
1

Leader-controlled protocols to accelerate

convergence in consensus networks

Gianfranco Parlangeli and Maria Elena Valcher

Abstract

In this paper we consider a discrete-time consensus network, and assume that one of the agents

acts as a leader and injects an input signal to improve the overall system performance, in particular

to increase the speed of convergence to consensus or to achieve finite-time consensus. Two possible

control protocols are proposed and the characteristic polynomials of the resulting closed-loop systems

are determined. These results allow to investigate consensus and finite-time consensus of the overall

systems. Open problems and future research directions conclude the paper.

Keywords Multi-agent systems, consensus networks, convergence speed, finite-time consensus.

I. INTRODUCTION

The interest in consensus problems originated in Statistics and Computer Science in the

Sixties and since then it stimulated quite an impressive research activity, strongly encouraged by

the application areas where consensus finds an immediate application, e.g., formation control,

distributed optimization, agreement in social networks or synchronisation, to mention a few [1],

[2], [3]. Consensus is all about converging to a common decision, by exchanging information

with neighbouring agents/nodes (representing sensors, robots, birds, fishes, ...), and such an

agreement should be reached in the most efficient way, namely with the highest possible speed

and possibly in finite time. A major role in determining the speed of convergence, both in

case of agents described as simple or double integrators and in case of higher-order models

for the agents’ description, is played by the Laplacian(s) of the communication graph(s). In the

simplest case, if we assume that the communication topology is fixed, the speed of convergence
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is determined by the second smallest eigenvalue of the Laplacian [4], and sometimes it may be

inadequate to meet the expected system performance [5].

To improve the multi-agent system performance, “second order schedules”, based on shift

register or accelerated gradient methods and making use of the agents’ states in the two previous

time instants, have been proposed. In [6] distributed averaging is considered. The performance

benefits of adding extra states to distributed averaging iterations is explored. Conditions for

convergence and possible ways of optimizing the convergence rates are discussed, and illustrated

by means of numerical examples. To improve convergence, as well as to cope with interrupted

communications with neighbouring agents, in [7] the case when in addition to the standard

weighted average consensus protocol each agent performs some correction, based on the value

of its own state at the previous time step, has been considered. The accelerated gradient method

is used for distributed resource allocation and consensus problems, and accelerated gradient

algorithms are proved to outperform the existing methods available in the literature. In [8]

the first theoretical demonstration that adding a local prediction component to the update rule

can significantly improve the convergence rate of distributed averaging algorithms is provided.

The problem of maximizing the convergence speed is posed as an optimization problem, and an

expression of the best possible solution is provided. In [9] gossip algorithms using two-step local

memory for each node are studied in order to accelerate distributed averaging and more general

multi-step memory are discussed. The paper exploits the same over-relaxation technique as in

the previous augmented broadcast algorithms, but the accelerated gossip algorithms discussed

here admit probabilistic time-varying systems in which the update matrix depends on time,

while previous references considered only the deterministic case. This paper provides theoretical

evidence of the fact that shift registers can help accelerate convergence even in the more general

context of probabilistic time-varying multi-agent systems. If we assume a discrete-time model

for the agents’ dynamics and the only information we have about the (symmetric) Laplacian

associated with the communication graph is the interval to which the non-trivial eigenvalues of

the Laplacian belong, adding one memory slot to each agent allows to improve the (guaranteed)

convergence speed. However, in this set-up there is no significant benefit in adding more memory

slots [10]. Alternatively, polynomial filters, acting only on the coupling strength (see Section II

of the paper) and determining updating algorithm for such a parameter in order to improve the

speed of convergence, have been proposed [11]. For a complete overview of the acceleration

methods, see [11], [12].
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A common trait of the previous references, dealing with control schemes to accelerate con-

sensus, is that all agents have the possibility of storing and elaborating local data. This is not

necessarily the most natural solution: there are cases when selecting a subset of nodes with these

capabilities is more robust and economically beneficial than attributing these same features, even

at a lower level, to all nodes. This is often the case when dealing with electric grids or building

automation systems, where most of the nodes have very basic features and only a few of them

can perform more advanced data processing. In fact, in a lot of multi-agent systems the agents are

not all peers, and consensus is achieved under the leadership of a few of them, named leaders,

that overview and coordinate the activity of the remaining agents (followers), leading them to

a common decision. The idea of selecting one or more leaders within a set of agents, with the

final goal of improving the converge speed to consensus of the overall multi-agent system, has

been previously explored in the literature.

In [13] discrete-time multi-agent systems whose dynamics is either a simple or a double-

integrator are considered, and a model predictive control protocol is adopted by the so-called

pinning nodes, namely nodes that inject some additional input signal with the purpose of

accelerating convergence to consensus. It is worth noticing that the communication constraint

on the pinning nodes introduced in [13] is quite strong, since it does not simply require pinning

nodes, regarded as leaders to be “connected” with all the followers, but to have direct access

to the information of all the networks agents, including the other leaders. In the case of a

single leader, the results of [13] would require the communication graph to include a star graph

centred in the leader’s node. More recently, pinning consensus control has been investigated by

imposing weaker assumptions on the communication structure. In particular, in [14] the case of

a single pinning agent that is the root of a spanning tree included in the communication graph is

considered. By adopting a rather different model for the overall multi-agent system with respect

to the one we consider in this paper, it is shown that dynamic pinning control performs at least

as well as the static one in increasing the speed of convergence (but no detailed results about

the achievable speed of convergence are provided). In [15] it is shown how consensus on a

prescribed (and hence a priori known) value can be achieved, by ensuring that a small fraction

of the agents introduce a corrective feedback control mechanism, based on the consensus error. In

[16], the case of multi-agent networks with communication delays is considered. If the network

topology is fixed a multi-hop relay scheme is adopted to ensure rapid consensus. Each agent

can receive information from its multi-hop neighbors with a certain delay and the number of

March 20, 2018 DRAFT



4

hops is optimized to maximize the convergence speed. On the other hand if the communication

topology can be used as a design parameter, also a strategy to select the optimal network topology

is proposed. In [17], multi-agent consensus in a network where there is an active leader and

variable interconnection topology is considered. The consensus to the leader’s value is achieved

by all the followers through neighbor-based local controller and state-estimation, by assuming

that the (acceleration) input of the leader is available.

In all previous references, where the target of accelerating convergence to consensus is led

by the action of a group of leaders, either restrictive conditions on the communication graph

are introduced or somewhat weak results about the achievable results are derived. Even more,

the leaders typically tend to impose the consensus value rather than simply guiding all the

agents to an agreement. In this paper we consider cooperative multi-agent systems described

as simple (discrete-time) integrators and adopting the standard nearest neighbor linear protocol.

The communication topology is fixed and described by a strongly connected directed graph. We

assume that a single node acts as a leader and injects in the overall consensus network an input

signal, which is locally elaborated based on the past values of the leader’s status, with the target

of modifying the dynamics of the overall closed-loop system (by allocating its eigenvalues),

of increasing the convergence speed to consensus or even ensuring finite-time consensus. As

we will see, in this set-up, which may be also preferable for practical reasons, it is possible

to achieve better performance in terms of achievable speed of convergence than the commonly

used strategy of endowing each agent with some memory storage to update the local state

(see Remark 15, below). So, even if surely there are networks for which attributing different

computational capabilities to the nodes is not an option, we will show that when this solution is

possible, the obtained performance is definitely better. Differently from previous works dealing

with methods to accelerate consensus, the leader acts as a coordinator that tries to improve the

system performance but does not impose the consensus value (or the tracking of some reference

signal). On the contrary, the consensus value is a weighted sum of the agents and the leader’s

initial values, as in the leaderless consensus case. To achieve this goal, two control protocols

are proposed, whose structures are different from those already investigated in the literature.

In the first protocol the signal injected by the leader is obtained through a moving average

model that makes use of the past values of the leader’s state. The second protocol is more

elaborated since the injected input is obtained through a dynamic system fed by the leader’s

state values and making use of a special kind of static output feedback. The first protocol has
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limited performance and a complete investigation of its capabilities in terms of increased speed of

convergence is still open. On the contrary, the second protocol always guarantees, under certain

natural assumptions on the relationship between leader and followers that can be formalized in

terms of reachability and observability properties, consensus at the desired speed and even finite

time consensus. Finite-time consensus represents a quite desirable condition for a discrete-time

multi-agent system and it has been the object of intensive research in the last years (see, e.g., [18],

[19], [20], [21], [22]). In this paper to achieve finite-time consensus no change is introduced in

the communication structure (an aspect that not always represents a design parameter but rather

a constraint in the convergence speed optimization problem); the price to pay is the increased

size of the controller. Note that in [19], [21], finite-time consensus is achieved through a time-

varying control law that requires to modify the coupling strength based on the value of the

nonzero eigenvalues of the Laplacian. This is equivalent to designing a sequence of step-sizes

so that exact average consensus is achieved in finite-time. The algorithm proposed in this paper

is time-invariant. Also, in [18], [20], [22] the main goal is to provide algorithms for an agent to

estimate (in a finite number of steps) the asymptotic consensus value based on the values of its

own state (or of the local states) on a sufficiently large time window (possibly in the presence

of bounded delays in the communication links), while in this paper the leader’s control action

actually drives the agents’ states to the consensus value in finite time, and not only predicts the

consensus value.

The paper is organized as follows. In Section II the problem set-up is introduced, and the

consensus network with a single leader injecting a control input is presented. In Section III

two protocols to synthesize the control input are introduced, and the characteristic polynomials

of the resulting systems are derived in Section IV. This immediately allows to determine the

conditions for the eigenvalues allocation of the closed-loop systems. In Section V necessary and

sufficient conditions for the two control protocols to ensure that the corresponding closed-loop

system achieves “leader-controlled distributed consensus” are derived as spectral conditions on

the resulting system matrices. As a result, necessary and sufficient conditions for the existence

of such leader-controlled distributed consensus control protocols are determined (Section VI).

Finite-time leader-controlled distributed consensus is finally investigated in Section VII.

A preliminary version of this paper was presented at the 2017 IFAC World Congress [23]. In

[23] the two control protocols have been introduced and their characteristic polynomials have

been derived. Preliminary results on consensus and finite-time consensus have been proposed.
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The current manuscript provides more in depth analytic results enlightening the role of cer-

tain hypotheses, refines the preliminary characterizations presented in [23] and provides them

with detailed proofs. Also, counter-examples showing when the sufficient conditions fail to be

necessary are discussed.

Notation. Z+ and R denote the set of nonnegative integers and the set of real numbers,

respectively. We let ei be the i-th element of the canonical basis in Rn (n being clear from

the context), with all entries equal to zero except for the i-th one which is unitary. We let

1k and 0k denote the k-dimensional real vectors whose entries are all 1 or all 0, respectively.

Given a matrix A ∈ Rn×n, the (i, j)-th entry of A is denoted either by aij or by [A]ij . The

spectrum of A, denoted by σ(A), is the set of its eigenvalues. Given α1, . . . , αn ∈ R, the symbol

diag{α1, . . . , αn} denotes the n-dimensional diagonal matrix whose (i, i)-th entry is equal to αi.

We denote by R[z] the ring of polynomials in the indeterminate z with coefficients in R.

Given A ∈ Rn×n, pA(z) := det (zIn − A) ∈ R[z] denotes the characteristic polynomial of A. A

polynomial a(z) ∈ R[z] is said to be Schur if a(λ) = 0 for some λ ∈ C implies |λ| < 1. Given

two polynomials a(z) and b(z), the expression ∂a denotes the degree of a(z), a(z)|b(z) means

that a(z) divides b(z), and GCD(a(z), b(z)) represents the greatest common divisor of a(z) and

b(z). Given a(z), b(z), c(z) ∈ R[z], the equation a(z)x(z) + b(z)y(z) = c(z), in the unknown

polynomials x(z) and y(z) belonging to R[z], is called Diophantine equation (in the ring of

polynomials). We refer to [24] for the main results about the existence and paramerization of all

solutions (x(z), y(z)), and for the uniqueness of the two, in general distinct, “minimal degree

solutions”, by this meaning either (x̄min(z), ȳ(z)) such that ∂x̄min < ∂x for any other solution

(x(z), y(z)), or (x̄(z), ȳmin(z)) such that ∂ȳmin < ∂y for any other solution (x(z), y(z)).

II. PROBLEM SETUP

Consider a multi-agent system of N agents, each of them indexed in the integer set {1, .., N}.

The state of the i-th agent is described by the scalar variable xi that updates according to the

following discrete-time linear state-space model [4]:

xi(t+ 1) = xi(t) + vi(t), t ∈ Z+,

where vi is the input signal of the i-th agent. The communication among the N agents is

described by a fixed directed graph with adjacency matrix A ∈ RN×N . The (i, j)-th entry of

A is positive, i.e., [A]ij > 0, if the information flows from agent j to agent i and [A]ij = 0
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otherwise. We assume [A]ii = 0, ∀i ∈ {1, . . . , N}. The time-invariance assumption on the

communication topology is a restrictive hypothesis, but nonetheless a quite realistic one when

dealing with consensus problems for networks whose nodes have fixed positions. For instance,

under this assumption consensus algorithms have been effectively applied to provide distributed

solutions to fundamental issues for an electric grid, such as state estimation, economic dispatch

and optimal power flow [25], thus providing important tools for its evolution to a smart grid.

A related recent application field is heat and energy distribution in building automation systems

[26]. Each agent adopts the (nearest neighbor linear) consensus protocol [4] which amounts to

saying that the input vi takes the form:

vi(t) = κ

N∑
j=1

[A]ij(xj(t)− xi(t)), (1)

where κ > 0 is a given real parameter known as coupling strength. If we stack the states of the

agents in a single state vector x ∈ RN , the overall multi-agent system becomes

x(t+ 1) = (IN − κL)x(t) =: Ax(t), (2)

where L = [`ij] := diag{
∑

j 6=1[A]1j, . . . ,
∑

j 6=N [A]Nj} − A ∈ RN×N is the Laplacian [27]

associated with the adjacency matrix A. Note that, by the properties of the Laplacian, we have

A1N = 1N , and hence 1 is an eigenvalue of A. System (2) can be used to describe a wide variety

of practical applications as it describes the situation when each agent/node shares information

with its neighbors with the final goal of converging to a common constant value. If so, we refer

to the multi-agent system as to a consensus network. More formally, system (2) is a consensus

network if for every initial state x(0) there exists α ∈ R such that

lim
t→+∞

x(t) = α1N . (3)

The constant α is called the consensus value [28] for system (2), corresponding to the given

initial state. If the agents’ communication graph is strongly connected, namely the Laplacian L

is irreducible [28], and the coupling strength κ satisfies the following constraint:

0 < κ <
1

maxi=1,...,N `ii
, (4)

system (2) is a consensus network (see Theorem 2 in [28]). Moreover, the consensus value is

α =
w>Ax(0)

w>A1N
. (5)
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where wA is a left eigenvector of A corresponding to the unitary eigenvalue. Note that the

final value on which the agents agree is a linear function of the initial conditions xi(0), i ∈

{1, 2, . . . , N}, of the agents; this kind of agreement is known as weighted-average consensus

[28]. In the following we assume that the above conditions are steadily satisfied.

Remark 1. By assumption (4) on κ, A = IN − κL is a positive matrix and, by the assumption

that L is the Laplacian of a strongly connected graph, it is also irreducible. So, Perron-Frobenius

theorem and condition A1N = 1N ensure [28] that 1 is a simple eigenvalue of A and that its

modulus is greater than the modulus of any other eigenvalue of A.

We now assume that, in the current set-up, one agent is a leader that can influence the group

dynamics through a signal u (in addition to vi) based on its own past dynamics. The purpose of

the leader’s action is to improve the performance of the group, e.g. to accelerate consensus, to

achieve finite-time consensus, to ensure effective fault tolerance or formation control. Assuming

without loss of generality (w.l.o.g.) that the leader is the first agent (if it is not, we can permute

the state entries), the multi-agent system with consensus protocol (2) and one leader exerting

the control action u becomes:

x(t+ 1) = Ax(t) + e1u(t). (6)

In the sequel, we introduce two different schemes to generate u, and investigate the features

and performance of the multi-agent system under these two protocols. In particular, in this paper

we explore consensus and finite-time consensus.

III. PROPOSED CONTROL PROTOCOLS

First control protocol. We first consider the case when the leader elaborates its control input,

u(t), based on its own state evolution only. We assume that the leader has the possibility of

storing the past values of its own state dynamics in a prescribed time window µ, and the control

input u(t) is generated by the moving average (MA) model:

u(t) =

µ∑
i=0

aix1(t− i), (7)

where µ > 0 and a0, a1, . . . , aµ are design parameters, with aµ 6= 0. The idea of resorting to

additional control inputs, whose values are determined based on the past state evolutions of the

agents, was recently proposed to accelerate convergence toward consensus, by assuming that
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each node adopts an update rule as in (7). By adopting this control strategy, good consensus

speed can be ensured even when there is poor knowledge of the network [7]. Note that in [6], [7]

only one memory sample is stored, namely µ = 1. With respect to these references, we assume

that only one agent has the possibility of storing its past state evolution and of elaborating an

additional control input. If we introduce the augmented state vector

χ(t) :=


x(t)

x1(t− 1)
...

x1(t− µ)

 ∈ RN+µ, (8)

then system (6) under the leader control action (7) can be compactly described by:

χ(t+ 1) =


A+ a0e1e

>
1 e1a

>

e1e
>
1 F

χ(t) =:M1χ(t), (9)

where

a :=



a1

a2
...
...

aµ


∈ Rµ, F :=



0 0 0 . . . 0

1 0 0 . . . 0
... . . . . . . ...

0
. . . 0 0

0 0 . . . 1 0


∈ Rµ×µ. (10)

Second control protocol. An alternative control scheme is the one where the leader’s additional

control input u(t) is elaborated based on the leader’s state, x1(t), through a special ARMA model,

implemented by a state-space model with the following characteristic features: the system input

is x1(t), the system output is u(t), and the state-update depends on x1(t) as well as on a u(t),

in a sort of static output feedback (see Fig. 1). The state vector of this µ-dimensional state-

space model is ε(t) :=
[
ε1(t) ε2(t) . . . εµ(t)

]>
, and updates according to the following

discrete-time state-space model:

ε1(t+ 1) = a1x1(t)− b1u(t),

εi(t+ 1) = εi−1(t) + aix1(t)− biu(t), i = 2, .., µ,
(11)

where bi and ai ∈ R are design parameters. The leader’s input is expressed in terms of these

auxiliary variables as follows

u(t) = εµ(t) + a0x1(t). (12)
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-

-

State-space model
state: ε(t)

-

−b

x1(t)
u(t)

Fig. 1. Block scheme describing the second control protocol.

Also in this case, we can describe the overall muti-agent system in compact form. Upon

introducing the augmented state vector

χ(t) :=

x(t)

ε(t)

 , (13)

we obtain

χ(t+ 1) =


A+ a0e1e

>
1 e1e

>
µ

(a− ba0)e
>
1 F − be>µ

χ(t) =:M2χ(t), (14)

where a0 ∈ R, a ∈ Rµ and F ∈ Rµ×µ have been defined in (10), and b :=
[
b1 . . . bµ

]>
∈ Rµ.

A comparison between (9) and (14) reveals that the first control protocol cannot be obtained as

a special case of the second one, except when µ = 1, a = e1 and b = 0, which is a trivial case.

IV. CHARACTERISTIC POLYNOMIALS OF THE LEADER-CONTROLLED SYSTEMS

As a first step, in this section we investigate the structures of the characteristic polynomials of

the closed-loop multi-agent systems obtained from (6), when the leader adopts either the control

protocol (7) or (11)-(12). To this goal it is useful to recall the following well-known technical

lemma pertaining the determinant of a block matrix.

Lemma 2. [29] Given a matrix M =

R S

P Q

 , with R ∈ RN×N , S ∈ RN×µ, P ∈ Rµ×N , Q ∈

Rµ×µ and Q nonsingular, its determinant can be expressed as detM = detQ·det (R− SQ−1P ).
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Proposition 3. Consider the multi-agent system (6) with one leader adopting the control protocol

(7) or (11)-(12). The characteristic polynomial of the state matrix M1 of (9) is

pM1(z) = zµpA(z)−
µ∑
i=0

aiz
µ−ip1(z), (15)

where pA(z) := det (zIN − A), p1(z) := det
(
zIN−1 − A(1)

)
, and A(1) is the (N − 1) × (N −

1) submatrix of A obtained by deleting the first row and the first column. The characteristic

polynomial of the state matrix M2 of system (14) is

pM2(z) = pA(z)q(z)− p1(z)[a0z
µ + r(z)], (16)

where q(z) := zµ + bµz
µ−1 + · · ·+ b2z + b1 and r(z) := aµz

µ−1 + · · ·+ a2z + a1.

Proof. By making use of Lemma 2, upon assuming R = zIN − (A+a0e1e
>
1 ), S = −e1a>, Q =

zIµ−F and P = −e1e>1 , we obtain pM1(z) = det(zIµ−F ) det
[
zIN − A− a0e1e>1 − e1a

>(zIµ − F )−1e1e
>
1

]
.

Now, note that det(zIµ − F ) = zµ and

a>(zIµ − F )−1e1 = a>


z−1 0 . . . 0

z−2 z−1 . . . 0
...

... . . . ...

z−µ z−µ+1 . . . z−1

 e1 =

µ∑
i=1

aiz
−i, (17)

and hence

pM1(z) = zµ · det

[
zIN − A− e1

(
µ∑
i=0

aiz
−i

)
e>1

]
.

By using the Laplace expansion rule along the first row [29], we obtain that det
[
zI − A− e1(

∑µ
i=0 aiz

−i)e>1
]

=

pA(z)− (
∑µ

i=0 aiz
−i)p1(z). So, we finally get

pM1(z) = zµpA(z)−

(
µ∑
i=0

aiz
µ−i

)
p1(z).

Analogously, in the case ofM2 we have, by Lemma 2, pM2(z) = det(zIµ−F+be>µ ) det
[
zIN − A− a0e1e>1 − e1e

>
µ (zIµ − F + be>µ )−1·

(a− a0b)e>1
]
. We note that

F − be>µ =



0 0 0 . . . −b1
1 0 0 . . . −b2
... . . . . . . ...

0
. . . 0 −bµ−1

0 0 . . . 1 −bµ
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is the transposed of a companion matrix, and hence det(zIµ−F +be>µ ) = zµ +
∑µ−1

i=0 bi+1z
i =

q(z). On the other hand,

e>µ (zIµ − F + be>µ )−1(a− a0b) =
1

zµ +
∑µ−1

i=0 bi+1zi

[
1 z . . . zµ−1

]
(a− a0b)

=
r(z)− a0[q(z)− zµ]

q(z)
.

Consequently, pM2(z) = q(z) det [zIN − A− e1 (a0+
r(z)−a0[q(z)−zµ]

q(z)

)
e>1

]
= q(z) det [zIN − A

−e1 r(z)+a0zµ

q(z)
e>1

]
, and by proceeding as before we get pM2(z) = q(z)·

[
pA(z)− p1(z) r(z)+a0z

µ

q(z)

]
=

q(z)pA(z)− p1(z)[a0z
µ + r(z)].

The expressions previously derived for the characteristic polynomials of the closed-loop multi-

agent systems, obtained corresponding to the two proposed control protocols, allow to immedi-

ately solve the problem of attributing to the overall system a desired characteristic polynomial.

Indeed, let Ψ(z) ∈ R[z] be a monic polynomial of degree N + µ. In the case of the control

law (7), the problem is to find a polynomial y(z) := −
∑µ

i=0 aiz
µ−i, of degree at most µ and

satisfying y(0) 6= 0 (due to the assumption aµ 6= 0), such that

pA(z)zµ + p1(z)y(z) = Ψ(z), (18)

while for the control law (11)-(12), the problem is to determine polynomials x(z) := zµ +∑µ
i=1 biz

i−1, monic of degree µ, and y(z) := −a0zµ−
∑µ

i=1 aiz
i−1, of degree at most µ, so that

pA(z)x(z) + p1(z)y(z) = Ψ(z). (19)

Note that p1(z) = det(zIN−1 − A(1)) is a monic polynomial of degree N − 1. We have the

following immediate result.

Proposition 4. Consider the multi-agent system (6) with a single leader, and let Ψ(z) ∈ R[z]

be a monic polynomial of degree N + µ.

i) There exist a0, a1, . . . , aµ ∈ R, aµ 6= 0, such that the control protocol (7) attributes to the

overall multi-agent system (9) the characteristic polynomial Ψ(z) if and only if (i) p1(z) | Ψ(z)−

zµpA(z) and (ii) if Ψ(0) = 0 then the multiplicities of 0 as a zero of Ψ(z) − zµpA(z) and of

p1(z) coincide.

ii) If µ ≥ N − 1 and GCD(pA(z), p1(z)) | Ψ(z), then there exist a0, a1, . . . , aµ ∈ R and

b1, b2 . . . , bµ ∈ R such that the control protocol (11)-(12) attributes to the overall multi-agent

system (14) the characteristic polynomial Ψ(z).
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Proof. i) Obvious from (18) and condition y(0) 6= 0.

ii) If GCD(pA(z), p1(z)) | Ψ(z) then the Diophantine equation (19) has necessarily a solution

(x(z), y(z)) ∈ R[z]×R[z]. We want to show that when µ ≥ N − 1 then the solution of minimal

degree w.r.t. y(z) is such that x(z) is monic of degree µ, and y(z) has degree at most µ. Clearly,

the solution of minimal degree w.r.t. y(z) satisfies [24] ∂y < ∂ pA
GCD(pA(z),p1(z))

≤ N ≤ µ + 1,

and hence ∂(p1y) ≤ (N − 1) + (N − 1) = 2N − 2. This implies that ∂(p1y) < ∂Ψ = N + µ

and hence ∂(pAx) = ∂Ψ = N +µ. Consequently, ∂x = µ and x(z) is monic because pA(z) and

Ψ(z) are. This ends the proof.

V. LEADER-CONTROLLED DISTRIBUTED CONSENSUS

As discussed in [30], leaders in a multi-agent system can take different roles. “Power leaders”

have dynamics which is independent of those of the other agents, and their role is that of

imposing to the followers the direction to follow, the specific goal to achieve. Alternatively,

“knowledge leaders” do not impose the final decision but rather the way and the speed at which

to achieve it. In this paper we adhere to the second perspective and introduce a definition of

consensus for system (14) that imposes the final value to be a linear function of the initial states

of all agents, and hence to be a distributed consensus (see, e.g., [28]) rather than the prescribed

value or signal chosen by the leader. We refer to this type of consensus as leader-controlled

distributed consensus, in the sense that the consensus condition is achieved under the guidance

of a leader, but it is distributed as each node contributes not only to the achievement but also to

the value of the final consensus. The following definition is inspired by the one given in [22].

Definition 1 (Leader-controlled distributed consensus). Consider a multi-agent system with a

single leader described as in (6). We say that the control protocols (7) or (11)-(12) lead the

system to leader-controlled distributed consensus (for short, LCD consensus), under the leader’s

action u(t), if there is a vector c ∈ RN such that for every choice of the agents’ initial state x0

(and assuming zero initial conditions for the auxiliary variables, i.e. χ(0) = [x>0 0>]>) one has

lim
t→+∞

x(t) = 1N(c>x0). (20)

In this section we investigate under what conditions the closed-loop systems obtained corre-

sponding to the two control protocols achieve leader-controlled distributed consensus. To this
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goal, to highlight the fact that the leader is the first agent, we assume w.l.o.g. that A ∈ RN×N

is block partitioned as:

A = IN − κL =

a11 h>

g A(1)

 , (21)

where a11 ∈ R,g,h ∈ RN−1 and A(1) ∈ R(N−1)×(N−1) is the principal submatrix of A obtained

by deleting its first row and its first column. Also, in the following we will assume that the

triple (A(1),g,h
>) is a minimal realization, namely that the pair (A(1),g) is reachable and the

pair (A(1),h
>) is observable. It is worthwhile to comment on the meaning of this assumption

in the current set-up. From the perspective of a group of N agents consisting of a leader and

N − 1 followers, the reachability of the pair (A(1),g) amounts to saying that the leader has

the possibility of arbitrarily shaping the dynamics of the followers, while the observability

of the pair (A(1),h
>) means that the actions of the followers are completely observable by

the leader. These seem to be rather natural assumptions if we want the leader to be able to

influence the overall system dynamics to achieve LCD consensus and/or different targets. Note

that controllability/observability of leader-follower consensus networks and their relationships

with the graph structure have been the subjects of a good number of studies, e.g., [31], [32].

Necessary and sufficient conditions for controllability/observability in terms of graph features are

available only for special graph structures (such as path graphs, cycle graphs and some others),

but these properties are very easy conditions to check. As it has been shown in the Appendix (see

Lemma 20), the assumption that (A(1),g,h
>) is a minimal realization is equivalent to assuming

that the characteristic polynomials of A and A(1), namely pA(z) and p1(z), are coprime.

Remark 5. Note that since A is positive and Schur, then A(1), being a principal submatrix of A,

is Schur in turn. So, even if the matrices would have some common eigenvalues, this would result

in the fact that (A(1),g) is nonetheless always stabilizable and (A(1),h
>) is always detectable.

So, the polynomials pA(z) and p1(z) would have some common zero of modulus strictly smaller

than 1. These common eigenvalues are inherited by the matrices Mi, i = 1, 2, and represent a

lower bound on the modulus of the second largest eigenvalue of the matrices Mi and hence a

limit to the best achievable convergence speed. In particular, if such common zeros are not 0 then

finite-time LCD consensus cannot be achieved. We omit this analysis due to space constraints.

Under the minimality assumption on the triple (A(1),g,h
>), the multi-agent system (9), obtained

corresponding to the control protocol (7), achieves LCD consensus if and only if the spectrum
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of the matrix M1 satisfies certain specific conditions, as shown in Theorem 6, below.

Theorem 6. Consider the multi-agent system (6) with one leader adopting the control protocol

(7). The resulting multi-agent system reaches leader-controlled distributed consensus (when all

the auxiliary variables are zero at t = 0) if and only if:

(C-1) The state matrix M1 has an eigenvalue in 1 (and hence, by Lemma 21, part i), the

corresponding right eigenvector is
[
1>N 1>µ

]>
).

(C-2) 1 is a simple eigenvalue of M1 and it is strictly dominant, namely all the other

eigenvalues have moduli smaller than 1.

If conditions (C-1) and (C-2) hold, then

(a1) The parameters a0 ∈ R and a ∈ Rµ satisfy

a0 + a>1µ = 0. (22)

(a2) The definition of LCD consensus holds for (see (20))

c =
w

w>1N + w>ext1µ
, (23)

where
[
w> w>ext

]>
, w ∈ RN and wext ∈ Rµ, is a left eigenvector of M1 corresponding to the

eigenvalue 1.

(a3) The vector w ∈ RN in (a2) is an eigenvector of A corresponding to 1, and if we assume

w.l.o.g. that w>e1 = 11, then

(a4) the vector c in (23) becomes

c =
w

w>1N + a>(Iµ − F )−11µ
.

Proof. The overall controlled system, corresponding to the control protocol (7), is described as

in (9), and we assume the variable x(t) as the output of the overall state-space model:

x(t) =
[
IN 0

]
χ(t) =: Hχ(t). (24)

[Sufficiency + (a1)-(a2)] First of all note that if (C-1) holds, then by Lemma 21, part i),

condition (a1) holds. Assume (C-1) and (C-2) hold, and consider a basis of RN+µ consisting

1Being A an irreducible Metzler matrix, with strictly dominant eigenvalue 1, it admits a strictly positive left eigenvector

corresponding to 1, and hence all the other eigenvectors, being multiple of that eigenvector, have nonzero entries. So, in

particular, the first entry is nonzero.
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of (generalised) eigenvectors of M1, having v :=
[
1>N 1>µ

]>
as its first element. Every

χ(0) =
[
x>0 0

]>
can be expressed as a linear combination of such eigenvectors (see e.g.

[33]). We let α be the coefficient weighting the eigenvector v in the expression of χ(0). The

state evolution of system (9) asymptotically converges to α ·
[
1>N 1>µ

]>
, and hence x(t) →

α1N as t goes to +∞. This ensures leader-controlled distributed consensus (and hence com-

pletes the sufficiency part). To determine the value of α, note that for every t ≥ 0 one has[
w> w>ext

]>
χ(t) =

[
w> w>ext

]>
Mt

1χ(0) =
[
w> w>ext

]>
χ(0) = w>x0. On the other hand,

limt→+∞

[
w> w>ext

]>
χ(t) = α

[
w> w>ext

]> 1N
1µ

 = α(w>1N +w>ext1µ). This allows to say

that α =
w>x0

w>1N + w>ext1µ
, and hence c is expressed as in (23), thus proving (a2).

[Necessity] By definition of leader-controlled distributed consensus, for every initial condition

χ(0) =
[
x>0 0

]>
the trajectory x(t) converges to (c>x0)1N . This implies that 1 is an eigenvalue

of M1 and hence (C-1) holds. Also, by Lemma 21 part i), we can claim that v :=
[
1>N 1>µ

]>
is an eigenvector ofM1 corresponding to 1, and there are no eigenvectors ofM1 corresponding

to 1 that are linearly independent of v. So, the geometric multiplicity of 1 as an eigenvalue of

M1 is unitary. To complete the proof of (C-2), we preliminarily show that the pair (M1, H) =(
M1,

[
IN 0

])
is observable. To this end it is sufficient to note that if this were not the case

then λ ∈ σ(M1) and
[
z> z>ext

]>
6= 0 could be found (see PBH test [34]) such thatλIN+µ −M1

H

 z

zext

 = 0,

but this amounts to saying that λ ∈ σ(M1) and zext 6= 0 could be find such that

 −e1a>
λIµ − F

 zext =

0. By the assumption aµ 6= 0 and the structure of F such a vector zext 6= 0 does not exist, and

hence (M1, H) is observable.

We now want to show that if one of the following situations arises: (a) there exists λ ∈ σ(M1),

|λ| ≥ 1 and λ 6= 1, or (b) λ = 1 is an eigenvalue of M1 with multiplicity in the minimal

annihilating polynomial [33] of M1 greater than 1, then there exists x0 6= 0 such that LCD

consensus among the agents is not reached. Assume, w.l.o.g., that λ is an eigenvalue of M1

with largest modulus. Let B = {v1,v2, . . . ,vN+µ} be a basis of (right) generalised eigenvectors

ofM1, and assume that v1,v2, . . . ,vr are generalised eigenvectors corresponding to λ, while all
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the remaining ones are generalised eigenvectors corresponding to eigenvalues of M1 different

from λ. Let w̃ ∈ Rµ be a left eigenvector of M1 corresponding to λ. By Lemma 21, part ii),

we know that the first N entries of w̃ cannot be zero, and hence x0 ∈ RN can be found such

that w̃>

x0

0

 6= 0. On the other hand, being B a basis of RN+µ, complex coefficients αi can

be found such that

x0

0

 =
∑N+µ

i=1 αivi. Since w̃>vj = 0, j = r+ 1, . . . , N +µ, this means that

0 6= w̃>

x0

0

 =
∑r

i=1 αiw̃
>vi. And by the observability of the pair (M1,

[
IN 0

]
) it follows

that as t goes to +∞, x(t) tends to align to some vector that has a nonzero projection on at least

one of the eigenvectors in the set v1,v2, . . . ,vr. In case (a) it is obvious that the state evolution

has a dominant mode which is not constant, and hence the state χ(t) cannot converge to a constant

vector with all identical entries. In case (b) we may assume w.l.o.g. that vi, i = 1, 2, . . . , r, is

a generalized eigenvector of order i of M1 corresponding to 1 and vi−1 = (M1 − IN+µ)vi.

Since w̃>(M1 − IN+µ) = 0>, it follows that w̃>vi = 0> for i = 1, 2, . . . , r − 1, and hence it

must be w̃>vr 6= 0>. Consequently, also in this case we know that the state evolution has a

dominant mode which is not constant, and LCD consensus is not achieved. Therefore condition

(C-2) holds.

To conclude the proof, we only need to show that if (C-1) and (C-2) hold, then (a3) and (a4)

hold. To prove (a3), we have to show that w is a left eigenvector of A corresponding to the

unitary eigenvalue. The vector
[
w> w>ext

]
is a left eigenvalue ofM1 corresponding to 1 if and

only if

[
w> w>ext

]
A+ a0e1e

>
1 e1a

>

e1e
>
1 F

 =
[
w> w>ext

]
,

which is equivalent, after a few manipulations (see (17)), to

w>ext = w>e1a
>(Iµ − F )−1, (25)

0 = w>[Iµ − A− (a0 + a>1µ)e1e
>
1 ]. (26)

By (a1), the second identity becomes 0 = w>[Iµ−A], thus proving that w is an eigenvector of

A corresponding to 1, namely w = wA (see (5)). Based on the expression of c given in (23), in
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order to prove (a4) we simply need to show that if w>e1 = 1 then w>ext = a>(Iµ − F )−1, but

this follows immediately from (25).

We now consider the LCD consensus problem in case of the second protocol and derive the

same spectral conditions on the matrix M2.

Theorem 7. Consider the multi-agent system (6) with one leader adopting the control protocol

(11)-(12), and assume that the two polynomials q(z) and a0zµ+r(z), where q(z) = zµ+bµz
µ−1+

· · · + b2z + b1 and r(z) = aµz
µ−1 + · · · + a2z + a1, have no common zero of modulus greater

than or equal to 1, and that q(1) = 1 + b>1µ 6= 0. The resulting multi-agent system reaches

leader-controlled distributed consensus (when all the auxiliary variables are zero at t = 0) if

and only if:

(C-1) The state matrix M2 has an eigenvalue in 1 (and hence, by Lemma 22, part i) the

corresponding right eigenvector is
[
1>N ((Iµ − F )−1a)>

]>
).

(C-2) 1 is a simple eigenvalue of M2 and it is strictly dominant.

If conditions (C-1) and (C-2) hold, then

(b1) The parameters a0 ∈ R and a ∈ Rµ satisfy (22).

(b2) The definition of LCD consensus holds for

c =
w

w>1N + w>ext(Iµ − F )−1a
, (27)

where
[
w> w>ext

]>
, with w ∈ RN and wext ∈ Rµ, is a left eigenvector of M2 corresponding

to the eigenvalue 1.

(b3)] The vector w ∈ RN in (b2) is an eigenvector of A corresponding to 1, and if we assume

w.l.o.g. that w>e1 = 1, then

(b4) the vector c in (27) becomes

c =
w

w>1N +
1

1 + 1>b
1>µ (Iµ − F )−1a

.

Proof. Also in this case we assume that the system output is described as in (24). The [Suffi-

ciency] is identical to the one for the first protocol, and it also leads, through Lemma 22 part

i), to conditions (b1) and (b2). The [Necessity] is also similar to the one for the first protocol

and it also relies on Lemma 22. So, for the sake of brevity we omit them.
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We now show that if (C-1) and (C-2) hold, then (b3) and (b4) hold. To prove (b3), let[
w> w>ext

]
be a left eigenvector of M2 corresponding to 1. This amounts to saying that

[
w> w>ext

]
A+ a0e1e

>
1 e1e

>
µ

(a− a0b)e>1 F − be>µ

 =
[
w> w>ext

]
,

which is equivalent to

w>[A+ a0e1e
>
1 − Iµ] + w>ext(a− a0b)e>1 = 0,

w>ext(Iµ − F + be>µ ) = w>e1e
>
µ .

By assumption, q(1) = 1 +b>1µ 6= 0, and since det(Iµ−F +be>µ ) = 1 +b>1µ, it follows that

Iµ − F + be>µ is nonsingular. Therefore we obtain

w>ext = (w>e1)e
>
µ (Iµ − F + be>µ )−1, (28)

0 = w>[A+ a0e1e
>
1 − Iµ] + (w>e1)e

>
µ (Iµ − F + be>µ )−1(a− a0b)e>1 . (29)

We observe that

e>µ (Iµ − F + be>µ )−1(a− a0b) =
1

1 + b>1µ
1>µ (a− a0b) (30)

= − a0
1 + b>1µ

(1 + 1>µb) = −a0, (31)

where we made use of (b1). Therefore condition (29) becomes

0 = w>[A+ a0e1e
>
1 − Iµ]− a0(w>e1)e>1 = w>[A− Iµ]

which proves that w is a left eigenvector of A corresponding to 1. Finally, based on the expression

of c given in (27), in order to prove (b4) we simply need to show that if w>e1 = 1 then w>ext =

1
1+b>1µ

1>µ . Indeed, from (28) and (30), we get w>ext=[w>e1]e
>
µ [Iµ−F+be>µ ]−1 = 1

1+b>1µ
1>µ .

Remark 8. It is worthwhile underlying that the assumption that the polynomials q(z) and

a0z
µ + r(z) have no common zero of modulus greater than or equal to 1 plays a fundamental

role in the necessity part of Theorem 7. Indeed, if these polynomials have a common zero λ

then, by the expression of pM2(z) derived in (16), it follows that pM2(λ) = 0, namely λ is an

eigenvalue of M2. On the other hand, it is also clear (see the proof of Lemma 22) that the

left eigenvectors of M2 corresponding to λ take the form w̃ =
[
0>N w>2

]>
,w2 ∈ Rµ,w2 6= 0.
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Consequently, for every x0 ∈ RN , w̃>

x0

0µ

 = 0, and hence even if |λ| ≥ 1 LCD consensus is

still possible. This is strictly related to the fact that even if the pair
(
M2,

[
IN 0

])
is observable,

we are restricting the set of admissible initial conditions to those whose last µ entries are zero.

It is worthwhile noticing, however, that this is by no means a problem, since the coefficients of

the polynomials q(z) and a0zµ + r(z) are just design parameters, and as it will be shown in the

following section we can always avoid selecting such coefficients in a way that the polynomials

have a common zero whose modulus is not smaller than 1. In the next section we will also

provide an example illustrating this situation in the specific case of finite-time LCD consensus

achieved by means of the second control protocol.

Remark 9. Theorems 6 and 7 provide necessary and sufficient conditions for the two closed-

loop systems, obtained corresponding to the two control protocols, to achieve LCD consensus,

according to Definition 1. It is worth noting that, in general, the leader-controlled distributed

consensus value may be different from the one the agents would converge to without the additional

control protocol (i.e., (5)), but the relative weights of the agents in contributing to the final

consensus value are unaltered. Indeed, the vector c does not necessarily coincide with wA, but

it is always a scalar multiple of it (see the expressions of the vectors c and points (a3) and

(b3) in the previous theorems). Therefore the final consensus value achieved with either one

of the two protocols is always related to the original consensus value (5) through some scalar

coefficient that depends on the protocol but not on the initial condition (and hence could be

easily adjusted if one wants to maintain also the consensus value unaltered).

Theorems 6 and 7 state that, under certain hypotheses involving the triple (A(1),g,h
>) (and

the polynomials q(z) and a0zµ+r(z) in the case of the second protocol), the overall multi-agent

system achieves LCD consensus if and only if the resulting matrix Mi has a simple eigenvalue

in 1 which is strictly dominant. These are not trivial results since the matricesM1 andM2 have

a peculiar structure, and they exhibit none of the standard properties of the matrices involved in

consensus algorithms, e.g. positivity, symmetry or irreducibility. Even more, we had to translate

into spectral properties asymptotic performances that need to be achieved only corresponding to

certain initial conditions. The outcome of Theorems 6 and 7 is that LCD consensus is achieved if

and only if the characteristic polynomial ofMi satisfies certain conditions. This result, formalized

March 20, 2018 DRAFT



21

in Proposition 10 below, will allow us in the next section to make use of the expressions derived

in Section IV for pMi
(z) and hence to determine under what conditions a control protocol (7)

or (11)-(12) of suitable size µ can be designed to achieve LCD consensus.

Proposition 10. Consider the multi-agent system (6) with one leader and control protocol (7)

or (11)-(12). Also, in the case of the protocol (11)-(12), assume that the two polynomials q(z)

and a0zµ + r(z), where q(z) = zµ + bµz
µ−1 + · · ·+ b2z+ b1 and r(z) = aµz

µ−1 + · · ·+ a2z+ a1,

have no common zero of modulus greater than or equal to 1, and that q(1) 6= 0. The resulting

multi-agent system reaches leader-controlled distributed consensus if and only if there exists a

monic Schur polynomial ψ(z) ∈ R[z] of degree N + µ− 1 such that pMi
(z) = ψ(z)(z − 1).

VI. CONDITIONS FOR THE EXISTENCE OF PROTOCOLS THAT LEAD TO LCD CONSENSUS

WITH DESIRED SPEED

In the previous section we have assumed that the parameters of the two proposed control

protocols have been assigned, and we have investigated under what conditions the resulting

closed-loop multi-agent systems achieve LCD consensus. In this section, we assume to simply

start with the original multi-agent system (6) and we investigate under what conditions, for each

specific control protocol, parameters can be found that ensure the closed-loop system to achieve

LCD consensus. Moreover, the issue of which convergence speed can be obtained is investigated.

As far as the first protocol is concerned, by Propositions 3 and 10, the overall system obtained

corresponding to (7) achieves LCD consensus if and only if there exists a monic Schur polynomial

ψ(z) ∈ R[z] of degree N + µ− 1 such that

pA(z)zµ + p1(z)y(z) = ψ(z)(z − 1), (32)

where y(z) := −
∑µ

i=0 aiz
µ−i ∈ R[z] is a polynomial of degree at most µ with y(0) 6= 0. In order

to address the problem of determining when µ ∈ Z+, µ > 0, and a monic Schur polynomial

ψ(z) ∈ R[z] of degree N + µ − 1 can be found such that the previous Diophantine equation

admits a solution of appropriate degree, we recall (see Remark 1) that, since A = IN − κL,

assumption (4) on κ and the irreducibility assumption on L ensure that pA(z) = (z − 1)p̂A(z),

for some monic Schur polynomial p̂A(z) ∈ R[z], with ∂p̂A = N − 1.

Proposition 11. Consider the multi-agent system (6) with a single leader and control protocol

(7). For every choice of µ there exist a0, a1, . . . , aµ ∈ R such that LCD consensus is achieved.
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Proof. As pA(z) = (z − 1)p̂A(z), where p̂A(z) is a monic Schur polynomial of degree N −

1, the LCD consensus problem is solved if and only if there exist µ ∈ Z+, µ > 0, and a

Schur polynomial ψ(z) ∈ R[z], with ∂ψ = N + µ − 1, such that the polynomial equation

p̂A(z)zµ(z − 1) + p1(z)y(z) = ψ(z)(z − 1), has a solution y(z) ∈ R[z] of degree µ and y(0) 6=

0. Set y(z) = (z − 1)ŷ(z), with ŷ(z) ∈ R[z] of degree µ − 1 (note that this amounts to

assuming a0 + a>1µ =
∑µ

i=0 ai = 0) and ŷ(0) 6= 0. Then the previous equation becomes

p̂A(z)zµ + p1(z)ŷ(z) = ψ(z). Let ỹ(z) ∈ R[z] be an arbitrary polynomial of degree µ − 1 (in

particular one with ỹ(0) 6= 0). As the zeros of a polynomial are a continuous function of its

coefficients, for every value of K in a sufficiently small neighbourhood of zero, all the zeros

of p̂A(z)zµ +K[p1(z)ỹ(z)] remain inside the unitary circle and hence it is a Schur polynomial.

Therefore, for every such K, the identity K(z − 1)ỹ(z) = y(z) = −
∑µ

i=0 aiz
µ−i provides the

desired parameters a0 and a.

Once LCD consensus is achieved, the speed of convergence is determined by the second largest

eigenvalue of M1, namely by the zero of largest modulus of ψ(z). So, the natural question

arises: What are the convergence speeds that can be achieved? Equivalently: For which Schur

polynomials ψ(z) equation (32) has a solution? Proposition 4 has provided algebraic conditions

for the solvability of (32), however no bound on the best possible speed of convergence attainable

can be easily derived from those conditions. Even if the best possible performance of the first

protocol are mostly unexplored, there are cases when even for µ = 1, a suitable choice of the

parameters a0 and a1 can always ensure an improvement of the convergence speed to LCD

consensus, as discussed in the following remark.

Remark 12. If µ = 1, the characteristic polynomial of M1 becomes pM1(z) = z · pA(z) +

y(z)p1(z), where y(z) = −a0z − a1. In order to achieve LCD consensus we have to impose

that y(1) = 0 (and hence a1 = −a0) and that pM1(z)/(z − 1) is a Schur polynomial. This

leads us to the polynomial equation z · p̂A(z)− a0p1(z) = ψ(z), where p̂A(z) =
∏N

i=2(z − λi),

p1(z) =
∏N−1

i=1 (z − νi), and ψ(z) must be Schur. The expression z · p̂A(z) − a0p1(z) can be

regarded as a root locus (positive for a0 < 0 and negative for a0 > 0). The second largest

eigenvalue of M1, say ρ, coincides with the zero of maximum modulus of ψ(z), and we want

to prove that there are situations when a suitable choice of a0 always makes ρ smaller than the

second largest eigenvalue of A.

Case 1: If the communication graph is undirected and connected, and the coupling strength
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κ satisfies (4). Then, A = IN − kL is a symmetric, Schur, positive matrix, whose eigenvalues

satisfy [28] 1 = λ1 > λ2 ≥ · · · ≥ λN > −1. On the other hand, by [35], the eigenvalues

νi, i ∈ {1, . . . , N − 1}, of the symmetric and positive (N − 1)× (N − 1) submatrix of A, A(1),

say ν1 ≥ ν2 ≥ · · · ≥ νN−1, satisfy the interlacing property and hence 1 = λ1 ≥ ν1 ≥ λ2 ≥

ν2 · · · ≥ νN−1 ≥ λN > −1. The coprimality of pA(z) and p1(z) allows to further refine the

previous identity as

1 = λ1 > ν1 > λ2 > ν2 · · · > νN−1 > λN > −1. (33)

Simple arguments based on the root locus show that, except in the case when N = 2 and

pA(z) = (z − 1)z (the case when the original multi-agent system achieves finite-time LCD

consensus and hence one cannot improve the convergence speed), in all the other cases small

positive values of a0 surely allow to make ρ smaller than |λ2|.

Case 2: Similarly, elementary reasonings based on the root locus allow to say that when

the second largest eigenvalue of A, say λ2, namely the zero of maximum modulus of p̂A(z),

is real, nonzero and simple, then by suitably choosing either a0 > 0 or a0 < 0 we improve

the convergence speed. Indeed, independently of the location of all the other “poles” (λi, i ∈

{2, . . . , N}, plus the “pole” in 0 due to the factor z) and “zeros” νi, both the positive and the

negative root loci contain an interval of the real axis having λ2 at one of its extreme, and we

can always choose a0 to have the modulus decreasing along that interval. By continuity, for

small values of |a0| the zero moving on that interval will necessarily be the one of maximum

modulus.

In the case of the closed-loop system (14), derived when a single leader uses the control

law (11)-(12), we can reach LCD consensus if we can find µ > 0, µ ∈ Z, and a monic Schur

polynomial ψ(z) ∈ R[z] of degree N + µ− 1 such that

pA(z)x(z) + p1(z)y(z) = ψ(z)(z − 1), (34)

where x(z) := zµ +
∑µ

i=1 biz
i−1 is monic of degree µ with x(1) 6= 0, while y(z) := −a0zµ −∑µ

i=1 aiz
i−1 has degree at most µ, and these two polynomials have no common zero of modulus

greater than or equal to 1. Now, it is clear that if (34) is solvable for some Schur polynomial

ψ(z), then x(z) and y(z) cannot have a common zero λ of modulus |λ| ≥ 1 except, possibly, for

λ = 1. On the other hand, if we ensure that x(1) 6= 0, then necessarily x(z) and y(z) cannot have

a common zero in 1. So, we need to show that µ > 0, µ ∈ Z, and a monic Schur polynomial
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ψ(z) ∈ R[z] of degree N + µ− 1 can be found such that (34) is solvable, the two polynomials

x(z) and y(z) have suitable degrees and x(1) 6= 0.

Proposition 13. Consider the multi-agent system (6) with a single leader and control protocol

(11)-(12). For every µ ∈ Z+ there exist parameters a0, a1, . . . , aµ, b1, b2, . . . , bµ ∈ R such that

LCD consensus is achieved. Moreover, if µ ≥ N − 1, the monic Schur polynomial ψ(z) in (34)

can be arbitrarily chosen.

Proof. By following the same reasoning as in the previous proof, and hence assuming, in

particular, that pA(z) = (z − 1)p̂A(z), where p̂A(z) is a monic Schur polynomial of degree

N − 1, and that y(z) = (z − 1)ŷ(z), where ŷ(z) ∈ R[z] has degree µ − 1, we have reduced

ourselves to show that there exists a monic Schur polynomial ψ(z) ∈ R[z] of degree N + µ− 1

such that the Diophantine equation

p̂A(z)x(z) + p1(z)ŷ(z) = ψ(z) (35)

has a solution (x(z), ŷ(z)) with x(z) monic of degree µ, x(1) 6= 0, and ŷ(z) of degree at most

µ− 1. Since p̂A(z) is Schur and monic, for every choice of a monic Schur polynomial x(z) of

degree µ (and hence satisfying x(1) 6= 0), for every choice of a polynomial ỹ(z) ∈ R[z] of degree

µ− 1, and for every value of K in a sufficiently small neighbourhood of zero, all the zeros of

p̂A(z)x(z) +K[p1(z)ỹ(z)] remain inside the unitary circle and hence this is a Schur polynomial.

So, from the coefficients of x(z) and y(z) one uniquely determines the coefficients of the control

protocol (11)-(12). If µ ≥ N − 1, by making use of the assumption GCD(pA(z), p1(z)) = 1, we

can follow the same reasoning as in Proposition 4 and show that equation (35) admits solution

with the desired properties for every monic Schur polynomial ψ(z). The coefficients of the

polynomials x(z) and y(z) immediately allow to determine the parameters a0, a and b.

Remark 14. The main contribution of Proposition 13 is to have shown that by resorting to the

second protocol one can ensure not only LCD consensus for the resulting closed-loop system, but

also arbitrary convergence speed, provided that the leader can make use of a control protocol of

complexity µ = N−1. This result shows that as far as it is possible and economically convenient

to concentrate all the resources in a single node, then the second protocol we propose ensures

arbitrary convergence speed to the overall multi-agent system at a slightly lower complexity

with respect to the solutions proposed in [7] and [8], where each agent was injecting a control
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input based on its current and past state values. Indeed, the schemes in [7] and [8] can be

equivalently described by a state-space model χ(t + 1) = Mχ(t) for some matrix M of size

2N , and the optimal value of the convergence speed that can be achieved is bounded by certain

parameters that depend on the values of the eigenvalues of the matrix A. In our case, we can

ensure that with a closed-loop system of size N + µ ≤ 2N − 1 we can achieve arbitrary speed

of convergence.

Remark 15. Polynomial equations like (32) and (34), often arise in fundamental problems of

control, signal processing and applied mathematics, and their solvability has been the subject

of extended research efforts for some decades. A valuable study on different algorithms to cope

with linear polynomial Diophantine equations is the Ph.D. dissertation of D. Henrion [36]. In

the thesis efficient and numerically reliable algorithms for polynomial matrices are sought and

several different numerical techniques are compared. Among them, the most efficient approach

is the one based on the Sylvester Matrix, whose inverse can be efficiently computed by taking

advantage of its structure [37]. Using this method, the accuracy of the solution is related to the

structure of the matrix, in terms of closeness between the zeros of pA(z) and p1(z) [38]. Based on

these theoretical results several software tools have been developed. One of the first and most

renowned is the Matlab toolbox Polyx [39], which is a Polynomial Toolbox for polynomials,

polynomial matrices and their applications in systems, signals and control. Polyx is able to

efficiently solve scalar polynomial matrix equations, with the desired precision. Of course, the

case may occur that the communication graph, and hence the coefficients of the Laplacian L,

are known only in an approximate way. However, as far as A takes the form A = I−κL and L

is the Laplacian of an irreducible graph, its characteristic polynomial necessarily takes the form

pA(z) = (z−1)p̃A(z) for some Schur monic polynomial p̃A(z) that may be slightly different from

the nominal one p̂A(z). Accordingly, the obtained solution of the Diophantine equation will result

in some polynomial (z − 1)ψ̃(z) where ψ̃(z) is different from the polynomial ψ(z) originally

designed. However, the zeros of a polynomial are continuous functions of its coefficients. So, as

far as the errors in the coefficients of p̂A(z) are small, also the zeros of the obtained polynomial

ψ̃(z) will not be very far from the designed ones, thus guaranteeing that the achieved speed of

convergence is not too far from the desired one. Note that within Polyx several tools for robust

stabilization are available that can be used to deal with the problem of imprecise knowledge

of p̂A(z). Of course, if knowledge of the communication graph is very poor, the methodology
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proposed in this paper is not the most appropriate one to use.

VII. FINITE-TIME LCD CONSENSUS

We now apply the results about the allocation of the characteristic polynomials of the matrices

M1 andM2 presented in Section IV and the results about LCD consensus of the previous section

to design decentralized policies that make the agents reach leader-controlled distributed consensus

in finite-time. Finite-time consensus has been the object of a considerable interest in the last

years (e.g. [40], [41], [42]). Not only it leads the agents to agree on the same decision within

a finite number of steps, but also shows better disturbance rejection properties and robustness

with respect to uncertainties compared to most consensus schemes [43].

Definition 2 (Leader-controlled distributed finite-time consensus.). Consider a multi-agent system

with a leader, described as in (6). We say that the control protocols (7) or (11)-(12) lead the

system to leader-controlled distributed finite-time consensus, under the leader’s action u(t), if

there exist a vector c ∈ RN and T ∈ Z+ such that for every choice of the agents’ initial state

x0 (and assuming zero initial conditions for the auxiliary variables) one has

x(t) = 1N(c>x0), ∀ t ∈ Z+, t ≥ T. (36)

When (36) holds, we refer to T as to the consensus time.

Proposition 16. Consider the closed-loop multi-agent system (9), derived in the case of a single

leader using the control law (7). The overall system achieves finite-time LCD consensus if and

only if the characteristic polynomial of the matrix M1 satisfies

pM1(z) = zN+µ−1(z − 1). (37)

Similarly, under the assumption that the two polynomials q(z) and a0z
µ + r(z), where q(z) =

zµ + bµz
µ−1 + · · ·+ b2z + b1 and r(z) = aµz

µ−1 + · · ·+ a2z + a1, have no common zero, except

possibly in 0, the closed-loop multi-agent system (14), derived in the case of a single leader using

the control law (11)-(12), achieves finite-time LCD consensus if and only if the characteristic

polynomial of the matrix M2 satisfies

pM2(z) = zN+µ−1(z − 1). (38)

In both cases the LCD consensus time T is not greater than N + µ− 1.

March 20, 2018 DRAFT



27

Proof. Consider, first, the case of a single leader using the control law (7). The corresponding

closed-loop multi-agent system is hence described as in (9).

[Sufficiency] Suppose that the characteristic polynomial of the matrix M1 is described as in

(37). By the Cayley-Hamilton theorem, pM1(z) is an annihilating polynomial ofM1 [33], which

means that MN+µ
1 −MN+µ−1

1 = 0. This implies that

Mt
1 =MN+µ−1

1 ∀ t ∈ Z+, t ≥ N + µ− 1. (39)

On the other hand, by Proposition 10, if the characteristic polynomial pM1(z) is described as in

(37), the closed-loop multi-agent system (9) achieves LCD consensus, i.e.

lim
t→+∞

[
I 0

]
χ(t) = lim

t→+∞
x(t) = 1N(c>x0).

Identity (39) ensures that χ(t) = M t
1χ(0) = MN+µ−1

1 χ(0) for every t ≥ N+µ−1, and therefore

(36) is satisfied (at least) for T = N + µ − 1, thus proving that the system reaches finite-time

LCD consensus.

[Necessity] If the multi-agent system (6) with one leader and control protocol (7), achieves

finite-time LCD consensus then it achieves standard LCD consensus, and hence by Proposition

10 there exists a monic Schur polynomial ψ(z) ∈ R[z] of degree N +µ− 1 such that pM1(z) =

ψ(z)(z − 1). We want to prove that ψ(z) = zN+µ−1. If this were not the case, there would be

λ ∈ C, with 0 < |λ| < 1, such that pM1(λ) = 0 and hence λ ∈ σ(M1). Denote by w̃ a left

eigenvector of M1, respectively, corresponding to λ. By Lemma 21, part ii), we know that the

first N entries of w̃ cannot be zero and hence there exists x0 ∈ RN such that w̃>

x0

0µ

 6= 0.

By the same reasoning adopted in the proof of Theorem 6, we can claim that the state evolution

χ(t) has a nonzero projection over the set of right generalised eigenvectors corresponding to λ

and hence at least one of the entries of χ(t), say the i-th, is a linear combination of elementary

modes where λt is weighted by a nonzero coefficient. But this makes it impossible for χi(t) to

become constant in a finite number of steps.

Consider, now, the multi-agent system (6) and assume that there is one leader adopting the

control protocol (11)-(12). The proof of the [Sufficiency] is identical to the previous one. The

proof of [Necessity] is similar and we only give a sketch of it. By proceeding as in the previous

case, we can claim that if finite-time LCD consensus is achieved, then LCD consensus is achieved

and hence there exists a monic Schur polynomial ψ(z) ∈ R[z] of degree N + µ − 1 such

that pM2(z) = ψ(z)(z − 1). As the two polynomials q(z) and a0z
µ + r(z), where q(z) =
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zµ + bµz
µ−1 + · · ·+ b2z + b1 and r(z) = aµz

µ−1 + · · ·+ a2z + a1 have no common zero (except

possibly in zero), then we can apply Lemma 22, part ii), and show, as in the previous case that

if ψ(z) has a zero λ 6= 0, then initial conditions can be found corresponding to which the LCD

consensus is not achieved in a finite-time.

Remark 17. As remarked immediately after Theorem 7, the assumption that the polynomials

q(z) and a0zµ + r(z) have no common zero (except possibly in 0) plays a fundamental role also

in the necessity part of Proposition 16, when dealing with the second protocol. Nevertheless,

if these polynomials have a common zero λ 6= 0 finite-time LCD consensus is still possible, as

illustrated in the following example.

Example 1. Assume N = 3, and consider the strongly connected graph with Laplacian

L =


2.25 −2.25 0

−1 3 −2

−3 −1 4

 .
If κ = 1/5, then

A = I3 − κL =


0.55 0.45 0

0.2 0.4 0.4

0.6 0.2 0.2

 A(1) =

0.4 0.4

0.2 0.2

 .
A direct calculation leads to pA(z) = (z − 1)(z2 − 0.15z + 0.09) and p1(z) = z(z − 0.6),

and hence the two polynomials are coprime. Now assume µ = 3, x(z) = z3 − 0.5z2 and

y(z) = 0.15z3 − 0.225z + 0.075. These two polynomials have a common zero in 0.5. It is a

matter of simple calculations to verify that pA(z)x(z) + p1(z)y(z) = (z − 1)z4(z − 0.5). The

vectors a and b corresponding to the above polynomials x(z) and y(z) can be easily found

through the identities

x(z) = z3 − 0.5z2 = z3 + b3z
2 + b2z + b1

y(z) = 0.15z3 − 0.225z2 + 0.075z = −a0z3 − (a3z
2 + a2z + a1),
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Fig. 2. Finite-time LCD consensus achieved by the multi-agent system of Example 1.

obtaining a0 = −0.15, a =
[
0 −0.075 0.225

]>
,b =

[
0 0 −0.5

]>
, and

M2 =



0.4 0.45 0 0 0 1

0.2 0.4 0.4 0 0 0

0.6 0.2 0.2 0 0 0

0 0 0 0 0 0

−0.075 0 0 1 0 0

0.15 0 0 0 1 0.5


.

It is easy to verify that w̃> =
[
0 0 0 4 2 1

]>
is a left eigenvector of M2 corresponding

to λ = 0.5. On the other hand, for every x0 ∈ R3, one has w̃>x0 = 0 and, in fact, the overall

multi-agent system always reaches finite-time LCD consensus, as illustrated in Fig. 2.

By the previous result, we can claim that the overall system obtained corresponding to (7)

achieves finite-time LCD consensus if and only if

pA(z)zµ + p1(z)y(z) = zN+µ−1(z − 1), (40)

where y(z) := −
∑µ

i=0 aiz
µ−i is a polynomial of degree at most µ (with y(0) 6= 0). Similarly, in

the case of the closed-loop multi-agent system (14), derived in the case of a single leader using

the control law (11)-(12), the finite-time LCD consensus condition is equivalent to

pA(z)x(z) + p1(z)y(z) = zN+µ−1(z − 1), (41)
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where x(z) := zµ +
∑µ

i=1 biz
i−1, is monic of degree µ, with x(1) 6= 0, y(z) := −a0zµ −∑µ

i=1 aiz
i−1, has degree at most µ, and they are coprime polynomials. We are now in a position

to provide conditions for the existence of coefficients µ, a0 and a such that the corresponding

control scheme (7) achieves finite-time LCD consensus.

Proposition 18. Consider the multi-agent system (6) with a single leader and control protocol

(7). There exist coefficients a0, a1, . . . , aµ ∈ R, aµ 6= 0, such that finite-time LCD consensus is

achieved if and only if

p1(z) | zµ[zN−1 − p̂A(z)] (42)

and p1(z) has a zero in 0 of multiplicity µ.

Proof. As pA(z) = (z − 1)p̂A(z), where p̂A(z) is a monic Schur polynomial of degree N − 1,

the Diophantine equation (40) can be rewritten as

p̂A(z)zµ(z − 1) + p1(z)y(z) = zN+µ−1(z − 1), (43)

and hence as zµ(z − 1)[zN−1 − p̂A(z)] = p1(z)y(z). Note that the Schur property of p̂A(z)

ensures that zN−1− p̂A(z) has no zero in 0. If coefficients a0, a1, . . . , aµ ∈ R, aµ 6= 0, exist such

that finite-time LCD consensus is achieved, (43) holds for some y(z) of degree at most µ and

therefore p1(z) | zµ(z − 1)[zN−1 − p̂A(z)]. This ensures that the multiplicity of 0 as a zero of

p1(z) is not greater than µ. On the other hand, if this multiplicity would be lower than µ then

y(0) = 0 and hence aµ = 0, a contradiction. So, 0 must be a zero of p1(z) of mulitplicity µ.

Conversely, if p1(z) | zµ(z−1)[zN−1− p̂A(z)] and p1(z) has a zero in 0 of multiplicity µ, then

there is a monic polynomial y(z), with ∂y ≤ µ and y(0) 6= 0 such that (40) holds. Consequently,

coefficients a0, a1, . . . , aµ ∈ R, aµ 6= 0, can be found such that finite-time LCD consensus is

achieved.

As an example, consider again the multi-agent system of Example 1. Polynomials p̂A(z) =

z2 − 0.15z + 0.09 and p1(z) = z(z − 0.6) satisfy the above divisibility condition (42) for µ = 1

and the polynomial y(z) solution of (43) is equal to 0.15z − 0.15. This, in turn, means that the

(first) protocol u1(t) = 0.15x1(t)−0.15x1(t−1) makes the overall system reach LCD consensus

in finite time. We now consider the finite-time LCD consensus problem for the case of one leader

and control law (11)-(12).
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Proposition 19. Consider the multi-agent system (6) with a single leader and control protocol

(11)-(12). There always exist µ ∈ Z+ and parameters a0, a1, . . . , aµ, b1, b2, . . . , bµ ∈ R such that

finite-time LCD consensus is achieved.

Proof. Follows immediately from the second part of Proposition 13.

Proposition 19 supports our previous claim in Remark 14. The control protocol (11)-(12)

allows to achieve LCD consensus with arbitrary convergence speed and even finite-time LCD

consensus, at the cost of the increased size of the overall system. Indeed, the leader needs to

resort to an additional feedback control algorithm whose memory size is at most N − 1. So,

the solution of attributing all the memory and the computational capabilities to a single-leader

proves to be more effective and efficient than distributing them uniformly among the N agents

[7], [8]. As far as the first control protocol is concerned, the conditions for finite-time LCD

consensus are admittedly very restrictive, since a necessary condition for it to happen is that

p1(z) = det(zIN−1 −A(1)) has a zero in 0, as well as it satisfies the divisibility condition (42).

Remark 12 shows there are cases when the protocol always leads to improved performance, but

it is difficult to provide a complete analysis of the potentialities of this control law, due to the

very special structure of the associated Diophantine equation.

VIII. CONCLUSIONS

In this paper the LCD consensus problem for a multi-agent system has been investigated

by assuming that one of the nodes acts as a leader and it is allowed to inject in the multi-

agent system a control signal u(t) to improve some group dynamics performance. Two control

protocols to generate the signal u have been proposed. First the characteristic polynomials of the

two controlled systems have been derived, and conditions for the free allocation of all the multi-

agent system eigenvalues has been investigated. A complete analysis of the LCD consensus

problem is carried on in Sections V and VI. Finally, necessary and sufficient conditions for

finite-time LCD consensus have been provided.

Future research will focus on determining conditions that ensure that the first protocol always

brings an improvement in terms of convergence speed and on providing bounds on the second

largest eigenvalue of the resulting closed-loop matrixM1. Challenging open problems are: How

can one select the leader in such a way to maximize the convergence speed? Is it convenient to

assume that there are more leaders and if so, what is the best possible choice for them?
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APPENDIX: TECHNICAL RESULTS

We first provide a necessary and sufficient condition for the two polynomials pA(z) =

det(zIn − A) and p1(z) = det(zIµ − A(1)) to be coprime.

Lemma 20. Let A be an N ×N real matrix and suppose that it is block partitioned as in (21),

where a11 ∈ R,g,h ∈ RN−1 and A(1) ∈ R(N−1)×(N−1) is the principal submatrix of A obtained

by deleting its first row and its first column. The following facts are equivalent:

i) (A(1),g,h
>) is a minimal realization, i.e., the pair (A(1),g) is reachable and the pair

(A(1),h
>) is observable;

ii) σ(A) ∩ σ(A(1)) = ∅, i.e., pA(z) and p1(z) are coprime polynomials.

Proof. i) ⇒ ii) Suppose by contradiction that there exists λ ∈ σ(A) ∩ σ(A(1)). By Lemma 2,

det(zIN − A) = det(zIN−1 − A(1))[z − a11 − h>(zIN−1 − A(1))
−1g] = det(zIN−1 − A(1))(z −

a11)− h>adj(zIN−1 − A(1))g.

So, condition 0 = det(λIN − A) = det(λIN−1 − A(1)) implies h>adj(λIN−1 − A(1))g = 0.

But this means that the two polynomials det(zIN−1 − A(1)) and h>adj(zIN−1 − A(1))g have a

common zero, and hence (A(1),g,h
>) is not a minimal realization of its transfer function. ii)

⇒ i) It is easily proved by reversing the previous arguments.

The following two technical lemmas provide technical details about the eigenvectors of the

closed-loop matricesM1 andM2 that describe the multi-agent systems obtained when the leader

adopts either the control protocol (7) or (11)-(12).

Lemma 21. Let A = IN − κL, where L is an N ×N irreducible Laplacian matrix and κ ∈ R

satisfies (4), and suppose that A is block partitioned as in (21), where a11 ∈ R,g,h ∈ RN−1

and A(1) ∈ R(N−1)×(N−1). Also, assume that the triple (A(1),g,h
>) is a minimal realization.

Consider the matrix

M1 =


A+ a0e1e

>
1 e1a

>

e1e
>
1 F

 ∈ R(N+µ)×(N+µ),

obtained corresponding to the control protocol (7), where a0 ∈ R, while a ∈ Rµ and F ∈ Rµ×µ

are defined in (10). Then
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i) If 1 ∈ σ(M1), then a0 + a>1µ = 0, and every right eigenvector of M1 corresponding to

the eigenvalue 1, say v =
[
v>1 v>2

]>
, with v1 ∈ RN and v2 ∈ Rµ, takes the form v = α1N+µ,

for some α ∈ R, α 6= 0.

ii) If λ is an eigenvalue of σ(M1), and w̃ =
[
w>1 w>2

]
,w1 ∈ RN ,w2 ∈ Rµ, is a left

eigenvector of M1 corresponding to λ, then w1 6= 0.

Proof. i) Assume that 1 ∈ σ(M1). If v =
[
v>1 v>2

]>
6= 0 is a right eigenvector of M1

corresponding to 1, then 
A+ a0e1e

>
1 e1a

>

e1e
>
1 F



v1

v2

 =


v1

v2

 ,
which leads, after a few calculations and by the identity (Iµ − F )−1e1 = 1µ, to

v2 = (Iµ − F )−1e1(e
>
1 v1) = 1µ(e>1 v1),

0 = [IN − A− (a0 + a>1µ)e1e
>
1 ]v1. (44)

If IN − A − (a0 + a>1µ)e1e
>
1 is nonsingular then v1 = 0N and v2 = 0µ, a contradiction. If

IN − A − (a0 + a>1µ)e1e
>
1 is singular then 0 = det[IN − A − (a0 + a>1µ)e1e

>
1 ] = det(IN −

A)− (a0 + a>1µ)e>1 adj(IN − A)e1 = pA(1)− (a0 + a>1µ)p1(1) = −(a0 + a>1µ)p1(1).

Since p1(1) 6= 0, by the coprimality of pA(z) and p1(z) (see Lemma 20), it follows that a0 +

a>1µ = 0. But this means that (44) becomes [IN − A]v1 = 0, and since A is an irreducible

Metzler matrix and 1 is its strictly dominant eigenvalue then v1 = α1N and it is immediate to

see that v2 = α1µ.

ii) M1 admits an eigenvector taking the form
[
0>N w>2

]
,w2 ∈ Rµ,w2 6= 0, corresponding to

some λ ∈ σ(M1), if and only if there exists w2 ∈ Rµ,w2 6= 0, and λ ∈ σ(M1) such that

w>2 e1 = 0, w>2 F = λw>2 . However, for every λ ∈ C, no vector w2 6= 0µ can be found such

that both previous identities hold. Therefore, for every λ ∈ σ(M1), in the corresponding left

eigenvectors the block w1 is nonzero.

Lemma 22. Let A = IN − κL, where L is an N ×N irreducible Laplacian matrix and κ ∈ R

satisfies (4), and suppose that A is block partitioned as in (21), where a11 ∈ R,g,h ∈ RN−1
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and A(1) ∈ R(N−1)×(N−1). Also, assume that the triple (A(1),g,h
>) is a minimal realization.

Consider the matrix

M2 =


A+ a0e1e

>
1 e1e

>
µ

(a− ba0)e
>
1 F − be>µ

 ∈ R(N+µ)×(N+µ),

obtained corresponding to the control protocol (11)-(12), where a0 ∈ R, a ∈ Rµ and b ∈ Rµ

are real parameters, and F has been defined in (10), and assume that 1 + b>1µ 6= 0. Then

i) If 1 ∈ σ(M2), then a0 + a>1µ = 0, and every right eigenvector of M2 corresponding

to the eigenvalue 1, say v =
[
v>1 v>2

]>
, with v1 ∈ RN and v2 ∈ Rµ, takes the form v =

α
[
1>N ((Iµ − F )−1a)>

]>
, for some α ∈ R, α 6= 0.

ii) If λ is an eigenvalue of σ(M2), and λ is not a common zero of the two polynomials q(z)

and a0zµ + r(z), where q(z) = zµ + bµz
µ−1 + · · ·+ b2z+ b1 and r(z) = aµz

µ−1 + · · ·+ a2z+ a1,

then in every eigenvector of M2, w̃ =
[
w>1 w>2

]
,w1 ∈ RN ,w2 ∈ Rµ, corresponding to λ the

vector w1 is not zero.

Proof. i) Assume that 1 ∈ σ(M2). If v =
[
v>1 v>2

]>
6= 0 is a right eigenvector of M2

corresponding to 1, then 
A+ a0e1e

>
1 e1e

>
µ

(a− ba0)e
>
1 F − be>µ



v1

v2

 =


v1

v2

 ,
which leads to

[IN − A− a0e1e>1 ]v1 = e1e
>
µv2, (45)

(Iµ − F + be>µ )v2 = (a− ba0)e
>
1 v1. (46)

The matrix Iµ−F +be>µ is nonsingular. If this was not the case, it would be 0 = det(Iµ−F +

be>µ ) = 1+b>1µ, a contradiction. Therefore, equation (46) leads to v2 = (Iµ−F +be>µ )−1(a−

ba0)e
>
1 v1, that substituted in (45) leads to

[IN − A− a0e1e>1 − e>µ (Iµ − F + be>µ )−1(a− a0b)e1e
>
1 ]v1 = 0. (47)

Since (see, also, (30)) e>µ (Iµ−F+be>µ )−1(a−a0b) = 1
1+b>1µ

1>µ (a−a0b), identity (47) becomes

0 =

[
IN − A− a0e1e>1 −

1

1 + b>1µ
1>µ (a− a0b)e1e

>
1

]
v1 =

[
IN − A−

a0 + a>1µ
1 + b>1µ

e1e
>
1

]
v1.
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So, by reasoning as in the proof of part i) of Lemma 21, we can claim that a0+a>1µ
1+b>1µ

= 0 and

hence a0 + a>1µ = 0, v1 = α1N and it is easy to verify that v2 = α(Iµ − F )−1a.

ii) M2 admits an eigenvector taking the form
[
0>N w>2

]
,w2 ∈ Rµ,w2 6= 0, corresponding

to some λ ∈ σ(M2), if and only if there exists w2 ∈ Rµ,w2 6= 0, and λ ∈ C such that

w>2 (a− a0b) = 0,w>2 [F − be>µ ] = λw>2 , namely

w>2


λ 0 . . . b1 a1 − a0b1
−1 λ b2 a2 − a0b2

... . . . . . . ...
...

0 . . . −1 λ+ bµ aµ − a0bµ

 =
[
0>µ 0

]
.

This is equivalent to saying that λ ∈ C exists such that w>2 =
[
1 λ λ2 . . . λµ−1

]
and

0 = λµ+ bµλ
µ−1 + · · ·+ b2λ+ b1, (aµλ

µ−1 + · · ·+a2λ+a1)−a0(bµλµ−1 + · · ·+ b2λ+ b1) = 0.

This happens if and only if there exists λ ∈ C such that 0 = q(λ) and 0 = (aµλ
µ−1 + · · · +

a2λ+ a1)− a0(−λµ) = a0λ
µ + r(λ). So, for every λ which is not a common zero of q(z) and

a0z
µ + r(z), the block w1 in the eigenvector cannot be zero.
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[24] V. Kučera, Discrete linear control: the polynomial equation approach. John Wiley & Sons, Inc., 1980.

[25] S. Kar, G. Hug, J. Mohammadi, and J. Moura, “Distributed state estimation and energy management in smart grids: A

consensus + innovations approach,” IEEE J. Selected Topics Signal Processing, vol. 8, no. 6, pp. 1022–1038, 2014.

[26] B.-Y. Kim and H.-S. Ahn, “Consensus-based coordination and control for building automation systems,” IEEE Trans.

Control Systems Techn., vol. 23, no. 1, pp. 364–371, 2015.

[27] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math. J., vol. 23, pp. 298–305, 1973.

[28] R. Olfati-Saber, A. J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE,

vol. 95, no. 1, pp. 215–233, 2007.

[29] R. Horn and C. Johnson, Matrix Analysis. Cambridge Univ. Press, 2012.

[30] W. Wang and J. Slotine, “A theoretical study of different leader roles in networks,” IEEE Trans. Automatic Control, vol.

51 (7), pp. 1156–1161, 2006.

[31] B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader-follower dynamic network with switching topology,”

IEEE Trans. Automatic Control, vol. 53 (4), pp. 1009–1013, 2008.

[32] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks. Princeton University Press, 2010.

[33] P. J. Antsaklis and A. Michel, Linear Systems. Birkhauser, 1997.

[34] T. Kailath, Linear Systems. Prentice Hall, Inc., 1980.

March 20, 2018 DRAFT



37

[35] W. Haemers, “Interlacing eigenvalues and graphs,” Linear Algebra its Appl., vol. 228, pp. 593–616, 1995.

[36] D. Henrion, “Reliable algorithms for polynomial matrices,” Ph.D. dissertation, Czech Academy of Sciences, Prague, Czech

Republic, 1998.

[37] B. D. Lubachevsky, “The structure of the inverse to the sylvester resultant matrix,” Linear Algebra its Appl., vol. 85, pp.

191–202, 1987.

[38] B. Beckermann and G. Labahn, “When are two numerical polynomials relatively prime?” J. Symbolic Computation, vol. 26,

no. 6, pp. 677–689, 1998.

[39] “Polynomial toolbox,” 1998. [Online]. Available: www.polyx.com

[40] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Finite time distributed averaging over gossip-constrained ring

networks,” IEEE Trans. Control Network Systems, 2017.

[41] J. Hendrickx, G. Shi, and K. Johansson, “Finite-time consensus using stochastic matrices with positive diagonals,” IEEE

Trans. Automatic Control, vol. 60, no. 4, pp. 1070–1073, 2015.

[42] G. Shi, B. Li, M. Johansson, and K. H. Johansson, “Finite-time convergent gossiping,” IEEE/ACM Trans. Networking,

vol. 24, no. 5, pp. 2782–2794, 2016.

[43] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,”

IEEE Trans. Industrial informatics, vol. 9, no. 1, pp. 427–438, 2013.

Gianfranco Parlangeli Gianfranco Parlangeli received the M.Sc. degree (with honours) in electrical

engineering from the University of Pisa, Pisa, Italy, in 1999 and the Ph.D. degree in information engineering

from the University of Lecce, Lecce, Italy, in 2005. He is currently an Assistant Professor at the Department

of Innovation Engineering, University of Salento, Lecce, Italy. He is a member of the scientific committee

of the Interuniversity Center of Integrated Systems for the Marine Environment (ISME). His research

interests include multi-agent systems, fault tolerant control, variable structure control systems, and marine

robotics. He has published over 50 papers in the field and has contributed to several national and international projects in the

area of autonomous robotics and industrial automation.

March 20, 2018 DRAFT

www.polyx.com


38

Maria Elena Valcher Maria Elena Valcher received the Master degree (1991) and the PhD degree (1995)

from the University of Padova, Italy. Since January 2005 she is full professor at the University of Padova.

She is author/co-author of 80 papers appeared in international journals, 95 conference papers, 2 text-books

and several book chapters. Her research interests include polynomial matrix theory, cooperative control

and consensus, positive switched systems and Boolean control networks. She was in the Editorial Board

of the IEEE Transactions on Automatic Control (1999-2002), Systems and Control Letters (2004-2010)

and she is currently in the Editorial Boards of Automatica (2006-today), Multidimensional Systems and Signal Processing

(2004-today), SIAM J. on Control and Optimization (2012-today), European Journal of Control (2103-today) and IEEE Access

(2014-today). She was Vice President Member Activities of the CSS (2006-2007); Vice President Conference Activities of the

CSS (2008-2010); CSS President (2015). She received the 2011 IEEE CSS Distinguished Member Award and she is an IEEE

Fellow since 2012. Since January 2017 she is the Editor in Chief of the IEEE Control Systems Letters.

March 20, 2018 DRAFT


	Introduction
	Problem setup
	Proposed control protocols
	Characteristic polynomials of the leader-controlled systems
	Leader-controlled distributed consensus
	Conditions for the existence of protocols that lead to LCD consensus with desired speed
	Finite-time LCD consensus
	Conclusions
	References
	Biographies
	Gianfranco Parlangeli
	Maria Elena Valcher


