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Abstract: In this paper we address two fault detection problems for Boolean control networks (BCNs). We assume that the
BCN may exhibit only two possible configurations, a non-faulty and a faulty one. The fault is simply described as the switching
from the non-faulty configuration to the faulty one, and we assume that the BCN cannot autonomously recover from the fault,
unless some external intervention restores the regular working conditions. Finally, we suppose that the fault affects only the state-
update, not the output measurements. In this set-up, we introduce the concepts of meaningful fault and of detectable meaningful
fault. Two different situations are investigated: the case when fault detection must be performed on-line, under arbitrary working
conditions, and hence corresponding to arbitrary inputs acting on the BCN, and the case when an off-line test is performed,
by making use of a specific input, in order to test whether the BCN is non-faulty or faulty. Complete characterizations and an
algorithm to practically perform the tests in both cases are presented. The obtained results for on-line fault detection are finally
particularized to the special case of Boolean networks (BNs).
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1 Introduction

The current interest in Boolean control networks (BCNs)
is undoubtedly motivated by the large number of physical
processes whose logical/qualitative behavior can be conve-
niently described by means of this class of models. Indeed,
in a number of contexts, ranging from biology, to game the-
ory and to multi-agent systems, the describing variables dis-
play only two operation levels (on/off, high/low, 1/0, ...), and
the status of each of them is related to the statuses of the oth-
ers by means of logical functions (combinations of “and”,
“or” and “negation” operators). This is the case, in particu-
lar, for gene regulatory networks [13, 19], since genes may
be treated as binary devices that can be either active or inac-
tive. Also, genes can be activated or inhibited, and this action
can be modeled by resorting to external Boolean inputs.

The algebraic representation recently introduced by D.
Cheng and co-authors has allowed to cast BCNs into the
framework of linear state models (operating on canonical
vectors) [1–3]. This new set-up has proved to be extremely
beneficial for the research in the field, since it has allowed to
derive matrix based characterizations for a number of prop-
erties of BCNs, and hence has suggested new approaches
to the solution of several control problems for these net-
works. To mention a few, stability, stabilizability, control-
lability [15], observability [5] and optimal control [7, 14],
have been successfully investigated by referring to the alge-
braic representations of BCNs.

Research on fault detection originated in the seventies and
still represents a lively research area (see [10, 12] for two
extended surveys). Fault detection of logic circuits, in par-
ticular, has received a lot of attention [11]. Recently, in [17],
this problem has been investigated by resorting to the semi-
tensor product method. However, the class of logic networks
considered in the paper was not described by a BCN and the
only faults were “stuck-at faults”, resulting in the fact that
one (or more) of the input or output variables remains stuck
at a certain value. The fault detection problem for gene reg-
ulatory networks, described by means of Boolean networks,

has been investigated to address some biomedical problems.
In [16] it is observed that “the study of diseases such as can-
cer requires the modeling of gene regulations and the loss
of control associated with it. The genetic alterations in the
system can be modeled using different fault models in the
Boolean Network paradigm.” Similarly, in [20], the Authors
develop a Boolean network to describe the failure of the ox-
idative stress response.

Aiming to generalize the results obtained in [16, 20] to the
broader context of Boolean control networks, in [8] and [9]
we have investigated the situation when, as a consequence
of a fault, a BCN switches from its original model to a dif-
ferent one. The main question we have tried to answer is
the following one. Assuming that the BCN equations are
known, but the state is not accessible, how can we decide
whether a fault has occurred, by evaluating the BCN output
that corresponds to the applied (known, but otherwise arbi-
trary) control input? In order to answer this question, we
have first identified the class of “meaningful faults”, which
are the only ones we may hope to identify since they alter
the state trajectory, and then introduced the concept of de-
tectability of a meaningful fault. Necessary and sufficient for
all meaningful faults to be detectable have been provided,
and when such conditions are verified, two practical algo-
rithms to detect meaningful faults have been proposed.

In this paper, we introduce for the fault description the
same assumptions as in our previous two contributions, and
we are still interested in determining conditions under which
meaningful faults are detectable. However, differently from
[8] and [9], we consider two possible scenarios: the case
when fault detection must be performed on-line, under arbi-
trary working conditions, and hence corresponding to arbi-
trary inputs acting on the BCN, and the case when an off-line
test is performed, by making use of a specific input, in order
to test whether the BCN is non-faulty or faulty. On-line fault
detection is essentially what was investigated in [8] and [9],
and we recall without proofs the main results obtained in this
context, and an algorithm to detect the fault occurrence. Off-
line fault detection is here investigated for the first time and



a complete characterization of its solvability is provided. It
turns out that the algorithm proposed for on-line fault de-
tection can be successfully employed also for off-line fault
detection. When dealing with Boolean networks (BNs), on
the other hand, an off-line fault detection test is meaningless
due to the lack of a control input, and hence only on-line
fault detection is considered.

The paper is organized as follows: section 2 introduces
the algebraic state representation of a BCN and recalls the
definitions of meaningful fault and of detectable meaning-
ful fault. Section 3 addresses on-line fault detection, while
section 4 provides a novel and thorough analysis of off-line
fault detection. Finally, in section 5 fault detection of BNs
is investigated. First, necessary and sufficient conditions for
all meaningful faults to be detectable are given, and finally
necessary and sufficient conditions for all faults to be mean-
ingful are provided.

Notation. Given k, n ∈ Z+, with k ≤ n, the symbol [k, n]
denotes the set {k, k + 1, . . . , n}. Boolean vectors and ma-
trices take values in B := {0, 1}, with the usual operations
(sum ∨, product ∧ and negation ·̄). δik denotes the ith canon-
ical vector of size k, Lk the set of k-dimensional canonical
vectors, and Lk×n ⊂ Bk×n the set of k × n matrices whose
columns are canonical vectors of size k. Any matrix L ∈
Lk×n can be represented as a row whose entries are canon-
ical vectors in Lk, namely L = [ δi1k δi2k . . . δink ] , for
suitable indices i1, i2, . . . , in ∈ [1, k]. The `th entry of a
vector v is [v]`.

Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k),
we associate with it a digraph D(L), with vertices 1, . . . , k.
There is an arc (j, `) from j to ` if and only if the (`, j)th en-
try ofL is unitary. A sequence j1 → j2 → . . .→ jr → jr+1

in D(L) is a path of length r from j1 to jr+1 provided that
(j1, j2), . . . , (jr, jr+1) are arcs of D(L). A closed path is a
cycle. A cycle with no repeated vertices is called elementary.

There is a bijective correspondence between Boolean vari-
ablesX ∈ B and vectors x ∈ L2, defined by the relationship

x =

[
X
X̄

]
. (1)

We introduce the (left) semi-tensor product n between ma-
trices (in particular, vectors) [3]: given L1 ∈ Rr1×c1 and
L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2 ),
we set L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T :=
l.c.m.{c1, r2}, where l.c.m. denotes the least common mul-
tiple. If c1 = r2 then L1 n L2 = L1L2. So, the semi-tensor
product extends the standard matrix product. By resorting to
it, we extend (1) into a bijective correspondence between Bn
and L2n : given X = [X1 X2 . . . Xn ]

> ∈ Bn, we set

x :=

[
X1

X̄1

]
n
[
X2

X̄2

]
n . . .n

[
Xn

X̄n

]
.

Given a sequence (w(t))t∈Z+
, we denote by (w(t))|[k,n] its

restriction to the “discrete window” [k, n], k, n ∈ Z+, k ≤
n. Similarly, given a set of sequences B, we denote by
B|[k,n] := {(w(t))|[k,n] : ∃ (w(t))t∈Z+ ∈ B}, the restric-
tion of B to [k, n].

2 Preliminaries on Boolean Control Networks and
fault detection problems

A Boolean Control Network (BCN) is described by the
following equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(2)

where X(t), U(t) and Y (t) denote the state variable, the
input and the output at time t, taking values in Bn,Bm and
Bp, respectively. f and h are logic functions, i.e. f : Bn ×
Bm → Bn and h : Bn → Bp. By resorting to the semi-
tensor product n, the BCN (2) can be described as [3]

x(t+ 1) = Ln u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(3)

where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP , with N :=
2n,M := 2m and P := 2p. L ∈ LN×NM and H ∈ LP×N
are matrices whose columns are canonical vectors. For every
u(t) = δjM , we set Lj := Ln u(t) ∈ LN×N .

Given a BCN described as in (3), we want to investigate
the problem of determining, from the measurement of its in-
put and output trajectories (but no access to the state vari-
able), whether a fault has affected the BCN functioning or
not. The first step toward this direction consists in defining
what do we mean by a fault and what may be the outcome
of a fault. In this paper we adopt the same set-up adopted
in [8, 9], and assume that the BCN may exhibit only two
possible configurations, a non-faulty (NF) and a faulty (F)
one. Also, the fault affects only the state-update, not the out-
put measurements, and therefore we represent the non-faulty
BCN as in (3) and the faulty one as

x(t+ 1) = L(F ) n u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(4)

for some suitable L(F ) ∈ LN×NM , and we set L(F )
j :=

L(F ) n δjM , j ∈ [1,M ]. If we introduce the fault sig-
nal (f(t))t∈Z+

, taking values in L2, and we assume that
f(t) = δ12 corresponds to the non-faulty BCN and f(t) = δ22
to the faulty one, the overall BCN dynamics becomes

x(t+ 1) = L̃n f(t) n u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+.

(5)

where L̃ := [L L(F ) ] ∈ LN×2NM . We assume that the
BCN cannot autonomously recover from a fault; so once the
fault signal switches from δ12 to δ22 , it cannot switch back to
δ12 , and a fault sequence acting at time t̄ is described by the
step function

f(t) =

{
δ12 , for 0 ≤ t < t̄;
δ22 , for t ≥ t̄, (6)

where t̄ = +∞ in case no fault affects the BCN. We want
to investigate under what assumptions on the original and
the faulty BCNs, we can detect the fault occurrence from the
measurement of the input and output sequences generated
by the BCN (5). Specifically, we will consider two possible
scenarios in which the fault detection problem may arise:



(1) on-line fault detection, corresponding to the case when
the BCN, undergoing normal working conditions, is subject
to an arbitrary input, and we want to understand, based on
its input-output behavior, if a fault has occurred; (2) off-line
fault detection, by this meaning the situation when we per-
form an ad hoc off-line test on the BCN, to ascertain whether
it is faulty or it is working correctly. In other words, we want
to detect whether the BCN is faulty or not, by making use
of a single “universal” test (namely by applying some finite
support input sequence, independent of the initial condition,
that is always supposed to be unknown). In this latter case,
we assume that the probability that the BCN becomes faulty
during the test is zero, and hence the BCN is either work-
ing correctly or erroneously during the whole duration of the
test. This amounts to assuming that t̄ is either 0 or +∞;
equivalently, f(t), t ∈ Z+, is either identically equal to δ12 or
to δ22 .

To better formalize these problems and their solutions,
we denote by x(t;x0,u(·), f(·)) and y(t;x0,u(·), f(·)), the
state and output vectors of the BCN (5) at time t, when it
starts from x(0) = x0 and the input and fault sequences are
u(·) and f(·), respectively.

As a preliminary remark, we notice that a fault taking
place at time t̄, for certain values of x̄ := x(t̄) ∈ LN and
u(t), t ≥ t̄, may not reveal itself, independently of the way
we choose the output measurements. Indeed, it is possible
that the state trajectory generated by the faulty BCN (4) start-
ing from x̄ at t = t̄, under the effect of u(·), coincides with
the state trajectory that the non-faulty BCN (3) generates in
the same conditions. This is not an unreasonable situation,
since it corresponds to the case when the faulty part of the
system is not involved in the dynamic evolution and hence
the fault cannot be detected. Under this perspective, it is
convenient to introduce the concept of meaningful fault.

Definition 1 [8, 9] Given an initial state x0 ∈ LN and an
input sequence (u(t))t∈Z+ , a fault sequence (f(t))t∈Z+ in-
duces a meaningful fault for the BCN (5) if the state tra-
jectory (x(t;x0,u(·), f(·)))t∈Z+

, generated by (5) corre-
sponding to x0, u and f , is different from the state trajec-
tory (x(t;x0,u(·), δ12))t∈Z+

(which coincides with the one)
generated by the non-faulty system (3) corresponding to the
same initial condition and input.

Meaningful fault sequences are the only ones we may
hope to detect, by making use of the input and output tra-
jectories, and hence in the following we will restrict our at-
tention to them. Based on the concept of meaningful fault,
we can now formalize and solve the on-line and off-line fault
detection problems.

3 On-line fault detection

When dealing with on-line fault detection, we have no
restrictions on the initial states and on the input sequences
applied to the BCN. As a result, the case when a fault is
not meaningful may arise and there is no way to avoid this
situation. To give an intuition, it would be as if the wind-
screen wiper would break in a sunny day. There are almost
zero chances of realizing it, unless one tests its function-
ing purposedly. Even restricting our interest to meaningful

faults, however, it is clear that the time instant t̄ at which the
fault occurs does not necessarily coincide with the first time
tf ≥ t̄ at which the meaningful fault modifies the state tra-
jectory. And even in the most optimistic scenario, there is no
way to evaluate t̄, only tf . So, in the following we will focus
our attention only on tf and we will regard it as the practical
time instant at which a meaningful fault occurs.

In order to formalize the concept of detectable fault we
introduce the set of the admissible input/output trajectories
of the non-faulty BCN (3), or equivalently of the BCN (5)
corresponding to f(t) = δ12 ,∀ t ∈ Z+:

Buy := {(u(t),y(t))t∈Z+ : (u(t))t∈Z+ ∈ (LM )Z+ , and

∃x0 ∈ LN s.t. y(t) = y(t;x0,u(·), δ12)}. (7)

In other words, Buy is the set of all pairs (u(t),y(t))t∈Z+

such that (y(t))t∈Z+
is the output trajectory generated by (3)

corresponding to some initial state x(0) = x0 ∈ LN and to
the input (u(t))t∈Z+

.

Definition 2 Given a BCN (5), an initial state x0 ∈ LN ,
an input sequence (u(t))t∈Z+

, and a (meaningful)
fault sequence (f(t))t∈Z+

, we say that the (mean-
ingful) fault is detectable if the input/output pair
(u(t),y(t;x0,u(·), f(·))t∈Z+ generated by the BCN
(5) does not belong to Buy .

To answer the on-line fault detection problem, we define

X∗ := {x∗ ∈ LN : ∃ u∗ ∈ LM s.t.

Ln u∗ n x∗ 6= L(F ) n u∗ n x∗}, (8)

and, for every x∗ ∈ X∗,

U∗(x∗) := {u∗ ∈ LM : Ln u∗ n x∗ 6= L(F ) n u∗ n x∗}.
(9)

Also, UY∗ denotes the set of input/output trajectories
(u(t),y(F )(t)) ∈ (LM × LP )Z+ generated by the faulty
BCN (4) corresponding to some x(0) = x∗ ∈ X∗ and to
some input (u(t))t∈Z+

with u(0) ∈ U∗(x∗). In other words,
we focus on input/output trajectories for which a fault lo-
cated at t = 0 is meaningful and modifies that state evolution
starting at t = 1 (so, tf = 0).

Proposition 1 [8, 9] For the BCN (5) the following facts are
equivalent:

i) for every initial condition x0 ∈ LN and every input
sequence (u(t))t∈Z+

, every fault that is meaningful (for the
specific choice of x0 and u) is also detectable;

ii) UY∗ ∩Buy = ∅.
(10)

Condition (10) can be checked by resorting to a graph
theoretic approach. The idea is to introduce a graph that is
able to keep in parallel the state-transitions in the non-faulty
BCN and in the faulty one, starting from any pair of states
and corresponding to any input sequence. We introduce the
NF-F (non-faulty-faulty) directed graph G = (V, E , C0, C1),
where
• The vertex set V is the set of all pairs of states, namely
{(δiN , δ

j
N ) ∈ LN × LN}.



• The labeled edge set E is defined as follows: there is
an edge labeled by u ∈ LM from the pair (δiN , δ

j
N )

to the pair (δhN , δ
k
N ) if and only if δhN = L n u n δiN

and δkN = L(F ) n u n δjN . Note that from every pair
(δiN , δ

j
N ) there are M outgoing arcs, one for each value

of the input u. Clearly, two vertices may be connected
by arcs with different labels.

• The vertex set is partitioned into 2 classes: C0 and C1.
A pair (δiN , δ

j
N ) belongs to C1 if HδiN = HδjN , while

it belongs to C0 if HδiN 6= HδjN .

Proposition 2 [9] Given the BCN (5), let G =
(V, E , C0, C1) be the associated NF-F directed graph.
All meaningful faults affecting the BCN are detectable if
and only if each path in G endowed with the properties:
P1) it starts from some vertex pair (x0,x

∗) ∈ LN ×X∗;
P2) the first arc of the path (outgoing from (x0,x

∗)) is
labeled by some u∗ ∈ U∗(x∗);
eventually enters the class C0.

Remark 1 Proposition 2 provides a necessary and suffi-
cient condition for all meaningful faults to be detectable.
The existence of a not detectable meaningful fault corre-
sponds, henceforth, to the case when a path can be found,
satisfying P1) and P2) but never leaving the class C1. This
ensures the existence in C1 of a cycle that can be reached
from the pair (x0,x

∗). Note that the existence of a cycle in
C1 is equivalent to the existence of a not detectable fault.
However, this fault is not necessarily meaningful, unless it
can be reached starting from a pair (x0,x

∗) satisfying P1)
and P2).

Remark 2 Proposition 2 provides a way (at least when
N,M and P are not too large) to check whether meaning-
ful faults are always detectable. Indeed, one simply needs
to explore in the NF-F directed graph all the paths en-
dowed with properties P1) and P2) and see after how many
steps they enter C0. One may wonder how long these paths
may be, in the worst case, and hence how heavy is this
test from a computational viewpoint. If every path satisfy-
ing P1) and P2) eventually enters C0, it cannot encounter
the same vertex pair in C1 twice. So its length is upper
bounded by the cardinality of C1, and, in the worst case,
the maximum number of distinct path (of length |C1| ) we
have to evaluate in the NF-F graph is upper-bounded by
|X∗|R(maxx∗∈X∗ |U∗(x∗)|)M |C1|−1 � N2M |C1|, where
R is the cardinality of the largest set of states that corre-
spond to the same output value.

3.1 On-line fault detection algorithm
In this section we propose an algorithm to perform on-

line fault detection. The idea underlying the algorithm is
a somewhat classical one (see [10, 12]), since it essentially
performs an observer-based fault detection, one of the most
popular fault detection techniques.

A way to test whether a fault occurred or not, consists in
verifying, at every time τ , whether the set XNF

τ of the states
that the non-faulty BCN (3) can reach at time τ , under the
effect of the input sequence u(t), t ∈ [0, τ − 1], meanwhile
generating the output y(t), t ∈ [0, τ ], is non-empty.

In other words, one starts at time τ = 0 by determining the
set XNF

0 of the initial states compatible with y(0). At τ = 1,
one evaluates XNF

1 of the states that are compatible with
y(1) and can be obtained from the states in XNF

0 by apply-
ing u(0). By proceeding in this way, we obtain the sequence
of sets XNF

τ , whose cardinality decreases with τ . If for some
τ we have XNF

τ = ∅, a fault has occurred. On the other had,
if XNF

τ 6= ∅, the portion of trajectory (u(t),y(t))[0,τ ] be-
longs to Buy|[0,τ ], but considering the delay in revealing the
fault, we can only ensure that no meaningful fault has af-
fected the system up to time τ −D+1, for someD > 0 (see
[9]). We note that at every time τ the indices of the states that
are compatible with a given output sample δjP are the indices
of the unitary entries of the Boolean vectorH>δjP . Based on
this remark, the algorithm can be formalized as follows:

Algorithm (Algorithm 2 in [9]).
[Initialization] Set τ := 0,XNF

0 := {δiN : HδiN =
y(0)} = {δiN : [H>y(0)]i = 1} and v0 :=∑
δiN∈XNF

0
δiN = H>y(0).

[Recursive step] Set τ := τ + 1, and

XNF
τ := {δiN : [Lnu(τ−1)nvτ−1]i = 1∧[H>y(τ)]i = 1}.

If XNF
τ = ∅ then a fault occurred: STOP. Otherwise set

vτ :=
∑
δiN∈XNF

τ
δiN and repeat the recursive step.

-
y(0)

v0 = H>y(0)

? ?

u(0)

-
y(1)

v1 = [H>y(1)] ∧ [Ln u(0) n v0]

? ?

u(1)

-
y(2)

v2 = [H>y(2)] ∧ [Ln u(1) n v1]

? ?

Fig. 1: Flowchart corresponding to the Algorithm.

Example 1 Consider the BCN (3) with matrices

L1 := Ln δ12 = [ δ24 δ34 δ44 δ14 ] ,

L2 := Ln δ22 = [ δ14 δ34 δ34 δ24 ] ,

H := [ δ12 δ12 δ22 δ22 ] ,

initialized at t = 0 with x(0) = δ14 . Assume that at time
t = 1 a fault occurs and the faulty BCN is described as
follows

L
(F )
1 := L(F ) n δ12 = [ δ24 δ34 δ44 δ14 ] = L1,

L
(F )
2 := L(F ) n δ22 = [ δ14 δ34 δ34 δ14 ] ,

(while H is unaltered). We want to illustrate how the algo-
rithm works when the input sequence is u(0) = δ12 ,u(1) =



δ12 ,u(2) = δ22 ,u(3) = δ12 ,u(4) = δ22 ,u(5) = δ22 , ... and the
measured output sequence is y(0) = δ12 ,y(1) = δ12 ,y(2) =
δ22 ,y(3) = δ22 ,y(4) = δ22 ,y(5) = δ12 ,y(6) = δ12 , ...

We have:
XNF

0 = {δ14 , δ24},v0 = [ 1 1 0 0 ]
>
.

XNF
1 = {δ24},v1 = [ 0 1 0 0 ]

>
.

XNF
2 = {δ34},v2 = [ 0 0 1 0 ]

>
.

XNF
3 = {δ34},v3 = [ 0 0 1 0 ]

>
.

XNF
4 = {δ44},v4 = [ 0 0 0 1 ]

>
.

XNF
5 = {δ24},v5 = [ 0 1 0 0 ]

>
.

XNF
6 = ∅. So, we have detected the fault occurrence.

4 Off-line fault detection

In this section we investigate the problem of determining
under what conditions on the BCN (5) it is possible to de-
sign a test (equivalently, a time T > 0 and a finite input
sequence û(t), t ∈ [0, T − 1]) such that, independently of
the initial condition of the system, we are able to determine
from the corresponding output whether the BCN is faulty or
non-faulty. As previously said, we assume that the fault can-
not happen during the test time, and hence either the BCN is
described as in (3) or as in (4) for the whole duration of the
test.

The following result provides a straightforward mathe-
matical formalization of the conditions under which the off-
line fault detection problem is solvable.

Proposition 3 For the BCN (5) the following facts are
equivalent:
i) the off-line fault detection problem is solvable;
ii) there exist T ∈ Z+ and an input û(t), t ∈ [0, T − 1],
taking values in LM , such that the two sets of output trajec-
tories

Ŷ|[0,T ] := {(y(t))|[0,t] : ∃ x0 ∈ LN s.t.

y(t) = y(t;x0, û(·), δ12),∀ t ∈ [0, T ]} (11)
Ŷ(F )|[0,T ]:={(y(t))|[0,t] : ∃ x0 ∈ LN s.t.

y(t) = y(t;x0, û(·), δ22),∀ t ∈ [0, T ]} (12)

are disjoint.

The previous proposition suggests an immediate algebraic
condition for the solvability of the off-line fault detection
problem. Indeed, introduce the observability matrices in T+
1 steps [5] of the non-faulty and the faulty BCNs, (3) and (4)
respectively, corresponding to the input û(·):

Oû,T+1 :=


H

HLi0
HLi1Li0

...
HLiT−1

. . . Li1Li0

 , (13)

O(F )
û,T+1 :=


H

HL
(F )
i0

HL
(F )
i1
L
(F )
i0

...
HL

(F )
iT−1

. . . L
(F )
i1
L
(F )
i0

 , (14)

where we have assumed

û(0) = δi0M , û(1) = δi1M , . . . , û(T − 1) = δ
iT−1

M .

The off-line fault detection problem is solvable if and only
if there exist T ∈ Z+ and indices i0, i1, . . . , iT−1 ∈ [1,M ]
such that the corresponding observability matrices Oû,T+1

and O(F )
û,T+1 have no common columns. Obviously, from

a computational viewpoint this characterization is not very
meaningful, since it would require to evaluate the observabil-
ity matrices of the two BCNs corresponding to all possible
input sequences.

An alternative approach to the problem solution is in terms
of the NF-F graph G = (V, E , C0, C1), previously intro-
duced. Condition ii) in Proposition 3 is equivalent to saying
that there exist T ∈ Z+ and input values δitM , t ∈ [0, T − 1],
such that all paths of length T in G that start from vertices
in C1 and whose `th arc is labeled by δi`−1

M , ` ∈ [1, T ], pass
through some vertex of C0. The fact that subsequently the
path may remain in C0 or not is irrelevant. By entering in C0

the output trajectory of the faulty BCN has already proved to
be different from the output trajectory of the non-faulty BCN
with which we are comparing it.

When N and M are not very large, the graph characteri-
zation just provided allows to easily verify whether the off-
line fault detection problem is solvable or not, just by direct
inspection of the graph G. When N and/or M are large,
however, this is not a feasible solution. However, the graph
characterization just provided suggests a very simple way to
check the problem solvability.

Proposition 4 For the BCN (5) the following facts are
equivalent:
i) the off-line fault detection problem is solvable;
ii) for every vertex v = (δiN , δ

j
N ) ∈ C1 there is path in the

NF-F graph G = (V, E , C0, C1) from v to some vertex be-
longing to C0.

PROOF. i)⇒ ii) follows immediately from the previous
reasoning.

ii) ⇒ i) Let v1 be a vertex of C1. By assumption, there
exist T1 ∈ Z+, T1 > 0, and u(t), t ∈ [0, T1 − 1], such
that the path γ1 of length T1, starting from v1 and whose `th
arc is labeled by u(` − 1), ends in C0. Let C2 be the set of
distinct vertices in C1 that are reached in T1 steps from some
vertex v ∈ C1, v 6= v1, by means of a path having the same
sequence of labelled arcs as the path γ1 and not entering C0.
In other words, all the vertices along such paths must belong
to C1. Clearly, |C2| < |C1|. Now consider a vertex v2 ∈ C2.
By assumption, there exist T2 ∈ Z+, T2 > 0, and u(t), t ∈
[T1, T1 +T2− 1], such that the path γ2 of length T2, starting
from v2 and whose `th arc is labeled by u(T1 + `− 1), ends
in C0. Let C3 be the set of distinct vertices in C2 that are
reached in T2 steps from some vertex v ∈ C2, v 6= v2, by
means of a path having the same sequence of labelled arcs
as the path γ2 and not entering C0. Again, |C3| < |C2|. So,
by proceeding in this way, we have constructed a finite input
sequence u(t), t ∈ [0, T − 1], such that all paths of length
T in G that start from vertices in C1 and whose `th arc is
labeled by u(`+1), ` ∈ [0, T −1], pass through some vertex



of C0. This proves that the off-line fault detection problem
is solvable. �

Condition ii) of Proposition 4 is not only easy to check on
the NF-F graph, but also admits a direct algebraic equivalent.
Introduce the new state variable z(t) := xNF (t) n xF (t).
Clearly, z(t) ∈ LN2 and every value of this canonical
vector uniquely determines the values of the two canon-
ical vectors xNF (t) and xF (t), and hence a unique ver-
tex in the NF-F graph. A unique matrix Φ ∈ LN2×N2M ,
Φ = [ Φ1 Φ2 . . . ΦM ], can be found such that the NF-
F BCN

z(t+ 1) = Φ n u(t) n z(t) (15)

describes the simultaneous dynamics of the non-faulty and
the faulty BCNs, starting from any pair of initial condi-
tions and corresponding to a common input sequence u(·).
Clearly, the NF-F BCN (15) provides the algebraic descrip-
tion of the dynamics of the NF-F graph. By suitably adjust-
ing the characterization of reachability given in [6], it is easy
to see that once we define the index sets1

I0 := {i ∈ [1, N2] : δiN2 = δhN n δkN ,∃(δhN , δkN ) ∈ C0},
I1 := {i ∈ [1, N2] : δiN2 = δhN n δkN ,∃(δhN , δkN ) ∈ C1},

and the matrix

Ω :=

N2−1∨
i=0

(Φ1 ∨ Φ2 ∨ . . . ∨ ΦM )i,

condition ii) of Proposition 4 holds if and only if for every
j ∈ I1 there exists i ∈ I0 such that [Ω]ij = 1.

Remark 3 Proposition 4 and its algebraic equivalent pro-
vide handy ways to check whether the off-line fault detection
problem is solvable or not. However, the selection of the
specific input sequence to use as test function is still com-
putationally demanding. Greedy heuristic algorithms to find
any such input sequence can be found, based on branch and
bound techniques, but their performances can vary signifi-
cantly, based on the structure and the complexity of the BCN
(5).

Remark 4 Once the input sequence to use as test function
has been obtained, the Algorithm described in subsection 3.1
still represents the most immediate way to perform the fault
detection test on the given BCN.

5 Fault detection of Boolean networks

As a special case of the previous analysis, we now con-
sider the fault detection problem for Boolean networks. In
this case, there is a non-faulty BN:

x(t+ 1) = Lx(t),
y(t) = Hx(t), t ∈ Z+,

(16)

and a faulty BN

x(t+ 1) = L(F )x(t),
y(t) = Hx(t), t ∈ Z+,

(17)

1Note that I0 ∩ I1 = ∅ and Io ∪ I1 = [1, N2].

and the overall BN dynamics can be described in compact
form as follows

x(t+ 1) = L̃n f(t) n x(t),
y(t) = Hx(t), t ∈ Z+.

(18)

where L̃ = [L L(F ) ] ∈ LN×2N .

The definition of meaningful fault is a straightforward
adaption of Definition 1.

Definition 3 Given a BN (18) and an initial state x0 ∈ LN ,
a fault sequence (f(t))t∈Z+ , given as in (6), describes a
meaningful fault if the state trajectory generated by the BN
(18) corresponding to x0 and f is different from the state tra-
jectory generated by the non-faulty BN (16) corresponding
to the same initial condition.

When dealing with BNs, the distinction between on-line
and off-line tests does not make much sense, since we can-
not apply some special input to evaluate the BN condition. It
is reasonable to see the fault detection problem for a BN al-
ways as an on-line evaluation of the BN correct functioning.
The definition of detectable meaningful fault is a straight-
forward adaption of the one given in Definition 2 for BCNs,
and it requires the introduction of the set of admissible out-
put trajectories of the non-faulty BN (16), equivalently, of
the BN (18) corresponding to f(t) = δ12 ,∀ t ∈ Z+:

By := {(y(t))t∈Z+
: ∃x0 ∈ LN s.t.

y(t) = y(t;x0,u(·), δ12)}. (19)

Definition 4 Given a BN (18), an initial state x0 ∈ LN ,
and a (meaningful) fault sequence (f(t))t∈Z+

, we say that
the (meaningful) fault is detectable if the output trajectory
(y(t;x0, f(·)))t∈Z+ generated by the BN (18) does not be-
long to By .

The equivalent conditions for the detectability of the
meaningful faults from the output trajectories of the BN (18)
are given in the following proposition. One of them refers to
By and the sets

X∗ := {x∗ ∈ LN : Lx∗ 6= L(F )x∗};
Y∗ := {(y(t))t∈Z+

: ∃x0 ∈ X∗ s.t.

y(t) = y(t;x0,u(·), δ22)}.

The other refers to the NF-F directed graph G =
(V, E , C0, C1), associated with the BN, which is an obvi-
ous adaptation of the NF-F directed graph associated with a
BCN (it corresponds to the case M = 1).

Proposition 5 Given a BN (18), the following facts are
equivalent:

i) for every initial condition x0 ∈ LN , every fault that is
meaningful for the given initial condition is detectable
from the output trajectory;

ii) Y∗ ∩By = ∅;
iii) in the NF-F directed graph associated with the BN

all paths starting from some vertex pair (x0,x
∗), with

x0 ∈ LN ,x∗ ∈ X∗, eventually enter C0.



If any of the previous equivalent conditions holds, (a
straightforward adaption of) the Algorithm described in sub-
section 3.1 allows to detect the fault occurrence.

To conclude the analysis of Boolean networks, it is worth
investigating under what conditions all faults are meaning-
ful, by this meaning that for every choice of the initial condi-
tion, every fault sequence is meaningful and hence generates
a state evolution that is different from the one the non-faulty
BN would generate corresponding to the same initial con-
dition. The following characterization refers to the graph
structure of the non-faulty BN. Indeed, it is known [5] that
every BN has a finite set of (limit) cycles (cycles of length
1 represent equilibrium points of the BN) and every state of
the BN reaches a cycle in a finite number of steps. Cycles
correspond to the periodic state trajectories of the BN and in
turn induce periodic output trajectories [6].

Proposition 6 Given a BN (18), all faults affecting the BN
are meaningful if and only if in every cycle of the non-faulty
BN (16) there exists some state δiN belonging to X∗.

PROOF. [Sufficiency] If the condition on the cycles of the
BN (16) holds, then for every x0 ∈ LN there exists i ∈
[1, N ] such that the state δiN belongs to X∗ and to a cycle,
and is reached from x0 in say k, k + d, k + 2d, k + 3d, ....
steps for suitable integers k ≥ 0 and d ≥ 1. So, for every
fault f(·) described as in (6), acting on the BN at time t̄,
there exists ` ∈ Z+ such that k + `d ≥ t̄, and this ensures
that the state trajectory associated with the faulty sequence
f(·) is different from the state trajectory generated by the
non-faulty BN corresponding to the same initial condition.

[Necessity] Suppose, by contradiction, that there exists a cy-
cle of the BN (16) with no state belonging to X∗. Then,
clearly, for every x0 belonging to such a cycle and for ev-
ery fault sequence f(·), the state trajectory starting in x0 and
associated with the faulty sequence f(·) coincides with the
state trajectory generated by the non-faulty BN correspond-
ing to the same initial condition. �

It is worth remarking that the case when all faults are
meaningful could be explored also for BCNs, but it would
introduce extremely restrictive conditions on the difference
between the matrices L and L(F ) that are not realistic to im-
pose. Also, when all faults are meaningful, there is a quite
interesting characterization of the condition under which
they are detectable.

Proposition 7 Given a BN (18), if all faults affecting the BN
are meaningful, then every such fault is detectable if and
only if the non-faulty BN and the faulty BN have no common
periodic output trajectory.

PROOF. Suppose that the non-faulty BN and the faulty BN
have a common periodic output trajectory. This means that
there exist two (possibly identical) states x0, x̄0 ∈ LN such
that y(t;x0, δ

1
2) = y(t; x̄0, δ

2
2) for every t ∈ Z+. As all

faults affecting the BN are meaningful, f(t) = δ22 ,∀ t ∈ Z+,
is meaningful for x̄0. This means that there exists t̄ ≥ 0 such

that x(t̄; x̄0,u(·), δ22) ∈ X∗. But this obviously implies that
Y∗ ∩By 6= ∅.

Conversely, assume that there exists a meaningful fault
that is not detectable, and hence ∃ y(·) ∈ Y∗ ∩ By 6= ∅.
This means that there exists x∗ ∈ X∗ and x0 ∈ LN such
that y(t) = y(t;x∗, δ22) = y(t;x0, δ

1
2) for every t ∈ Z+.

As the state and hence output trajectories of a BN are even-
tually periodic, this means that there exists t̄ ∈ Z+ such that
y(t;x0, δ

1
2) is periodic for every t ∈ Z+, t ≥ t̄. But then

ȳ(t) := y(t + t̄;x0, δ
1
2), t ∈ Z+, is a common periodic tra-

jectory of the non-faulty BN and the faulty BN. �

6 Conclusions

In this paper we have investigated the on-line and off-line
fault detection problems for Boolean control networks, by
assuming that a BCN may exhibit only two possible con-
figurations, a non-faulty and a faulty one, and that a fault
corresponds to a (non-reversible) switching from the non-
faulty configuration to the faulty one. Complete character-
izations and an algorithm to practically perform the tests in
both cases have been presented. The results for the on-line
fault detection problem have been particularized to the spe-
cial case of Boolean networks, and the fault detection prob-
lem in the special case when all faults affecting the BN are
meaningful has been solved. Future research efforts will aim
at investigating to what extent we may identify the exact time
tf at which a fault affecting the BCN (or the BN) has become
meaningful, and at considering more complex set-ups, with
different possible faults and hence different faulty configu-
rations to be detected and identified.
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