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Abstract

In this paper we investigate the consensus problem under arbitrary switching for homogeneous multi-agent systems with
switching communication topology, by assuming that each agent is described by a single-input stabilizable state-space model
and that the communication graph is connected at every time instant. Under these assumptions, we construct a common
quadratic positive definite Lyapunov function for the switched system describing the evolution of the disagreement vector,
thus showing that the agents always reach consensus. In addition, the proof leads to the explicit construction of a constant
state-feedback matrix that allows the multi-agent system to achieve consensus.
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1 Introduction

Research efforts on multi-agent systems, in general,
and consensus problems, in particular, have been quite
impressive in the last decade. Originated by some re-
markable contributions that still represent the reference
points of any paper on the subject [2,12,15,16,24], the
research flourished by addressing increasingly more com-
plex set-ups, and hence taking into account higher order
(possibly nonlinear) models for the agents, time-varying
communication topologies, antagonistic interactions,
communication delays, output feedback, packet-loss,
etc. (see, e.g.,[5,6,13,16,17,32]).
Even if a significant portion of the research in this area
focuses on first and second order systems [10,32], a
good number of contributions have investigated the case
when the agents’ dynamics is described by a generic
state-space model. While in the early contributions
the communication topology was supposed to be fixed
[29,30], more recent papers have explored the case of a
time-varying communication topology, possibly switch-
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ing among a finite set of configurations [21,25,26,28].

All the literature addressing the case of higher order
agents with switching communication topologies has
been able to relax the connectedness constraint on every
communication graph, at the price of imposing addi-
tional constraints not only on the switching signal but
also on the agents’ model. Specifically, in [21] and [31]
the consensus problem is solved and an explicit solution
is provided, by assuming that the agent’s state model
is stabilizable, the state matrix A is simply stable, the
switching signal describing how the communication
topology varies has a minimum dwell-time and ensures
that the time-varying communication graph G(t) is uni-
formly connected over [0,+∞). In [14] the state matrix
A satisfies some algebraic constraint, the input to state
matrix B is of full row rank (a sufficient condition for
controllability), switching signals have a dwell time, and
the communication topologies are repeatedly jointly
rooted. Under these conditions, the consensus problem
is solvable and a state feedback matrix is explicitly con-
structed. In [25], consensus has been investigated, under
the assumption that agents are controllable and switch-
ing signals have a dwell-time, both in case the com-
munication network over which agents communicated
is connected at every time and in case it is frequently
connected with a certain period T .
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In most of these contributions, dwell time and control-
lability have been fundamental requirements in order to
design a state feedback controller that ensures a suffi-
ciently rapid convergence. For instance, the proof of The-
orem 1 in [25] heavy relies on the possibility to freely
allocate the eigenvalues of the matrices A − λiBK, in-
volved in the disagreement dynamics, and on the exis-
tence of a dwell time. It is interesting to understand un-
der what conditions multi-agent consensus can be guar-
anteed corresponding to every switching signal and not
only corresponding to switching signals with dwell-time.

It is a standard result for switched systems that if all the
subsystems are asymptotically stable, then a dwell-time
can always be found such that the switched system is
asymptotically and hence exponentially stable. However,
asymptotic stability of the subsystems alone does not
ensure asymptotic stability of the switched system for
every switching signal.

In this paper we investigate the consensus problem un-
der arbitrary switching. This strong requirement on the
system performances necessarily imposes that the com-
munication network is connected at every time. On the
other hand, it turns out that the stabilizability of the
agents’ dynamics is necessary and sufficient for the prob-
lem solvability, just like it happens when we consider
a fixed connected communication network [29]. Even
more, we provide an explicit solution to the consensus
problem. The paper set-up is inspired by the one adopted
in [21], but we extend the agents’ model decomposition
adopted in the previously mentioned reference to the
case when the state matrix has also eigenvalues with pos-
itive real part. Subsequently, we construct a quadratic
positive definite function that ensures the asymptotic
stability of the switched system describing the dynam-
ics of the disagreement vector, and thus prove consen-
sus. It is worth remarking that, in general, it is hard or
even impossible to construct a common quadratic Lya-
punov function for the consensus error system of a multi-
agent system with switching topology. When so (see e.g.
[26,27,28]), multiple Lyapunov functions have been pro-
posed to stabilize or verify the stability.

It is worth comparing our results with those derived
in [7], where a consensus protocol for homogeneous
multi-agent systems with arbitrarily switching topolo-
gies is proposed, by assuming that the communication
graph is connected (and undirected) at every time in-
stant. The set-up adopted in [7] is rather different from
the one considered in this paper, since the switching
takes place among all possible undirected, connected
and unweighted communication graphs, but the weights
attributed to the graph edges are regarded as control
variables that continuously update. So, the switching
is not among a finite number of undirected, connected
and weighted communication graphs, but weights can
be adaptively modified. The advantage of this adaptive
consensus protocol is that it can be implemented in a

completely distributed way by the agents. The con is
that the controller significantly increases in size. Indeed,
if n is the size of the agents’ state and N is the number
of the agents, the overall controlled system in [7] has
size 2nN + N(N − 1)/2, since the adaptive controller
updates both a “protocol state” of size n for each agent,
and the distinct N(N − 1)/2 weights of the edges of the
undirected graph at every time instant. In this paper,
we will use a static controller and the overall controlled
system will have size nN .
The paper is organized as follows: in section 2 we present
some background material on matrices, graphs, and
Laplacians. Section 3 presents the problem set-up. In
section 4 some preliminary analysis is carried on that
allows to simplify the set-up and to reduce the consen-
sus problem to a stabilization problem for a lower-order
switched system with autonomous subsystems. A con-
structive proof of the main result, stating that if the
communication network is connected at every time and
the agents’ model is stabilizable, then consensus can al-
ways be achieved, is given in section 5, together with a
simple algorithm to explicitly construct a state feedback
matrix ensuring consensus.

2 Background material

If p is a positive integer, we denote by [1, p] the finite
set {1, 2, . . . , p}. ei is the ith canonical vector in RN ,
where N is always clear from the context. 1N and 0N
are the N -dimensional vectors with all entries equal to
1 and to 0, respectively. Given A ∈ Rn×n, we denote by
σ(A) the spectrum of A and by λmax(A) ∈ R its spectral
abscissa, defined as λmax(A) := max{<(λ), λ ∈ σ(A)}.
A is Hurwitz if λmax(A) < 0. The Kronecker (or tensor)
product of two matrices A ∈ Rm×n and B ∈ Rp×q is

C = [A⊗B] :=


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB

 ∈ Rpm×qn.

An n × n matrix A, n > 1, is reducible if there exists a
permutation matrix Π such that

Π>AΠ =

[
A11 A12

0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices,
otherwise it is irreducible.
R+ is the semiring of nonnegative real numbers. A
matrix A with entries in R+ is a nonnegative matrix
(A ≥ 0); if A ≥ 0 and at least one entry is positive, A is
a positive matrix (A > 0).
A Metzler matrix is a real square matrix, whose off-
diagonal entries are nonnegative. For a Metzler matrix,
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the spectral abscissa is always an eigenvalue (namely
the eigenvalue with maximal real part is always real).
Given two Metzler matrices A and Ā ∈ Rn×n, the fol-
lowing monotonicity property holds [19]: if A ≤ Ā, then
λmax(A) ≤ λmax(Ā); if in addition Ā is irreducible, then
A < Ā implies λmax(A) < λmax(Ā).
An undirected, weighted graph is a triple [11] G =
(V, E ,A), where V = {1, . . . , N} is the set of vertices,

E ⊆ V × V is the set of arcs, and A = A> ∈ RN×N+ is
the (positive and symmetric) adjacency matrix of the
weighted graph G. In this paper we assume that G has no
self-loops, namely each diagonal entry [A]ii, i ∈ [1, N ],
is zero. A sequence j1 ↔ j2 ↔ j3 ↔ · · · ↔ jk ↔ jk+1 is
a path of length k connecting j1 and jk+1 provided that
(j1, j2), (j2, j3) . . . , (jk, jk+1) ∈ E . A graph is said to be
connected if for every pair of distinct vertices i, j ∈ V
there is a path connecting i and j. This is equivalent
to the fact that A is an irreducible matrix. We define
the Laplacian matrix L ∈ RN×N of the graph G as
L := C − A, where C ∈ RN×N+ is a diagonal matrix
whose ith diagonal entry is the weighted degree of ver-

tex i, i.e. [C]ii :=
∑N
l=1[A]il. Accordingly, the Laplacian

matrix L = L> takes the following form:

L=


`11 `12 . . . `1N

`12 `22 . . . `2N
...

...
. . .

...

`1N `2N . . . `NN



=


∑N
j=1[A]1j −[A]12 . . . −[A]1N

−[A]12
∑N
j=1[A]2j . . . −[A]2N

...
...

. . .
...

−[A]1N −[A]2N . . .
∑N
j=1[A]Nj

 ∈ RN×N .

As all rows of L sum up to 0, 1N is always a right eigen-
vector ofL corresponding to the eigenvalue 0. The follow-
ing lemma states a useful and well-known result about
Laplacian matrices of undirected graphs.

Lemma 1 [3,16,29] If the undirected, weighted graph G
is connected, then L is a symmetric positive semidefinite
matrix, and 0 is a simple eigenvalue of L. As a conse-
quence, the eigenvalues of L, say λi = λi(L), i ∈ [1, N ],
are nonnegative and real, and they can always be sorted
in non-decreasing order, namely as

0 = λ1 < λ2 ≤ · · · ≤ λN . (1)

In the following, only undirected, weighted and con-
nected graphs will be considered. Consequently, both
the adjacency matrix and the Laplacian matrix will be
irreducible matrices.

3 Problem statement

Consider N agents, each of them described by the same
n-dimensional, continuous-time, single-input system:

ẋi(t) = Axi(t) +Bui(t), t ∈ R+, (2)

where xi ∈ Rn and ui ∈ R are the state vector and
the input of the ith agent, respectively, A ∈ Rn×n is a
non-Hurwitz matrix, and B ∈ Rn. We assume that the
pair (A,B) is stabilizable. Consider a set of p communi-
cation topologies describing the interactions among the
agents, each configuration being described by an undi-
rected, weighted and connected communication graph
Gk = (V, Ek,Ak), k ∈ [1, p], with V = {1, . . . , N}, Ek ⊆
V × V, Ak = A>k ∈ RN×N+ irreducible and such that
(s.t.) [Ak]ii = 0 for every i ∈ [1, N ]. Assume that mu-
tual interactions among agents vary with time, switch-
ing among the p possible configurations. Specifically, let
σ : R+ → [1, p] denote a right continuous switching func-
tion describing at every time instant which of the p com-
munication topologies is active. No further assumption
is introduced on σ, in particular, we do not impose that
each switching signal has some dwell-time τ = τ(σ) > 0
[8]. Assume that each ith agent adopts the following De-
Groot type control law [21,29]:

ui(t) = K

N∑
j=1

[Aσ(t)]ij [xj(t)− xi(t)].

where K ∈ R1×n is a feedback matrix to be designed.
If we denote by x(t) ∈ RnN and u(t) ∈ RN the state
vector and the input vector, respectively, of the multi-
agent system, i.e.

x(t) :=
[
x>1 (t) . . . x>N (t)

]>
u(t) :=

[
u1(t) . . . uN (t)

]>
the dynamics of the overall multi-agent system with
switching communication topology is described by:

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗B)u(t)

u(t) = −(Lσ(t) ⊗K)x(t),

or equivalently by:

ẋ(t) = [(IN ⊗A)− (IN ⊗B)(Lσ(t) ⊗K)]x(t)

= [(IN ⊗A)− (Lσ(t) ⊗BK)]x(t), (3)

where we made use of the elementary properties of
the Kronecker product. The previous system (3) is a
continuous-time, switched system, switching among p
autonomous and linear subsystems:

ẋ(t) = [(IN ⊗A)− (Lk ⊗BK)]x(t), k ∈ [1, p]. (4)
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The consensus problem under switching topology can be
stated as follows: determine a feedback matrix K ∈
R1×n such that, for every initial condition and every
switching function 1 , the overall system (3) asymptot-
ically reaches (nontrivial) consensus, by this meaning
that limt→+∞ xi(t) − xj(t) = 0 for every i, j ∈ [1, N ],
without imposing the convergence to zero of the agents’
evolutions.

4 Preliminary analysis

In this section we make some considerations both on the
agent’s state space representation and on the dynamics
of the overall multi-agent system that allow us to re-
duce the dimensionality of the problem and to restate it
in a more convenient form. Consider the ith agent’s de-
scription (2) and assume that the pair (A,B) takes the
following form

A =

[
Au 0

0 As

]
B =

[
Bu

Bs

]
, (5)

where Au ∈ Rd×d is a matrix with all its eigenvalues
in the closed right half-plane {s ∈ C : <(s) ≥ 0},
As ∈ R(n−d)×(n−d) is a Hurwitz matrix, Bu ∈ Rd and
Bs ∈ R(n−d). Notice that this assumption entails no loss
of generality since we can always reduce ourselves to this
situation by resorting to a suitable coordinate transfor-
mation. Also, this set-up extends the one proposed in
[21], where Au was supposed to be an anti-symmetric
matrix, namely a matrix with all its eigenvalues on the
imaginary axis. Partition the ith agent’s state vector
xi(t) in a way consistent with A and B, namely as

xi(t) =

[
xui (t)

xsi (t)

]
,

where xui (t) ∈ Rd and xsi (t) ∈ R(n−d). Define xuC(t) :=
1
N

∑N
i=1 x

u
i (t), xsC(t) := 1

N

∑N
i=1 x

s
i (t), δ

u
i (t) := xui (t)−

xu1 (t), δsi (t) := xsi (t)− xs1(t), i = 2, . . . , N . Note that

xC(t) :=

[
xuC(t)

xsC(t)

]
∈ Rn and δ(t) :=



δu2 (t)
...

δuN (t)

δs2(t)
...

δsN (t)


∈ Rn(N−1)

1 Note that if we want to ensure that the consensus problem
is solvable for every switching signal, then it must be solvable
corresponding to every constant switching signal, and this
motivates the assumption that each graph Gk is connected.

are the center of the agents [21] and the disagreement
vector from the 1st agent at time t, respectively, and
asymptotic consensus of the multi-agent system (3) is
equivalent to the convergence to zero of δ(t).
Partition the feedback matrixK in a way consistent with
A and B, namely as K = [Ku Ks], with Ku ∈ R1×d and
Ks ∈ R1×(n−d). It is a matter of simple computation
to see that if we choose K of the form K = [Ku 0],
the overall dynamics is described by equation (6), where

L̃σ(t) is expressed in terms of Lσ(t) as

L̃σ(t) =
[
−1N−1 IN−1

]
Lσ(t)

[
0>N−1

IN−1

]
∈ R(N−1)×(N−1).

(7)
By arguments very similar to the ones adopted by Su and
Huang in Lemma 2 of [21], Proposition 1 immediately
follows.

Proposition 1 The feedback matrix K = [Ku 0], with
Ku ∈ R1×d, solves the consensus problem under switch-
ing topologies if and only ifKu makes the switched system

δ̇u(t) =
[
(IN−1 ⊗Au)−

(
L̃σ(t) ⊗BuKu

)]
δu(t), (8)

with δu(t)> := [δu2 (t)> . . . δuN (t)>] ∈ Rd(N−1), asymp-
totically (and hence exponentially) stable under arbitrary
switching.

Before providing a constructive proof of the solvability
of the consensus problem under switching topology, we
state a technical result that will be useful in the following
section.

Lemma 2 Consider an undirected, weighted and con-
nected graph G = (V, E ,A), with V = {1, . . . , N}, E ⊆
V × V, A = A> ∈ RN×N+ . Partition the Laplacian L as

L =

[
`11 b

>

b C

]
, (9)

where b ∈ RN−1 and C = C> ∈ R(N−1)×(N−1). Define
L̃ as in (7), namely as

L̃ :=
[
−1N−1 IN−1

]
L

[
0>N−1

IN−1

]
∈ R(N−1)×(N−1).

Then, the following properties hold:

i) C is a positive definite matrix, i.e., C = C> � 0;

ii) all eigenvalues of L̃ are real and positive. Specifically,

σ(L̃) = σ(L) \ {0};

4





ẋuC(t)

δ̇u2 (t)
...

δ̇uN (t)

ẋsC(t)

δ̇s2(t)
...

δ̇sN (t)



=



Au 0 0 0

0 (IN−1 ⊗Au)− (L̃σ(t) ⊗BuKu) 0 0

0 0 As 0

0 −L̃σ(t) ⊗BsKu 0 IN−1 ⊗As





xuC(t)

δu2 (t)
...

δuN (t)

xsC(t)

δs2(t)
...

δsN (t)



, (6)

——————————————————————————————————————————————————

iii) L̃ = P̃C, with P̃ := IN−1+1N−11
>
N−1 ∈ R(N−1)×(N−1).

Proof. i) The connectedness assumption on G implies
that L is an irreducible matrix and that −b is a positive
vector. Hence, −L is an irreducible Metzler matrix and
the following inequality holds

−L =

[
−`11 −b>

−b −C

]
>

[
−`11 0

0 −C

]
=:M.

The irreducibility of −L and the monotonicity of
the spectral abscissa imply that 0 = λmax(−L) >
λmax(M) ≥ λmax(−C). Hence, −C = −C> is a nega-
tive definite matrix, namely C = C> is positive definite.

ii) Denote by S the N ×N nonsingular matrix

S :=

[
1 0>N−1

−1N−1 IN−1

]
,

and notice that its inverse takes the following form

S−1 =

[
1 0>N−1

1N−1 IN−1

]
.

From L1N = 0 it immediately follows that

SLS−1 =

[
0 b>

0N−1 L̃

]
.

This implies that σ(L) = σ(L̃)∪{0}. The connectedness

assumption on G implies that all the eigenvalues in σ(L̃)
are real and positive.

iii) Since L is partitioned as in (9), then L̃ can be rewrit-

ten as L̃ = −1N−1b> + C. On the other hand, recall-
ing that L1N = 0, we have b + C1N−1 = 0, namely

b = −C1N−1 = −C>1N−1. This in turn implies that L̃
can be expressed as L̃ = (IN−1 + 1N−11

>
N−1)C = P̃C,

where P̃ = IN−1 + 1N−11
>
N−1.

5 A constructive proof of the solvability of the
consensus problem under switching topology

In the previous section, by resorting to the technique first
proposed in [21] for marginally stable agents and switch-
ing signals with dwell time, we have reduced the prob-
lem of finding a solution K = [Ku Ks] for the consen-
sus problem, to the problem of determining Ku ∈ R1×d

that makes the switched system (8) asymptotically sta-
ble under arbitrary switching 2 . This represents a stan-
dard stabilization problem for switched systems with
linear and autonomous subsystems [8,22,23]. Clearly,
a necessary condition for the switched system (8) to
be asymptotically stable under arbitrary switching is
the asymptotic stability of all the subsystem matrices,
namely the fact that for every k ∈ [1, p] the matrix

IN−1 ⊗ Au − L̃k ⊗ BuKu is Hurwitz. A classical result
derived in the context of consensus problems [2,29,30]
states that any such matrix is Hurwitz if and only if
Au−λi(L̃k)BuKu ∈ Rd×d is Hurwitz for every i ∈ [2, N ],

where λi(L̃k) denotes the ith eigenvalue of the matrix

L̃k. This requires the pair (Au, Bu) to be stabilizable,
and since Au has all eigenvalues in the closed right half-
plane, this amounts to saying that the pair (Au, Bu) in
(5) must be reachable. The stabilizability assumption on
the pair (A,B), we introduced in the initial set-up, is in
fact equivalent to the reachability of the pair (Au, Bu).

On the other hand, the Hurwitz property of all the
subsystem matrices is only a necessary condition for a
switched system to be asymptotically stable under ar-
bitrary switching [8]. Hence, in order to prove that the
switched system (8) is asymptotically stable under ar-
bitrary switching (and hence a solution to the consen-
sus problem under switching topology exists), we will
resort to a standard tool for analysing the stability of

2 Confining our attention to state-feedback matrices K =
[Ku Ks] with Ks = 0 may seem a restrictive way to solve the
problem. As it will be clear later, the conditions on the pair
(A,B) and on the graphs Gσ(t) that ensure the existence of
a solution with that structure are the same ones that ensure
the existence of a generic solution K.
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a switched system: the existence of common quadratic
Lyapunov functions.

A quadratic positive definite function V (x) = x>Px,
where P = P> � 0, P ∈ R(N−1)d×(N−1)d, is a positive
definite matrix, is said to be a common quadratic Lya-
punov function for the p subsystems

δ̇u(t) = Mk δu(t), k ∈ [1, p], (10)

whereMk := IN−1⊗Au−L̃k⊗BuKu ∈ R(N−1)d×(N−1)d,

if V̇k(x) := x>[M>k P + PMk]x < 0 for every k ∈ [1, p]
and every x 6= 0. It is well known [8,9,18] that the exis-
tence of a common quadratic Lyapunov function guar-
antees the asymptotic stability of a switched system.

We are now in a position to provide a constructive proof
of the solvability of the consensus problem under arbi-
trarily switching topology.

Proposition 2 Consider the switched system (8) and
assume that the pair (Au, Bu) is reachable. Assume with-
out loss of generality (w.l.o.g.) that (Au, Bu) is in con-
trollable canonical form, i.e.,

Au =


0 1 . . . 0

. . .
. . .

...

0 1

−β0 . . . −βd−2 −βd−1

 , Bu =


0
...

0

1

 = ed.

Let ψ(s) := sd−1 + αd−2s
d−2 + · · · + α1s + α0 be an

arbitrary Hurwitz polynomial of degree d−1. Assume that
the feedback matrix Ku ∈ R1×d takes the following form

Ku = kdK̄u, with K̄u =
[
α0 . . . αd−2 1

]
, (11)

with kd > 0. Then, there always exists kd > 0 s.t. the
switched system (8) is asymptotically stable under arbi-
trary switching.

Proof. We want to prove that kd > 0 sufficiently large
always exists s.t. the subsystem matrices Mk of the
switched system (8) admit a common quadratic Lya-
punov function. To this aim, we introduce a coordinate
transformation on the matrices Mk. Define the nonsin-
gular matrix T ∈ Rd×d as

T =

 V1
K̄u

 =

 Id−1 0d−1

α0 . . . αd−2 1

 ,
where V1 ∈ R(d−1)×d. It is easy to see that its inverse

takes the following form

T−1 =
[
V2 v

]
=

[
Id−1 0d−1

−α0 . . . −αd−2 1

]
,

where v ∈ Rd and V2 ∈ Rd×(d−1). Now, define the d(N−
1)× d(N − 1) nonsingular matrices

T̃ =



IN−1 ⊗ V1

IN−1 ⊗ K̄u


=



V1
. . .

V1

K̄u

. . .

K̄u



T̃−1 =
[
IN−1 ⊗ V2 IN−1 ⊗ v

]
=


V2 v

. . .
. . .

V2 v

 .
It is a matter of simple computation to see that for every
k ∈ [1, p] we have:

Nk := T̃ (L̃k ⊗BuKu)T̃−1 ∈ Rd(N−1)×d(N−1)

=

[
L̃k ⊗ (V1BuKuV2) L̃k ⊗ (V1BuKuv)

L̃k ⊗ (K̄uBuKuV2) L̃k ⊗ (K̄uBuKuv)

]

=

[
0(d−1)(N−1)×(d−1)(N−1) 0

0 kdL̃k

]
(12)

where we exploited the fact that V1Bu = V1ed = 0,
KuV2 = kdK̄uV2 = 0, and K̄uBu = 1 and Kuv = kd. On
the other hand, it is easy to verify that A := T̃ (IN−1 ⊗
Au)T̃−1 ∈ Rd(N−1)×d(N−1) takes the form

A =

[
IN−1 ⊗ (V1AuV2) IN−1 ⊗ (V1Auv)

IN−1 ⊗ (K̄uAuV2) IN−1 ⊗ (K̄uAuv)

]

=

[
IN−1 ⊗ Ãu IN−1 ⊗ ed−1

IN−1 ⊗ (K̄uAuV2) (K̄uAuv)IN−1

]
, (13)

where we set Ãu := V1AuV2 and we used the fact that
K̄uAuv is a scalar. Direct calculation leads to

Ãu =


0 1 . . . 0

. . .
. . .

...

0 1

−α0 . . . −αd−3 −αd−2

∈ R(d−1)×(d−1).
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With respect to the new coordinates d(t) := T̃δu(t), the
switched system (8) is now described by the equation

ḋ(t) = (A− Nσ(t))d(t), (14)

and clearly system (8) is asymptotically stable under
arbitrary switching if and only if the switched system
(14) is. Since Ãu is a companion matrix and ψ(s) =

det(sId−1− Ãu) is by hypothesis a Hurwitz polynomial,

Ãu is Hurwitz. This ensures that there exists a (d−1)×
(d− 1) positive definite matrix P1 = P>1 � 0 s.t.

Ã>u P1 + P1Ãu = −Id−1. (15)

Now, observe that P̃ := IN−1 +1N−11
>
N−1 (see Lemma

2) is a symmetric and positive definite matrix, and so is

its inverse P̃−1 = IN−1 − 1
N 1N−11

>
N−1. So, introduce

the positive definite matrix

P :=

[
IN−1 ⊗ P1 0

0 P̃−1

]
∈ Rd(N−1)×d(N−1), (16)

and consider the quadratic Lyapunov function V (d) =
d>Pd. For every kth subsystem of the switched system
(14), the derivative V̇k(d) = d>[(A − Nk)>P + P (A −
Nk)]d, k ∈ [1, p], can be written as V̇k(d) = d>Ψkd,
with

Ψk :=

[
IN−1 ⊗ (−Id−1) Ω

Ω> W − kd(Ck + C>k )

]
,

where we made use of (13), of Lemma 2, statement iii)

(i.e., L̃k = P̃Ck for every k ∈ [1, p]), and we assumed

Ω := IN−1 ⊗ (P1ed−1) + P̃−1 ⊗ (K̄uAuV2)>,

W := 2(K̄uAuv)P̃−1.

V̇k(d) is negative definite for every k ∈ [1, p], namely
the symmetric matrix Ψk is negative definite for every
k ∈ [1, p], if and only if [1]

W + Ω>Ω− kd(Ck + C>k ) ≺ 0, ∀ k ∈ [1, p].

From Lemma 2, statement i), for every k ∈ [1, p] we have
Ck = C>k � 0, and hence k̄d > 0 can be found such that
for every kd > k̄d condition W +Ω>Ω−2kdCk ≺ 0 holds
for k ∈ [1, p]. Specifically, this is true if we assume

k̄d :=
maxz:z>z=1 z

>(W + Ω>Ω)z

mink∈[1,p] minz:z>z=1 2z>Ckz

=
λmax(W + Ω>Ω)

2 mink∈[1,p] λmin(Ck)
,

where λmax(S) and λmin(S) denote the largest and small-
est (real) eigenvalues of the symmetric matrix S, and we
made use of standard results about quadratic forms [4].
This means that kd > 0 sufficiently large can always be
found s.t. V (d) = d>Pd, with P = P> � 0 defined as
in (16), is a common quadratic Lyapunov function for
the p subsystems

ḋ(t) = (A− Nk)d(t), k ∈ [1, p],

of the switched system (14). This in turn ensures [9,18]
that system (14), and hence system (8), are asymptoti-
cally stable under arbitrary switching.

From Proposition 1 and Proposition 2, the following
Theorem directly follows.

Theorem 1 Assume that the pair (A,B) is stabiliz-
able and described as in (5). Assume also, w.l.o.g.,
that (Au, Bu) is in controllable canonical form. Let
ψ(s) := sd−1 +αd−2s

d−2 + · · ·+α1s+α0 be an arbitrary
Hurwitz polynomial of degree d − 1 and let Ku ∈ R1×d

be described as in (11). Then there exists kd > 0 s.t.
the switched system (8) is asymptotically stable under
arbitrary switching, and hence K = [Ku 0] solves the
consensus problem under switching topology.

To conclude, we propose an extremely simple algorithm
that summarizes how to determine a feedback matrix
K ∈ R1×n that solves the consensus problem under
switching topology, by assuming that (A,B) is an arbi-
trary stabilizable pair.

Algorithm:

A0. Select an arbitrary Hurwitz monic polynomial of de-
gree d− 1: ψ(s) := sd−1 +αd−2s

d−2 + · · ·+α1s+α0.
A1. Determine Q1 ∈ Rn×n s.t. the pair (Q1AQ

−1
1 , Q1B)

takes the form (5), with As Hurwitz and Au having
all eigenvalues in the closed right half-plane.

A2. Determine Q2 ∈ Rd×d s.t. the pair (Q2AuQ
−1
2 , Q2B)

is in controllable canonical form.
A3. Compute the matrices Ãu,A and L̃k, k ∈ [1, p].

Choose P1 = P>1 � 0 such that (15) holds.
A4. Define P as in (16) and choose kd > 0 so that (A −

Nk)>P + P (A − Nk) ≺ 0 for every k ∈ [1, p]. By
referring to the notation adopted within the previous

7



proof, this is surely the case if 3

kd >
λmax(W + Ω>Ω)

2 mink∈[1,p] λmin(Ck)
.

Then K := kd

[
αQ2 0

]
Q1, where

α :=
[
α0 . . . αd−2 1

]
,

solves the consensus problem with switching topology.
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