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Abstract: In this paper we investigate the input/output decoupling problem for Boolean Control Networks. To keep up with the spirit
of the original definition for linear state-space models, that pertains the relationship between inputs and outputs independently of
the state variables, we first provide two properties that formalize in different ways the idea that each single component of the output
depends on the values of the corresponding input, but not on the values of the other inputs. These properties are introduced by
referring to the classical representation of a Boolean Control Network in terms of Boolean input, state and output vectors, whose
mutual relationships are expressed through the logical operators AND, OR, etc.. In this set-up we prove that there is some natural
ordering among these properties, namely that one of them implies the other. In the second part of the paper we show that by
resorting to the algebraic representation of Boolean Control Networks a complete characterization of these properties is possible.
The algebraic characterizations obtained through this approach provide easy to check algorithms to evaluate whether a Boolean
Control Network is input/output decoupled or not. Finally, graph-theoretic characterizations of the two input/output decoupling
properties are provided.

1 Introduction

Originally conceived by mathematicians and engineers to model arti-
ficial systems whose describing variables take only two values (“on"
or “off", “high" or “low"), logic networks are nowadays largely
employed to describe gene regulatory networks, as a bibliographic
search immediately reveals. The big success of Boolean Networks
(BNs) first, and of Probabilistic Boolean Networks (PBNs) and
Boolean Control Networks (BCNs) later, as tools to describe and
simulate the behavior of genetic regulatory networks must be cred-
ited to Stuart Kauffman [1]. Kauffman was the first to realize that
regulatory genes inside the cells act just like switches, that may take
either an “on" or an “off" status (1 and 0, respectively). Accord-
ingly, he proposed PBNs as models for genetic networks (see also
[2]). Inspired by a few milestones papers, there was a flourishing of
literature adopting BNs, PBNs and BCNs to model gene regulatory
networks and this represents nowadays a very active research area
[3–10].

In the last decade, stimulated also by the successful use of logic
networks in biological and medical modeling, Daizhan Cheng and
co-authors developed an algebraic approach to BNs and BCNs [11–
14] that is based on the possibility of representing each state of a
finite state system as a canonical vector, and consequently logic rela-
tionships by means of logic matrices. Indeed, a Boolean network
with n state variables exhibits 2n possible configurations, and if any
such configuration is represented by means of a canonical vector of
size 2n, all the logic maps that regulate the state-updating can be
equivalently described by means of 2n × 2n logic matrices. As a
result, each Boolean network is converted into a discrete-time linear
system. Similarly, a Boolean control network can be represented as
a discrete-time bilinear system or, equivalently, as a family of BNs,
each of them associated with a specific value of the input variables,
and in that sense as a Boolean switched system.

In this set-up, logic-based problems are converted into algebraic
problems and hence solved by resorting to mathematical tools sim-
ilar to those available for linear state-space models. This has made
it possible to formalize and solve classical system theoretic prob-
lems, like stability and stabilizability, controllability, observability,
fault detection and optimal control [15–22].

While the disturbance decoupling problem for BCNs has been
successfully investigated in a number of contributions [23–26], to the
best of our knowledge the input/output decoupling problem is still
unexplored, even if some related problem regarding input decompo-
sition has been addressed in [27]. An explanation may be searched
for in the fact that, even if the broad idea of being able to con-
trol a single output with a single control input, with no interference
from the other inputs, is quite immediate, the details of the problem
formalization in the context of Boolean Control Networks are not
obvious, and different formulations are possible.

To keep up with the spirit of the original definition, that pertains
only the transfer matrix and hence the relation between inputs and
outputs, independently of the state variables, in this paper we pro-
pose two definitions that formalize in different ways the idea that
each single component of the output depends on the value of the
corresponding input, but not on the values of the other inputs. The
practical meaning of input/output decoupling in terms of biological
systems and in particular of gene regulatory networks is quite imme-
diate and rather intriguing: in an input/output decoupled network
each of the output variables whose physical status we are measur-
ing (genes that are active or not, proteins that are produced or not,
the open/closed state of an ion channel, the basal/high activity of
an enzyme) depends only on the status of a specific input variable
(a protein that is activated or not, a high/low stress level, a ther-
apy/medicine that is applied or not, a light signal that is on or off...).
It is clear that, in all these contexts, the possibility of putting in place
strategies that are able to selectively target only one of the output
variables, by using a single control input, is highly desirable.

These definitions are introduced by referring to the classical rep-
resentation of a Boolean Control Network in terms of Boolean
input, state and output vectors, and of logical relationship expressed
through the logical AND, OR, etc. operators. In this set-up it is
possible to prove that there is some ordering between the two prop-
erties, namely that one of them implies the other. However, it is very
difficult to provide characterizations of BCNs that are input/output
decoupled in some sense. In the second part of the paper we show
that, by resorting to the algebraic representation of Boolean Control
Networks, necessary and sufficient conditions for these properties
to hold can be derived. The obtained algebraic characterizations pro-
vide easy to check algorithms to evaluate whether a Boolean Control
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Network is decoupled or not. Finally, the derived conditions are
expressed in terms of certain digraphs associated with the BCN.

Notation. Z+ denotes the set of nonnegative integers. Given two
integers k, n ∈ Z+, with k ≤ n, by the symbol [k, n] we denote the
set of integers {k, k + 1, . . . , n}. We consider Boolean vectors and
matrices, whose entries take values in B := {0, 1}, with the usual
(entrywise) Boolean operations: AND (∧), OR (∨), NOT (·) and
their compositions.
δik denotes the ith canonical vector of size k.Lk is the set of all k-

dimensional canonical vectors, andLk×n ⊂ Bk×n the set of all k ×
n logical matrices, whose n columns are canonical vectors of size k.
Any matrixL ∈ Lk×n can be represented as a row whose entries are
canonical vectors in Lk, namely as L = [δi1k δi2k . . . δink ], for
suitable indices i1, i2, . . . , in ∈ [1, k]. The (`, j)th entry of a matrix
L is denoted by [L]`,j , while the `th entry of a vector v is either v`
or [v]`. The latter notation will always be used when the expression
of the vector is composite or complex. The pth column of a matrix
L is colp(L).

Given a matrix M ∈ BN×N , we associate with it a directed
graph (digraph)D(M), with vertices 1, . . . , N . There is an arc (j, `)
from j to ` if and only if the (`, j)th entry of M is unitary.

There is a bijective correspondence between Boolean variables
X ∈ B and vectors x ∈ L2, defined by the relationship

x =

[
X
X̄

]
.

We introduce the (left) semi-tensor product n between matrices (in
particular, vectors) as follows [12, 22, 28]: given L1 ∈ Rr1×c1 and
L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2 ), we
set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-tensor
product represents an extension of the standard matrix product, by
this meaning that if c1 = r2, then L1 n L2 = L1L2. Note that if
x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 . For the various
properties of the semi-tensor product we refer to [12].

By resorting to the semi-tensor product, we can extend the corre-
spondence between B and L2 to a bijective correspondence between
Bn and L2n . This is possible in the following way: given X =[
X1 X2 . . . Xn

]> ∈ Bn, set

x :=

[
X1

X̄1

]
n
[
X2

X̄2

]
n · · ·n

[
Xn
X̄n

]
=


X1X2 . . . Xn−1Xn
X1X2 . . . Xn−1X̄n
X1X2 . . . X̄n−1Xn

...
X̄1X̄2 . . . X̄n−1X̄n

 .

We denote by Cn the map from Bn toL2n that associates with every
vector X ∈ Bn its canonical representation x, and by

Bn : L2n → Bn : x→ X, (1)

Note that in [12], at page 69, an algorithm is given to determine
the Boolean equivalent Bn(x) of a given canonical vector x. On the
other hand, if we are interested only in determining the ith entry Xi
of X = Bn(x), we can proceed as follows. Set

Fi := 1T2i−1 ⊗ I2 ⊗ 1T2n−i , 1 ≤ i ≤ n,

then

Fix =

[
Xi
X̄i

]
, 1 ≤ i ≤ n,

and hence
[Bn(x)]i = (δ1

2)>Fix.

2 Input/output decoupling properties of a
Boolean Control Network

A Boolean Control Network (BCN) is described by the following
equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(2)

where X(t), U(t) and Y (t) denote the n-dimensional state vari-
able, the m-dimensional input and the p-dimensional output at time
t, taking values in Bn,Bm and Bp, respectively. f and h are logic
functions, i.e. f : Bn × Bm → Bn and h : Bn → Bp. In the fol-
lowing we will steadily assume that p = m, namely that the BCN
has a number of outputs equal to the number of inputs, and refer to
such a common number by m.

In the classical context of linear state space models, a system with
the same number of inputs and outputs is input/output decoupled if
its (proper, rational and square) transfer matrix is diagonal. When
moving to BCNs, the adaption of this concept is not obvious. Indeed,
Boolean Control Networks are not linear and it is not possible to split
the output trajectories into forced and unforced components. As a
result, no transfer matrix can be defined and various definitions of
input/output decoupling may be proposed. In this paper, keeping up
with the original spirit of the definition for linear state-space mod-
els, we propose, compare and investigate two forms of input/output
decoupling for BCNs that are characterized by a common feature:
to refer uniquely to the inputs and the outputs of the BCN, with-
out imposing any constraint on the partition of the state variables.
Both definitions provide different formalizations of the idea that
each single component of the output depends on the value of the
corresponding input, but not on the values of the other inputs.

The first definition we introduce is the following one. We believe
it is the one that best captures the spirit of the classical property and
hence we will adopt it as definition of input/output decoupling for a
BCN.

Definition 1. A BCN (2) with inputs and outputs having the same
cardinality,m, is said to be input/output decoupled if for every index
i ∈ [1,m] and every initial state X(0) ∈ Bn, if U(t) and Û(t), t ∈
Z+, are two input sequences characterized by the fact that their ith
entries coincide at every time instant, i.e.,

Ui(t) = Ûi(t), ∀ t ∈ Z+, (3)

then the output sequences Y (t) and Ŷ (t), t ∈ Z+, generated by the
BCN (2) corresponding to the initial state X(0) and the inputs U(t)
and Û(t), t ∈ Z+, respectively, satisfy

Yi(t) = Ŷi(t), ∀ t ∈ Z+. (4)

A first characterization of the previous definition of input/output
decoupling is given in Proposition 1, below. The result is straightfor-
ward, and we give its proof for the sake of completeness. However,
this equivalent formulation provides further insights into the nature
of input/output decoupling.

Proposition 1. For the BCN (2) with m inputs and m outputs, the
following facts are equivalent:

i) the BCN is input/output decoupled;
ii) for every i ∈ [1,m] there exists a map φi such that for every ini-
tial condition X(0) ∈ Bn and every input sequence U(t), t ∈ Z+,
one has

Yi(t) = φi(t;X(0), Ui(0), Ui(1), . . . , Ui(t− 1)), t ≥ 1. (5)
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Proof: i) ⇒ ii) Due to the causality of the BCN, it is obvious that
there exists a map φ such that

Y (t) = φ(t;X(0), U(0), U(1), . . . , U(t− 1)), t ≥ 1.

We want to prove that if the BCN is input/output decoupled, then the
evaluation of the ith entry of the output at any time t ≥ 1 requires
the knowledge only of the ith entries of the input samples up to time
t− 1. If this were not the case then there would be some initial state
X(0), some input sequence U(t), t ∈ Z+, a logic map φi, some
(minimum) time instant τ ≥ 1 and indices j1, . . . , jk, k ≥ 1, j` 6=
i, such that

Yi(τ) = φi(τ ;X(0), Ui(0), Ui(1), . . . , Ui(τ − 2), Ui(τ − 1),

Uj1(τ − 1), . . . , Ujk (τ − 1)).

Condition i) ensures that any input sequence U`(t), t ∈ Z+, ` ∈
[1, k], satisfying

U (`)(t) = U(t), ∀ t ∈ Z+, t 6= τ,

[U (`)(τ)]j = Uj(τ), ∀ j ∈ [1,m], j 6= j`,

[U`(τ)]j` = Ūj`(τ),

generates an output satisfying [Y (`)(τ)]i = Yi(τ). Therefore, Yi(τ)
is necessarily independent of Uj1(τ − 1), . . . , Ujk (τ − 1) and (5)
holds.

ii) ⇒ i) If ii) holds true for every initial condition and every input
sequence, then for every X(0) and every pair of input sequences
U(t) and Û(t), t ∈ Z+, satisfying (3) one has

Yi(t) = φi(t;X(0), Ui(0), Ui(1), . . . , Ui(t− 1))

= φi(t;X(0), Ûi(0), Ûi(1), . . . , Ûi(t− 1)) = Ŷi(t),

for every t ≥ 1. On the other hand, Y (0) = h(X(0)) = Ŷ (0), and
hence (4) holds.

Example 1. Consider the BCN with m = 2 inputs and outputs:

X1(t+ 1) = X1(t),

X2(t+ 1) = X2(t) ∧ U1(t),

X3(t+ 1) = X̄3(t) ∨ U2(t),

Y1(t) = X1(t) ∧X2(t),

Y2(t) = X3(t).

It is very easy to see that condition ii) of Proposition 1 holds and
hence the BCN is input/output decoupled (in fact, in this case, also
the state vector components are partitioned into two disjoint groups).

Example 2. Consider the BCN with m = 2 inputs and outputs:

X1(t+ 1) = X1(t),

X2(t+ 1) = X1(t) ∧ X̄2(t) ∧ U1(t),

X3(t+ 1) = U2(t),

Y1(t) = X1(t) ∧X2(t),

Y2(t) = X2(t) ∨X3(t).

It is easy to see that the BCN is not input/output decoupled.
Assume, for instance, X(0) =

[
1 0 0

]> and consider i = 2 and
the two constant sequences U(t) =

[
1 0

]>
, t ∈ Z+, and Û(t) =[

0 0
]>

, t ∈ Z+.

Clearly, U2(t) = Û2(t) for every t ∈ Z+. However, it is immedi-
ate to verify thatX(1) =

[
1 1 0

]> and Y (1) =
[
1 1

]>, while
X̂(1) =

[
1 0 0

]> and Ŷ (1) =
[
0 0

]>. Therefore, Y2(1) 6=
Ŷ2(1), thus contradicting the input/output decoupling property.

A second definition of input/output decoupling is the one given in
Definition 2, below.

Definition 2. A BCN (2) with input and output having the same car-
dinality, m, is said to be one-step transition input/output decoupled
if, for every index i ∈ [1,m], every pair of states X, X̂ ∈ Bn and
every pair of input vectors U, Û ∈ Bm satisfying conditions

[h(X)]i = [h(X̂)]i, and Ui = Ûi, (6)

ensure that

[h(f(X,U))]i = [h(f(X̂, Û))]i. (7)

The idea behind the previous definition is that if we start with
two statesX and X̂ whose corresponding outputs share the same ith
entry, and we apply two input samples, U and Û , that have the same
ith component, then the two successor states f(X,U) and f(X̂, Û)
will in turn generate two output vectors that share the same ith entry.
One-step transition input/output decoupling is a sufficient condition
for input/output decoupling, as shown in Proposition 2.

Proposition 2. Given a BCN (2) with m inputs and m outputs,
if the BCN is one-step transition input/output decoupled then it is
input/output decoupled.

Proof: Let i be arbitrary in [1,m] and assume that the BCN is one
step transition input/output decoupled. We want to show that for
every initial state X(0) ∈ Bn, if U(t) and Û(t), t ∈ Z+, are two
input sequences satisfying (3), then the corresponding outputs, Y (t)
and Ŷ (t), t ∈ Z+, satisfy (4). We prove the result by induction on
t. To this end we let X(t) and X̂(t), t ∈ Z+, be the state sequences
generated by the BCN starting fromX(0) and corresponding toU(t)
and Û(t), t ∈ Z+, respectively.

If t = 0 then obviously [h(X(0))]i = [h(X̂(0))]i, on the
other hand Ui(0) = Ûi(0), and hence by the one-step transition
input/output decoupling assumption

Yi(1) = [h(f(X(0), U(0)))]i = [h(f(X(0), Û(0)))]i = Ŷi(1).

So, assume now that the result is true for every t ≤ τ , namely
that Yi(t) = Ŷi(t) for every t ≤ τ . We want to prove that
Yi(τ + 1) = Ŷi(τ + 1). Since Yi(τ) = Ŷi(τ), this means that
[h(X(τ))]i = [h(X̂(τ))]i. On the other hand Ui(τ) = Ûi(τ), and
hence by the (one-step transition input/output decoupling) assump-
tion Yi(τ + 1) = [h(f(X(τ), U(τ)))]i = [h(f(X̂(τ), Û(τ)))]i =
Ŷi(τ + 1). This completes the proof.

Example 3. Consider the BCN of Example 1. It is a matter of sim-
ple calculations to verify that the BCN is also one-step transition
input/output decoupled.

Finally, we show that a weaker version of the one-step transition
input/output decoupling property represents a necessary condition
for input/output decoupling.

Proposition 3. Given a BCN (2) with m inputs and m outputs, if
the BCN is input/output decoupled then, for every index i ∈ [1,m],
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every state X0 ∈ Bn and every pair of input vectors U, Û ∈ Bm
satisfying condition

Ui = Ûi, (8)

ensure that

[h(f(X0, U))]i = [h(f(X0, Û))]i. (9)

Proof: If for some index i = i∗ ∈ [1,m] a state X0 and two input
vectors U and Û could be found for which (8) holds, but (9) does
not, then, assumingX(0) = X0, every pair of input sequences U(t)
and Û(t), t ∈ Z+, satisfying the following conditions:

U(0) = U, Û(0) = Û , U(t) = Û(t), ∀ t ≥ 1,

would make condition (4) violated for i = i∗ at t = 1.

While proving the mutual relationship between these properties
by referring to the Boolean description (2) is a difficult task to
achieve, in the next section we will show how the algebraic rep-
resentation of BCNs allows to provide a characterization of all the
properties introduced in this section, and hence to understand how
they are mutually related. Specifically, it will be shown that Propo-
sition 2 cannot be reversed, and hence BCNs can be found that
are input/output decoupled but not one-step transition input/output
decoupled. Meanwhile the necessary condition for input/output
decoupling given in Proposition 3 will turn out to be also sufficient.

3 The algebraic representation of BCNs and the
characterization of the decoupling properties

The algebraic representation of a BCN introduced in [12–14] is
based on two fundamental ideas: the possibility of representing
Boolean vectors by means of canonical vectors and the use of the
semi-tensor product n. As a result, logical relations among Boolean
vectors are expressed as algebraic equations and BCNs are converted
into discrete-time bilinear systems. Indeed, every BCN (2) can be
described [12] as

x(t+ 1) = Ln u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(10)

where x(t) ∈ LN ,u(t) and y(t) ∈ LM , with N := 2n and M :=
2m. L ∈ LN×NM and H ∈ LM×N are matrices whose columns
are canonical vectors of size N and M , respectively. For every
choice of the input variable at time t, namely for every u(t) =

δjM , j ∈ [1,M ], Ln u(t) =: Lj is a matrix in LN×N . So, we can
think of the state equation of the BCN (10) as a Boolean switched
system [29],

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (11)

where σ(t), t ∈ Z+, is a switching sequence taking values in [1,M ].
For every j ∈ [1,M ], the Boolean Network

x(t+ 1) = Ljx(t), t ∈ Z+, (12)

represents the jth subsystem of (11).

In order to provide a characterization of input/output decoupling
we introduce, for every i ∈ [1,m] and every b ∈ B = {0, 1}, the
following sets (see (1) for the definition of Bm)

IUi=b := {j ∈ [1,M ] : [Bm(δjM )]i = b}, (13)

IXYi=b := {q ∈ [1, N ] : [Bm(HδqN )]i = b}. (14)

Note that there is a major difference between these two sets. Indeed,
IUi=b represents the set of canonical input vectors whose Boolean

equivalent has the ith entry equal to b, while IXYi=b
represents the

set of canonical state vectors whose associated output has Boolean
equivalent with ith entry equal to b. So, while in the former case we
simply refer to the Boolean equivalent of a canonical vector, in the
latter case we refer to the Boolean equivalent of its H-image. We
observe that

IUi=0 ∩ IUi=1 = ∅, IUi=0 ∪ IUi=1 = [1,M ],

IXYi=0 ∩ I
X
Yi=1 = ∅, IXYi=0 ∪ I

X
Yi=1 = [1, N ].

So, in both cases we have a partition of the set of possible indices.
However, while |IUi=0| = |IUi=1| = M/2 = 2m−1, in general the
sets IXYi=b

, b ∈ B, have arbitrary cardinality.
Given i ∈ [1,m], we say that indices `, j ∈ [1,M ] belong to the

same ith input class (and denote it by ` ∼IUi
j), if there exists b ∈

B such that `, j ∈ IUi=b. This amounts to saying that the Boolean
equivalents of the two canonical (input) vectors have the same ith
entry, i.e., [Bm(δ`M )]i = [Bm(δjM )]i.

Similarly, two indices p, q ∈ [1, N ] belong to the same ith output
indistinguishability class (and denote it by p ∼IXYi

q), if there exists b ∈

B such that p, q ∈ IXYi=b
. This amounts to saying that the Boolean

equivalents of the outputs associated with the two canonical (state)
vectors have the same ith entry, i.e., [Bm(HδpN )]i = [Bm(HδqN )]i.

By referring to the above sets and notation, it is immediate to
restate the notion of input/output decoupled BCN (Definition 1)
we introduced in the previous section in terms of the algebraic
description (10).

Proposition 4. A BCN (10) is input/output decoupled if and only if
for every i ∈ [1,m] and every x(0) ∈ LN , we have that every pair
of input sequences u(t) = δ`tM , t ∈ Z+, and û(t) = δjtM , t ∈ Z+,
satisfying

`t
∼
IUi

jt, ∀ t ∈ Z+, (15)

ensure that the two corresponding state sequences x(t) = δptN , t ∈
Z+, and x̂(t) = δqtN , t ∈ Z+, satisfy

pt
∼
IXYi

qt, ∀ t ∈ Z+. (16)

In order to determine a practical way to verify whether the pre-
vious equivalent characterization holds for every index i ∈ [1,m],
we proceed as follows. Assume that i is a fixed index in [1,m]. We
define three Boolean matrices:
Hi ∈ L2×N is the logical matrix whose pth column is δ1

2 =
C1(1) if p ∈ IXYi=1, and is δ2

2 = C1(0) if p ∈ IXYi=0;
Mi1 is the Boolean sum of all the blocks Lj , j ∈ [1,M ], that

correspond to indices j ∈ IUi=1, while
Mi0 is the Boolean sum of all the blocks Lj , j ∈ [1,M ], that

correspond to indices j ∈ IUi=0. In formulas

colp(Hi) = Hiδ
p
N :=


δ1
2 , p ∈ IXYi=1,

δ2
2 , p ∈ IXYi=0;

(17)

Mi1 :=
∨

j∈IUi=1

Lj ; (18)

Mi0 :=
∨

j∈IUi=0

Lj . (19)

Note that both Mi1 and Mi0 are Boolean matrices devoid of zero
columns. Before proceeding, we would like to comment on the
meaning of the previous matrices. The logical matrix Hi defines a
map from LN to L2 whose purpose is to indicate whether a certain
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state vector δpN generates an output vector whose Boolean equivalent
has ith entry which is unitary (Hiδ

p
N = δ1

2) or zero (Hiδ
p
N = δ2

2).
The matrix Mi1 “assembles" all the matrices Lj that describe the
action on the state vectors of inputs whose Boolean equivalent has
unitary ith entry, while Mi0 does the same for all the matrices Lj
associated with input vectors δjM whose Boolean equivalent has zero
ith entry. Clearly, Mi1 and Mi0 are Boolean, not necessarily log-
ical, matrices and Mibδ

p
N , b ∈ B, p ∈ [1, N ], is a Boolean vector

whose qth entry is 1 if and only if there exists an input vector, whose
Boolean equivalent has ith entry equal to b, that makes it possible the
transition from δpN to δqN . By making use of the previous matrices
we can provide a necessary condition for input/output decoupling.

Proposition 5. If a BCN (10) is input/output decoupled then for
every i ∈ [1,m] the two matrices HiMi1 and HiMi0 are logical
matrices of size 2×N .

Proof: By Proposition 3 we know that when a BCN is input/output
decoupled then, for every index i ∈ [1,m] and every stateX0 ∈ Bn,
all input vectors U ∈ Bm having the same value of ith entry lead to
states f(X0, U) whose associated outputs share the same ith entry. If
we refer to the algebraic representation of the BCN (10), this means
that for every i ∈ [1,m] and every p ∈ [1, N ], the pth columns of all
matricesHiLj , j ∈ IUi=1,must be either all equal to δ1

2 or all equal
to δ2

2 . But this amounts to saying that the pth column of HiMi1
must be a canonical vector, and since this must be true for every p ∈
[1, N ], this corresponds to saying that HiMi1 is a logical matrix,
namely HiMi1 ∈ L2×N . Obviously the same argument applies to
the case when we consider the columns of the matrices HiLj , j ∈
IUi=0, and this leads to the condition HiMi0 ∈ L2×N .

By proceeding along the same lines, we can provide an equivalent
characterization of the one step transition input/output decoupling
property, in terms of matrices Hi,Mi1 and Mi0, i ∈ [1,m].

Proposition 6. A BCN (10) is one step transition input/output
decoupled if and only if, for every i ∈ [1,m],

i) HiMi1 and HiMi0 are 2×N logical matrices;
ii) for every p, q ∈ [1, N ], condition Hiδ`N = Hiδ

j
N implies

HiMi1δ
p
N = HiMi1δ

q
N and HiMi0δ

p
N = HiMi0δ

q
N .

Proof: By definition, a BCN is one-step transition input/output
decoupled if, for every index i ∈ [1,m], every pair of states X, X̂ ∈
Bn and every pair of input vectors U, Û ∈ Bm satisfying conditions
[h(X)]i = [h(X̂)]i, and Ui = Ûi, ensure that [h(f(X,U))]i =
[h(f(X̂, Û))]i.

We observe that if we refer to the algebraic representation (10),
and we denote the states by x = δpN and x̂ = δqN , while the inputs
by u = δ`M and û = δjM , then the previous definition becomes: if
Hiδ

p
N = Hiδ

q
N and `, j ∈ IUi=b for some b ∈ B, then HiL`δ

p
N =

HiLjδ
q
N .

[Necessity] If the BCN is one-step transition input/output decou-
pled, then it is input/output decoupled and hence condition i)
holds by Proposition 5. On the other hand, it is easy to see that
if Hiδ

p
N = Hiδ

q
N and `, j ∈ IUi=b for some b ∈ B ensure that

HiL`δ
p
N = HiLjδ

q
N , then, in particular, HiL`δ

p takes the same
value for every ` ∈ IUi=b, which leads to saying that HiMibδ

p =
∨`∈IUi=b

HiL`δ
p
N is a canonical vector. On the other hand, by

the same reasoning, also HiMibδ
q is a canonical vector and it

must coincide with HiMibδ
p. Therefore condition Hiδ

p
N = Hiδ

q
N

implies
HiMibδ

p
N = HiMibδ

q
N .

And since b can be arbitrarily chosen in B, condition ii) follows.
[Sufficiency] The fact that i) and ii) imply that the BCN (10) is one-
step transition input/output decoupled is easily proved by reversing
the previous reasoning.

Example 4. Consider the BCN of Example 1. It is a matter of simple
calculations to verify that the BCN can be described as in (10) for
L =

[
L1 L2 L3 L4

]
, with

L1 :=
[
δ1
8 δ1

8 δ3
8 δ3

8 δ5
8 δ5

8 δ5
8 δ5

8

]
,

L2 :=
[
δ2
8 δ1

8 δ4
8 δ3

8 δ6
8 δ5

8 δ8
8 δ7

8

]
,

L3 :=
[
δ3
8 δ3

8 δ3
8 δ3

8 δ7
8 δ7

8 δ7
8 δ7

8

]
,

L4 :=
[
δ4
8 δ3

8 δ4
8 δ3

8 δ8
8 δ7

8 δ8
8 δ7

8

]
,

and H =
[
δ1
4 δ2

4 δ3
4 δ4

4 δ3
4 δ4

4 δ3
4 δ4

4

]
. The index sets

are IU1=1 = {1, 2}, IU1=0 = {3, 4}, IU2=1 = {1, 3}, IU2=0 =

{2, 4}, IXY1=1 = {1, 2}, IXY1=0 = {3, 4, 5, 6, 7, 8}, IXY2=1 = {1, 3,

5, 7}, and IXY2=0 = {2, 4, 6, 8}. Therefore we have

H1 :=
[
δ1
2 δ1

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2

]
,

H2 :=
[
δ1
2 δ2

2 δ1
2 δ2

2 δ1
2 δ2

2 δ1
2 δ2

2

]
,

M11 = L1 ∨ L2,M10 = L3 ∨ L4,M21 = L1 ∨ L3, and M20 =
L2 ∨ L4. Again, simple calculations show that the characterization
given in Proposition 6 holds, and hence the BCN is one-step transi-
tion input/output decoupled (and hence input/output decoupled).

Example 5. Consider the BCN with m = 2 inputs and out-
puts and n = 3 state variables, described as in (10) for L =[
L1 L2 L3 L4

]
, with

L1 :=
[
δ1
8 δ3

8 δ1
8 δ2

8 δ3
8 δ5

8 δ6
8 δ7

8

]
,

L2 :=
[
δ2
8 δ3

8 δ2
8 δ1

8 δ4
8 δ5

8 δ6
8 δ8

8

]
,

L3 := L2, L4 := L1,

and H =
[
δ1
4 δ1

4 δ3
4 δ3

4 δ2
4 δ4

4 δ4
4 δ4

4

]
. The index sets

are the same as in Example 4 and we have

H1 :=
[
δ1
2 δ1

2 δ2
2 δ2

2 δ1
2 δ2

2 δ2
2 δ2

2

]
,

H2 :=
[
δ1
2 δ1

2 δ1
2 δ1

2 δ2
2 δ2

2 δ2
2 δ2

2

]
,

M11 = L1 ∨ L2,M10L3 ∨ L4,M21 = L1 ∨ L3, andM20 = L2 ∨
L4. Simple calculations show that

H1M11 =
[
δ1
2 δ2

2 δ1
2 δ1

2 δ2
2 δ1

2 δ2
2 δ2

2

]
= H1M10,

H2M21 =
[
δ1
2 δ1

2 δ1
2 δ1

2 δ1
2 δ2

2 δ2
2 δ2

2

]
= H2M20.

So, clearly, condition i) in Proposition 6 holds, but condition ii) does
not (indeed, columns 1 and 2 of matrix H1 coincide, but columns
1 and 2 of matrix H1M11 do not), and hence the BCN verifies the
necessary condition for input/output decoupling given in Propositon
5, but it is not one-step transition input/output decoupled.

Proposition 6 and the previous example show that one-step
transition input/output decoupling and the necessary condition for
input/output decoupling proposed in Propositon 5 are not equivalent.
So, the question naturally arises: is input/output decoupling an inter-
mediate property, different from the other two, or is it equivalent
to either one of them? Proposition 7 provides an algebraic charac-
terization of input/output decoupling that will allow to answer this
question.

Proposition 7. A BCN (10) is input/output decoupled if and only
if for every i ∈ [1,m], every k ∈ Z+, k ≥ 1, and every choice of k
indices b1, b2, . . . , bk ∈ B, the matrixHiMi,bk . . .Mi,b2Mi,b1 is a
logical matrix.
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Proof: As shown in Proposition 4, a BCN (10) is input/output decou-
pled if and only if for every i ∈ [1,m] and every x(0) = δrN ∈ LN ,
we have that every pair of input sequences u(t) = δ`tM , t ∈ Z+, and
û(t) = δjtM , t ∈ Z+, satisfying (15) ensure that the two correspond-
ing state sequences x(t) = δptN , t ∈ Z+, and x̂(t) = δqtN , t ∈ Z+,
satisfy (16). For every t ∈ Z+, the state variables x(t) and x̂(t) can
be expressed as

x(t) = L`t−1
. . . L`1L`0δ

r
N , x̂(t) = Ljt−1

. . . Lj1Lj0δ
r
N ,

respectively. Therefore condition (16) corresponds to

HiL`t−1
. . . L`1L`0δ

r
N = HiLjt−1

. . . Lj1Lj0δ
r
N ,

namely to ask that the two vectors are identical canonical vec-
tors. If we define bt+1 as the uniquely determined Boolean value
such that `t, jt ∈ IUi=bt+1

, then the previous identity holds if and
only if HiMi,bt . . .Mi,b2Mi,b1δ

r
N is a canonical vector for every

t ∈ Z+, t ≥ 1, and since r is arbitrary in [1, N ], this means that the
matrix HiMi,bt . . .Mi,b2Mi,b1 must be logical.

Theorem 1. A BCN (10) is input/output decoupled if and only for
every i ∈ [1,m] the two matrices HiMi1 and HiMi0 are logical
matrices of size 2×N .

Proof: By Proposition 5, we already know that the necessity part is
true. So, we need only to prove the sufficiency. To this end, we set
i ∈ [1,m] to a fixed value and proceed as follows. First of all, by
the way the matrixHi has been defined, we know that a permutation
matrix Πi ∈ LN×N exists such that

Ĥi := HiΠ
>
i = [δ1

N . . . δ1
N︸ ︷︷ ︸

ni

| δ2
N . . . δ2

N︸ ︷︷ ︸
N−ni

],

where ni := |IXYi=1|. This amounts to sort all the canonical vec-
tors representing the states so that the first ni are those associated
with output vectors whose Boolean equivalent has unitary ith entry.
Correspondingly, we get

M̂ib := ΠiMibΠ
>
i =

M (11)
ib M

(12)
ib

M
(21)
ib M

(22)
ib

 , b ∈ B.

Clearly, for every k ∈ Z+, k ≥ 1, and every choice of k indices
b1, b2, . . . , bk ∈ B,

ĤiM̂i,bk . . . M̂i,b2M̂i,b1 = HiMi,bk . . .Mi,b2Mi,b1Π>i ,

and HiMi,bk . . .Mi,b2Mi,b1 is a logical matrix if and only if
ĤiM̂i,bk . . . M̂i,b2M̂i,b1 is a logical matrix. So, in the following
we will assume Hi = Ĥi and Mib = M̂ib, b ∈ B. If the hypothesis
holds, namely HiMi1 and HiMi0 are logical matrices, this implies
that each matrix Mib, b ∈ B, satisfies the following conditions:

• one of the two blocks M (11)
ib and M (21)

ib is zero;
• one of the two blocks M (12)

ib and M (22)
ib is zero.

We want to prove that HiMi,bk . . .Mi,b2Mi,b1 is a logical matrix
for every k ∈ Z+, k ≥ 1. To this goal, we proceed by induction. By
assumption we know that this is true for k = 1. We assume that the
result is true for k = k̄ − 1 and show that this is true for k = k̄.
Consider the matrix product HiMi,bk̄

Mi,bk̄−1
. . .Mi,b2Mi,b1 and

set Wi := Mi,bk̄
Mi,bk̄−1

. . .Mi,b2 .

By inductive assumption, HiWi is a logical matrix, and this
ensures that

Wi =

[
W

(11)
i W

(12)
i

W
(21)
i W

(22)
i

]

is such that one of the two blocksW (11)
i andW (21)

i is zero, and one
of the two blocksW (12)

i andW (22)
i is zero. But then it is immediate

to see that the blocks of

Vi =

[
V

(11)
i V

(12)
i

V
(21)
i V

(22)
i

]
:= Mi,bk̄

Mi,bk̄−1
. . .Mi,b2Mi,b1

=

[
W

(11)
i W

(12)
i

W
(21)
i W

(22)
i

][
M

(11)
ib1

M
(12)
ib1

M
(21)
ib1

M
(22)
ib1

]

satisfy the usual condition (one of the two blocks V (11)
i and V (21)

i

is zero, and one of the two blocks V (12)
i and V (22)

i is zero) thus
ensuring that HiVi = HiMi,bk̄

Mi,bk̄−1
. . .Mi,b2Mi,b1 is logical.

Remark 1. It is worth noticing that the input/output decoupling
property can be tested on the algebraic representation of a BCN by
simply evaluating the entries of 2m matrices of size N ×N . Com-
pared to other criteria based on the algebraic representation (10),
that require to compute and inspect a number of matrices that grows
withM = 2m or even a power ofM andN (see, e.g., [18, 30]), this
criterion is particularly simple and efficient from a computational
viewpoint.

4 Graph-theoretic characterizations of
input/output decoupling properties

Given a BCN (10) withN = 2n states andM = 2m inputs and out-
puts, it is possible to associate with it m directed graphs Di, i ∈
[1,m]. For each index i, the digraph Di has N vertices, denoted by
{1, 2, . . . , N}, and M arcs of two distinct types, obtained in this
way: there is an arc of type 1 from p to q, with p, q ∈ [1, N ], if
and only if [Mi1δ

p
N ]q = 1, and there is an arc of type 0 from p to

q, with p, q ∈ [1, N ], if and only if [Mi0δ
p
N ]q = 1. In other words,

arcs of type 1 (0, resp.) in the digraph Di are those associated with
state transitions corresponding to inputs u = δjM with j ∈ IUi=1
(j ∈ IUi=0, resp.). We note that Di is simply the union of the two
digraphsD(Mi1) andD(Mi0), in which, however, we keep track of
the specific matrix each arc is associated with.

Finally, we partition the vertices in Di into the two ith output
indistiguishability classes: the class IXYi=1 and the class IXYi=0.

By referring to the digraphs Di, i ∈ [1,m], we can characterize
both forms of input/ouput decoupling.

Proposition 8. Consider a BCN (10) with N = 2n states and
M = 2m inputs and outputs, and let Di, i ∈ [1,m], be the associ-
ated directed graphs. The BCN is input/output decoupled if and only
if for every i ∈ [1,m], every b ∈ B and every vertex p ∈ [1, N ], in
the digraphDi all arcs of type b starting from the vertex p end in the
same ith output indistiguishability class.

Proof: This trivially follows from the fact that HiMib is a logical
matrix if and only if each vertex p ∈ [1, N ] is mapped by all arcs
of type b either into vertices belonging to IXYi=1 (if colp(HiMib) =

δ1
2) or into vertices belonging to IXYi=0 (if colp(HiMib) = δ2

2), but
not into both classes of vertices.

Proposition 9. Consider a BCN (10) with N = 2n states and
M = 2m inputs and outputs, and let Di, i ∈ [1,m], be the asso-
ciated directed graphs. The BCN is one-step transition input/output
decoupled if and only if for every i ∈ [1,m] and every b1, b2 ∈ B,
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in the digraph Di all arcs of type b1 starting from the vertices of
the class IXYi=b2

end in the same ith output indistiguishability class
(either IXYi=b2

or IX
Yi=b̄2

).

Proof: A BCN (10) is one-step transition input/output decoupled if
and only if conditions i) and ii) of Proposition 6 hold. Condition i)
is equivalent to the input/output decoupling property of the BCN,
and this ensures (see Proposition 8) that for every i ∈ [1,m], every
b1 ∈ B and every vertex p ∈ [1, N ], in the digraph Di all arcs of
type b1 starting from the vertex p end in the same ith output indis-
tiguishability class. Condition ii) amounts to saying that for each
vertex q ∈ [1, N ], with q ∼IXYi

p, all the outgoing arcs of type b1 end
in the same ith output indistiguishability class as the arcs of type b1
leaving from p.

Example 6. Consider the BCN of Example 5. It is easy to see that
in this specific case: (a) D1 = D2; (b) in each digraph Di the set
of arcs of type 1 coincides with the set of arcs of type 0 (since
M11 = M10 and M21 = M20). So, the only thing that changes is
the partition into indistinguishability classes. The digraph D1 is in
Figure 1: the class IY1=1 consists of vertices {1, 2, 5}, while the
class IY1=0 consists of vertices {3, 4, 6, 7, 8}. On the other hand,
the digraph D2 is in Figure 2: the class IY2=1 consists of vertices
{1, 2, 3, 4}, while the class IY2=0 consists of vertices {5, 6, 7, 8}.
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Fig. 1: The graph D1 for Example 6.
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Fig. 2: The graph D2 for Example 6.

It is immediately apparent that, in both graphs, all arcs leaving a
vertex end in a single indistinguishability class and not in two indis-
tinguishability classes. Therefore the BCN is input/output decoupled.
However, it it not true that p, q ∈ IXYi=b

,∃ b ∈ B, ensures that all
arcs of the same type leaving p and q end in the same indistinguisha-
bility class. For instance, in D1 all arcs leaving 1 end in IXY1=1,
while all arcs leaving 5 end in IXY1=0, even if 1 ∼IXY1

5. Consequently,
the BCN is not one-step transition input/output decoupled.

5 Conclusions

In this paper we have introduced two types of input/output decou-
pling properties by referring to the classical representation of a
Boolean Control Network in terms of Boolean input, state and output
vectors, whose mutual relationships are expressed through logical
operators. By resorting to the algebraic representation of a BCN,
a complete characterization of these properties has been obtained,
thus showing that the one-step transition input/output decoupling
property is stronger than the input/output decoupling property. The
algebraic characterizations derived through the algebraic approach
have led to easy to check testing algorithms. At the end of the paper,
equivalent conditions based on certain associated digraphs for these
properties to hold have been presented.

It is worth noticing that the input/output decoupling problem has
been investigated in the paper by imposing that, for every index i,
the ith output only depends on the ith input. However, the result
can be easily adjusted to the case of an input-reordering. Indeed if
σ represents a permutation of the set [1,m], then the case when the
ith output only depends on the σ(i)th input can be characterised by
replacing the matrices HiMib, b ∈ B, with the matrices HiMσ(i)b,
b ∈ B.

Future research efforts will aim at determining necessary and suf-
ficient conditions for the existence of state-feedback control laws
that make a given BCN input/output decoupled, and to clarify
under what additional conditions input/output decoupling necessar-
ily imposes also a partition of the state variables into disjoint groups.
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