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Abstract—We consider the problem of accelerating the con-
vergence to consensus of a network of homogeneous high-order
agents, through the injection of an additional control input
performed by a leader. After a brief set-up description, we
derive the characteristic polynomial of the resulting system
under the leader’s control. We introduce the concept of leader
controlled distributed consensus, by imposing that the leader’s
action improves the convergence speed but does not affect the
consensus value, except possibly for a scaling factor. Finally, we
prove that, under certain assumptions, consensus can be achieved
with arbitrary speed.

Keywords − Multi-agent systems, consensus networks, conver-
gence speed.

I. INTRODUCTION

Consensus is a key tool for biological as well as technologi-
cal distributed collaborative systems. Collective decisions and
cooperative behaviors of biological networks are frequently
the results of repeated local interactions, and indeed consensus
decisions play a fundamental role in the lives of social animals
[1]. Inspired by this, there has been an impressive amount of
research on iterative algorithms, based on local data, which
make the group evolution reach an agreement or consensus on
a variable [2], [3], [4]. In many contexts, seeking consensus is
an enabling condition for the prosecution of the group toward
a common goal [3], [4]. In this respect, the convergence rate
toward consensus is a fundamental aspect [4], and standard
consensus strategies may be unsatisfactory [5]. The problem of
accelerating consensus has been the subject of a good number
of papers. Several methods have been proposed, ranging from
the optimal design of the coupling coefficients [6] to the use
of additional memory slots [7], [8]. However, most of the
results deal with the simple case when agents are described
by integrators and a few with higher-order integrators.

In this paper, we consider networks of homogeneous high-
order agents, that is networks of nodes with identical and
generic dynamics, which is the most common in nature (team
members usually belong to the same species), it is often used
in applications [9], [10] and has been intensively studied in
the last decade [11], [12], [13]. Consensus for high-order
multi-agent systems has been investigated from different per-
spectives, and different definitions are possible. We consider
here consensus on a constant function, also called stationary
consensus [14], since a wide number of applications have been
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developed in diverse technological fields based on this simple
peculiar condition (e.g. the rendez-vous problem for a team of
robots [14]). Specifically, we address the following problem:
we assume that a multi-agent system of homogeneous high-
order agents has been designed to achieve stationary con-
sensus. In this set-up, a single agent takes the leader’s role
with the goal of increasing the convergence speed without
affecting the final consensus value ν(x0) (that depends on
the initial conditions of the whole group), except possibly for
a scaling factor. This situation may often arise in practice,
for instance in multirobot systems [9], when a single robots
has complicated sensory ability, such as GPS, and powerful
computation ability to plan the trajectory, while followers
have limited computational resources. To achieve this goal, the
leader injects an additional control input based only on its own
state trajectory. The results of this paper represent the natural
evolution of those in [15], [16], [17] for simple integrators,
but the complexity of the agents’ description demands for a
more complex analysis. To the best of our knowledge, this is
the first paper exploring acceleration schemes for high order
multi-agent systems. Our main contribution is to prove that
under reasonable assumptions it is possible to allocate all the
eigenvalues of the resulting closed-loop system matrix and
hence to freely choose the convergence speed, a goal that could
not be achieved by simply acting on the state-feedback matrix
that implements the original consensus protocol (see Section
2). It must be however remarked that Theorem 1, concluding
the paper, represents a result about theoretical feasibility, rather
than a practical method, as the size of the control algorithm
may be very large and hence impractical. However the result
is of interest as it represents the first step toward a complete
analysis of which convergence speeds can be obtained through
the action of a leader. The best speed achievable with a fixed
complexity is the object of future research.

The note is organized as follows. In Section II we describe
the notation and summarize some background material. In
Section III the problem statement is described and the leader’s
control protocol is introduced. In Section IV the characteristic
polynomial of the whole system is derived. Section V provides
the definition of leader-controlled distributed consensus and
conditions on the system that allow to design a leader’s control
protocol achieving it.

II. NOTATION AND BACKGROUND MATERIAL

Given p ∈ Z, p > 0, we set [1, p] := {1, 2, . . . , p}. ei is
the ith canonical vector in RN , where N is clear from the
context. The N -dimensional vector with all entries equal to 1



is 1N . Given A ∈ Rn×n, we denote by σ(A) the spectrum
of A, i.e., the set of its eigenvalues. A is Hurwitz if λ ∈
σ(A) implies Re(λ) < 0. The Kronecker product of A ∈
Rm×n and B ∈ Rp×q is A⊗B := [aijB]i,j ∈ Rmp×nq. An
undirected, weighted graph is a triple G = (V, E ,A), where
V = {1, . . . , N} is the set of vertices, E ⊆ V × V is the set
of arcs, and A = A> ∈ RN×N is the (entrywise nonnegative)
adjacency matrix of G. In this paper we assume that G has
no self-loops, namely each diagonal entry [A]ii, i ∈ [1, N ], is
zero. A sequence of edges (j`, j`+1) ∈ E , with ` ∈ [1, k], is
a path of length k connecting vertex j1 with jk+1. A graph
is said to be connected if for every pair of distinct vertices
i, j ∈ V there is a path connecting i and j. This is equivalent
to the fact that A is an irreducible matrix [18]. The Laplacian
matrix L = L> = [`ij ]i,j∈[1,N ] ∈ RN×N of the graph G is

L :=


∑N
j=1[A]1j −[A]12 . . . −[A]1N

−[A]21

∑N
j=1[A]2j . . . −[A]2N

...
...

. . .
...

−[A]N1 −[A]2N . . .
∑N
j=1[A]Nj

 .
As all rows and columns of L sum up to 0, 1N is always
both a right and a left eigenvector of L corresponding to the
eigenvalue 0. The following lemma states a useful and well-
known result about Laplacian matrices of undirected graphs.

Lemma 1. [11], [18] If the undirected, weighted graph G is
connected, then L is a positive semidefinite matrix, and its
eigenvalues λi, i ∈ [1, N ], satisfy

0 = λ1 < λ2 ≤ · · · ≤ λN . (1)

A matrix A(z) ∈ R[z]p×m is said to be right prime
(left prime) if rankA(λ) = m (rankA(λ) = p) for every
λ ∈ C. Given G(z) ∈ R(z)p×m, we say that a pair
(NR(z), DR(z)) ∈ R[z]p×m × R[z]m×m provides a right
matrix fraction description (rMFD) of G(z) if detDR(z) 6= 0

and NR(z)D−1
R (z) = G(z). If

[
NR(z)
DR(z)

]
is right prime,

NR(z)D−1
R (z) is a right coprime matrix fraction description

(rcMFD) of G(z). Left (coprime) matrix fraction descriptions
(lMFD and lcMFD, respectively) are analogously defined.

III. PROBLEM STATEMENT

Consider N agents, each of them described by the same
n-dimensional, continuous-time, single-input system:

ẋi(t) = Axi(t) +Bui(t), t ∈ R+, (2)

where xi ∈ Rn, ui ∈ R are the state vector and the
input of the ith agent, respectively. Assumptions: (A1) The
communication among the N agents is described by an undi-
rected, weighted, and connected graph with adjacency matrix
A = A> ∈ RN×N and Laplacian matrix L = L>, (both
of them irreducible), with eigenvalues λi, i = 1, 2, . . . , N,
ordered as in (1). Each ith agent adopts the following DeGroot
type control law [11]:

ui(t) = K

N∑
j=1

[A]ij [xj(t)− xi(t)]. (3)

where K ∈ R1×n is a fixed feedback matrix. If we denote by
x(t) ∈ RnN and u(t) ∈ RN the state vector and the input
vector, respectively, of the multi-agent system, i.e.

x(t):=
[
x>1 (t) . . . x>N (t)

]>
u(t):=

[
u1(t) . . . uN (t)

]>
the multi-agent system is described [11] by:

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗B)u(t)

u(t) = −(L ⊗K)x(t),

or, using elementary properties of the Kronecker product, by:

ẋ(t) = [(IN ⊗A)− (L ⊗BK)]x(t). (4)

(A2) The state-feedback matrix K has been chosen to ensure
state consensus of the multi-agent system, i.e. for every initial
state x(0) ∈ RnN there exists a suitable vector ν(x(0)) ∈ Rn
(depending on the initial conditions) such that

lim
t→+∞

x(t) = 1N ⊗ ν(x(0)). (5)

The spectrum of (IN ⊗ A) − (L ⊗ BK) coincides with
σ(A)∪ σ(A− λ2BK)∪ · · · ∪ σ(A− λNBK), and consensus
is achieved if and only if A ∈ Rn×n is a simply stable
matrix, with a simple and strictly dominant eigenvalue in
0, and all matrices A − λiBK, i ∈ [2, N ], are Hurwitz
[11]. This shows that the speed of convergence is always
constrained by the position of the subdominant eigenvalues
of A, and hence it cannot be freely modified with K. We let
vA (wA) denote a right (left) eigenvector of A both relative
to the zero eigenvalue and related by condition w>AvA = 1.
Consequently, upon denoting by wL the left eigenvector of L
associated with the zero eigenvalue and satisfying w>L1N = 1,
i.e., wL = 1

N 1N , we observe that wL ⊗ wA is a left
eigenvector of (IN ⊗A)− (L⊗BK) associated with λ = 0.
Also, by the assumptions w>L1N = 1 and w>AvA = 1, it
follows [wL ⊗wA]>[1N ⊗ vA] = 1. It is a matter of simple
computations (see, also, [11]) to show that

ν(x(0))=

(
N∑
i=1

1

N
w>Axi(0)

)
vA=

[
(wL⊗wA)>x(0)

]
vA. (6)

Assume now that, in the current set-up one of the N agents
takes the role of leader, and wants to influence the group
dynamics by making use of a control signal v based on its own
state evolution. The purpose of the leader’s action is to im-
prove the performance of the group dynamics, by accelerating
consensus. The multi-agent system with consensus protocol (4)
and one leader exerting an additional control action becomes:

ẋ(t) = [(IN ⊗A)− (L ⊗BK)]x(t) + e1 ⊗Bv(t) (7)

where we assumed, without loss of generality, that the leader
is the first agent. The leader generates the scalar control
input v(t) by elaborating its own state x1(t) according to
the following continuous-time µ-dimensional state model, with
state variable ε(t):

ε̇(t) = Fε(t) +Gx1(t), (8a)
v(t) = Hε(t) + Jx1(t), (8b)



where F ∈ Rµ×µ, G ∈ Rµ×n, H ∈ R1×µ and J ∈ R1×n.
Introduce the augmented state vector

χ(t) :=

[
x(t)
ε(t)

]
∈ RnN+µ. (9)

System (7) under the leader action (8) can be written as

χ̇(t) =Mχ(t), (10)

where M∈ R(nN+µ)×(nN+µ) takes the form

M :=

[
(IN⊗A)−(L⊗BK)+(e1e

>
1⊗BJ) e1⊗BH

e>1⊗G F

]
(11)

Assume, now, to partition L as follows:

L =

[
`11 λ>

λ L̂

]
, λ ∈ RN−1, L̂ ∈ R(N−1)×(N−1). (12)

Then

M:=

A−`11BK+BJ −λ> ⊗BK BH

−λ⊗BK (IN−1⊗A)−(L̂⊗BK) 0
G 0 F

 (13)

Additional assumptions: (A3) The pair (A,B) in the
agents’ description (2) is reachable and in controllability
canonical form.
(A4) The quadruple (F,G,H, J) in (8) is a minimal realization
of its tranfer matrix W (s) := H(sI − F )−1G + J ∈
R(s)1×n. So, if x(s)−1

[
y1(s) y2(s) . . . yn(s)

]
, where

x(s), yi(s) ∈ R[z], is the (unique) lcMFD of W (s) with monic
denominator x(s), then det(sIµ − F ) = x(s).
(A5) Matrix K =

[
k0 k1 . . . kn−1

]
in (3) not only

ensures consensus, but it also guarantees that

κ(s) :=

n−1∑
i=0

kis
i (14)

is coprime with ∆A(s) := det(sIn −A).
(A6) The eigenvalues of matrix L̂ in (12) are distinct, namely
they are simple zeros of the characteristic polynomial of L̂.

Remark 2. We would like to briefly comment on the previ-
ously introduced assumptions (see also Remark 5).

- (A1) is admittedly a restrictive hypothesis, but nonetheless
a realistic one when dealing with consensus problems for
networks whose nodes have fixed positions. For instance,
consensus strategies have been used to implement distributed
architectures in several smart grid applications [19].

- The stabilizability of the pair (A,B) is a necessary
condition for consensus of high-order multi-agent systems
[11]. The reachability assumption (A3) is a slightly stronger
assumption that makes the analysis simpler, since it does not
require to keep into account the eigenvalues of A that cannot
be allocated through state-feedback. The approach adopted
in this paper would allow to account for these eigenvalues,
and hence for the constraints they impose on the convergence
speed, but the presentation would become more involved.
The controllability canonical form, under the reachability
assumption, only requires a change of coordinates.

- Condition (A4) entails no loss of generality, since we can
always choose the matrices in (8) so that (A4) holds.

- Assumption (A5) (together with (A3)), ensures that
det(sIn−A+ λBK) = det(sIn−A) + λκ(z) is necessarily
coprime with ∆A(s) for any λ ∈ C, λ 6= 0, and hence
σ(A) ∩ σ(A − λBK) = ∅. This is in turn a mild constraint
on the choice of K that allows to simplify the analysis, but in
turn could be easily omitted.

- Finally, with regards to (A6), it is easy to see that L̂ is a
symmetric positive definite matrix, and hence its positive real
eigenvalues can be sorted in such a way that 0 < µ1 ≤ µ2 ≤
· · · ≤ µN−1. The assumption that they are all distinct allows
to say, by the same reasoning adopted to comment on (A5),
that for every i 6= j, σ(A − µiBK) ∩ σ(A − µjBK) = ∅.
Again, this is only required to simplify the analysis.

IV. PRELIMINARY ANALYSIS

We first determine the expression of the characteristic
polynomial of M, by making use of the following lemma.

Lemma 3. [20] Given a matrix M =

[
R S
P Q

]
, with

R ∈ RN×N , S ∈ RN×µ, P ∈ Rµ×N , Q ∈ Rµ×µ and Q
nonsingular, one has detM = detQ · det

(
R− SQ−1P

)
.

Proposition 4. Consider the multi-agent system (7) under
the leader control action (8). Under the previous Assump-
tions (A1)-(A6), the characteristic polynomial pM(s) :=
det(sInN+µ −M) of the state matrix M is equal to

pM(s) = [∆A(s)dΨ(s)− nΨ(s)κ(s)]x(s) (15)

− dΨ(s)(

n−1∑
i=0

yi+1(s)si),

where x(s)−1
[
y1(s) . . . yn(s)

]
is the lcMFD of W (s) given

in (A4), nΨ(s)
dΨ(s) is the irreducible representation of Ψ(s) given

in Lemma 10 (see Appendix) and κ(s) is given in (14).

Proof. By making use of (11) and Lemma 3 we obtain

pM(z) = det(sIµ−F ) det[sInN − IN ⊗A+ L ⊗BK
−e1e

>
1 ⊗BJ − (e1 ⊗BH)(sI − F )−1(e>1 ⊗G)]

which can be rewritten as pM(z) = det(sIµ−F ) det[sInN −
IN ⊗ A + L ⊗ BK − e1e

>
1 ⊗ BW (s)]. By now referring to

(13) and by making use, again, of Lemma 3 we obtain

pM(z)= det(sIµ−F ) det[sIn(N−1) − IN−1⊗A+L̂ ⊗BK]

· det[sIn −A+ `11BK −BW (s)− (λ> ⊗BK)

· [sIn(N−1) − IN−1 ⊗A+ L̂ ⊗BK]−1(λ⊗BK)].

Upon defining the leader to followers transfer matrix

WLF (s) := (λ> ⊗BK)[sIn(N−1)− IN−1⊗A+L̂ ⊗BK]−1

· (λ⊗BK) +A− `11BK ∈ R(s)n×n,

the above expression can be written as

pM(z)= det(sIµ−F ) det[sIn(N−1) − IN−1⊗A+L̂ ⊗BK]

· det[sIn −WLF (s)−BW (s)].

Using, again, Lemma 10 in the Appendix,
and the aforementioned lcMFD of W (s),



we obtain det[sIn − WLF (s) − BW (s)] =

det
[
sIn −A−Ψ(s)BK −B 1

x(s)

[
y1(s) . . . yn(s)

]]
. If

we introduce the irreducible representation nΨ(s)
dΨ(s) of Ψ(s) (see

Lemma 10), elementary matrix manipulations allow to say that
det
[
sIn −A−Ψ(s)BK −B 1

x(s)

[
y1(s) . . . yn(s)

]]
=

∆A(s) −
[
nΨ(s)
dΨ(s)K + 1

x(s)

[
y1(s) . . . yn(s)

]]
adj(sIn −

A)B = ∆A(s) − nΨ(s)
dΨ(s)κ(s) − 1

x(s) (
∑n−1
i=0 yi+1(s)si), where

we used the fact that if (A,B) is in controllability canonical
form, then adj(sIn − A)B =

[
1 s . . . sn−1

]>
.

Lemma 10 and Assumption (A4), finally, lead to pM(s) =
∆A(s)x(s)dΨ(s)−nΨ(s)κ(s)x(s)−dΨ(s)(

∑n−1
i=0 yi+1(s)si),

which can be rewritten as in (15).

Remark 5. The expression of pM(s) provided in (15) strongly
depends on Assumptions (A3), (A5) and (A6). Indeed, if any of
them were not satisfied, pM(s) would be the multiple of some
fixed polynomial related either to the not reachable part of the
pair (A,B), or to the common divisor of ∆A(s) and κ(z), or
to the nontrivial polynomial relating dΨ(s) and det[IN−1 ⊗
(sIn −A) + L̂ ⊗BK] (see Lemma 10). This would not alter
the analysis but would limit the possibility of freely allocating
the eigenvalues of M and hence would constrain the best
achievable speed in case of consensus.

V. LEADER-CONTROLLED DISTRIBUTED CONSENSUS

In this section, we first introduce the definition of leader-
controlled distributed consensus (see [16] and [17]).

Definition 1 (Leader-controlled distributed consensus). Con-
sider a multi-agent system with a single leader described as
in (7). We say that the control (8) leads the system to leader-
controlled distributed consensus, under the leader’s action
v(t), if for every initial state x(0) (assuming ε(0) = 0), there
is a vector ν̃ = ν̃(x(0)) ∈ Rn such that

lim
t→+∞

x(t) = 1N ⊗ ν̃(x(0)). (16)

Furthermore, to make the achieved leader-controlled dis-
tributed consensus consistent with what we would achieve
without the auxiliary control protocol, we impose the addi-
tional constraint that there exists a nonzero scaling factor C
such that, for every x(0) ∈ Rn,

ν̃(x(0)) = C · ν(x(0)). (17)

We now determine conditions guaranteeing that a given
state-space model Σc = (F,G,H, J), implementing the
leader’s control protocol (8) leads the multi-agent system to
leader-controlled distributed consensus.

Proposition 6. Consider a multi-agent system with a single
leader described as in (7), exerting the control protocol (8), for
given matrices (F,G,H, J). Assume that Assumptions (A1)-
(A6) and the following conditions hold:

i) W (0) = 0;
ii) M has a simple and strictly dominant eigenvalue in 0.

Then
(A) ∃ z ∈ Rµ such that

[
(1N ⊗ vA)> z>

]>
is a right

eigenvector of M corresponding to the eigenvalue 0.

(B) ∃ wext ∈ Rµ such that
[
(wL ⊗wA)

>
w>ext

]>
is a left

eigenvector of M corresponding to the eigenvalue 0.
(C) The control (8) leads the system to leader-controlled
distributed consensus, under the leader’s action v(t).
(D) Condition (16) holds for

ν̃(x(0)) =
(wL ⊗wA)>x(0)

1 + w>extz
vA, (18)

and hence the scaling factor C in (17) is C = [1 +w>extz]−1.

Proof. We first note that since W (0) = 0 then all polynomials
yi(s) in the lcMFD of W (s) have a common zero in 0. This
also implies, by the coprimality of x(s), y1(s), . . . , yn(s), that
x(0) 6= 0 and hence, by Assumption (A4), F is nonsingular.
Condition (A) holds if and only if[

(IN ⊗A)− (L ⊗BK) + (e1e
>
1 ⊗BJ) e1 ⊗BH

e>1 ⊗G F

]
·

·
[
1N ⊗ vA

z

]
=

[
0
0

]
,

which is equivalent to saying that

[(IN ⊗A)− (L ⊗BK) + (e1e
>
1 ⊗BJ)](1N ⊗ vA) +

+(e1 ⊗BH)z = 0 (19)
(e>1 ⊗G)(1N ⊗ vA) + Fz = 0 (20)

On the other hand, as F is nonsingular, from (20) we get
z = −F−1(e>1 ⊗G)(1N⊗vA), that once replaced in (19) gives
[(IN⊗A)−(L⊗BK)+(e1e

>
1 ⊗B(J−HF−1G))](1N⊗vA) =

0. Since [(IN ⊗ A) − (L ⊗ BK)](1N ⊗ vA) = 0, because,
by assumption, the original multi-agent system was achieving
(standard) consensus, it follows that the previous identity holds
if and only if (e1e

>
1 ⊗ B(J − HF−1G))(1N ⊗ vA) = 0,

namely (J −HF−1G)vA = 0. As W (0) = J −HF−1G = 0
by condition i), this ensures that (A) holds.

The proof of (B) is very similar to the one of (A), and
hence we give a sketch of it. To prove that ∃ wext ∈
Rµ such that

[
(wL ⊗wA)

>
w>ext

]>
is a left eigenvec-

tor of M corresponding to the eigenvalue 0, we note that[
(wL ⊗wA)

>
w>ext

]>
M =

[
0> 0>

]
is equivalent to

(wL ⊗wA)
>

(e1e
>
1 ⊗BJ) + w>ext(e

>
1 ⊗G) = 0> (21)

(wL ⊗wA)
>

(e1 ⊗BH) + w>extF = 0> (22)

where we used the fact that wL⊗wA is a left eigenvector of
(IN ⊗ A)−(L ⊗ BK) corresponding to the zero eigenvalue,
By using, again, the nonsingularity of F , we show that the
previous conditions hold if and only if

1

N
w>AB(J −HF−1G) =

1

N
w>ABW (0) = 0>.

This identity holds because of i), and hence (B) holds.
We now show that, by making use of condition ii)

and point (A) we can prove (C). Consider a basis of
RnN+µ consisting of (generalised) eigenvectors of M, hav-
ing ẑ :=

[
(1N ⊗ vA)> z>

]>
as its first element. Ev-

ery χ(0) =
[
x(0)> 0>

]>
can be expressed as a linear



combination of such eigenvectors. Let α be the coefficient
weighting the eigenvector ẑ in the expression of χ(0). The
state evolution of system (10) asymptotically converges to
α
[
(1N ⊗ vA)> z>

]>
and hence x(t) → α(1N ⊗ vA)

for t → +∞. To determine the value of α, consider the
previously determined left eigenvector of M corresponding
to the eigenvalue 0 (see point (B)). Note that for every t ≥ 0[

(wL ⊗wA)
wext

]>
χ̇(t) =

[
(wL ⊗wA)

wext

]>
Mχ(t) = 0,

so that[
(wL ⊗wA)

wext

]>
χ(t) =

[
(wL ⊗wA)

wext

]>
χ(0) ∀t ≥ 0

and, since ε(0) = 0, the right term of the previous identity
can be rewritten as[

(wL ⊗wA)
wext

]>
χ(0) = (wL ⊗wA)>x(0).

On the other hand, limt→+∞

[
(wL ⊗wA)

wext

]>
χ(t) =[

(wL ⊗wA)
wext

]>
α

[
(1N ⊗ vA)

z

]
= α[(wL ⊗ wA)>

(1N ⊗ vA) + w>extz]. This implies that

α =
(wL ⊗wA)>x(0)

(wL ⊗wA)> (1N ⊗ vA) + w>extz
=

(wL ⊗wA)>x(0)

1 + w>extz

where we used the identity (wL⊗wA)> (1N ⊗ vA) = 1, and
hence (16) holds for

ν̃(x(0)) =
(wL ⊗wA)>x(0)

1 + w>extz
vA =

ν(x(0))

1 + w>extz
.

This ensures leader-controlled distributed consensus and
proves at the same time (C) and (D).

Propositions 4 and 6 allow to derive, under Assumptions
(A1)-(A6), the following concluding result.

Theorem 7. Consider the multi-agent system with a single
leader as in (7). Under Assumptions (A1)-(A6), there exist µ ∈
Z+, µ > 0, and matrices (F,G,H, J), with F ∈ Rµ×µ, G ∈
Rµ×n, H ∈ R1×µ, J ∈ R1×n, such that system (7), under the
leader control action (8), achieves consensus with arbitrary
convergence speed.

Proof. By Proposition 6, we need to show that under As-
sumptions (A1)-(A6) we can find µ ∈ Z+ and matrices
(F,G,H, J), with F nonsingular, such that W (0) = J −
HF−1G = 0 and the characteristic polynomial pM(s) of the
resulting matrixM takes the form pM(s) = s · p̂M(s), where
p̂M(s) is a Hurwitz polynomial with (essentially) arbitrarily
chosen zeroes. By Proposition 4, we have

pM(s) = qΨ(s)x(s)− dΨ(s)(

n−1∑
i=0

yi+1(s)si), (23)

where qΨ(s) = ∆A(s)dΨ(s) − nΨ(s)κ(s),
x(s)−1

[
y1(s) . . . yn(s)

]
is an lcMFD of W (s) and

nΨ(s)
dΨ(s) is the irreducible representation of Ψ(s) given in

Lemma 10. We first observe that the pair (qΨ(s), dΨ(s))
is coprime. Indeed, suppose that α ∈ C is a zero of
dΨ(s). This amounts to saying (see Lemma 10) that
there exists i ∈ [1, N − 1] such that α is a zero of
det(sIn−A+µiBK) = ∆A(s) +µiκ(s). On the other hand,
if 0 = qΨ(α) = ∆A(α)dΨ(α)− nΨ(α)κ(α) = −nΨ(α)κ(α),
then by the coprimality of (nΨ(s), dΨ(s)) it follows
that κ(α) = 0. But if α is a common zero of
det(sIn−A+µiBK) = ∆A(s) +µiκ(s) and κ(s), then it is
a common zero of ∆A(s) and κ(s), thus contradicting (A5).
Secondly, we note that qΨ(0) = 0, since ∆A(0) = 0
and nΨ(0) = 0 (see Lemma 10). So, we assume that
qΨ(s) = s · q̂Ψ(s). Finally, we assume that yi(s) = s · ŷi(s)
for every i ∈ [1, N − 1]. This ensures that if the
polynomials x(s), y1(s), . . . , yn(s) are coprime then
W (0) = 1

x(0)

[
y1(0) . . . yn(0)

]
= 0. Moreover, the

polynomial Diophantine equation (23) becomes

p̂M(s) = q̂Ψ(s)x(s)− dΨ(s)(
n−1∑
i=0

ŷi+1(s)si), (24)

with (q̂Ψ(s), dΨ(s)) coprime. Note that deg dΨ(s) = (N−1)n,
while deg q̂Ψ(s) = Nn − 1. The coprimality of q̂Ψ(s) and
dΨ(s) ensures that

p̂M(s) = q̂Ψ(s)x(s)− dΨ(s)t(s), (25)

has a solution (x(s), t(s)) for every choice of p̂M(s). On
the other hand, we can always ensure [21] that there exists
a solution (x(s), t(s)) with deg t(s) ≤ Nn − 2. So, if
deg p̂M(s) = (N−1)n+Nn−1 (which amounts to assuming
µ = (N − 1)n), then deg p̂M(s) = deg[q̂Ψ(s)x(s)] =
Nn− 1 + deg x(s), and therefore deg x(s) = (N − 1)n. We
can always ensure that x(0) 6= 0, possibly by introducing a
small perturbation of the coefficients of p̂M(s) that does not
significantly affect its zeros. On the other hand, if we represent
t(s) as t(s) =

∑Nm−2
i=0 tis

i, and we set

ŷn(s) := tn−1 + tns+ . . . tNn−2s
(N−1)n−1

ŷn−1(s) := tn−2

...
ŷ1(s) := t0,

then (24) holds for the given x(s) and ŷi(s), i ∈ [1, N − 1].
Since, for every i ∈ [1, N − 1], deg ŷi(s) ≤ (N − 1)n − 1,
then deg yi(s) ≤ (N − 1)n = deg x(s), so W (s) =

1
x(s)

[
y1(s) . . . yn(s)

]
is a proper rational matrix that

admits a minimal realization Σ = (F,G,H, J), of dimension
µ, with F nonsingular.

Remark 8. Theorem 7 has shown that by assuming µ =
(N − 1)n we can always guarantee that the resulting multi-
agent system reaches consensus with arbitrary convergence
speed. As a matter of fact, and as extensively discussed in
[16], this is a conservative result, and (25) may be solved for
much lower values of µ, by suitably choosing the zeros of the
Hurwitz polynomial p̂M(s). A detailed analysis of this issue
and of the search for the best way to allocate the eigenvalues
of M, assuming µ fixed, is the subject of ongoing research.



Remark 9. The scaling factor C, introduced in (17), is a
consequence of the fact that the state variables of the overall
controlled system include the µ auxiliary state variables ε for
which no alignment is required and for which the initial value
is set to zero (otherwise they would influence the consensus
value). Such a scaling factor is fixed, once the control protocol
(8) has been designed, and hence can be easily accounted
for (but this requires the leader to provide this information
to the other agents). Alternatively, one can ensure C = 1 by
imposing in the proof of the previous theorem yi(s) = s2ŷi(s).
Indeed, it is a matter of simple calculations to show that if
this is the case then HF−2G =

[
d
dsW (s)

]
s=0

= 0 and this
ensures w>extz = 0, i.e., C = 1.

APPENDIX

Lemma 10. Let L ∈ RN×N be the Laplacian matrix of
an undirected, weighted and connected graph, partitioned as
in (12), with L̂ positive definite. Let T ∈ R(N−1)×(N−1)

be a nonsingular orthonormal matrix such that T>L̂T =
diag{µ1, µ2, . . . , µN−1} =: Λ̂, with µi > 0 for every i ∈
[1, N − 1]. Set α := T>λ ∈ RN−1. Then WLF (s) := (λ> ⊗
BK)·[IN−1⊗(sIn−A)+L̂⊗BK]−1 (λ⊗BK)+A−`11BK ∈
R(s)n×n can be expressed as follows:

WLF (s) = A−Ψ(s)BK, (26)

with Ψ(s) := `11 −
[∑N−1

i=1 α2
iK(sIn −A+ µiBK)−1B

]
.

Moreover, under Assumptions (A5) and (A6),
Ψ(s) has an irreducible representation nΨ(s)

dΨ(s) , with

dΨ(s) =
∏N−1
i=1 det(sIn−A+µiBK) = det[IN−1⊗(sIn−A)

+L̂ ⊗BK] and nΨ(s) satisfies nΨ(0) = 0.

Proof. Set S := T ⊗In, so that S> = T>⊗In = T−1⊗In =
S−1. Set ALF := IN−1 ⊗ A − L̂ ⊗ BK,BLF := λ ⊗ BK,
and CLF := λ> ⊗BK. It is easy to see that

S>ALFS = IN−1 ⊗A− Λ̂⊗BK,
S>BLF = (T>λ)⊗BK = α⊗BK,
CLFS = (λ>T )⊗BK = α> ⊗BK.

Therefore

WLF (s) = CLFS
[
IN−1 ⊗ (sIn −A) + Λ̂⊗BK

]−1

·S>BLF +A− `11BK

= (α> ⊗BK)
[
IN−1 ⊗ (sIn −A) + Λ̂⊗BK

]−1

·(α⊗BK) +A− `11BK

=
[∑N−1

i=1 α2
iBK(sIn−A+ µiBK)−1BK

]
+A−`11BK.

Since each K(sIn − A + µiBK)−1B is a scalar rational
function, the previous expression can be rewritten as in (26).
As far as the last statement is concerned, we have just proved
that det[IN−1 ⊗ (sIn − A) + L̂ ⊗ BK] =

∏N−1
i=1 det(sIn −

A + µiBK). Set ni(s) := Kadj(sIn − A + µiBK)B and
di(s) := det(sIn−A+µiBK). Since (A,B) is in controlla-
bility canonical form, it is easy to see that ni(s) = κ(s) while
di(s) = ∆A(s) + µiκ(s), and by (A5) this is an irreducible
representation for every i. On the other hand, by (A6), all

µi’s are distinct and this ensures that for each i 6= j, di(s)
and dj(s) are coprime. It is immediate to see that the least
common multiple of the di(s), i ∈ [1, N − 1], is dΨ(s) and

N−1∑
i=1

α2
iK(sIn −A+ µiBK)−1B =

N−1∑
i=1

α2
i

ni(s)

di(s)

=

∑N−1
i=1 α2

ini(s)
∏
j 6=i dj(s)

dΨ(s)

is irreducible. Finally, note that nΨ(0) = 0 is equivalent to
Ψ(0) = 0 and hence to 0 = `11−

∑N−1
i=1 α2

i
κ(0)

∆A(0)+µiκ(0) , and

since ∆A(0) = 0 this is equivalent in turn to `11 =
∑N−1
i=1

α2
i

µi
.

By the definitions of α and µi, i ∈ [1, N − 1], the identity
can be rewritten as `11 = λ>L̂−1λ, and this identity is true
because of the properties of the Laplacian.
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