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Abstract. In this paper we address the positive (state-feedback) stabilization of multi-input com-

partmental systems, i.e., the design of a state-feedback matrix that preserves the compartmental property

of the resulting feedback system, while achieving stability. We first provide necessary and sufficient con-

ditions for the positive stabilizability of compartmental systems whose state matrix is irreducible. Then

we address the case when the state matrix is reducible, identify two sufficient conditions for the problem

solution, and then extend them to a general algorithm that allows to verify when the problem is solvable

and to produce a solution.

1 Introduction

The stabilization of positive systems and the dual problem of positive observer design have been
the subject of several papers (see, e.g., [1, 5, 7, 8, 9, 13, 18, 19, 26]). Most of the literature focused
on the general class of positive systems and translated the positive stabilization problem either
into a Linear Matrix Inequality (LMI) [13], or into a Linear Programming (LP) problem [18], by
making use of the fact that the positive/Metzler matrix of the system obtained by means of a
state-feedback is Schur/Hurwitz if and only if it admits a positive diagonal Lyapunov function
(condition that leads to the LMI formulation) or a linear copositive Lyapunov function (condition
that leads to an LP condition). The solution in terms of LP, even if equivalent from a theoretical
viewpoint, is preferable due to its lower computational complexity. Moreover, it lends itself to
be easily extended to cope with robust stabilization in the presence of polytopic uncertainties,
stabilization with restricted sign controls and stabilization with bounded controls [18].

Alternative approaches to the positive stabilization problem have been proposed in [19] and
[5]. The characterization derived in [19] is based on the construction of certain polytopes and on
verifying whether a selection of their vertices can be used to construct a stabilizing state-feedback
matrix. On the other hand, in [5] the problem of achieving by means of a state-feedback not only
positivity and stability, but also certain L1 and L∞ performance, has been investigated. Also in
this case, necessary and sufficient conditions for the existence of a solution have been expressed
as LPs.

(Linear) compartmental systems are a special class of positive state-space models that rep-
resent physical systems in which units, called compartments, exchange material and are subject
to the law of mass conservation. Such systems were first introduced in physiology [15] and they
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are characterized by the fact that their state variables are nonnegative and their sum, ∑ni=1 xi(t),
cannot increase with time. For a general introduction to compartmental systems we refer the
interested reader to [14, 16].

The (positive) stabilization of single-input compartmental systems has been thoroughly inves-
tigated in [8] (see also [24]): very strong characterisations, that rely only on the nonzero patterns
of the matrices involved in the system description, have been derived. These characterizations
do not find a straighforward extension to the class of multi-input compartmental systems, for
which positive stabilizability also depends on the specific entries of the involved matrices and
not only on their nonzero patterns (see Example 10 below). On the other hand, the only results
available in the multi-input case are simply the aforementioned ones, derived for the general class
of multi-input positive systems. It turns out that the compartmental property allows to obtain
much stronger characterizations of the positive stabilizability property. Even more, it allows to
considerably simplify the LPs that provide conditions that are equivalent to the existence of a
solution.

In this paper we investigate the positive stabilization of multi-input compartmental systems,
by first showing that when the original system matrix A is irreducible, the positive stabilization
problem is solvable if and only if it can be solved by resorting to a state-feedback that depends
on a single compartment. Necessary and sufficient conditions for this to be the case are given, in
the form of Linear Programming: since these conditions involve only a single column, they are
quite simpler than the general ones obtained for multi-input positive systems.

When the system matrix is reducible on the other hand, we first provide two sets of sufficient
conditions for positive stabilizability that involve a very low number of system compartments,
and are based on the property that a compartmental matrix is Hurwitz if and only if all its
compartments are outflow connected. The intuition behind these two sufficient conditions is
then formalized in graph terms and this allows to provide a necessary and sufficient condition
for positive stabilization in the form of an algorithm. The algorithm provides a solution having
a number of nonzero columns that does not exceed the number of communication classes of
the original compartmental state matrix. This means that the solution modifies the outflow of
a minimal number of compartments, specifically, at most one per communication class. From
a practical point of view, this means that the state-feedback law is expressed in terms of the
values of a small subset of the state variables, a property that may be extremely convenient
when sensors are expensive or quite difficult to locate. For instance, it may be the case that
very few state variables are actually available for measurements and in this sense the proposed
solution is extremely convenient. On the other hand, in order to be able to exploit the proposed
algorithm, the knowledge of the communication classes of the digraph associated with the matrix
A is required. If this information is available, the algorithm can impose a significantly lower
computational burden with respect to the one required to solve the LPs proposed in [18] for the
general case of an unstructured pair of matrices (A,B).

The paper is organised as follows. In section 2, notation, mathematical preliminaries and
problem statement are given. In section 3, three technical lemmas are given. As a starting point,
in section 4, the class of compartmental systems whose system matrix is irreducible is thoroughly
investigated. In section 5, the analysis is extended to address the case when the system matrix is
reducible, and conditions that ensure positive stabilizability are given. Finally, section 6 presents a
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necessary and sufficient condition for positive stabilization of multi-input compartmental systems
in the form of an algorithm. Examples illustrate the various conditions provided in the paper.
A preliminary version of the first part of this paper was presented at the IEEE Conference on
Decision and Control, CDC 2017, in Melbourne, Australia [25]. In [25] we have investigated only
the irreducible case and provided one sufficient condition for the solvability in the reducible case.
So, the second part of section 5 (starting from Proposition 17) and the whole section 6, where
the final problem solution and the algorithm to obtain it are derived, are the novel contribution
of this paper.

2 Preliminaries and problem statement

Given k,n ∈ Z, with k ≤ n, the symbol [k,n]Z denotes the integer set {k, k + 1, . . . , n}, namely
[k,n]∩Z. The semiring of nonnegative real numbers is denoted by R+. In the sequel, the (i, j)th
entry of a matrix A is denoted by [A]i,j , while the ith entry of a vector v by [v]i. Following [10],
we adopt the following terminology and notation. Given a matrix A with entries [A]i,j in R+, we
say that A is a nonnegative matrix, if all its entries are nonnegative, namely [A]i,j ≥ 0 for every
i, j, and if so we use the notation A ≥ 0. If A is a nonnegative matrix, and A ≠ 0, then A is said
to be a positive matrix and we adopt the notation A > 0. Note that A > 0 does not mean that all
its entries are positive, but simply that at least one of them is positive and the remaining ones
are nonnegative. Notation A ≥ B (A > B) means A−B ≥ 0 (A−B > 0). The symbols ≤ and < are
defined accordingly. Also, the same notation is adopted for vectors.

We let ei denote the ith vector of the canonical basis in Rn (where n is always clear from the
context), whose entries are all zero except for the ith one that is unitary. The symbol 1 denotes
a vector with all entries equal to 1 (and whose size is clear from the context). Given a matrix
A ∈ Rn×m (in particular, a vector), its nonzero pattern ZP(A) is the set {(i, j) ∈ [1, n]Z × [1,m]Z ∶

[A]i,j ≠ 0}. We denote by Si ∈ R(n−1)×n the selection matrix obtained by removing the ith row in
the identity matrix In, namely

Si = [
Ii−1 0 0(i−1)×(n−i)

0(n−i)×(i−1) 0 In−i
] .

The size n will always be clear from the context, namely from the size of the matrix or vector Si
is applied to. For any matrix A ∈ Rn×m, SiA denotes the matrix obtained from A by removing the
ith row, while for any vector v ∈ Rn, Siv is the vector obtained from v by removing the ith entry.
A real square matrix A is Hurwitz if all its eigenvalues lie in the open left complex halfplane, i.e.
for every λ belonging to the spectrum σ(A) of A we have Re(λ) < 0.

A Metzler matrix is a real square matrix, whose off-diagonal entries are nonnegative. This is
equivalent to saying that for every h ∈ [1, n]Z the vector ShAeh is nonnegative. For n ≥ 2, an
n × n nonzero Metzler matrix A is reducible [11, 17] if there exists a permutation matrix Π such
that

Π⊺AΠ = [
A1,1 A1,2

0 A2,2
] ,

where A1,1 and A2,2 are square (nonvacuous) matrices, otherwise it is irreducible. In general,
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given a Metzler matrix A, a permutation matrix Π can be found such that

Π⊺AΠ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 A1,2 . . . A1,s

0 A2,2 . . . A2,s

⋮ ⋱ ⋱ ⋮

0 . . . 0 As,s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where each diagonal block Ai,i, of size ni × ni, is either scalar (ni = 1) or irreducible. Equation
(1) is usually referred to as Frobenius normal form of A [12, 17].

If A is an n × n Metzler matrix, then as proved in [22] it exhibits a real dominant (not
necessarily simple) eigenvalue, known as Frobenius eigenvalue and denoted by λF (A). This means
that λF (A) > Re(λ),∀ λ ∈ σ(A), λ ≠ λF (A).

Basic definitions and results about cones may be found, for instance, in [2, 4]. We recall here
only those facts that will be used within this paper. A set K ⊂ Rn is said to be a cone if αK ⊆ K

for all α ≥ 0; a cone is convex if it contains, with any two points, the line segment between them.
A convex cone K is said to be polyhedral if it can be expressed as the set of nonnegative linear
combinations of a finite set of generating vectors. This means that a positive integer k and a
matrix W ∈ Rn×k can be found, such that K coincides with the set of nonnegative combinations
of the columns of W . In this case, we adopt the notation K ∶= Cone(W ). A convex cone K is
polyhedral if and only if there exists a matrix C ∈ Rp×n such that K = {x ∈ Rn ∶ Cx ≥ 0}.

A Metzler matrix endowed with the additional property that the entries of each of its columns
sum up to a nonpositive number, i.e., 1⊺A ≤ 0⊺, is called compartmental matrix (see [14, 21]).
For any such matrix the Frobenius eigenvalue λF (A) is nonpositive, and if λF (A) = 0 then A is
simply stable, i.e., it has the constant mode associated with λF (A) = 0, but no unstable modes.

In this paper we will focus on compartmental models, which are typically used to describe
material or energy flows among compartments of a system. Each compartment represents a
homogeneous entity within which the entities being modelled are equivalent. An n-dimensional
multi-input linear compartmental system is a linear state-space model

9x(t) = Ax(t) +Bu(t), (2)

where A ∈ Rn×n is a compartmental matrix, B ∈ Rn×m+ is a positive matrix, devoid of zero columns,
and m > 1. The size n of the state-space model represents the number of compartments, and the
ith entry of the state vector, [x(t)]i, represents the content of the ith compartment at time t.
In the sequel we refer to multi-input linear compartmental systems (2) simply as compartmental
systems.

Given a compartmental matrix A ∈ Rn×n (a compartmental system (2)), we associate with it
[6, 20] a digraph D(A) = {V,E}, where V = {1, . . . , n} = [1, n]Z is the set of vertices and E ⊆ V × V

is the set of arcs (or edges). Vertices and compartments are related by a bijective correspondence,
and hence in the following they will be treated as equivalent. Given j, ` ∈ V, j ≠ `, there is an arc
(j, `) ∈ E from j to ` if and only if [A]`,j > 0. A sequence j1 → j2 → ⋅ ⋅ ⋅ → jk → jk+1 is a path
of length k from j1 to jk+1 provided that (j1, j2), . . . , (jk, jk+1) are elements of E . We say that
vertex ` is accessible from j if there exists a path in D(A) from j to `. Two distinct vertices ` and
j are said to communicate if each of them is accessible from the other, i.e., there is both a path
from ` to j and a path from j to `. We assume, by definition, that each vertex communicates with
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itself. It is easy to see that communication between vertices represents an equivalence relation in
V ×V that allows to partition the set of vertices V into equivalence classes called communication
classes, say C1,C2, . . . ,Cs. Class Cj has access to class Ci if there is a path from some vertex k ∈ Cj
to some vertex h ∈ Ci. Each class Ci has clearly access to itself. The digraph D(A) is said to be
strongly connected if every pair of vertices ` and j communicate, and hence it consists of a single
communication class. The digraph D(A) is strongly connected if and only if A is irreducible.

In this standard set-up we introduce an additional specification: we partition the set of vertices
V into two disjoint subsets V0 and V−, where

V
0
∶= {i ∈ V ∶ 1⊺Aei = 0} V

−
∶= {i ∈ V ∶ 1⊺Aei < 0}.

A vertex i (a compartment i) is said to have direct outflow to the environment [3, 16] if it belongs
to V−, while vertices belonging to V0 have not direct outflow. The vertex i (the ith compartment)
is said to be outflow connected [3, 16] if there is a path in D(A) from that vertex to some vertex
j (i.e., from the ith compartment to some jth compartment) belonging to V−.

Example 1. Consider the following compart-
mental matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 1
1 −1 0 1
0 0 −3 1
0 0 3 −3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see that there are two communica-
tion classes, C1 = [1,2]Z and, C2 = [3,4]Z, and
class C2 has access to class C1 (but the converse
is not true). None of the 4 vertices (compart-
ments) is outflow connected. The digraph as-
sociated with A is illustrated in Figure 1. We
have represented vertices in V0 with continuous
line circles (while for vertices in V− we will use
dashed line circles). ♣

C1

C2

1

2

3

4

Fig.1 Digraph associated with matrix A

of Example 1.

In the paper we investigate the following problem:
Positive stabilization problem: Consider the compartmental system (2) and assume that A is

compartmental and non-Hurwitz. Under what conditions does there exist K ∈ Rm×n such that
the state-feedback control law u(t) = Kx(t) makes the closed-loop system asymptotically stable
while preserving the compartmental property, i.e., it makes A+BK compartmental and Hurwitz?

We say that the positive stabilization problem is solvable if there exists K ∈ Rm×n such that
A +BK is compartmental and Hurwitz.

3 Some technical lemmas

To solve the positive stabilization problem, we start by introducing the following technical results
that will be useful in the subsequent analysis.
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Lemma 2. [3, 16] A compartmental matrix A ∈ Rn×n is Hurwitz if and only if all its compartments
are outflow connected.

Lemma 3. [16, 23] An irreducible compartmental matrix A ∈ Rn×n is Hurwitz if and only if
1⊺A < 0⊺.

Remark 4. As an immediate consequence, if the compartmental matrix A is irreducible and
non-Hurwitz, then 1⊺A = 0⊺.

Lemma 5. [24] Let A ∈ Rn×n be a reducible compartmental matrix. A is non-Hurwitz if and only
if r ≥ 1 and a permutation matrix Π can be found such that Π⊺AΠ has the following Frobenius
form, with either scalar or irreducible diagonal blocks Ai,i∈ Rni×ni , i ∈ [1, s]Z:

Π⊺AΠ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 0 . . . . . . 0 A1,r+1 . . . . . . A1,s

0 A2,2 0 . . . 0 A2,r+1 . . . . . . A2,s

⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

⋮ ⋱ ⋱ 0 ⋮ ⋮

0 . . . . . . 0 Ar,r Ar,r+1 . . . . . . Ar,s
0 . . . . . . . . . 0 Ar+1,r+1 . . . . . . Ar+1,s

⋮ ⋮ 0 Ar+2,r+2 ⋱ Ar+2,s

⋮ ⋮ ⋮ ⋱ ⋱ ⋮

0 . . . . . . . . . 0 0 . . . 0 As,s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3)

with λF (Ai,i) = 0,∀ i ∈ [1, r]Z and λF (Ai,i) < 0,∀ i ∈ [r + 1, s]Z.

Consequently, 1⊺Ai,i = 0⊺,∀ i ∈ [1, r]Z, and 1⊺Ai,i < 0⊺,∀ i ∈ [r + 1, s]Z.

Remark 6. It is worth noticing that the Frobenius form (3) immediately identifies the commu-
nication classes of the associated digraph D(Π⊺AΠ). Indeed, each scalar or irreducible diagonal
block Ai,i identifies one communication class. So, it entails no loss of generality identifying the
communication class Ci with the set of vertices corresponding to the diagonal block Ai,i. In other
words,

Ci ∶= [
i−1

∑
k=1

nk + 1,
i

∑
k=1

nk]
Z
, i ∈ [1, s]Z, (4)

where nk denotes the size of the diagonal block Ak,k.

We will refer to the classes Ci, i ∈ [1, r]Z, as to the conservative classes since the corresponding
(irreducible) matrix Ai,i is not Hurwitz.

4 Problem solution: the case when A is irreducible

In this section we investigate the existence of a matrix K ∈ Rm×n solving the positive stabilization
problem for the compartmental system (2), under the assumption that A is irreducible. As a
first step we introduce the following lemma, which will be fundamental to solve the positive
stabilization problem.
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Lemma 7. Consider the compartmental system (2) and assume that A is irreducible. If there
exist v ∈ Rm and ` ∈ [1, n]Z such that

S`(Ae` +Bv) ≥ 0, (5a)

1⊺Bv < 0, (5b)

then for every ε ∈ (0,1) the feedback matrix K = εve⊺` ∈ Rm×n makes A + BK compartmental,
irreducible, and Hurwitz.

Proof. Condition (5a) ensures that for every ε ∈ (0,1) the following two conditions hold

S`Ae` + εS`Bv ≥ 0,

ZP(S`Ae` + εS`Bv) ⊇ ZP(S`Ae`).

This implies that for every ε ∈ (0,1) the matrix A+εBve⊺` is Metzler and irreducible. If (5b) holds,
then it is also true that for every ε ∈ (0,1) one has 1⊺(Ae`+εBv) < 0, and hence 1⊺(A+εBve⊺` ) <
0⊺. This ensures that A + BK is compartmental (irreducible) and also Hurwitz (see Lemma
3).

Remark 8. We would like to comment on the expression K = εve⊺` , with ε arbitrary in (0,1),
adopted to express in Lemma 7, above, a state-feedback matrix K that solves the positive stabi-
lization problem. In order to use condition 1⊺(A +BK) < 0⊺ to claim that A +BK is Hurwitz,
one needs to ensure that A + BK is irreducible. Since A is an irreducible matrix, to guarantee
that A+BK is irreducible in turn, it is sufficient to ensure that none of the positive off-diagonal
entries of A has become a zero entry in A +BK. Specifically, we have to rule out the case when
there exists some index j ∈ [1, n]Z, j ≠ `, such that [A]j,` > 0 while [A+BK]j,` = 0. To this end, if
conditions (5) hold, it is sufficient to assume that ε is positive but smaller than 1. Clearly, any
specific value of ε ∈ (0,1) would lead to a specific solution of the positive stabilization problem.
On the other hand, it is also clear that the matrices expressed in the form K = εve⊺` ∈ Rm×n,
with ε ∈ (0,1), do not provide a complete parametrization of the solutions. For instance, if for a
fixed ` different vectors vi would be found satisfying (5), then every convex combination ∑i εivi,
with εi ∈ (0,1) for every i, would be a solution. However, deriving a complete parametrization of
the problem solutions is not one of the goals of this paper. Finally, it is worth mentioning that
the need to preserve the irreducibility property of the compartmental system matrix after state-
feedback will be clear in the following sections, when we will deal with the reducible case, and we
will try to ensure that the irreducibility of the diagonal blocks is preserved when moving from A
to A +BK.

Proposition 9 below states that when A is irreducible and the positive stabilization problem
is solvable, there always exists a solution K with a unique nonzero column.

Proposition 9. Consider the compartmental system (2) and assume that A is irreducible and
non-Hurwitz. If the positive stabilization problem is solvable, then there exist v ∈ Rm and ` ∈
[1, n]Z such that for every ε ∈ (0,1) the matrix K ∶= εve⊺` ∈ R

m×n is a solution.
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Proof. Let K̄ ∈ Rm×n be a solution of the positive stabilization problem. Let ` ∈ [1, n]Z be
such that 0 > 1⊺(A + BK̄)e` = 1⊺Ae` + 1⊺BK̄e` = 1⊺BK̄e` (such an index exists, otherwise
λF (A+BK̄) = 0), and set v ∶= K̄e`. Clearly, 1⊺Bv < 0, and S`(Ae`+Bv) = S`(A+BK̄)e` ≥ 0. So,
by Lemma 7, for every ε ∈ (0,1) the feedback matrix K = εve⊺` ∈ R

m×n makes A+BK irreducible,
compartmental and Hurwitz.

Example 10. Consider the compartmental system

9x(t) = Ax(t) +Bu(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 1
1 −5 0
0 5 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 1
1 2
1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u(t).

Notice that A is an irreducible and non-Hurwitz matrix. Let bi denote the ith column of B,
i = 1,2. We preliminarily observe that positive stabilization from a single input is not possible.
Indeed, if a solution using only the ith input would be possible, then as shown in [24] a row vector
k⊺i ∈ R

1×3, with ki < 0, could be found such that A+bik
⊺
i is compartmental and Hurwitz. However,

the nonzero patterns of A and B clearly show that this is possible neither for i = 1 nor for i = 2. In
general, the necessary and sufficient condition derived in [24] requires to verify that there exists
i ∈ [1,2]Z and ` ∈ [1,3]Z such that condition ZP(S`bi) ⊆ ZP(S`Ae`) holds. But it is easily seen
that this is impossible. Focusing now on the state-feedback from both inputs, it is easy to verify
that any feedback matrix of the form

K = [
k1 0 0
k2 0 0

] , k1, k2 ∈ R,

does not solve the positive stabilization problem. However, for every ε ∈ (0,1) the two feedback
matrices

K = ε [
0 1 0
0 −2 0

] and K = ε [
0 0 −0.5
0 0 0.25

] ,

make A +BK compartmental and Hurwitz. ♣

The previous example shows that, even if a solution K ∈ Rm×n with a unique nonzero column
can be found, not all columns (i.e., not all indices ` ∈ [1, n]Z) play an equivalent role. The
following proposition provides, for a fixed ` ∈ [1, n]Z, equivalent conditions for the existence of a
vector k ∈ Rm such that K ∶= ke⊺` is a solution.

Proposition 11. Consider the compartmental system (2) and assume that A is irreducible and
non-Hurwitz. Let ` be a fixed index in [1, n]Z and introduce the set L ∶= {j ∈ [1, n]Z, j ≠ `∶ [A]j,` =

0}. Let BL be the matrix obtained by selecting only the rows of B indexed in L, and introduce
the cone KL ∶= {y ∈ Rm ∶ BLy ≥ 0}. Being KL a convex polyhedral cone, there exists W ∶=

[w1 . . . wN ] ∈ Rm×N such that KL = Cone(W ). The following facts are equivalent:

(i) There exists v ∈ Rm such that conditions (5) hold;

(ii) The N -dimensional row vector 1⊺BW has at least one negative entry;
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(iii) There exists i ∈ [1,N]Z such that the vector wi =Wei satisfies

1⊺Bwi < 0 (6a)

[Bwi]j ≥ 0, ∀j ∈ L; (6b)

(iv) There exists k ∈ Rm such that K = ke⊺` ∈ Rm×n is a solution to the positive stabilization
problem.

Proof. (i) ⇒ (ii) Clearly, any vector v ∈ Rm satisfying condition (5a) is such that BLv ≥ 0. This
means that v ∈ KL = Cone(W ), and hence there exists u ∈ RN+ , such that v = Wu. Then,
condition (5b) can be rewritten as 0 > 1⊺Bv = 1⊺BWu, and this implies that the vector 1⊺BW
has at least one negative entry, namely (ii) holds.

(ii) ⇒ (iii) Let i ∈ [1,N]Z be such that 0 > [1⊺BW ]i = 1⊺BWei = 1⊺Bwi. Clearly, wi satisfies
condition (6a). Moreover, since wi ∈ Cone(W ) = KL, we have BLwi ≥ 0, namely [Bwi]j ≥ 0 for
every j ∈ L.

(iii) ⇒ (i) We want to prove that if (iii) holds, there exists ε > 0 such that v ∶= εwi satisfies (i).
Clearly, 1⊺Bv = ε1⊺Bwi < 0 for every ε > 0, namely v satisfies (5b) for every ε > 0. Moreover,
since v ∈ KL, we have BLv ≥ 0 for every ε > 0, namely [Bv]j ≥ 0 for every j ∈ L, ε > 0.
Consequently, when L ∪ {`} = [1, n]Z the vector v satisfies (5a) for every ε > 0. On the other
hand, when L ∪ {`}⫋[1, n]Z, for every j ∉ L, j ≠ `, we have [A]j,` > 0, and hence there always
exists εj > 0 such that [A]j,` + εje

⊺
jBwi ≥ 0. So, if we choose ε ∶= minj∉(L∪{`}) εj , the vector v

satisfies condition (5a).

(i) ⇒ (iv) Follows from Lemma 7, by assuming k = εv, with ε arbitrary in (0,1).

(iv) ⇒ (i) Set v ∶= k. Since A+BK = A+Bve⊺` is compartmental and Hurwitz, the first property
ensures that (5a) holds. Meanwhile the Hurwitz property of the compartmental matrix A+Bve⊺`
implies that 1⊺(A +Bve⊺` ) < 0⊺ and since 1⊺A = 0⊺ this implies that (5b) holds.

Proposition 11 provides, under the assumption that A is an irreducible compartmental and
non-Hurwitz matrix, necessary and sufficient conditions for the existence of a solution taking the
form K = ke⊺` , ∃k ∈ Rm, where ` is a fixed index in [1, n]Z. On the other hand, by Proposition 9,
if the positive stabilization problem is solvable, then there always exists a solution K taking that
form for some index ` ∈ [1, n]Z. This immediately leads to the following necessary and sufficient
condition for positive stabilization.

Theorem 12. Consider the compartmental system (2) and assume that A is irreducible and
non-Hurwitz. The positive stabilization problem is solvable if and only if there exist a vector
v ∈ Rm and an index ` ∈ [1, n]Z such that conditions (5) (or any of the equivalent conditions of
Proposition 11) hold.
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Example 13. Consider the compartmental system

9x(t) = Ax(t) +Bu(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 − α 1 0 0
1 −1 − α 0 α
0 0 −α α
α α α −2α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
1 2
1 1
2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t),

where α > 0 is an arbitrary positive scalar. Note that for every α > 0 the pair (A,B) is controllable
in the standard sense of Linear System Theory, namely rank[B AB A2B A3B] = 4. Also, notice
that A is irreducible and non-Hurwitz (as 1⊺A = 0⊺). One can verify that for every ` ∈ [1,4]Z there
is no vector v ∈ R2 such that conditions (5) are satisfied. Indeed, set v = [v1 v2]

⊺. Condition
(5b) means that 1⊺Bv < 0, namely 5v1 + 5v2 = 5(v1 + v2) < 0. So, the two entries of v sum up
to a negative number. This necessarily means that the first and the third entries of the vector
Bv are negative. As a result, there is no ` ∈ [1,4]Z such that condition (5a) holds, since the
vector S`(Ae`+Bv) has at least one negative entry. So, by Theorem 12, the positive stabilization
problem for the pair (A,B) is not solvable (even if the pair (A,B) is controllable). ♣

Example 14 (Room temperature regulation). Consider the thermal system of Figure 2. It
consists of three rooms, two of them (room 2 and room 3) directly connected to the air-conditioning
system. Let α,β and γ be the thermal transmission coefficients between the adjacent rooms (1,2),
(1,3), and (2,3), respectively. We can assume that α,β and γ are arbitrary positive real numbers.
Denote by xi, i ∈ [1,3]Z, the (positive) difference between the temperature in the ith room and
the desired temperature xd. If we assume that the system is thermally isolated from the external
environment, the time evolution of the temperatures in the three rooms is described by the following
compartmental model:

9x(t) = Ax(t) +Bu(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(α + β) α β
α −(α + γ) γ
β γ −(γ + β)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u(t).

Notice that A is irreducible and non-Hurwitz
(as 1⊺3A = 0⊺). We want to determine, if pos-
sible, a state-feedback control law for the air-
conditioning system that allows to regulate all
temperatures by making use only of the temper-
ature of room 1. It is easy to verify that for
the fixed index ` = 1, the vector v = [−α −β]

⊺

satisfies conditions (5). Then, it follows from
Lemma 7 that for every ε ∈ (0,1) the matrix
K = εve⊺1 makes A + BK compartmental, irre-
ducible, and Hurwitz and hence solves the pos-
itive stabilization problem. Note that also K =

ve⊺1 solves the positive stabilization problem, but
in this case A +BK is reducible. ♣

Room 1 Room 2

Room 3

u2

u1
α

β γ

Fig. 2 A simple 3-room thermal system.
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5 Sufficient conditions for the problem solvability when A is re-
ducible

We now consider the case when A is reducible and provide sufficient conditions for the solvability
of the positive stabilization problem. In the rest of the paper it will be convenient to introduce
the following non-restrictive
Assumptions. The compartmental matrix A ∈ Rn×n is non-Hurwitz, in the Frobenius normal
form (3), with scalar or irreducible diagonal blocks Ai,i ∈ Rni×ni , and the index r ∈ [1, s]Z, r ≥ 1, is
such that λF (Ai,i) = 0 for every i ∈ [1, r]Z, and λF (Ai,i) < 0 for every i ∈ [r + 1, s]Z. Accordingly,
we assume that the input-to-state matrix B is partitioned in a way consistent with the block-
partition (3) of A, namely as

B = [B⊺
1 B⊺

2 . . . B⊺
s ]

⊺
(7)

where Bi ∈ Rni×m+ . Also, we let the classes Ci, i ∈ [1, s]Z, be defined as in (4).
The following result extends Lemma 7 to the case of a compartmental, reducible, non-Hurwitz

matrix A.

Proposition 15. Consider the compartmental system (2), with A ∈ Rn×n and B ∈ Rn×msatisfying
the previous Assumptions. If for every i ∈ [1, r]Z there exist vi ∈ Rm and `i ∈ Ci such that

S`i(Ae`i +Bvi) ≥ 0, (8a)

1⊺Bvi < 0, (8b)

then for every ε ∈ (0,1) the feedback matrix

K ∶= ε
r

∑
i=1

vie
⊺
`i

(9)

solves the positive stabilization problem.

Proof. We want to prove that for every ε ∈ (0,1) the matrix K given in (9) makes A + BK
compartmental and Hurwitz. To this end, let us first partition the state-feedback matrix K in a
way consistent with the block-partition of A and B, namely as

K = [K1 K2 . . . Ks] , (10)

where Ki ∈ Rm×ni , for every i ∈ [1, s]Z. By assumption, for every i ∈ [1, r]Z, there exist vi ∈ Rm
and `i ∈ Ci such that (8) hold. Consequently, for every ε ∈ (0,1) the following three conditions
hold true:

S`iAe`i + εS`iBvi ≥ 0, (11a)

1⊺(Ae`i + εBvi) < 0, (11b)

ZP(ShiAi,iehi + εShiBivi) ⊇ ZP(ShiAi,iehi), (11c)

where hi ∶= `i − ∑
i−1
k=1 nk ∈ [1, ni]Z. We preliminarily notice that every hth column of A + BK,

h ∈ [1, n]Z ∖ {`1, . . . , `r}, coincides with the hth column of A and hence Sh(A +BK)eh ≥ 0 and

11



1⊺(A + BK)eh ≤ 0. On the other hand, for every h ∈ {`1, . . . , `r} condition (11a) ensures that
Sh(A + BK)eh ≥ 0, while condition (11b) guarantees that 1⊺(A + BK)eh < 0. Consequently,
A + BK is Metzler and compartmental. Finally, (11c) implies that ∀ ε ∈ (0,1) the matrix
Ki = εvie

⊺
hi

∈ Rm×ni (see (10)) makes the compartmental matrix Ai,i + BiKi irreducible (and
Hurwitz).

To prove that A+BK is Hurwitz, we will prove that in the closed-loop system every compart-
ment is outflow connected (i.e., for every vertex p of the graph D(A +BK)∶= (V0 ∪ V−,E) there
exists a vertex q, possibly coinciding with p, such that there is a path from p to q and q ∈ V−,
namely 1⊺(A + BK)eq < 0). By Lemma 2 this fact ensures that A + BK is Hurwitz. In order
to prove the outflow connectedness of all compartments (vertices) of the closed-loop system, we
need to partition its compartments in a convenient way. Specifically, we group its compartments
according to the communication classes introduced in (3) for the open-loop system, namely the
classes Ci, i ∈ [1, s]Z, defined in (4). Notice that these are not necessarily the communication
classes of D(A+BK). Indeed, the matrices A and A+BK in general have different nonzero pat-
terns (the off-diagonal blocks BjKi, j ≠ i, are nonnegative, and not necessarily zero), namely the
interconnection topology among compartments in the closed-loop system is potentially different
from the one characterizing the open-loop system. However, this is not a problem, as our goal is
to prove that all the compartments of A +BK are outflow connected, and not to determine the
communication classes of D(A +BK)1. To this aim, we make the following considerations:

1) Every Ci, with i ∈ [1, r]Z, is such that (a) there is a path from any compartment of Ci to any
other compartment of Ci (since Ai,i +BiKi is irreducible); and (b) there is a compartment
in Ci (the `ith one) that has outflow to the environment (since 1⊺(A +BK)e`i < 0).

2) Every Ci, with i ∈ [r+1, s]Z, still exhibits property (a) since the ith diagonal block of A+BK
coincides with the irreducible matrix Ai,i. We now prove by induction that either Ci satisfies
property (b), or it has access to Cj , j < i, for which (b) holds. Start from i = r + 1, namely
from Cr+1, and note that each (j, r + 1)th block of A+BK coincides with the original block
in A, namely Aj,r+1. Two cases may occur: either there exists `r+1 ∈ Cr+1 such that

1⊺(A +BK)e`r+1 =
r+1

∑
k=1

1⊺Ak,r+1e`r+1 < 0,

and hence Cr+1 exhibits property (b); or ∑r+1
k=1 1

⊺Ak,r+1 = 0⊺, and, if this is the case, the
Hurwitz property of Ar+1,r+1 implies that there exists j ∈ [1, r]Z such that Aj,r+1 > 0,
namely the class Cr+1 has access to some Cj , j ∈ [1, r]Z, that, by part 1), satisfies property
(b).
Now, let k̄ ∈ [r + 1, s − 1]Z and suppose that, for every k ∈ [r + 1, k̄]Z, Ck either satisfies
property (b) or it has access to Cj , j < k, that satisfies property (b). By applying to Ck̄+1

the same reasoning adopted for Cr+1 we can claim that either Ck̄+1 exhibits property (b) or

1For the sake of completeness, we observe that vertices communicating in D(A), and hence belonging to the
same communication class, also communicate in D(A +BK), and hence belong to the same communication class
also in D(A +BK). However, the term BK may introduce additional arcs connecting vertices of different classes
of D(A). As a result, each communication class of D(A +BK) either coincides with a class of D(A) or with the
union of some classes of D(A).
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it has access to Cj , j < k̄ + 1, for which (b) holds. So, every compartment in every Ci, with
i ∈ [r + 1, s]Z, is outflow connected.

To conclude, every compartment of the closed-loop system A +BK is outflow connected and
hence A +BK is also Hurwitz. This means that the feedback matrix K defined in (9) solves the
positive stabilization problem for every ε ∈ (0,1).

Example 16. Consider the following compartmental system

9x(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 1
1 −1 0 1
0 0 −3 1
0 0 3 −3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2
1 1
2 1
2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t) = [
A1,1 A1,2

0 A2,2
]x(t) + [

B1

B2
]u(t).

Clearly, A1,1 is irreducible and non-Hurwitz, while A2,2 is irreducible and Hurwitz. So, r = 1

and s = 2. It is easy to verify that the vector v1 = [1 −2]
⊺

satisfies conditions (8) for `1 = 1.
This means that the sufficient condition of Proposition 15 is satisfied. It is a matter of simple
computation to see that, for every ε ∈ (0,1), the feedback matrix

K = εv1e
⊺
1 = ε [

1 0 0 0
−2 0 0 0

]

makes A +BK compartmental and Hurwitz. ♣

The previous positive stabilizability condition requires the existence of r vectors vi, i ∈ [1, r]Z,
satisfying conditions (8). If such vectors cannot be found, the positive stabilization problem may
still be solvable as described by the following result.

Proposition 17. Consider the compartmental system (2), with A ∈ Rn×n and B ∈ Rn×m satisfying
the previous Assumptions. Introduce the following sets:

E0 ∶ = {i ∈ [1, s]Z∶ ∃`i ∈ Ci such that 1⊺Ae`i < 0} ⊆ [r + 1, s]Z

E1 ∶ = {i ∈ ([1, s]Z ∖E0)∶ ∃vi ∈ Rm, `i ∈ Ci such that S`i(Ae`i +Bvi) ≥ 0 and 1⊺Bvi < 0} .

If for every i ∈ E2 ∶= ([1, r]Z ∖E1) there exist vi ∈ Rm and `i ∈ Ci such that2

S`i(Ae`i +Bvi) ≥ 0, (12a)

1⊺Bvi = 0, (12b)

Bdvi > 0, ∃d ∈ (E0 ∪E1), (12c)

then, for every ε ∈ (0,1), the feedback matrix

K ∶= ε ∑
i∈(E1∪E2)

vie
⊺
`i
= [K1 K2 . . . Ks] (13)

solves the positive stabilization problem.

2Note that if E0 ∪E1 = ∅, condition (12c) does not hold, and hence this sufficient condition cannot be applied.
As we will see in the following, if E0 ∪E1 = ∅ the positive stabilization problem cannot be solved.
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Proof. We want to prove that for every ε ∈ (0,1) the matrix K given in (13) makes A + BK
compartmental and Hurwitz. To this end, preliminarily notice that:
(1) Condition Ki = 0 holds for every i /∈ (E1 ∪E2); (2) for every h ∈ [1, n]Z ∖ {`i, i ∈ E1 ∪E2} the
hth column of A +BK coincides with the hth column of A. Consequently,

Sh(A +BK)eh ≥ 0, and 1⊺(A +BK)eh ≤ 0. (14)

To prove that A +BK is compartmental, we need to prove that inequalities (14) hold true also
for every h ∈ {`i, i ∈ E1 ∪E2}.

Consider first the indices belonging to E1. For every i ∈ E1, there exist vi ∈ Rm and `i ∈ Ci
such that conditions (8) hold. Define hi ∶= `i − ∑

i−1
k=1 nk ∈ [1, ni]Z. By proceeding as in the proof

of Proposition 15, we can claim that for every ε ∈ (0,1) and every h ∈ {`i, i ∈ E1} conditions (14)
hold true and, in addition, the matrix Ki = εvie

⊺
hi

∈ Rm×ni makes Ai,i + BiKi (compartmental
and) irreducible.

Consider, now, the set E2 ⊆ [1, r]Z. For every i ∈ E2 there exist vi ∈ Rm and `i ∈ Ci such
that conditions (12) hold. Define also in this case hi ∶= `i − ∑

i−1
k=1 nk. We observe that for every

ε ∈ (0,1) the following three conditions hold true:

S`iAe`i + εS`iBvi ≥ 0, (15a)

1⊺(Ae`i + εBvi) = 0. (15b)

ZP(ShiAi,iehi + εShiBivi) ⊇ ZP(ShiAi,iehi). (15c)

By following the same reasoning as in the proof of Proposition 15, we can claim that ∀ ε ∈ (0,1)
and every h ∈ {`i, i ∈ E2} the inequalities (14) hold (and therefore, at this stage, we can claim that
A+BK is compartmental), and the matrix Ki = εvie

⊺
hi
∈ Rm×ni makes Ai,i+BiKi (compartmental

and) irreducible. Moreover, there exists d ∈ (E0 ∪E1) such that Ad,i +BdKi = 0+BdKi > 0, where
we used the fact that i ∈ E2 ⊆ [1, r]Z implies Ad,i = 0.

To prove that A+BK is Hurwitz, we will prove that in the closed-loop system every compart-
ment is outflow connected. To this aim, we partition (as we did in the proof of Proposition 15) the
compartments of the closed-loop system A +BK according to the partition into communication
classes Ci, i ∈ [1, s]Z, of the open-loop system. Again, this is only a convenient partition of the
compartments of the closed-loop system that does not necessarily coincide with the partition into
communication classes.

We want to show that, for every i ∈ [1, s]Z, every compartment in Ci is outflow connected,
considering all possible cases:

- Case i ∈ E0: Clearly, i ∈ E0 if and only if there exists in Ci a compartment, the `ith one, that
has outflow to the environment in the open-loop system. On the other hand, condition Ki = 0
ensures that Ai,i + BiKi = Ai,i is irreducible, and Aj,i + BjKi = Aj,i for every j ∈ [1, s]Z, j ≠ i.
Therefore every compartment in Ci is outflow connected also in the closed-loop system A +BK.

- Case i ∈ E1: Every Ci, i ∈ E1, is such that (a) there is a path from any compartment of Ci
to any other compartment of Ci (since the diagonal blocks Ai,i +BiKi are irreducible); and (b)
there is a compartment, the `ith one, that has outflow to the environment (see (11b)).

- Case i ∈ E2: Every Ci with i ∈ E2 is such that (a) there is a path from any compartment of
Ci to any other compartment of Ci (again because the blocks Ai,i +BiKi are irreducible); and (b)

14



there is a path from a compartment in Ci to a compartment in Cd with d ∈ (E0 ∪ E1), namely
Ci has access to Cd (since BdKi > 0). So, even the compartments in Ci with i ∈ E2 are outflow
connected.

- Case i /∈ ∪2
i=0Ei: We first note that [1, r]Z ⊆ E1 ∪ E2. Therefore any i /∈ ∪2

i=0Ei necessarily

belongs to [r + 1, s]Z and satisfies the following conditions: the matrix Ai,i + BiKi = Ai,i is a
compartmental, irreducible, Hurwitz matrix and ∑ik=1 1

⊺Ak,i = 0⊺. This implies that there exists
j ∈ [1, i − 1]Z such that Aj,i > 0, namely Ci has access to Cj , j ∈ [1, i − 1]Z. Set k̄ ∶= min{i /∈

(E0 ∪E1 ∪E2)}. By proceeding as in the proof of Proposition 15, we can show that (a) there is
a path from any compartment of Ck̄ to any other compartment of Ck̄, (b) there is a path from
a compartment in Ck̄ to a compartment in Ci with i ∈ (E0 ∪ E1 ∪ E2). Consequently, all the
compartments in Ck̄ are outflow connected. By proceeding recursively, conditions (a) and (b)
prove to be true for all the remaining i /∈ (E0 ∪E1 ∪E2).

To conclude, every compartment of the closed-loop system A+BK is outflow connected, and
hence A+BK is also Hurwitz. This means that the feedback matrix K defined in (13) solves the
positive stabilization problem.

Remark 18. Note that every solution K of the positive stabilization problem has at least r non-
zero columns. This is due to the fact that the original digraph D(A) has r conservative (i.e.,
non-Hurwitz) communication classes, namely communication classes that have no access to any
other class nor to the environment. So, every state-feebdack matrix K that solves the positive
stabilization problem must be designed in such a way that in D(A+BK) these classes communicate
either with the environment or with other classes. However, the case may occur that a solution
K with r non-zero columns might not exist even if the positive stabilization problem is solvable,
as shown in the following example.

Example 19. Consider the same compartmental system introduced in Example 1 (see Figure 1)

9x(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 1
1 −1 0 1
0 0 −3 1
0 0 3 −3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2
1 1
2 1
1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t) = [
A1,1 A1,2

0 A2,2
]x(t) + [

B1

B2
]u(t).

Clearly, s = 2, A1,1 is irreducible and non-Hurwitz, while A2,2 is irreducible and Hurwitz. So,
r = 1. In this case we have that neither class has a compartment with direct outflow to the
environment, and hence E0 = ∅. It is easy to verify that 1 /∈ E1. On the other hand, for i = 2
we see that the vector v2 = [0 −1/2]

⊺
satisfies conditions (8) for `2 = 4. Therefore E1 = {2}.

Finally, for i = 2 we observe that vector v1 = [1 −1]
⊺

satisfies conditions (12) for `1 = 1, and
hence E2 = {1}. As a result, the sufficient condition of Proposition 17 is satisfied, and it is easy
to verify that for every ε ∈ (0,1) the feedback matrix

15



K = ε(v1e
⊺
1 + v2e

⊺
4) = ε [

1 0 0 0
−1 0 0 −1/2

]

makes A+BK compartmental and Hurwitz. In-
deed, the digraph associated with any such A +

BK is illustrated in Figure 3. Note that C1 and
C2 are not the communication classes of A+BK,
which is an irreducible matrix and hence its di-
graph is strongly connected. On the other hand,
the 4th compartment (4th vertex) in D(A+BK)

has direct outflow to the environment (this has
been highlighted using a dashed line for its bor-
der) and this ensures that all the compartments
are outflow connected. Notice that in this case
the sufficient condition of Proposition 15 does
not hold. ♣

C1

C2

1

2

3

4

Fig. 3 Digraph associated with matrix A +

BK of Example 19.

6 Necessary and sufficient conditions for the problem solvability

The reasoning behind the proofs of Proposition 15 and Proposition 17 can be further exploited
to determine a necessary and sufficient condition for the solvability of the positive stabilization
problem. We need to define the concept of distance from the environment of the sets Ci, i ∈ [1, s]Z,
which provide a partition of the n compartments, namely of the set [1, n]Z, and for which the
following property holds: For every p, q ∈ Ci there is a path p → q1 → ⋅ ⋅ ⋅ → qk → q with qd ∈ Ci, d ∈
[1, k]Z.

We say that Ci has direct outflow to the environment, or distance δ = 0 from the environment,
if there exists a compartment in Ci with direct outflow to the environment. This ensures that,
given any compartment p of Ci, either it has direct outflow to the environment, or there is a path
p→ q1 → ⋅ ⋅ ⋅ → qk → qk+1 with qd ∈ Ci, d ∈ [1, k+1]Z, to a compartment qk+1 that has direct outflow
to the environment.

If the set Ci has no direct outflow to the environment, we say that it has distance δ ≥ 1 from
the environment if there exists an arc from a compartment p of Ci to some compartment q ∈ Cj ,
where Cj is a set having distance δ−1 from the environment, and no δ′ < δ can be found for which
the previous property holds.

We say that Ci has infinite distance from the environment if none of the compartments of Ci
is outflow connected.

The concept of distance from the environment allows us to restate the positive stabilization
problem in slightly different terms. Specifically, we can claim that the positive stabilization
problem is solvable if and only if there exists K ∈ Rm×n such that in the closed-loop system
(namely, for the closed-loop matrix A +BK) each set Ci, i ∈ [1, s]Z, has finite distance from the
environment3.

3Note that we find it convenient to refer to the sets Ci, i ∈ [1, s]Z, that represent the communication classes of
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We want now to comment on the sufficient conditions provided in Propositions 15 and 17, in
terms of the previously defined concepts. In Proposition 15 we require that for each conservative
communication class of the original matrix A, namely for each Ci, i ∈ [1, r]Z, a state-feedback can
be found such that the set Ci has direct outflow to the environment in the resulting feedback
system. If this is the case, then also the other sets Ci, i ∈ [r + 1, s]Z, will have finite distance from
the environment, either because they have, in turn, direct outflow to the environment or because
they have access (through a path of finite length) to other sets Cj , j < i, that have direct outflow
to the environment.

In Proposition 17 we move a step further. We denote by E0 the set of indices of the classes
Ci with distance δ = 0 from the environment for the original matrix A. The set E1, on the other
hand, includes the indices of all classes Ci that are not directly connected to the environment
but can acquire this property as a result of a state-feedback acting on one of its compartments.
So, if for each conservative class of the original system, Ci, i ∈ [1, r]Z, whose index i does not
belong to E1, we can find a state feedback that connects Ci with some class Cj , j ∈ E0 ∪ E1,
then each such class will have distance δ = 1 from the environment, and all the remaining classes
Cj , j ∈ [r+1, s]Z ∖(E0 ∪E1), will have finite distance from the environment in turn, thus ensuring
that A +BK is stable.

The following algorithm extends the idea of Proposition 17 as follows. At the initial step, it
considers all the sets Ci that either have direct outflow to the environment (i ∈ E0) or can gain
direct outflow to the environment by means of a state-feedback (i ∈ E1). If in this way we have
considered all the sets (E0 ∪E1 = [1, s]Z), then a solution is immediately provided4. If there are
sets whose indices do not belong to E0∪E1, namely the set of indices of the “remaining sets” R(0)

is not empty, then we consider first the sets Ci, i ∈ R
(0), that have access to some set Cj , j ∈ E0∪E1,

(and hence distance δ = 1 from the environment). We let N (1) denote the set of indices of these
sets, and consider now the sets Ci, i ∈ R

(0) ∖N (1), for which the access to some set Cj , j ∈ E0 ∪E1,

can be obtained by means of a state-feedback. We let E
(1)
2 denote the set of such indices. The

union set N (1) ∪E(1)2 represents the set of indices of all sets Ci that have distance δ = 1 from the
environment either because of the structure of A or as a result of a state-feedback. Subsequently
we update the distance δ to the value 2, update the index set of the remaining Ci’s (now R(1))
by subtracting N (1) and E

(1)
2 from R(0), and determine the sets N (2) and E

(2)
2 . If at some step δ

we have emptied the index set R(δ) of the remaining sets, then the positive stabilization problem
is solvable and a solution is explicitly proposed. If, on the other hand, at some step we have not
decreased the cardinality of R(δ) then the problem is not solvable.

We now formalize the previously described algorithm for a compartmental system (2), with
A ∈ Rn×n and B ∈ Rn×m satisfying the previous Assumptions.

Algorithm 1:

A0. Define the sets E0 and E1 as in Proposition 17. To every i ∈ E1 we associate the pair (vi, `i),
where vi ∈ Rm and `i ∈ Ci are such that S`iAe`i + S`iBvi ≥ 0 and 1⊺Bvi < 0.

the original matrix A, but the result would hold true for any other partition of the set of compartments [1, n]Z,
provided that all the compartments in each Ci communicate with each other.

4This represents a special case of Proposition 17: the case when, by means of a state-feedback, we can ensure
that all sets Ci, i ∈ [1, s]Z, have direct outflow to the environment, i.e., distance δ = 0.
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Initialize δ = 0, Ẽ
(0)
2 = E

(0)
2 = ∅ and R(0) = [1, s]Z ∖ (E0 ∪E1 ∪ Ẽ

(0)
2 ).

A1. If R(δ) = ∅, then the positive stabilization problem is solvable and for every ε ∈ (0,1) the
feedback matrix

K ∶= ε ∑

i∈E1∪E(0)2 ∪⋅⋅⋅∪E(δ)2

vie
⊺
`i

is a solution. STOP.

If R(δ) ≠ ∅, go to A2.

A2. Define N (δ+1) = {i ∈ R(δ)∶ Adi,i ≠ 0,∃ di ∈ E0 ∪E1 ∪ Ẽ
(0)
2 ∪ ⋅ ⋅ ⋅ ∪ Ẽ

(δ)
2 } ⊆ [r + 1, s]Z.

Set E
(δ+1)
2 = {i ∈ R(δ) ∖N (δ+1)∶ ∃vi ∈ Rm, `i ∈ Ci such that conditions (16) hold},

S`iAe`i + S`iBvi ≥ 0, (16a)

1⊺Bvi = 0, (16b)

Bdivi > 0, ∃di ∈ E0 ∪E1 ∪ Ẽ
(0)
2 ∪ ⋅ ⋅ ⋅ ∪ Ẽ

(δ)
2 . (16c)

To every i ∈ E
(δ+1)
2 we associate the pair (vi, `i), where vi ∈ Rm and `i ∈ Ci satisfy conditions

(16). Set Ẽ
(δ+1)
2 = E

(δ+1)
2 ∪N (δ+1).

A3. Set R(δ+1) = R(δ) ∖ Ẽ(δ+1)
2 . If R(δ+1) = R(δ), then the positive stabilization problem is not

solvable. STOP.

Otherwise, update δ = δ + 1 and repeat from A1.

Remark 20. There are various ways to make Algorithm 1 more efficient. For instance, at step

A2, when determining E
(δ+1)
2 , one could include in the set of classes for which we have already

guaranteed a finite distance from the environment also the classes indexed in N (δ+1), namely one

could check condition (16c) for di ∈ E0 ∪E1 ∪ Ẽ
(0)
2 ∪ ⋅ ⋅ ⋅ ∪ Ẽ

(δ)
2 ∪N (δ+1). However, in doing so, δ

would no longer represent the distance of the class from the environment.

It is also worthwhile noticing that condition (16a) ensures that Bdivi ≥ 0,∀di ∈ E0∪E1∪Ẽ
(0)
2 ∪

⋅ ⋅ ⋅∪Ẽ
(δ)
2 . So, the purpose of (16c) is simply to determine for which indices the inequality is strict.

This needs not to be checked for every di ∈ E0 ∪E1 ∪ Ẽ
(0)
2 ∪ ⋅ ⋅ ⋅ ∪ Ẽ

(δ)
2 at every step δ. Indeed, for

δ = 0 it must be tested only for di ∈ E0∪E1∪Ẽ
(0)
2 = E0∪E1, while for δ > 0 it can be tested only for

di ∈ Ẽ
(δ)
2 . Indeed, if condition (16c) would have been true for some di ∈ E0∪E1∪Ẽ

(0)
2 ∪⋅ ⋅ ⋅∪Ẽ

(δ−1)
2 ,

then i would already be in E
(δ)
2 and hence it would not be an element of R(δ).

Finally, it is also clear that for each value of i, conditions (16) need to be satisfied only for one
value of `i. So, in the best case one needs to solve this LP only for one index per class, while in
the worst case for every index in the class. Strategies based on the evaluation of the zero entries
of the columns of A first and the analysis of the corresponding rows in B then, as highlighted in
Proposition 11, may optimize the search for the index `i.
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It is clear, by the way the algorithm has been conceived, that it always comes to an end in
no more than s − 1 steps (namely, δ cannot be greater than s − 1). To prove that the positive
stabilization problem is solvable if and only if Algorithm 1 ends with R(δ) = ∅ for some δ ∈ Z+,
we need the following result.

Lemma 21. Consider the compartmental system (2), with A ∈ Rn×n and B ∈ Rn×msatisfying the
previous Assumptions. If the positive stabilization problem is solvable, then there exist vi ∈ Rm
and `i ∈ Ci, i ∈ [1, s]Z, such that for every ε ∈ (0,1) the matrix

K∗
= ε

s

∑
i=1

vie
⊺
`i
= [K∗

1 . . . K∗
s ] (17)

makes A +BK∗ compartmental and Hurwitz, and for every i ∈ [1, s]Z the diagonal blocks Ai,i +
BiK

∗
i are irreducible.

Proof. Let K ∈ Rm×n be an arbitrary solution to the positive stabilization problem. Define the
matrix K ′ = [K ′

1 . . . K ′
s] ∈ Rm×n, column by column, as follows:

K ′eh ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0, if 1⊺Aeh < 0,

εKeh, if 1⊺Aeh = 0,

where ε is arbitrary in (0,1). We first observe that for every h ∈ [1, n]Z (and for every ε ∈ (0,1))
Sh(A +BK ′)eh ≥ 0 and

ZP(Sh(A +BK ′
)eh) ⊇ ZP(ShAeh). (18)

This implies, in particular, that for every i ∈ [1, s]Z and every hi ∈ [1, ni]Z

ZP(Shi(Ai,i +BiK
′
i)ehi) ⊇ ZP(ShiAi,iehi).

This ensures that for every ε ∈ (0,1) the matrix K ′ makes A + BK ′ Metzler with all diagonal
blocks Ai,i +BiK

′
i irreducible. To prove that A +BK ′ is still compartmental and Hurwitz, it is

sufficient to note that:
(1) For every h ∈ [1, n]Z

1⊺(A +BK ′
)eh =

⎧⎪⎪
⎨
⎪⎪⎩

< 0, if 1⊺Aeh < 0,

≤ 0, if 1⊺Aeh = 0.

This ensures that A+BK ′ is compartmental and the set of compartments of A+BK ′ with direct
outflow to the environment includes the set of compartments of A +BK with direct outflow to
the environment.
(2) By the way K ′ has been defined, if the hth compartment of A +BK ′, h ∈ [1, n]Z, does not
have direct outflow to the environment then h is such that 1⊺Aeh = 0 and hence K ′eh = εKeh.
Therefore (A+BK ′)eh = (A+εBK)eh, and condition ε ∈ (0,1) ensures that all the arcs from the
hth compartment that appear in the digraph associated with A+BK also appear in the digraph
associated with A +BK ′.

So, the Hurwitz property of A+BK ensures that all the compartments in A+BK are outflow
connected, and this property is preserved in A + BK ′, thus ensuring that A + BK ′ is Hurwitz,
too.

We initialize the matrix K∗ by assuming K∗ ∶=K ′. We then proceed as follows:
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• Set D0 ∶= {i ∈ [1, s]Z ∶ 1
⊺(A +BK ′)e`i < 0,∃ `i ∈ Ci}. This is the set of indices of the classes

in A +BK∗ = A +BK ′ that have direct outflow to the environment. For every i ∈ D0, we
select one such `i and impose that for every h ∈ Ci, h ≠ `i, K

∗eh = 0. Note that after this
change D0 still represents the set of indices of the classes in A+BK∗, for the updated K∗,
that have direct outflow to the environment.

• Set D1 ∶= {i ∈ [1, s]Z ∖D0 ∶ Aj,i +BjK
′
i ≠ 0,∃ j ∈ D0}. If i ∈ D1, this means that there exist

j ∈ D0, `i ∈ Ci and q ∈ Cj such that [A +BK ′]q,`i ≠ 0. For every i ∈ D1, we set K∗eh = 0 for
every h ∈ Ci, h ≠ `i. Also in this case D1 represents the set of indices of classes in A +BK∗

that have distance one from the environment, both before and after having updated K∗.

• By proceeding in this way, we determine all the sets Dδ and we set to zero the columns
of K∗ accordingly. Since A +BK ′ is Hurwitz all the sets Ci have finite distance from the
environment and this property is preserved in all the subsequent modifications that lead to
the final K∗. By the way we have proceeded, K∗ has the structure (17), and the nonzero
vectors vi coincide with Ke`i .

Theorem 22. Consider the compartmental system (2), with A ∈ Rn×n and B ∈ Rn×msatisfying
the previous Assumptions. The positive stabilization problem is solvable if and only if Algorithm
1 applied to the pair (A,B) ends with R(δ) = ∅ for some δ ∈ Z+. When so, the feedback matrix K
generated by Algorithm 1 (see step A1) represents a solution.

Proof. [Sufficiency] The proof trivially follows from the fact that if Algorithm 1 ends with R(δ) =
∅, then the final closed-loop matrix A + BK is compartmental, and for every compartment
h ∈ [1, n]Z of the matrix A +BK we have been able to either guarantee that it belongs to a set
that has direct outflow to the environment (this is the case if h ∈ Ci, for some i ∈ E0 ∪E1) or to
ensure that it belongs to a set Ci that has finite distance from the environment (this is the case

if i ∈ Ẽ
(δ)
2 for some δ ≥ 1). Therefore in the closed-loop system, all the compartments are outflow

connected, and this ensures the Hurwitz property.

[Necessity] By Lemma 21, if the positive stabilization problem is solvable, then there exists a
solution taking the structure (17). Algorithm 1 constructs, among all solutions (17), one in which
each set Ci, i ∈ [1, s]Z, has in the resulting closed-loop system A + BK the minimum possible
distance from the environment. So, if Algorithm 1 does not end with a solution, a solution (17)
does not exist.

Example 23. Consider the following compartmental system

9x(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 1 1 0 1
1 −1 0 0 0 0
1 0 −1 0 0 0

0 0 0 −2 1 0
0 0 0 1 −1 1

0 0 0 0 0 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 0
0 0

1 1

0 0
1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 A1,2 A1,3

0 A2,2 A2,3

0 0 A3,3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

B3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

u(t).
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Notice that A is in Frobenius normal form (3), with diagonal block A1,1 irreducible and non-
Hurwitz, and diagonal blocks A2,2 and A3,3 irreducible and Hurwitz. So, s = 3 and r = 1. We apply
Algorithm 1 to the pair (A,B) and determine, if possible, a solution to the positive stabilization
problem.

[δ = 0] We set E0 = ∅, E1 = {2}, and we associate the pair (v2, `2) ∶= ([1/4 −1/2]
⊺
,4) to i = 2.

We initialize Ẽ
(0)
2 = E

(0)
2 = ∅ and R(0) = {1,3}.

We define N (1) = {3}, E
(1)
2 = ∅, and Ẽ

(1)
2 = E

(1)
2 ∪N (1) = {3}.

We set R(1) = R(0) ∖ Ẽ(1)2 = {1}, and since R(1) ⊂ R(0) we update δ.

[δ = 1] We define N (2) = ∅ and E
(2)
2 = {1}. We associate the pair (v1, `1) ∶= ([1 −1]

⊺
,1) to i = 1.

We set Ẽ
(2)
2 = E

(2)
2 ∪N (2) = {1}.

We set R(2) = R(1) ∖ Ẽ(2)2 = ∅. Since R(2) = ∅ the positive stabilization problem is solvable
and for every ε ∈ (0,1) the feedback matrix

K ∶= ε ∑

i∈E1∪E(1)2 ∪E(2)2

vie
⊺
`i
= [

1 0 0 1
4 0 0

−1 0 0 −1
2 0 0

]

is a solution. ♣

Example 24. Consider the following compartmental system

9x(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 1 0 1
1 −1 0 0 0 0 0

0 0 −1 1 1 0 0
0 0 1 −1 0 0 0

0 0 0 0 −3 1 0
0 0 0 0 1 −1 1

0 0 0 0 0 0 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2
0 0

1 0
0 0

1 1
0 0

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1,1 0 A1,3 A1,4

0 A2,2 A2,3 0
0 0 A3,3 A3,4

0 0 0 A4,4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x(t) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

B3

B4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u(t).

Notice that A is in Frobenius normal form (3), with diagonal blocks A1,1 and A2,2 irreducible and
non-Hurwitz, and diagonal blocks A3,3 and A4,4 irreducible and Hurwitz. So, s = 4 and r = 2.
We apply Algorithm 1 to the pair (A,B) and determine, if possible, a solution to the positive
stabilization problem.

[δ = 0] We set E0 = ∅, E1 = {3}, and we associate the pair (v3, `3) ∶= ([1/4 −1/2]
⊺
,5) to i = 3.

We initialize Ẽ
(0)
2 = E

(0)
2 = ∅ and R(0) = {1,2,4}.

We define N (1) = {4}, E
(1)
2 = ∅, and Ẽ

(1)
2 = E

(1)
2 ∪N (1) = {4}.

We set R(1) = R(0) ∖ Ẽ(1)2 = {1,2}, and since R(1) ⊂ R(0) we update δ.
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[δ = 1] We define N (2) = ∅ and E
(2)
2 = {1}. We associate the pair (v1, `1) ∶= ([1 −1]

⊺
,1) to i = 1.

We set Ẽ
(2)
2 = E

(2)
2 ∪N (2) = {1}.

We set R(2) = R(1) ∖ Ẽ(2)2 = {2}, and since R(2) ⊂ R(1) we update δ.

[δ = 2] We define N (3) = ∅, E
(3)
2 = ∅ and Ẽ

(3)
2 = E

(3)
2 ∪N (3) = ∅.

We set R(3) = R(2) ∖ Ẽ(3)2 = {2}. Since R(3) = R(2) we stop and conclude that the positive
stabilization problem is not solvable. ♣

7 Concluding remarks

To conclude the paper, we would like to briefly comment on the performance of Algorithm 1
in terms of number of inequalities to be solved (note that at each step the number of unknown
variables is always m, so Algorithm 1 is always linear in the number of inputs). Algorithm 1 aims
at minimizing the maximum distance that a communication class can have from the environment
for the resulting matrix A +BK. To optimize this parameter, the Algorithm 1 may repeatedly
inspect the vertices of the same class Ci every time the step A2 of the Algorithm 1 is iterated,

until the class index i is included in Ẽ
(δ+1)
2 for some δ ≥ 0. This requires evaluating n inequalities

in m unknown variables (the entries of vi) to verify (16a) and (16b) for the indices `i ∈ Ci. Under
this viewpoint, this is not the most efficient way to solve the problem (modulo the improvements
already mentioned in Remark 20).

If the goal is that of reducing as much as possible the number of nonzero columns of K,
Algorithm 1 can be significantly modified, to adopt a rather different strategy. Specifically, one
can first determine all the classes Ci that have finite distance from the environment already for
the matrix A. Then, every time a state-feedback control action is designed, consisting of a single
nonzero column, that ensures that all vertices belonging to some set Ci are outflow connected
to the environment in A + BK, one can determine all the sets Cj that have access to Ci, and
they need not to be considered in the following steps. Similarly, if we are able to design a state-
feedback action that connects a new set Ci to one of the previously considered sets, then, again,
all sets Cj having access to Ci necessarily have finite distance from the environment. Under this
perspective, the number of LPs that need to be solved can be significantly reduced and replaced
by the elementary verification that the block matrices Ai,j , representing edges between classes,
are nonzero.

In any event, and differently from other techniques proposed for state-feedback stabilization
of positive systems as, for instance the one in [18], Algorithm 1 deeply relies on the assumption
that the partition of the digraph D(A) into communication classes is known, and if this is the case
the number of LPs that need to be solved can be minimized. But the computational complexity
is always influenced by the digraph structure. In the worst case, one could possibly solve the LPs

S`i(Ae`i +Bvi) ≥ 0 1⊺Bvi ≤ 0

for every i ∈ [1, s]Z and every `i ∈ Ci (namely, n families of n inequalities in m unknown variables)
and when 1⊺Bvi = 0 memorize the values of indices di for which condition (16c) holds. This
would make the computational burden analogous to the one of the LP proposed in [18].
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