero entries belong only to
the first s blocks, necessarily generates a state trajectory that
exits N .
Assume, now, that there exists k ∈ [s + 1, l] such that
blockk[x(0)] > 0. Then, by the previous reasoning, there
exists i ∈ [1, s] s.t. blocki[eAtx(0)] � 0,∀ t > 0. But this
implies that x(t) cannot belong to N . Thus, as V̇ (x(t)) =
1>nAx(t) ≤ 0 and N does not include system trajectories
apart from the identically zero one, it follows that V (x(t)) is
strictly decreasing with t.

Remark 6. It is worth noticing that even if V (x(t)) = 1>nx(t)
is strictly decreasing along the system trajectories, nonetheless
it is not true that 1>nA� 0>, which is the property a linear
copositive Lyapunov function has to satisfy. However, it is
clear that since A is a Metzler Hurwitz matrix, there is always
a vector v� 0 such that v>A� 0>. So, a linear copositive
Lyapunov function always exists but it is not necessarily the
one associated with the vector 1n.
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