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Abstract

The aim of this paper is to address consensus and bipartite consensus for a group of
homogeneous agents, under the assumption that their mutual interactions can be described
by a weighted, signed, connected and structurally balanced communication graph. This
amounts to assuming that the agents can be split into two antagonistic groups such that
interactions between agents belonging to the same group are cooperative, and hence rep-
resented by nonnegative weights, while interactions between agents belonging to opposite
groups are antagonistic, and hence represented by nonpositive weights. In this framework,
bipartite consensus can always be reached under the stabilizability assumption on the
state-space model describing the dynamics of each agent. On the other hand, (nontrivial)
standard consensus may be achieved only under very demanding requirements, both on
the Laplacian associated with the communication graph and on the agents’ description.
In particular, consensus may be achieved only if there is a sort of “equilibrium” between
the two groups, both in terms of cardinality and in terms of the weights of the “conflicting
interactions” amongst agents.

1 Introduction

Mathematical formulation of multi-agents systems and consensus problems has been of interest
for a considerable length of time. Some of the pioneering works are reported in [5, 6, 7, 28, 29]
and references therein. However, a decade ago, thanks to milestone contributions such as
[10, 16, 18, 22, 23, 24, 26], a wide stream of literature on these topics started and flourished.
The driving force behind considerable research activity on this topic is the wide variety of areas
where the consensus problem lends itself in a natural manner. In applications such as sensor
networks, coordination of mobile robots or UAVs, flocking and swarming in animal groups,
dynamics of opinion forming, etc., the problem can be formulated as that of a group of agents
exchanging information with the objective of reaching a common decision, a consensus, by
resorting to distributed algorithms that make use of the information that each agent collects
from neighboring agents (see, e.g. [2, 11, 12, 15, 19, 20, 21, 24, 25, 27]. The interested reader
is referred to [1] and [23] for a more complete list of references).
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A common assumption in most of the literature about consensus is that agents achieve this
goal through collaboration. However, in a number of contexts where the consensus is meaning-
ful, the interactions among agents are not necessarily cooperative. On the contrary, in contexts
like markets or social networks [8], for instance, agents may also display non-cooperative or
antagonistic interactions with some of their neighboring agents. In social networks, mutual
relationships between pairs of individuals may be friendly or hostile, and this may create two
antagonistic groups. In economic systems, duopolistic regimes arise quite frequently: all the
companies producing a certain product, or providing a certain service, are split into two com-
peting cartels. But this is also the case when modeling two competing teams, as it happens,
for instance, in sport disciplines, or in robot competitions like Robocup. Each individual or
robot collects information regarding both the team mates and the antagonists, and processes
this data in order to take decisions (position, speed, behavior, elevation, ...) that are in agree-
ment with those of their team mates. Game theory provides several examples where players
are divided into two competing teams, and antagonistic interactions between the two groups
are crucial when modeling the overall system dynamics. Finally, in biology systems, interac-
tions between genes or chemical elements may be cooperative or antagonistic in the form of
activators/inhibitors.

In graph theoretic terms, antagonistic interactions can be taken into account by replacing
the standard communication graph, characterized by nonnegative weights, with a signed graph
[13, 33] displaying both positive and negative weights. Positive arcs correspond to cooperative
interactions between agents, while negative arcs describe interactions between antagonistic
agents. While there is considerable literature about consensus in cooperating multi-agent
systems, research results pertaining to consensus without cooperation are relatively few [3, 4, 9].
In a recent paper [1], Altafini developed the concept of bipartite consensus among agents with
antagonistic interactions. Specifically, based on definitions and properties of signed weighted
(directed or undirected) graphs and of the associated Laplacians (see [13, 17]), he introduced
the concept of bipartite consensus (or agreed dissensus). This is the situation when agents are
split into two groups such that within each group all the agents converge to a unique decision,
but the decisions of the two groups are opposite.

By addressing the classical example of homogeneous agents modeled as simple scalar inte-
grators, he proved that if the signed, weighted and connected communication graph describing
the agents’ interactions is structurally balanced, then the agents reach bipartite consensus.
On the other hand, if the interactions are antagonistic, but not structurally balanced, the only
agreement that can be achieved among the agents is the trivial one, where all the agents’ states
converge to zero.

The main objective of this paper is to extend the results reported in [1], by addressing the
general case of N homogeneous agents described by a generic n-dimensional linear state-space
model. This represents a natural extension of the case when agents are modeled as simple
integrators. In certain situations, agents’ status may require more than a single variable for
accurate representation. These variables may include, e.g., position and velocity, price and
production levels, etc. These decision variables are updated based on the information collected
from the neighboring agents, and consensus must be achieved on all of them. Specifically, we
establish conditions for consensus and bipartite consensus for a group of N homogeneous
agents under the assumption that their mutual interactions can be described by a weighted,
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signed, connected and structurally balanced communication graph.
We show that, in this set-up, bipartite consensus can always be reached under the fairly

weak assumption of stabilizability on the state-space model describing the dynamics of each
agent. However, nontrivial consensus to a common decision for the two antagonistic groups
can be achieved only under more restrictive requirements, both on the Laplacian associated
with the communication graph and on the agents’ description. In particular, consensus may
be achieved only if there is a sort of “equilibrium” between the two groups, both in terms of
cardinality and in terms of the weights of the “conflicting interactions” among agents.

Briefly, Section II introduces the problem formulation and formalizes the consensus and
bipartite consensus problems. In addition, basic definitions and results regarding weighted
signed graphs and their Laplacians are reviewed, and a new technical result regarding the
Laplacian of structurally balanced graphs is presented. Section III investigates the bipartite
consensus problem, and it is shown there that, under the structural balance assumption, it is
possible to extend to the case of antagonistic interactions and bipartite consensus the results
presented in [31, 32] (see, also, [10, 14, 27, 30]) for the consensus of high-order cooperating
agents. Section IV explores the consensus problem, by focusing on the case when the common
trajectory that the agents converge to is bounded, but not converging to zero. In this section,
conditions under which consensus may be achieved are investigated, and an algorithm to
design the control law that makes this possible is presented. Finally, it is shown that when
the previous conditions are not met, nontrivial consensus can never be achieved.

Notation. R+ is the semiring of nonnegative real numbers. For any pair of positive
integers k and n with k ≤ n, [k, n] is the set of integers {k, k+1, . . . , n}. The (i, j)th entry of a
matrix A will be denoted by [A]ij , the ith entry of a vector v by [v]i. A matrix (in particular,
a vector) A with entries in R+ is called nonnegative, and denoted by A ≥ 0. The symbol 1N
denotes the N -dimensional vector with all entries equal to 1. The spectrum of a square matrix
A is denoted by σ(A).

2 Consensus and bipartite consensus problems: statements

We consider a multi-agent system consisting of N agents, each of them described by the
same single-input continuous-time state-space model. Specifically, xi(t), the ith agent state,
i ∈ [1, N ], evolves according to the first-order differential equation

ẋi(t) = Axi(t) + bui(t), (1)

where xi(t) ∈ Rn, ui(t) ∈ R, A ∈ Rn×n, and b ∈ Rn. The communication among the N agents
is described by an undirected, weighted and signed, communication graph [1] G = (V, E ,A),
where V = {1, 2, . . . , N} is the set of vertices, E ⊆ V ×V is the set of arcs, and A is the matrix
of the signed weights of G. The (i, j)th entry of A, [A]ij , is nonzero if and only if the arc
(j, i) belongs to E , namely information about the status of the jth agent is available to the
ith agent. We assume that the interactions between pairs of agents are symmetric and hence
A = A>. The interaction between the ith and the jth agents is cooperative if [A]ij > 0 and
antagonistic if [A]ij < 0. Also, we assume that [A]ii = 0, for all i ∈ [1, N ]. The graph G is
connected if, for every pair of vertices j and i, there is path, namely an ordered sequence of
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arcs (j, i1), (i1, i2), . . . , (ik−1, ik), (ik, i) ∈ E , connecting them.
The Laplacian matrix associated with the adjacency matrix A is defined as in [1, 13, 17],
namely:

L := C − A, (2)

where C is the (diagonal) connectivity matrix, whose diagonal entries are the sums of the
absolute values of the corresponding row entries of A, namely

[C]ii =
∑

(j,i)∈E

|[A]ij |, ∀i ∈ [1, N ].

Therefore

[L]ij =
{∑

(j,i)∈E |[A]ij |, if i = j
−[A]ij , if i 6= j. (3)

Throughout the paper, we assume that the weighted and signed graph G, describing the
interactions among agents, is connected and structurally balanced. This latter property means
[1, 13, 33] that the set of vertices V can be partitioned into two disjoint subsets V1 and V2

such that for every i, j ∈ Vp, p ∈ [1, 2], [A]ij ≥ 0, while for every i ∈ Vp, j ∈ Vq, p, q ∈ [1, 2],
p 6= q, [A]ij ≤ 0. This amounts to saying that the agents can be split into two groups,
and interactions between pairs of agents belonging to the same group are cooperative, while
interactions between pairs of agents belonging to different groups are antagonistic. Therefore,
after a suitable reordering of the agents, we can always assume that

A =
[
A11 A12

A>12 A22

]
, (4)

where k := |V1|, N − k := |V2|, A11 = A>11 ∈ Rk×k
+ , A22 = A>22 ∈ R(N−k)×(N−k)

+ , while
−A12 ∈ Rk×(N−k)

+ . Under this fundamental requirement on the mutual interactions among
the agents, we assume that the ith agent adopts the static state-feedback control algorithm:

ui(t) = −K
∑

(j,i)∈E

|[A]ij | · [xi(t)− sign([A]ij)xj(t)], i ∈ [1, N ], (5)

where K ∈ R1×n is a feedback matrix to be designed, and sign(·) is the sign function.
Upon defining the state and input vectors

x(t) := [ x>1 (t) x>2 (t) . . . x>N (t) ]> ,
u(t) := [u1(t) u2(t) . . . uN (t) ]> ,

the overall dynamics of the multi-agent system are henceforth described by the equations

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗ b)u(t), (6)
u(t) = −(L ⊗K)x(t). (7)

The aim of this paper is to investigate both the standard (state) consensus and the bipartite
(state) consensus problems for the group of agents described by (6)-(7). Specifically, we will
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first search for conditions ensuring that bipartite consensus is possible, namely that a matrix
K can be found so that, for every choice of the initial conditions, the agents’ states evolve as
follows:

lim
t→+∞

xi(t) =
{
ζ(t), ∀ i ∈ V1;
−ζ(t), ∀ i ∈ V2,

for some function ζ(t), t ∈ R+, that depends on the initial conditions. Subsequently, we will
search for conditions ensuring that all the agents converge to the same decision (so, that
standard consensus among agents is possible), and hence a matrix K can be found such that,
for every choice of the initial conditions,

lim
t→+∞

xi(t) = ζ(t), ∀ i ∈ V,

for some function ζ(t), t ∈ R+, that depends on the initial conditions.

Before proceeding, it is convenient to recall from [1] some fundamental results about the
Laplacian of a weighted, signed, undirected graph G, in general, and about the Laplacian of a
structurally balanced graph, in particular. First of all, the Laplacian matrix L, defined as in
(2), is a symmetric and positive semidefinite matrix, whose nonnegative real eigenvalues can
always be sorted in such a way that

0 ≤ λ1(L) ≤ λ2(L) ≤ . . . ≤ λN (L).

Note that, L being symmetric and hence diagonalizable, there exists a basis of RN consisting
of eigenvectors of L. Clearly, one can always find (at least) one (left or right) eigenvector v
of L whose entries sum up to a nonzero value (i.e.,

∑N
i=1[v]i 6= 0)1. When so, we can assume

without loss of generality that
∑N

i=1[v]i = 1.
We also recall the concept of gauge transformation [1] (also known as change of orthant

order). We denote by D the set of all N × N diagonal matrices whose diagonal entries are
either 1 or −1. Two N × N matrices A1 and A2 are said to be equivalent through a gauge
transformation, if there exists D ∈ D such that A2 = DA1D. In the sequel, we will make use
of the following fundamental result.

Proposition 1 [1] Given a connected, weighted and signed graph G = (V, E ,A), let L denote
the Laplacian matrix associated with A. The following facts are equivalent:

1. G is structurally balanced;

2. A is equivalent, through a gauge transformation, to a nonnegative matrix;

3. λ1(L) = 0.

Note that, when G is structurally balanced and connected, 0 is a simple eigenvalue of L.
Next we establish a key technical result that will be used in subsequent sections.

1Indeed, condition
PN

i=1[v]i = 0 is equivalent to v>1N = 0. So, if every eigenvector v would be orthogonal
to 1N , the vector space generated by all the eigenvectors would be a vector subspace of 〈1N 〉⊥, and hence the
eigenvectors could not generate RN , a contradiction.
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Lemma 1 Given a connected, weighted and signed graph G = (V, E ,A), with A having at least
one negative entry, let L denote the Laplacian matrix associated with A. If G is structurally
balanced, and V1 and V2 denote the two disjoint sets of vertices that partition the set V, then

i) at least two of the row sums
∑N

j=1[L]ij , i ∈ [1, N ], are nonzero, and hence positive;

ii) if all row sums
∑N

j=1[L]ij , i ∈ [1, N ], are identical, then the two sets of vertices V1 and
V2 have the same cardinality.

Proof. We first observe that the signed weight matrix A can be expressed as A = A+ +A−,
where A+ and A− are the matrices that represent the positive and the negative entries of A,
respectively. Accordingly, if we denote by L+ and L− the Laplacians corresponding to the
matrices A+ and A−, respectively, then L = L+ + L−. Since all row sums of L+ are zero,
the row sums of L ordinately coincide with the row sums of the nonnegative matrix L−.
Moreover, L−1N = −2A−1N . By assumption, at least one element [A]ik is negative (and
hence, by symmetry, [A]ki < 0), therefore condition i) holds (for the ith and kth rows).
To prove ii), we need to show that if all the row sums of A− take the same value, say α < 0,
then |V1| = |V2|. By the structural balance assumption, the matrix A− can be reduced, by
means of permutations, to the following form

A− =
[

0 A12

A>12 0

]
, −A12 ∈ Rk×(N−k)

+ ,A12 6= 0.

Next, assume that k = |V1| 6= |V2| = N − k. If both conditions{
A121N−k = α1k,

1>k A12 = α1>N−k,

were true, the fact that α 6= 0 would lead to the contradiction

α(N − k) =
(
1>k A12

)
1N−k 6= 1>k (A121N−k) = αk.

Hence, k = N − k.

Remark 1 It is worthwhile noticing that, in the special case when all row sums of L take the
same value, say λ̂ ∈ R, namely L1N = λ̂1N , then there is a special relationship between the
Laplacian L and the unsigned Laplacian Lu of A, this latter defined as

[Lu]ij =
{∑

(j,i)∈E [A]ij , if i = j
−[A]ij , if i 6= j.

Indeed, by following the same lines as in the proof of Lemma 1, it is easily seen that

Lu = L − 2C−,

where C− is the (diagonal) connectivity matrix of A−. On the other hand, as Lu1N = 0,
condition L1N = λ̂1N is equivalent to

C−1N =
λ̂

2
1N ,
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and since C− is diagonal, this means C− = λ̂
2 I. As a result,

Lu = L − λ̂I,

which ensures that

σ(L) = (λ1(L), λ2(L), . . . , λN (L)) = (µ1 + λ̂, µ2 + λ̂, . . . , µN + λ̂),

where (µ1, µ2, . . . , µN ) is the spectrum of Lu.

3 Bipartite consensus

As a first step we want to derive necessary and sufficient conditions for bipartite consensus
of non-cooperating multi-agent systems described as in (6), under the assumption that the
feedback control algorithm is described as in (7) and the communication graph G is structurally
balanced.

It will be shown that the results regarding consensus of cooperating multi-agent systems
described by (6), first reported in [32] (see, also, [31, 14] for additional information), can be
extended to the case of non-cooperating agents and bipartite consensus under the assumption
that the control algorithm is described as in (7), and provided that the communication graph
G is structurally balanced.

Theorem 1 Consider the multi-agent system (6) with control algorithm (7), where K ∈ R1×N

is a matrix to be determined and the communication graph G is connected and structurally bal-
anced. The agents asymptotically reach bipartite consensus if and only if the N−1 polynomials

ψi(s) := det(sIn−A)+λi(L) · [Kadj(sIn−A)b] = det(sIn−A+λi(L)b,K), i ∈ [2, N ], (8)

where adj((sIn −A) denotes the adjoint matrix of sIn −A, are Hurwitz.

Proof. As G is structurally balanced, we can assume without any loss of generality that
V1 = [1, k] and V2 = [k + 1, N ], and hence A is described as in (4), where A11 ∈ Rk×k

+ ,
A22 ∈ R(N−k)×(N−k)

+ , while −A12 ∈ Rk×N
+ . It is easily seen that the gauge transformation

D =
[
Ik 0
0 −IN−k

]
∈ D

is such that DAD is a nonnegative matrix. Let p := [ p1 p2 . . . pN ]> ∈ RN be a left
eigenvector of L corresponding to λ1(L) = 0. Since Dp is the left eigenvector of the DLD,
corresponding to the zero eigenvalue, and DLD is the Laplacian matrix associated with the
nonnegative matrix DAD, we can assume

pi =
{

1
N , i ∈ [1, k];
− 1
N , i ∈ [k + 1, N ].
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Introduce the nonsingular matrix

S :=

 p1 p2 . . . pk pk+1 . . . pN
−1k−1 Ik−1 0
−1N−k 0 −IN−k


and consider the coordinate transformation

ζ(t)
δ2(t)

...
δk(t)
δk+1

...
δN (t)


:=

 p1In p2In . . . pkIn pk+1In . . . pNIn
−1k−1 ⊗ In In(k−1) 0
−1N−k ⊗ In 0 −In(N−k)





x1(t)
x2(t)

...
xk(t)
xk+1

...
xN (t)


= (S ⊗ In)x(t).

Note that δi(t) = xi(t) − x1(t), for i ∈ [2, k], while δi(t) = −xi(t) − x1(t), for i ∈ [k + 1, N ].
So, convergence to zero of all δi’s corresponds to bipartite consensus. It is a matter of simple
computation to see that

SLS−1 =
[

0 0
0 L2

]
and hence the N − 1 eigenvalues of L2 are 0 < λ2(L) ≤ . . . ≤ λN (L). Also, upon setting

û(t) :=


û1(t)
û2(t)

...
ûN (t)

 = Su(t),

the multi-agent system dynamics are described, with respect to the new state and input
coordinates, by

ζ̇(t) = Aζ(t) + bû1(t), (9) δ̇2(t)
...

˙δN (t)

 = (IN−1 ⊗A)

 δ2(t)
...

δN (t)

+ (IN−1 ⊗ b)

 û2(t)
...

ûN (t)

 , (10)

û1(t) = 0, (11) û2(t)
...

ûN (t)

 = −(L2 ⊗K)

 δ2(t)
...

δN (t)

 . (12)

These equations can be equivalently rewritten as

ζ̇(t) = Aζ(t), (13) δ̇2(t)
...

˙δN (t)

 = [(IN−1 ⊗A)− (IN−1 ⊗ b)(L2 ⊗K)]

 δ2(t)
...

δN (t)

 (14)
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Due to the way the variables δi(t)’s are defined, it is clear that bipartite consensus is achieved
if and only if the system (14) is asymptotically stable. This is the case if and only if the
characteristic polynomial of [(IN−1 ⊗A) + (IN−1 ⊗ b)(L2 ⊗K)] is Hurwitz. By following the
same reasoning adopted in [32], it can be shown that

det
(
sIn(N−1) − [(IN−1 ⊗A)− (IN−1 ⊗ b)(L2 ⊗K)]

)
=

N∏
i=2

(
det(sIn −A) + λi(L) · [Kadj(sIn −A)b]

)
,

and hence bipartite consensus is achieved if and only if all the polynomials ψi(s), i ∈ [2, N ],
are Hurwitz.

Remark 2 By referring to the notation adopted within the proof, it is easy to see that, when
the polynomials ψi(s), i ∈ [2, N ], in (8) are Hurwitz, and hence the new state variables δi(t), i ∈
[2, N ], converge to zero, then

ζ(t) =
N∑
i=1

pixi(t) =
k∑
i=1

pi(x1(t) + δi(t)) +
N∑

i=k+1

pi(−x1(t)− δi(t))

=

[
k∑
i=1

pi −
N∑

i=k+1

pi

]
x1(t) +

( k∑
i=1

piδi(t)−
N∑

i=k+1

piδi(t)
)

= x1(t) +
( k∑
i=1

piδi(t)−
N∑

i=k+1

piδi(t)
)

tends to x1(t), as t tends to +∞, and hence describes the behavior of the first group of agents,
while −ζ(t) describes the behavior of the second group. As for standard consensus, the evolution
of ζ(t) depends on the initial conditions and on the properties of the state matrix A, in the
agents’ description. Indeed, if A is Hurwitz, the only bipartite consensus we achieve is the
trivial one to the zero trajectory, while if A is simply stable or not stable, corresponding to
certain initial conditions, ζ(t) may be bounded or even diverging.

Remark 3 The Hurwitz property of the polynomials ψi(s), i ∈ [2, N ], is the same condition
derived in [32] (see also [31]) for the solvability of the standard consensus problem, in case of
cooperation. So, the assumption on the communication graph does not change the solvability
condition but only the outcome.

Next, we show that the stabilizability of the pair (A, b) is a necessary and sufficient condi-
tion for the solvability of the bipartite consensus problem. The result is analogous to the one
obtained for the standard consensus problem, since it reduces to the problem of imposing that
the real polynomials ψi(s), i ∈ [2, N ], are all Hurwitz, a result obtained in [31] (see also [10]).
Specifically, upon defining the polynomial

ψ(s, λ) := det(sIn −A) + λKadj(sIn −A)b, λ ∈ R,
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our goal is to show that, under the stabilizability assumption on (A, b), it is always possible
to choose the polynomial Kadj(sIn − A)b, of degree smaller than n = deg det(sIn − A), in
such a way that ψ(s, λ) is Hurwitz for every λ belonging to some half-line [λ̂,+∞) ( [0,+∞)
including all the positive eigenvalues of L.

For completeness, we provide a constructive proof of the above statement. The proof
is completely independent from the one given in [31] (based on the work of Tuna [30]) and
is essential in demonstrating why the analogous algebraic conditions for reaching standard
consensus are more difficult to achieve.

Theorem 2 Consider the multi-agent system (6) with control algorithm (7), and suppose
that the communication graph G is connected and structurally balanced. There exists K ∈
R1×N such that agents asymptotically reach bipartite consensus if and only if the pair (A, b) is
stabilizable.

Proof. By the previous theorem, we have to show that the stabilizability of the pair (A, b) is
a necessary and sufficient condition for the existence of a matrixK such that all the polynomials
ψi(s), i ∈ [2, N ], in (8) are Hurwitz.

[Necessity] If the pair (A, b) is not stabilizable, there exists a similarity transformation T
such that

TAT−1 =
[
A11 A12

0 A22

]
, T b =

[
b1
0

]
, (15)

where the pair (A11, b1) ∈ Rr×r×Rr is controllable, and the (n− r)-dimensional matrix A22 is
not Hurwitz. Consequently, for every choice of K both det(sIn − A) and Kadj(sIn − A)b are
multiple of det(sIn−r − A22). Therefore all ψi(s) are multiple of det(sIn−r − A22) and hence
are not Hurwitz.

Conversely, assume that the pair (A, b) is stabilizable, and hence there exists a similarity
transformation T such that TAT−1 and Tb are described as in (15), with det(sIn−r − A22)
Hurwitz and

A11 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −ar−1

 , b1 =


0
0
...
0
1

 . (16)

If we accordingly partition K as K = [K1 K2 ], with K1 = [ k0 k1 . . . kr−1 ], then

det(sIn −A) = det(sIr −A11) det(sIn−r −A22)
Kadj(sIn −A)b = [kr−1s

r−1 + kr−2s
r−2 + . . .+ k1s+ k0] det(sIn−r −A22).

Clearly if det(sIr − A11) is also Hurwitz, we can trivially make all the polynomials ψi(s), i ∈
[2, N ], Hurwitz by choosing K = 0. On the other hand, assume that

det(sIr −A11) = [sr + ar−1s
r−1 + . . .+ a1s+ a0] = d−(s)d0+(s),

where d0+(s) ∈ R[s] is a monic polynomial, with degree ` ≥ 1, whose roots have nonnegative
real part, while d−(s) is monic, Hurwitz and has degree r − `. Since all ki’s are arbitrary, we
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can choose them in such a way that kr−1s
r−1 +kr−2s

r−2 + . . .+k1s+k0 is a multiple of d−(s).
In this way

kr−1s
r−1 + kr−2s

r−2 + . . .+ k1s+ k0 = d−(s)[βr−`−1s
r−`−1 + . . .+ β1s+ β0],

where βi, i = 0, . . . , r − `− 1, are arbitrary. To prove that for a suitable choice of the matrix
K, all ψi(s), i ∈ [2, N ], can become Hurwitz, is equivalent to show that it is possible to choose
β0, β1, . . . , βr−`−1 ∈ R in such a way that the N − 1 polynomials

pi(s) := d0+(s) + λi(L)[βr−`−1s
r−`−1 + . . .+ β1s+ β0], i ∈ [2, N ],

are Hurwitz. Introduce any monic Hurwitz polynomial β̂(s) ∈ R[s] of degree r − ` − 1. By

referring to the positive root locus of the function
β̂(s)
d0+(s)

, namely to the set of zeros of the

expression
d0+(s) + γβ̂(s), γ ∈ R+,

it is clear that all the root locus branches start from the r − ` unstable zeros of d0+(s) and
end in the open left half plane: r − `− 1 end at the finite zeros of β̂(s), while the last branch
goes to −∞ along the negative real halfline. This proves that there exists γ̄ > 0 such that for
every γ ≥ γ̄ the polynomial d0+(s) + γβ̂(s) is Hurwitz. But then, by choosing

βr−`−1s
r−`−1 + . . .+ β1s+ β0 =

γ̄

λ2(L)
β̂(s),

we can ensure that all polynomials pi(s), i ∈ [2, N ], and hence all polynomials ψi(s), i ∈ [2, N ],
are Hurwitz. This proves that if (A, b) is stabilizable, then some matrix K can be found such
that all ψi(s), i ∈ [2, N ], are Hurwitz.

Example 1 Consider the system of N = 3 agents, each of them described by the 3-dimensional
(n = 3) (controllable, and hence stabilizable) state-space model

ẋi(t) = Axi(t) + bui(t) =

 0 1 0
0 0 1
1 −3 3

xi(t) +

 0
0
1

ui(t), i ∈ [1, 3].

Note that det(sI3 − A) = (s − 1)3 and adj(sI3 − A)b = [ 1 s s2 ]>. We assume that the
signed and weighted communication matrix A is

A =

 0 −1 −2
−1 0 3
−2 3 0

 ,
which means that the corresponding graph is structurally balanced with V1 = {1} and V2 =
{2, 3}. The associated Laplacian is

L =

 3 1 2
1 4 −3
2 −3 5

 ,
11



and its eigenvalues are λ1(L) = 0, λ2(L) = 6−
√

3, λ3(L) = 6 +
√

3. The matrix

S =

 1/3 −1/3 −1/3
−1 −1 0
−1 0 −1


is such that

SLS−1 =
[

0
L2

]
=

 0 0 0
0 5 −1
0 −2 7

 .
Introduce the state and input transformation: ζ(t)

δ2(t)
δ3(t)

 = (S ⊗ I3)x(t), û(t) = Su(t).

The state dynamics with respect to the new basis and the new input are described as in (13)-
(14) for N = 3. As det(sI3 − A) = (s − 1)3 has all roots in the closed right half-plane, we
assume β̂(s) = (s+ 1)2 = s2 + 2s+ 1. It is easily seen (for instance, through Routh criterion),
that

det(sI3 −A) + γβ̂(s) = (s− 1)3 + γ(s+ 1)2,

is Hurwitz for every γ > 1 +
√

5. Choose, then, for simplicity, γ̄ = 6−
√

3 = λ2(L) > 1 +
√

5
and Kadj(sI2 −A)b = β̂(s). Then

ψi(s) = det(sI3 −A) + λi(L)β̂(s) = (s− 1)3 + λi(L)(s+ 1)2, i = 2, 3,

are two Hurwitz polynomials. The choice Kadj(sI2 −A)b = β̂(s) = s2 + 2s+ 1 corresponds to
setting K = [ 1 2 1 ] , and it is just a matter of straightforward computation to verify that
the matrix [(I2 ⊗A)− (I2 ⊗ b)(L2 ⊗K)] is Hurwitz.

4 Consensus

In this section, we investigate whether for multi-agent systems described in (6), with a weighted,
signed, connected and structurally balanced communication graph G, the control algorithm (7)
may lead to a common decision for some suitable choice ofK. This is equivalent to investigating
whether it is possible to impose that for every index i ∈ [1, N ] we have limt→+∞ xi(t) = ζ(t),
for some function ζ(t). In the following, to avoid considering either trivial or undesirable
cases2, we will search for conditions ensuring that the state space evolution of the agents is
always bounded, but not always converging to zero. In this way, we rule out the case when
all the agents dynamics converge to zero, independently of the initial conditions, but also the
case when all agents may have diverging trajectories.

2In addition, notice that the trivial case, when all the agents’ states asymptotically converge to zero, has
already been regarded as a special case of the bipartite consensus case.
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To investigate this problem, we need to distinguish between the following two cases: A)
the case when all row sums of L take the same value (if so, we know from Lemma 1 that the
two sets of the partition, V1 and V2, have the same cardinality, say k = N/2); and B) the case
when not all row sums of L are the same.

4.1 All row sums of L take the same value

Suppose that ∃ λ̂ ∈ R such that L1N = λ̂1N . Clearly, by Lemma 1, λ̂ > 0 and obviously
λ̂ ∈ σ(L). The vector p := [ 1/N 1/N . . . 1/N ]> ∈ RN is hence a left eigenvector of L
corresponding to λ̂. We introduce the nonsingular matrix

S :=
[

1/N 1/N . . . 1/N
−1N−1 IN−1

]
.

Consider the coordinate transformation
ζ(t)
δ2(t)

...
δN (t)

 :=
[

1/NIn 1/NIn . . . 1/NIn
−1N−1 ⊗ In In(N−1)

]
x1(t)
x2(t)

...
xN (t)

 = (S ⊗ In)x(t).

It is a matter of simple computation to see that in this case, due to the fact that
∑N

j=1[L]ij =
λ̂,∀ i ∈ [1, N ],

SLS−1 =
[
λ̂ 0
0 L2

]
,

for some matrix L2, whose eigenvalues are the N − 1 (possibly not distinct) eigenvalues of
L, obtained by removing λ̂ from the N -tuple (λ1(L), λ2(L), . . . , λN (L)). Note that there is
no guarantee that λ̂ is a simple eigenvalue of L and hence λ̂ can belong also to σ(L2). By
following the same steps as in the proof of Theorem 1 (but in this case δi(t) = xi(t) − x1(t)
for all i ∈ [2, N ]), we can obtain the following description:

ζ̇(t) = (A− λ̂bK)ζ(t), δ̇2(t)
...

˙δN (t)

 = [(IN−1 ⊗A)− (IN−1 ⊗ b)(L2 ⊗K)]

 δ2(t)
...

δN (t)

 .
Therefore, consensus to some common bounded trajectory ζ(t) is achieved if and only if the
following conditions hold:

i) λ̂ is a simple eigenvalue of L;

ii) all polynomials ψi(s) = det(sIn − A) + λi(L)[Kadj(sIn − A)b], λi ∈ σ(L), λi 6= λ̂, are
Hurwitz;

iii) A− λ̂bK is simply (but not asymptotically) stable.
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Remark 4 It is worth noticing that while the conditions for bipartite consensus given in The-
orem 2 pertain only to the properties of the agents’ description, the possibility of reaching a
consensus among agents with antagonistic interactions depends not only on the model adopted
for the agents, but also on the algebraic properties of the associated Laplacian.

We illustrate the above distinction by means of two examples.

Example 2 Consider the system of four agents (N = 4), each of them described by the 3-
dimensional (n = 3) state-space model

ẋi(t) = Axi(t) + bui(t) =

 0 1 0
0 0 1
−1 −3 −3

xi(t) +

 0
0
1

ui(t), i ∈ [1, 4].

Note that det(sI3 −A) = (s+ 1)3. We assume that the signed communication matrix A is

A =


0 2 −1 −1
2 0 −1 −1
−1 −1 0 3
−1 −1 3 0

 ,
which means that the corresponding graph is structurally balanced with two antagonistic groups
of agents of the same cardinality V1 = {1, 2} and V2 = {3, 4}. The associated Laplacian is

L =


4 −2 1 1
−2 4 1 1
1 1 5 −3
1 1 −3 5

 ,
and its eigenvalues are λ1(L) = 0, λ2(L) = 4, λ3(L) = 6, λ4(L) = 8. We note that L14 = 414,
and hence all row sums are the same and they are equal to λ̂ = 4. Assume that the agents
adopt the feedback control law (7), with K = [ 12 1 1 ]. The consensus is possible if and only
if conditions i)-iii) above hold. Clearly, λ̂ = 4 is a simple eigenvalue of L, and hence condition
i) holds. If we consider the polynomial ψ(s, λ) = det(sIn−A)+λ[Kadj(sIn−A)b], as λ varies
over the nonnegative real numbers, it is easily seen, by resorting to the Routh criterion, for
instance, that ψ(s, λ) is Hurwitz for every λ ∈ [0, 2) ∪ (4,+∞]. This implies, in particular,
that ψ(s, λ) is Hurwitz for λ ∈ {0, 6, 8}. So, condition ii) holds. Finally, for λ = λ̂ = 4,
ψ(s, λ) = (s+ 7)(s2 + 7) which proves that A− λ̂bK is simply (but not asymptotically) stable.
So, for certain sets of initial conditions, there is convergence of the state trajectories of all
agents to a sinusoidal trajectory.

Example 3 Consider a system of N = 4 agents, with signed communication matrix

A =


0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0

 ,
14



which ensures that the corresponding graph is structurally balanced with V1 = {1, 2} and V2 =
{3, 4}. The associated Laplacian is

L =


3 −1 1 1
−1 3 −1 −1
1 1 3 −1
1 1 −1 3

 ,
and its eigenvalues are λ1(L) = 0, λ2(L) = λ3(L) = λ4(L) = 4. Moreover all row sums are
equal to 4. In this case it is clear that, independently of the agents’ state-space description
(A, b), no consensus can be reached except possibly for the one that leads all the agents to the
zero state, since condition i) is not satisfied.

At this point the following natural question arises: assuming that condition i) holds, namely
that λ̂ > 0 is a simple eigenvalue of L, under what conditions some feedback matrix K can be
found so that conditions ii) and iii) hold? It is worthwhile noticing that this problem is more
complicated than the analogous one we addressed for the bipartite consensus in Section III,
because in this case, to satisfy ii) and iii), a matrix K must be found such that ψ(s, λ) is an
Hurwitz polynomial except on a (possibly infinite) interval having λ̂ on one of its extremes.
We need to address the following two situations:

1. If λ̂ = λN (L), namely λ̂ is the largest of the eigenvalues of L, we have to find K such that
ψ(s, λ) is Hurwitz in [0, λ̂)3 and it has a simple zero at 0 (or a pair of simple imaginary
conjugate zeros) for λ = λ̂.

2. If, on the other hand, λ̂ is not the largest eigenvalue of L, we have to find K such that4

ψ(s, λ) is Hurwitz in [0, λ̂)∪ (λ̂+ ∆,+∞), and is not Hurwitz in [λ̂, λ̂+ ∆], where ∆ > 0
is chosen in such a way that no eigenvalues of L lie in [λ̂, λ̂+ ∆] except for λ̂.

It is clear that the latter case imposes strong constraints on the polynomial ψ(s, λ) that, in
general, cannot be achieved for an arbitrary choice of L, and hence for an arbitrary choice of
the eigenvalues λi ∈ σ(L), unless the degree of ψ(s, λ) is sufficiently large. More precisely, as
we know that the characteristic polynomial of the non-controllable part of the pair (A, b) is a
common divisor of det(sIn − A) and Kadj(sIn − A)b for every choice of K, and hence also a
divisor of ψ(s, λ) for every λ ∈ R+, in order to be able to meet the previous constraints in any
possible situation we have to assure that the part of the polynomial ψ(s, λ) we can actually
“shape” according to the needs has at least degree 3. The preceding discussion leads to the
following result.

Proposition 2 Consider the multi-agent system (6) with control algorithm (7). Suppose that
the communication graph G is connected and structurally balanced with respect to the partition
in two subsets V1 and V2 of equal cardinality. Suppose, also, that the row sums of L all equal
to λ̂ > 0, and λ̂ is a simple eigenvalue of L. If the following conditions hold true:

3Recall that 0 is always an eigenvalue of L. Note, also, that this is not the only possible solution, as we could
introduce more complicated conditions on the behavior of ψ(s, λ), as λ varies in R+, but it is the simplest.

4Also in this case the algebraic conditions imposed on ψ(s, λ) could be slightly different. For instance we
could replace the interval [λ̂, λ̂+ ∆] with [λ̂−∆, λ̂], but this would not affect the solvability conditions.
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a) A is Hurwitz;

b) the dimension of the controllable subspace of the pair (A, b) is at least 3;

then there exists K ∈ R1×N such that the N agents asymptotically reach consensus.

Proof. Choose any ∆ > 0 such that no eigenvalue of L lie in [λ̂, λ̂+ ∆], except for λ̂ itself.
By assumptions a) and b), and following the same process and notation as in the proof of
Theorem 2, we can factorize the Hurwitz polynomial det(sIn−A) as det(sIn−A) = d−(s)d(s),
where both d−(s) and d(s) are Hurwitz monic polynomials, the characteristic polynomial
det(sIn−r −A22) of the non-controllable part of (A, b) (see the decomposition (15)) is a factor
of d−(s), while deg d(s) = 3.

Since for every choice of a polynomial p(s) of degree n−1, which is a multiple of det(sIn−r−
A22), we can always find a matrix K such that Kadj(sIn −A)b = p(s), we want to show that
by choosing p(s) = d−(s)n(s) for a suitable second order Hurwitz polynomial n(s), we can
always ensure that

ψ(s, λ) = d−(s)[d(s) + λn(s)]

is Hurwitz for λ ∈ [0, λ̂) ∪ (λ̂ + ∆,+∞), and is not Hurwitz for λ ∈ [λ̂, λ̂ + ∆]. Clearly, this
amounts to showing that a second order Hurwitz polynomial n(s) can be found such that the
third order monic polynomial d(s) +λn(s) satisfies the previous constraints. Assume, w.l.o.g.,
d(s) = s3 + d2s

2 + d1s + d0, and note that, by the Routh criterion, the Hurwitz property of
this polynomial is equivalent to the following conditions on its coefficients:

d0, d1, d2 > 0 and d1d2 − d0 > 0. (17)

We want to prove that, by choosing

n(s) = s2 +
d1d2 − d0

λ̂(λ̂+ ∆)
s+

(
d1 +

(d2 + 2λ̂+ ∆)(d1d2 − d0)

λ̂(λ̂+ ∆)

)
,

we can ensure that d(s)+λn(s) is Hurwitz for λ ∈ [0, λ̂)∪ (λ̂+∆,+∞), and is not Hurwitz for
λ ∈ [λ̂, λ̂ + ∆]. Note that by the assumptions on λ̂,∆ and (17), the second order polynomial
n(s) is necessarily Hurwitz, as all its coefficients are positive. By applying the Routh criterion
to d(s) + λn(s) we obtain

3 1 d1 + λ
d1d2 − d0

λ̂(λ̂+ ∆)

2 d2 + λ d0 + λ

(
d1 +

(d2 + 2λ̂+ ∆)(d1d2 − d0)

λ̂(λ̂+ ∆)

)

1
d1d2 − d0

λ̂(λ̂+ ∆)
· (λ− λ̂)(λ− λ̂−∆)

d2 + λ
0

0 d0 + λ

(
d1 +

(d2 + 2λ̂+ ∆)(d1d2 − d0)

λ̂(λ̂+ ∆)

)
0
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So, it is easy to see that the coefficients in the first column of the table are all positive for
λ ∈ [0, λ̂) ∪ (λ̂+ ∆,+∞), and the coefficient in row “1” annihilates for λ = λ̂ and λ = λ̂+ ∆,
and is negative in (λ̂, λ̂+ ∆).

Remark 5 From the previous proof it is clear that if the degree of d(s) were lower than
3, a polynomial n(s) of degree smaller than deg d(s) such that d(s) + λn(s) is Hurwitz for
λ ∈ [0, λ̂) ∪ (λ̂ + ∆,+∞), and is not Hurwitz for λ ∈ [λ̂, λ̂ + ∆] would not necessarily exist.
It is also clear that when λ̂ is not the largest eigenvalue of L, ψ(s, λ̂) has necessarily two
imaginary conjugate zeros (and not a zero in the origin), and hence the consensus is achieved
on a periodic trajectory. On the other hand, when λ̂ = λn(L), the problem of finding n(s) of
degree smaller than deg d(s) such that d(s)+λn(s) is Hurwitz for λ ∈ [0, λ̂), and is not Hurwitz
for λ ∈ [λ̂,+∞), can be trivially solved even for deg d(s) = 1, and hence with a controllable
subspace of dimension 1. This result is quite immediate and hence we omit the proof, but to
better clarify it we provide the following example.

Example 4 Consider the system of N = 4 agents, each of them described by the 2-dimensional
(n = 2) state-space model

ẋi(t) = Axi(t) + bui(t) =
[
−1 1
0 −1

]
xi(t) +

[
1
0

]
ui(t), i ∈ [1, 4].

Note that A is Hurwitz and the pair (A, b) has 1-dimensional controllable subspace. The char-
acteristic polynomial of the non-controllable part is det(sI − A22) = (s+ 1). We assume that
the signed communication matrix A is

A =


0 1 −2 −2
1 0 −2 −2
−2 −2 0 1
−2 −2 1 0

 ,
which means that the corresponding graph is structurally balanced with two antagonistic groups
of agents of the same cardinality V1 = {1, 2} and V2 = {3, 4}. The associated Laplacian is

L =


5 −1 2 2
−1 5 2 2
2 2 5 −1
2 2 −1 5

 ,
and its eigenvalues are λ1(L) = 0, λ2(L) = 6, λ3(L) = 6, λ4(L) = 8. We note that L14 = 814,
and hence all row sums are the same and they are equal to λ̂ = 8 = λ4(L). In this case we
have to choose K in such a way that Kadj(sI2 − A)b = (s + 1)n0 makes the polynomial
ψ(s, λ) = (s+ 1)[s+ 1 + λn0] Hurwitz for λ < 8 and simply stable for λ = λ̂ = 8. To this end,
it is sufficient to choose K = n0 = −1/8 and the result is obtained.
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4.2 Not all row sums of L take the same value

We first observe that a necessary condition for the overall state x(t) to converge to some
bounded trajectory ztot(t) := [ ζ(t)> ζ(t)> . . . ζ(t)> ]> is that there exist a vector vtot :=
[ v> v> . . . v> ]> , v 6= 0, and some α ∈ C,Re(α) = 0, such that [(IN ⊗A)− (IN ⊗ b)(L
⊗K)] vtot = αvtot. This condition can be easily seen to be equivalent to the set of conditions:

(A−
∑N

j=1[L]1jbK)v = αv
(A−

∑N
j=1[L]2jbK)v = αv

...
(A−

∑N
j=1[L]NjbK)v = αv

(18)

If not all row sums of L take the same value, the above set of conditions is satisfied if and only
if Av = αv and Kv = 0. But this implies that (A− λbK)v = αv for every λ ∈ R, and hence
that ψ(s, λ) = det(sIn −A) + λKadj(sIn −A)b has a zero in α for every choice of λ.

Now we select a left eigenvector p := [ p1 p2 . . . pN ]> ∈ RN of L corresponding to any
eigenvalue λ̂ ∈ σ(L) and endowed with the property that

∑N
j=1 pj 6= 0. As noted earlier, such

an eigenvector always exists, and we can always assume
∑N

j=1 pj = 1. Introduce the matrix

S :=
[

p1 p2 . . . pN
−1N−1 IN−1

]
,

and consider the coordinate transformation
ζ(t)
δ2(t)

...
δN (t)

 :=
[

p1In p2In . . . pNIn
−1N−1 ⊗ In In(N−1)

]
x1(t)
x2(t)

...
xN (t)

 = (S ⊗ In)x(t).

It is a matter of simple computation to see that in this case

SLS−1 =


λ̂ 0∑N

j=1[L]2j −
∑N

j=1[L]1j
...∑N

j=1[L]Nj −
∑N

j=1[L]1j

L2


and the eigenvalues of L2 are the remaining N − 1 eigenvalues of L (note that, as before, λ̂
can also be an eigenvalue of L2, in case its multiplicity as eigenvalue of L is greater than 1).
By proceeding as in the previous two cases, we obtain the following description:

ζ̇(t) = (A− λ̂bK)ζ(t), δ̇2(t)
...

˙δN (t)

 = [(IN−1 ⊗A)− (IN−1 ⊗ b)(L2 ⊗K)]

 δ2(t)
...

δN (t)

+

 (
∑N

j=1[L]2j −
∑N

j=1[L]1j)bK
...

(
∑N

j=1[L]Nj −
∑N

j=1[L]1j)bK

ζ(t)
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For every choice of λ̂, the characteristic polynomial of (IN−1⊗A)− (IN−1⊗ b)(L2⊗K) is the
product of N − 1 polynomials ψi(s), each of them having (at least) one not asymptotically
stable zero in α. This prevents consensus among agents.

By putting together the results of these two subsections, we can formalize the following
result.

Theorem 3 Consider the multi-agent system (6) with control algorithm (7), and assume that
the communication graph G is connected and structurally balanced, with respect to the partition
in two subsets V1 and V2. The consensus problem is solvable only if the following conditions
are satisfied:

i) the two sets V1 and V2 have the same cardinality;

ii) all row sums of the Laplacian L are equal to λ̂ > 0, and λ̂ is a simple eigenvalue of L;

iii) A is Hurwitz.

If i)-iii) hold, then a necessary and sufficient condition for the consensus problem to be solvable
is that there exists K ∈ R1×N such that ψ(s, λ̂) is simply stable, while ψ(s, λi) is Hurwitz for
every λi ∈ σ(L), λi 6= λ̂. Such a matrix K always exists if and only if either one of the
following cases apply: (1) λ̂ is the largest eigenvalue of L and b 6= 0; or (2) λ̂ is not the largest
eigenvalue of L and the dimension of the controllable subspace of (A, b) is at least three.

5 Conclusions

In this paper we have investigated the bipartite consensus problem and the standard con-
sensus problem for a group of N homogeneous agents, each of them described by a generic
n-dimensional state-space model. Under the assumption that the communication graph de-
scribing the cooperative/antagonistic relationships among agents is structurally balanced, we
have seen that bipartite consensus can be achieved if and only if the state-space model de-
scribing each agent is stabilizable. In addition, the common agents’ dynamics is regulated by
the state matrix A involved in the agents’ description. In fact, the common agents’ dynamics
converge to zero, to a bounded or diverging common state trajectory depending on the spec-
trum of A (and on the agents’ initial conditions). These results turn out to be analogous to
the ones derived for standard consensus in case of cooperative interactions [31].

In the second part of the paper we have investigated the possibility of achieving consensus
to a common bounded trajectory even in case of antagonistic interactions, provided that there
is structural balance in the agents’ communications. In this case conditions allowing for a
nontrivial agreement between the two groups are very stringent, and require in particular that
the two teams have the same cardinality.

An interesting open problem is that of investigating what kind of nontrivial agreements
may be reached in case of antagonistic interactions, when the structural balance assumption
is not satisfied.
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