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Abstract. In this paper the dead-beat control problem, by partial interconnection, of two-
dimensional (2D) discrete behaviors, defined on the grid Z+ × Z and having the time as (first)
independent variable, is investigated. The possibility of driving to zero (in a finite number of
“steps”) either all or part of the system variables, by means of a partial interconnection controller,
proves to be equivalent to the reconstructibility of the variables that are not accessible for control.
On the other hand, if we search for “admissible” dead-beat controllers, the only ones providing
meaningful results in practice, we have to introduce the zero-time-controllability assumption. These
two properties are just the necessary and sufficient conditions for the existence of an observer-based
(admissible) dead-beat controller, which consists of a dead-beat observer, to estimate the relevant
variables from the measured ones, and of a full interconnection dead-beat controller, acting on both
the measured and the estimated variables.
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1. Introduction

Most of the literature about two-dimensional (2D) and multi-dimensional (nD) sys-
tems has concentrated on mathematical models for which the two (n, in general)
independent variables play the same role [6, 10, 15, 22]. In several engineering ap-
plications, however, one of the independent variables is time, and its role is distin-
guished from that of all the others. In fact, for that variable the concept of causality
always makes sense. As a consequence, fundamental properties, like autonomy and
controllability, need to be redefined in the light of this interpretation, in order to
take into account the privileged role of the time variable.

The interest in the behavioral approach to multidimensional systems for which
one of the independent variables represents time, started with the works of Sasane
and co-authors. In [17, 18, 19] the properties of time-autonomy and time-controlla-
bility for systems described by partial differential equations were thoroughly inves-
tigated. Recent years have witnessed a renewed interest in this class of systems,
starting with the papers [8, 14], where time-relevant autonomous 2D discrete behav-
iors and the related stability problems have been investigated. More recently, Oberst
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and Scheicher [12] have developed a general framework for the discrete nD case, and
have provided characterizations of time-autonomy and time-controllability. Also, an
extension of the stability analysis to general nD behaviors with a time coordinate
has been presented in [11].

In [3, 4] time-controllability and zero-time-controllability of discrete 2D behav-
iors, defined on Z+ × Z and having the time as an independent variable, have been
characterized, and a complete solution of the full interconnection dead-beat control
(DBC) problem has been provided. In these papers, the first variable, defined on
Z+, has been regarded as the time variable, while the second coordinate, defined
on the whole integer set, is a space variable. According to this perspective, vertical
strips in the grid Z+×Z, namely the sets {(h, k) ∈ Z+×Z : 0 ≤ h ≤ N−1}, and the
half-planes {(h, k) ∈ Z+×Z : h ≥ N}, for N ∈ Z+, have been given special interpre-
tation. The former are the sets where “initial conditions” on the system variables
are given, while the latter are the supports of “long term evolutions”, where both
concepts clearly refer to the time coordinate. The definitions of time-controllability
and of zero-time-controllability, as well as the DBC problem, have been accordingly
introduced and investigated.

In this paper, we extend the results obtained in [3, 4], by investigating the dead-
beat control problem under different assumptions on both the control action and
the control target. Indeed, the system variables are split in two subsets: relevant
variables, denoted by wr, and measured variables, wm. The control action is ex-
erted only on the measured variables, and hence we deal with partial interconnection
DBCs. Also, it may target either all the system variables or the relevant variables
alone. It turns out that it is possible to drive to zero, in a finite number of “steps”,
either all or part of the system variables, by means of a partial interconnection
controller, if and only if the variables that are not accessible for control are “re-
constructible”. On the other hand, if we search for “admissible” DBCs, the only
meaningful ones in practice, we have to introduce the zero-time-controllability as-
sumption (on the target variables, both in case they are all the system variables
or only a subset of them). These properties are just the necessary and sufficient
conditions for the existence of an observer-based (admissible) dead-beat controller.
An observer-based DBC consists of a dead-beat observer, to estimate the target
variables from the measured ones, and of a full interconnection dead-beat controller,
acting on both the measured and the estimated variables.

The paper is organized as follows. In section 2, preliminary results about poly-
nomial matrices with entries in R[z1, z2, z

−1
2 ] are introduced. Basic properties of

behaviors defined on Z+×Z, and the corresponding algebraic characterizations, are
discussed in section 3. All the definitions and results of these sections can be found,
in extended form, in [4], and we recall them here only to make the paper reading
easier. Section 4 revisits the estimation problem and the characterization of dead-
beat observers (DBOs) of the relevant variables, by making use of the measured
variables. The definitions and results, originally investigated in [1] for the class of
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systems defined on the half-plane H0 := {(h, k) ∈ Z × Z : h + k ≥ 0}, are adapted
to the case of systems defined on Z+ × Z (see also [9] for some recent results about
the observer problem for 2D systems described by means of a state-space model).
In section 5, we first extend the zero-time-controllability property to the case when
we target only the relevant variables (see [2] for the 1D case). We then provide
necessary and sufficient conditions for the solvability of the DBC problem by partial
interconnection, both in case we want to drive to zero both the relevant variables
and the measured variables, and in case we want to drive to zero only the relevant
variables. Complete characterizations of DBCs and some partial parametrization
results are provided, for both cases, in section 6. Finally, in section 7, we explore
the possibility of achieving these targets by resorting to an observer-based DBC,
that first estimates the relevant variables from the measured ones, and then applies
a dead-beat control action on both the estimated and the measured ones.

2. Polynomial matrices with entries in R[z1, z2, z
−1
2 ] and associated

operators

Let R[z1, z2, z
−1
2 ] be the ring of polynomials, with real coefficients, in the nonneg-

ative integer powers of z1 and in the integer powers of z2. z1 is associated with
the time variable and z2 with a space variable. Accordingly, we refer to such poly-
nomials as time-space polynomials (for short, TS-polynomials) [4]. The ring of TS-
polynomials is properly included in the ring of Laurent polynomials (L-polynomials)
R[z1, z

−1
1 , z2, z

−1
2 ]. So, for some purposes, it is convenient to regard TS-polynomials

as L-polynomials.

(Factor and zero) primeness properties for the class of TS-polynomial matrices
naturally extend the analogous definitions for L-polynomial matrices [7, 20]. A full
column rank TS-polynomial matrix A(z1, z2) is right factor prime if in every factor-
ization A(z1, z2) = Ā(z1, z2)∆(z1, z2) over the ring R[z1, z2, z

−1
2 ], with ∆(z1, z2) non-

singular square, the matrix ∆(z1, z2) is unimodular in R[z1, z2, z
−1
2 ] (by this meaning

that det ∆(z1, z2) = czk2 , for some c 6= 0 and some k ∈ Z). Also, A(z1, z2) is right
zero prime if it admits a left inverse in R[z1, z2, z

−1
2 ], namely there exists L(z1, z2)

with entries in R[z1, z2, z
−1
2 ] such that (s.t.) L(z1, z2)A(z1, z2) = I.

A full column rank TS-polynomial matrix A(z1, z2) is said to be right monomic
if it is right zero prime when regarded as an L-polynomial matrix, namely it admits
an L-polynomial (but not necessarily TS-polynomial) left inverse. This amounts to
saying that there exists L(z1, z2) with entries in R[z1, z2, z

−1
2 ] s.t. L(z1, z2)A(z1, z2)

= zh1 I, for some h ∈ Z+. In particular, a square TS-polynomial matrix ∆(z1, z2) is
called square monomic if it is unimodular when regarded as an L-polynomial matrix,
and hence det ∆(z1, z2) = czh1 z

k
2 , for suitable c 6= 0, h ∈ Z+ and k ∈ Z.

Note that right zero primeness implies right factor primeness as well as right
monomicity, however right factor primeness and right monomicity are not neces-
sarily related [4]. Of course, the concepts of left factor/zero prime or monomic
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TS-polynomial matrix can be introduced for full row rank matrices in a similar way,
and enjoy analogous properties and characterizations.

Analogously to what happens with L-polynomial matrices, every TS-polynomial
matrix A(z1, z2) of rank r can always be factorized as

A(z1, z2) = L(z1, z2)∆(z1, z2)R(z1, z2),(2.1)

for some suitable TS-polynomial matrices, with L(z1, z2) right factor prime, ∆(z1, z2)
r× r nonsingular square, and R(z1, z2) left factor prime. This factorization is essen-
tially unique, by this meaning that these three factors are uniquely determined up
to (left and/or right) unimodular matrices.

The concepts of left annihilator and, in particular, of minimal left annihilator
(MLA, for short) of a given TS-polynomial matrix A(z1, z2) extend the concepts
originally introduced in [15] for polynomial matrices in two indeterminates, and can
be summarized as follows: if A(z1, z2) is a TS-polynomial matrix, a TS-polynomial
matrix M(z1, z2) is a left annihilator of A(z1, z2) if M(z1, z2)A(z1, z2) = 0. A left
annihilator Mm(z1, z2) of A(z1, z2) is an MLA if it is of full row rank and for any
other left annihilator M(z1, z2) of A(z1, z2) we have M(z1, z2) = P (z1, z2)Mm(z1,
z2) for some TS-polynomial matrix P (z1, z2). It can be easily proved that, when the
rank r of the matrix A(z1, z2) is smaller than the number of its rows, say p, an MLA
always exists, it is a (p− r)× p left factor prime matrix and is uniquely determined
modulo a unimodular left factor. If the given A(z1, z2) is of full row rank, then for
consistency we define its MLA as the “void” matrix, with 0 rows and p columns [13].

The two backward shift operators, σ1 and σ2, along the coordinate axes of the
discrete grid Z× Z are defined as:

(σ1w)(h, k) := w(h+ 1, k), (σ2w)(h, k) := w(h, k + 1),

respectively. The forward shift operators σ−1
1 and σ−1

2 are similarly defined. Notice
that σi, i = 1, 2, and σ−1

2 map (Rw)Z+×Z into (Rw)Z+×Z, but this is not true for σ−1
1 .

If R(z1, z2) is a p×w L-polynomial matrix, we associate with it the L-polynomial
matrix operator R(σ1, σ2), acting on any 2D sequence of size w. In the special case
when R(z1, z2) is a TS-polynomial matrix, the operator R(σ1, σ2) maps (Rw)Z+×Z

into (Rp)Z+×Z. If R(z1, z2) is a TS-polynomial matrix, the associated map R(σ1, σ2)
is injective (i.e. kerR(σ1, σ2) = {0}) if and only if R(z1, z2) is right zero prime, and
it is surjective if and only if R(z1, z2) is of full row rank.

3. Basic facts about 2D behaviors defined on Z+ × Z

A 2D behavior B on Z+ × Z is the set of solutions w = {w(h, k)}(h,k)∈Z+×Z of a
family of linear 2D difference equations of the following type:∑

(i,j)∈ΣR

Rijw(h+ i, k + j) = 0, ∀ (h, k) ∈ Z+ × Z,(3.1)
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where the Rij ’s are real matrices with w columns (and say p rows), and the index set
ΣR is a finite subset of Z+ × Z. A 2D behavior B described as in (3.1), is denoted
by

B = kerR(σ1, σ2),(3.2)

where R(z1, z2) =
∑

(i,j)∈ΣR
Rijz

i
1z
j
2 is a TS-polynomial matrix.

Given two TS-polynomial matrices R1(z1, z2) and R2(z1, z2), with the same
number of columns w, condition kerR1(σ1, σ2) ⊆ kerR2(σ1, σ2) holds if and only
if R2(z1, z2) = P (z1, z2)R1(z1, z2), for some TS-polynomial matrix P (z1, z2) of suit-
able size.

We now introduce autonomous behaviors.

Definition 3.1. [6, 16] Consider a 2D behavior B = kerR(σ1, σ2), with
R(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×w. A set of variables {wi : i ∈ I}, I ( {1, 2, . . . , w},

is said to be a set of free variables for B if the map πI : B → (R|I|)Z+×Z, that
projects every behavior trajectory onto the components indexed by I, is surjective.
B is said to be autonomous if it has no free variables.

Within the class of 2D autonomous behaviors, we single out the nilpotent ones.
Before introducing their definition, it is convenient to introduce some notation that
will be used extensively in the rest of the paper (see [4]). For any pair of nonnegative
integers t0 and t1, with t0 ≤ t1, we define the vertical strip

St0,t1 := {(h, k) ∈ Z+ × Z : t0 ≤ h ≤ t1}.

When t0 = t1 we use St0 to denote the vertical line {(t0, k) : k ∈ Z}, when t0 = 0 ≤ t1
we use S→t1 and when t1 = +∞ we use St0→. Given any trajectory w ∈ (Rw)Z+×Z

and any set St0,t1 , we denote the trajectory restriction to the set St0,t1 by w|St0,t1
.

The support of a trajectory w ∈ (Rw)Z+×Z is the set of points where the trajectory
takes nonzero values, i.e. {(h, k) ∈ Z+ × Z : w(h, k) 6= 0}.

Definition 3.2. A 2D autonomous behavior B = kerR(σ1, σ2), with R(z1, z2)
∈ R[z1, z2, z

−1
2 ]p×w, is said to be nilpotent (with respect to the half-plane Z+ × Z)

if there exists N ∈ Z+ s.t. all the trajectories w ∈ B satisfy w|SN→ = 0 or,
equivalently, w(h, k) = 0, ∀ (h, k) ∈ SN→.

Nilpotency for a 2D behavior defined on Z+×Z does not mean that each trajec-
tory has a finite support, as in the 1D case [5], but only that its support intersects
finitely many vertical lines St of Z+ × Z. Further insights into autonomous and
nilpotent 2D behaviors defined on Z+ × Z can be found in [4].

Proposition 3.3. [4] A 2D behavior B = kerR(σ1, σ2), with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, is

• autonomous if and only if R(z1, z2) is a full column rank matrix;

• nilpotent if and only if R(z1, z2) is a right monomic matrix.
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4. Reconstructibility and dead-beat observers

Consider a 2D system whose behavior B is described as in (3.2), for some matrix
R(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×w. Assume that the system variables, grouped together

in the vector w, split into two groups: measured variables, denoted by wm, and
variables that represent the target of our estimation problem (the “relevant” vari-
ables), denoted by wr. The TS-polynomial matrix R(z1, z2) can be accordingly
block-partitioned, thus leading to the following description of the 2D behavior tra-
jectories:

[Rr(σ1, σ2) −Rm(σ1, σ2)]
[

wr(h, k)
wm(h, k)

]
= 0, (h, k) ∈ Z+ × Z,(4.1)

or, equivalently

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,(4.2)

where Rr(z1, z2) ∈ R[z1, z2, z
−1
2 ]p×wr and Rm(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wm . With re-

spect to this partition of the system variables1, the notions of observability and
reconstructibility have been introduced in [1] for 2D behaviors defined on the half-
plane H0 = {(h, k) ∈ Z× Z : h+ k ≥ 0}. In [1] it was also assumed that additional
unmeasured and not relevant variables (for instance, disturbances) were involved in
the system description. The adaption to the case of behaviors described as in (4.2),
and defined over the half-plane Z+ × Z, is immediate.

Definition 4.1. Given a behavior B, described as in (4.2), we say that wr is
reconstructible from wm if there exists N ∈ Z+ such that (wr,wm), (w̄r, wm) ∈ B

implies wr(h, k)− w̄r(h, k) = 0, ∀ (h, k) ∈ SN→.

A characterization of reconstructibility is provided in Proposition 4.2, below, and
it is a simple adaption of the analogous result obtained in [1].

Proposition 4.2. Given a 2D behavior B, described as in (4.2), wr is recon-
structible from wm if and only if Rr(z1, z2) is right monomic.

For a behavior B described as in (4.2), a dead-beat observer (DBO) of wr from
wm is a system that, corresponding to every trajectory (wr,wm) in B, produces an

1It is worth noticing that, so long as we restrict our attention to the estimation problem alone, it
is reasonable to assume that wm and wr correspond to disjoint sets, namely they have no common
variables. However, the choice of the relevant variables may also be imposed by control purposes,
as it happens when dealing with observer-based controllers, as we will see in section 7. When so,
the two sets of variables are not necessarily disjoint. If this is the case, one can simply replace wr

with w̃r = (wr,wmr) and assume wm = (wm,nr,wmr), where wr corresponds to the relevant (not
measured) variables, wm,nr to the measured variables that are not relevant, and wmr are measured
variables that are also relevant. In this case, we replace (4.2) with»

Rr(σ1, σ2) 0
0 I

–
w̃r(h, k) =

»
Rm(σ1, σ2)

0 I

–
wm(h, k).
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estimate ŵr of the trajectory wr (based on the measured variables wm alone), that
coincides with wr except, possibly, on an initial strip S→N−1. This notion, together
with the additional “consistency” property of a DBO, is formalized in the following
definition. For more insights into its practical meaning we refer the interested reader
to [1].

Definition 4.3. Consider a 2D behavior B ⊆ (Rw)Z+×Z, described as in (4.2).
The system represented by the 2D difference equation

Q(σ1, σ2)ŵr(h, k) = P (σ1, σ2)wm(h, k), ∀ (h, k) ∈ Z+ × Z,(4.3)

with P (z1, z2) and Q(z1, z2) TS-polynomial matrices of suitable sizes, is said to be a
dead-beat observer (DBO) of wr if the following two conditions hold:

(a) for every (wr,wm) ∈ B there exists ŵr such that (ŵr,wm) satisfies (4.3);

(b) there exists N ∈ Z+ such that for every (wr,wm) in B and (ŵr,wm) satis-
fying (4.3), we have wr(h, k)− ŵr(h, k) = 0 for every (h, k) ∈ SN→.

A DBO of wr is consistent if, in addition, every trajectory (wr,wm) ∈ B satisfies
(4.3).

Theorem 4.4. Given a 2D behavior B, described as in (4.2), the following facts
are equivalent:

i) there exists a consistent DBO of wr;

ii) there exists a DBO of wr;

iii) Rr(z1, z2) is right monomic (namely, wr is reconstructible from wm).

5. Zero-time-controllability and dead-beat controllers

For 2D behaviors defined on Z+×Z, we have introduced the definition of zero-time-
controllability [4]. For zero-time-controllable behaviors it is possible to patch any
initial strip of a behavior trajectory (its portion in S→N−1) with the zero trajectory.
This means that any behavior trajectory can be driven to zero within a finite number
of time instants, so that it is identically zero on some suitable half-plane SN+L→.
In this paper we extend the results obtained in [4] to the case when the system
variables are partitioned into two families, and we are interested only in ensuring
that one of these sets has trajectories that can be driven to zero (see also [2]).

Definition 5.1. Given a 2D behavior B = kerR(σ1, σ2) with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, let I be a subset of {1, 2, . . . , w}, and let wI be the subset of the

system variables, consisting of all the entries of w indexed by I. We say that wI
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is zero-time-controllable if there exists a nonnegative integer L ∈ Z+ s.t. for every
N ∈ N and every w ∈ B, one can find w̄ ∈ B s.t.

w̄I(h, k) = wI(h, k), ∀ (h, k) ∈ S→N−1,(5.1)
w̄I(h, k) = 0, ∀ (h, k) ∈ SN+L→,(5.2)

i.e. w̄I |S→N−1
= wI |S→N−1

and σN+L
1 w̄I = 0.

When I = {1, 2, . . . , w} we say, equivalently, that w or the behavior B is zero-time-
controllable.

Note that, when I ( {1, 2, . . . , w}, no constraint is imposed on the evolution
of the remaining variables wĪ , where Ī is the complementary set of I with respect
to {1, 2, . . . , w}. In [4] we have derived algebraic characterizations of zero-time-
controllable behaviors. The result can be extended to the case when we restrict our
attention to a subset of the system variables, as the zero-time-controllability of wI

is equivalent to the zero-time-controllability (in the sense of [4]) of the projection2

PIB of B on the variables wI (see also [2]).

Theorem 5.2. Given a 2D behavior, described by the difference equation:

RI(σ1, σ2)wI(h, k) = RĪ(σ1, σ2)wĪ(h, k), (h, k) ∈ Z+ × Z,(5.3)

where RI(z1, z2) and RĪ(z1, z2) are TS-polynomial matrices of sizes q × wI and q ×
(w − wI), respectively, let MĪ(z1, z2) be an MLA of RĪ(z1, z2). The following facts
are equivalent:

i) wI is zero-time-controllable;

ii) either RĪ(z1, z2) is of full row rank or HI(z1, z2) := MĪ(z1, z2)RI(z1, z2) can
be expressed as

HI(z1, z2) = L(z1, z2)∆(z1, z2)R(z1, z2),

with L(z1, z2) right monomic, ∆(z1, z2) nonsingular square with det ∆(z1,
z2) ∈ R[z2, z

−1
2 ], and R(z1, z2) left factor prime.

By a controller C of a given 2D behavior B = ker R(σ1, σ2), with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, we mean a system that constrains the system trajectories, and

hence is described by a difference equation of the following type

C(σ1, σ2)w(h, k) = 0, ∀ (h, k) ∈ Z+ × Z,(5.4)

2It is well-known [4, 10], that if a behavior B is described by RI(σ1, σ2)wI(h, k) =
RĪ(σ1, σ2)wĪ(h, k), (h, k) ∈ Z+ × Z, then PIB = ker(MĪ(σ1, σ2)RI(σ1, σ2)), where MĪ(z1, z2) is
an MLA of RĪ(z1, z2). In the special case when RĪ(z1, z2) is of full row rank, its MLA is a void
matrix and PIB = ker 0, which means that PIB = (RwI )Z+×Z.
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for a suitable TS-polynomial matrix C(z1, z2). The overall controlled behavior, i.e.
the behavior of the system obtained by full interconnection of the behavior B and
the controller (5.4), is described by[

R(σ1, σ2)
C(σ1, σ2)

]
w(h, k) = 0, ∀ (h, k) ∈ Z+ × Z,(5.5)

it is denoted by K, and it is clearly the intersection of B and C := kerC(σ1, σ2). On
the other hand, if we assume that B is described as in

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,(5.6)

where Rr(z1, z2) ∈ R[z1, z2, z
−1
2 ]p×wr , Rm(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wm , and wr and

wm represent, as in the previous sections, the relevant and the measured vari-
ables, respectively, it makes sense to consider also control by partial interconnection,
namely to apply the control action only to the measured variables. When so, the
controlled behavior K is described as[

Rr(σ1, σ2) −Rm(σ1, σ2)
0 −Cm(σ1, σ2)

] [
wr(h, k)
wm(h, k)

]
= 0, ∀ (h, k) ∈ Z+ × Z.(5.7)

In either cases, whether we act by full interconnection or by partial interconnection3,
the target of the dead-beat control problem is to design, if possible, a controller s.t.
either the whole controlled behavior K or its projection on some subset wI of its
variables, PIK, is nilpotent.

Definition 5.3. Given a 2D behavior B = ker R(σ1, σ2), with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, a controller C, acting on B by full or partial interconnection, is said

to be a dead-beat controller (DBC) for the system variables wI , I ⊆ {1, 2, . . . , w}, if
there exists N ∈ Z+ s.t. all the trajectories of the behavior PIK = PI(B ∩ C) have
supports included in the vertical strip S→N−1.

Remark 5.4. The previous definition can be restated in terms of projections.
In fact, a controller C is a DBC for wI if and only if PIK is a nilpotent behavior.

Clearly, when I = {1, 2, . . . , w}, a DBC for wI becomes a DBC for the whole
system variables, and we will refer to it as a DBC for B.

We have the following characterization of the existence of a DBC, acting on the
measured variables alone.

Proposition 5.5. Consider a 2D behavior B, described as in (5.6), where
Rr(z1, z2) and Rm(z1, z2) are TS-polynomial matrices of size p × wr and p × wm,
respectively. The following conditions are equivalent:

3In the following, when we will need to distinguish between the two of them, we will denote a con-
troller that acts by full interconnection by CFI and a controller that acts by partial interconnection
by CPI .
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i) there exists a DBC C for the behavior B, described by

Cm(σ1, σ2)wm(h, k) = 0, (h, k) ∈ Z+ × Z,(5.8)

for some TS-polynomial matrix Cm(z1, z2);

ii) there exists a DBC C for the variables wr, described as in (5.8), for some
TS-polynomial matrix Cm(z1, z2);

iii) wr is reconstructible from wm (equivalently, Rr(z1, z2) is right monomic).

Proof. i) ⇒ ii) is obvious.

ii) ⇒ iii) If ii) holds, then the behavior

K = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −Cm(σ1, σ2)

]
,(5.9)

has projection PwrB that is nilpotent. This means that if [MR(z1, z2) MC(z1, z2) ]

is an MLA of
[
Rm(z1, z2)
Cm(z1, z2)

]
, then

[MR(z1, z2) MC(z1, z2) ]
[
Rr(z1, z2)

0

]
= MR(z1, z2)Rr(z1, z2)

is right monomic. But this implies that there exists a TS-polynomial matrix L(z1, z2)
and δ ∈ Z+ such that

zδ1Iwr = L(z1, z2)[MR(z1, z2)Rr(z1, z2)] = [L(z1, z2)MR(z1, z2)]Rr(z1, z2),

thus ensuring that Rr(z1, z2) is right monomic, too.

iii)⇒ i) It is easily seen that, under the assumption that Rr(z1, z2) is right monomic,
the trivial controller C = kerIwm is a DBC for the whole behavior B.

Given a controller (in particular, a DBC) C, described as in (5.4), we introduce
the family of delayed controllers Cd, d ∈ Z+, each of them described by the difference
equation

σd1C(σ1, σ2)w(h, k) = 0, (h, k) ∈ Z+ × Z.

If we denote by Kd the controlled behavior obtained corresponding to Cd, then

Kd = ker
[
R(σ1, σ2)
σd1C(σ1, σ2)

]
.(5.10)

Clearly, C = C0 and K = K0.

If C is a DBC for the system variables wI , then every Cd is a DBC for wI . This is
proved in the following lemma, which extends to 2D behaviors and to partial inter-
connection a similar result derived for 1D systems in the case of full interconnection.
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As the proof follows the same lines, mutatis mutandis, as the one in [2], we have
chosen to provide a concise version of it.

Lemma 5.6. Given a 2D behavior B = ker R(σ1, σ2), with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, let C = ker C(σ1, σ2), with C(z1, z2) ∈ R[z1, z2, z

−1
2 ]q×w, be a DBC

for the system variables wI . Then, for every d ∈ Z+, Cd is a DBC for wI .

Proof. It entails no loss of generality to rewrite both the behavior and the
controller equations as follows, in order to separate the variables wI and wĪ :

RI(σ1, σ2)wI(h, k) = RĪ(σ1, σ2)wĪ(h, k),
CI(σ1, σ2)wI(h, k) = CĪ(σ1, σ2)wĪ(h, k), (h, k) ∈ Z+ × Z.

As C is a DBC for wI , PIK is nilpotent or, equivalently,

HI(z1, z2) := [MR(z1, z2) MC(z1, z2) ]
[
RI(z1, z2)
CI(z1, z2)

]

is right monomic, where [MR(z1, z2) MC(z1, z2) ] is an MLA of
[
RĪ(z1, z2)
CĪ(z1, z2)

]
. Now,

consider

Kd = B ∩ Cd = ker
[
RI(σ1, σ2) −RĪ(σ1, σ2)
σd1CI(σ1, σ2) −σd1CĪ(σ1, σ2)

]
,

and let [ M̂R(z1, z2) M̂C(z1, z2) ] denote an MLA of
[
RĪ(z1, z2)
zd1CĪ(z1, z2)

]
. It is easily

seen that [ zd1MR(z1, z2) MC(z1, z2) ] is a left annihilator of that same matrix, and
hence there exists a TS-polynomial matrix P (z1, z2) such that

[ zd1MR(z1, z2) MC(z1, z2) ] = P (z1, z2) [ M̂R(z1, z2) M̂C(z1, z2) ] .

This ensures that
PIKd ⊆ ker

(
σd1HI(σ1, σ2)

)
.

As HI(z1, z2) is right monomic, PIKd is included in the nilpotent behavior ker
(
σd1HI

(σ1, σ2)), and hence it is nilpotent, too. This implies that Cd is a DBC for wI .

Remark 5.7. Clearly, Cd and C are DBCs of the same type, meaning that if C
acts on the system variables by full (partial) interconnection, so does Cd.

The concept of delayed controller allows to introduce that of admissible DBC, a
notion first introduced in [2] for 1D behaviors, and later extended to DBCs acting
by full interconnection on 2D behaviors in [4]. A controller is admissible if it can
start acting on the 2D trajectory at any time, without constraining a posteriori its
“past evolution”. So, it is immediately seen that controllers that are not endowed
with this property do not admit any real-time implementation.

Definition 5.8. Given a 2D behavior B, a dead-beat controller C for the
system variables wI , I ⊆ {1, 2, . . . , w}, (in particular, a DBC for B) is said to be
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admissible if there exists L ∈ Z+ s.t. for every w ∈ B and every N ∈ N, there exists
w̄ ∈ KL+N , the controlled behavior obtained corresponding to the controller CL+N ,
s.t. w̄I(h, k)|S→N−1

= wI(h, k)|S→N−1
.

In the following we will characterize the existence of DBCs and of admissible
DBCs by assuming that the system variables split into relevant and measured vari-
ables, and that we resort to a partial interconnection controller C = CPI , acting
on the measured variables only. This means that the overall controlled behavior K
will always be described as in (5.7). Also, we will aim at driving to zero either all
the system variables (I = {1, 2, . . . , w}) or just the relevant variables (wI = wr).
In order to derive such characterizations, we will make use of the following result
derived in [4].

Theorem 5.9. Given a 2D behavior B = ker R(σ1, σ2), with R(z1, z2) ∈
R[z1, z2, z

−1
2 ]p×w, there exists a full interconnection controller CFI that acts as an

admissible DBC for B if and only if B is zero-time-controllable. If this is the case,
then every DBC for B is admissible.

We now extend the characterization provided by Proposition 5.5 to the case of
admissible DBCs, by first addressing the case when we are interested in driving to
zero only wr.

Theorem 5.10. Consider a 2D behavior B, described as in (5.6), for suitable
TS-polynomial matrices Rr(z1, z2) and Rm(z1, z2), of size p × wr and p × wm, re-
spectively. There exists an admissible DBC C for the variables wr, described as in
(5.8), for some TS-polynomial matrix (of size say q × wm) Cm(z1, z2) if and only if
the following two conditions hold:

a) wr is reconstructible from wm;

b) the variables wr are zero-time-controllable.

If these two conditions are satisfied, then every DBC for wr is admissible.

Proof. [Necessity] Assume, first, that there exists an admissible DBC C for wr,
described as in (5.8). This means that the overall controlled behavior K, described as
in (5.9), has projection PwrK that is nilpotent and hence there exists M ∈ Z+ such
that all trajectories in PwrK are zero in SM→. If we let [MR(z1, z2) MC(z1, z2) ]

be an MLA of
[
Rm(z1, z2)
Cm(z1, z2)

]
, then

PwrK = ker(MR(σ1, σ2)Rr(σ1, σ2)).

By being PwrK nilpotent, MR(z1, z2)Rr(z1, z2) is right monomic, and this implies
(as we have already seen in the proof of Proposition 5.5) that Rr(z1, z2) is right
monomic, too, so ensuring that wr is reconstructible from wm. Now, consider

Kd = B ∩ Cd = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −σd1Cm(σ1, σ2)

]
.
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We have already shown in the proof of Lemma 5.6 that

PwrKd ⊆ ker
(
σd1MR(σ1, σ2)Rr(σ1, σ2)

)
.

So, the trajectories of PwrKd have support included in S→d+M−1, and this is true
for every d ∈ Z+.

Since C is an admissible DBC for wr, there exists L ∈ Z+ such that for every
N ∈ N and every (wr,wm) ∈ B a trajectory (w̄r, w̄m) ∈ KL+N ⊆ B can be found,
with w̄r = wr in S→N−1. Such a trajectory w̄r is surely zero in SL+N+M→. So, we
have proved that there exists L∗ ∈ N, specifically L∗ := M + L, such that for every
(wr,wm) ∈ B there exists a trajectory (w̄r, w̄m) ∈ KL+N ⊆ B such that w̄r = wr

in S→N−1 and w̄r = 0 in SN+L∗→. This proves that wr is zero-time-controllable.

[Sufficiency] Assume now that conditions a) and b) hold. We want to prove that an
admissible DBC for wr always exists. Set Cm(z1, z2) = Rm(z1, z2). Correspondingly

K = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −Rm(σ1, σ2)

]
,

and it is easy to verify that if Mm(z1, z2) is an MLA of Rm(z1, z2), then[
Mm(z1, z2) 0

Ip −Ip

]

is an MLA of
[
Rm(z1, z2)
Rm(z1, z2)

]
. Therefore

PwrK = ker
([

Mm(σ1, σ2)Rr(σ1, σ2)
Rr(σ1, σ2)

])
= kerRr(σ1, σ2).

By assumption a), Rr(z1, z2) is right monomic and hence Cm(z1, z2) = Rm(z1, z2)
defines a DBC for wr.
We now need to prove that this DBC is admissible. By the zero-time-controllability
property, there exists a nonnegative integer L such that for every N ∈ N and every
(wr,wm) ∈ B, one can find (w̄r, w̄m) ∈ B such that

w̄r(h, k) = wr(h, k), ∀ (h, k) ∈ S→N−1

w̄r(h, k) = 0, ∀ (h, k) ∈ SN+L→.
(5.11)

We want to show that the condition appearing in the definition of admissible DBC
is verified for this choice of L. To this end we have to show that for every N ∈ N
and every (wr,wm) ∈ B a trajectory (w̄r, w̄m) ∈ KL+N ⊆ B can be found, with
w̄r = wr in S→N−1. Now, consider

KL+N = B ∩ CL+N = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −σL+N
1 Rm(σ1, σ2)

]
.
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It is easily seen that [
Mm(z1, z2) 0
zL+N

1 I −I

]
is an MLA of

[
Rm(z1, z2)

zL+N
1 Rm(z1, z2)

]
. This implies that

PwrKL+N = ker
([

Mm(σ1, σ2)Rr(σ1, σ2)
σL+N

1 Rr(σ1, σ2)

])
.

So, it is easy to see that the same trajectory w̄r that satisfies (5.11), and whose
existence is ensured by the zero-time-controllability property, is necessarily a trajec-
tory of both ker(Mm(σ1, σ2)Rr(σ1, σ2)) and ker(σL+N

1 Rr(σ1, σ2)). Therefore w̄r ∈
PwrKL+N and this makes the definition of admissible DBC satisfied. This completes
the proof of sufficiency.

By repeating the same reasoning we just used, we can show that if a) and b)

hold, and Cm(z1, z2) defines a DBC, then an MLA of
[
Rm(z1, z2)
Cm(z1, z2)

]
can always be

expressed as [
Mm(z1, z2) 0
MRm(z1, z2) MCm(z1, z2)

]
,

while a left annihilator of
[

Rm(z1, z2)
zN+L

1 Cm(z1, z2)

]
is

[
Mm(z1, z2) 0

zN+L
1 MRm(z1, z2) MCm(z1, z2)

]
and this ensures that

PwrKL+N ⊆ ker
([

Mm(σ1, σ2)Rr(σ1, σ2)
σL+N

1 MRm(σ1, σ2)Rr(σ1, σ2)

])
.

So, zero-time-controllability of wr ensures the admissibility of any DBC for wr.

The following proposition addresses the existence of an admissible DBC for the
behavior B. Its proof follows similar reasonings to those used in the previous proof,
and hence it is omitted.

Proposition 5.11. Consider a 2D behavior B, described as in (5.6), for
suitable TS-polynomial matrices Rr(z1, z2) and Rm(z1, z2), of size p×wr and p×wm,
respectively. There exists an admissible DBC C for the behavior B, described as in
(5.8), if and only if the following two conditions hold:

a) wr is reconstructible from wm;

b) the behavior B is zero-time-controllable.

If these two conditions are satisfied, then every DBC for B is admissible.
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6. Characterization of the DBCs

The aim of this section is to provide a characterization of the TS-polynomial matrices
Cm(z1, z2) that describe the (admissible) DBCs that drive to zero either all the
system variables or just the relevant variables wr of a 2D behavior described as in
(5.6). As in the previous section, we address, first, the case of DBCs that drive to
zero both wr and wm.

Proposition 6.1. Consider a 2D behavior B described as in (5.6), with
Rr(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wr and Rm(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wm. Let Mr(z1, z2) ∈

R[z1, z2, z
−1
2 ](p−rank(Rr))×p be an MLA of Rr(z1, z2), and suppose that the following

two conditions hold:

a) wr is reconstructible from wm;

b) B is zero-time-controllable.

The TS-polynomial Cm(z1, z2) ∈ R[z1, z2, z
−1
2 ]q×wm defines a (necessarily admissible)

DBC for B if and only if the matrix

Hm(z1, z2) :=
[
Mr(z1, z2)Rm(z1, z2)

Cm(z1, z2)

]
(6.1)

is right monomic.

Proof. [Necessity] If Cm(z1, z2) defines an admissible DBC for B, then the con-
trolled behavior, K, described as in (5.9), is nilpotent. But this clearly implies that
also its projection on wm is. Since an MLA for[

Rr(z1, z2)
0

]
∈ R[z1, z2, z

−1
2 ](p+q)×wr

is just [
Mr(z1, z2) 0

0 Iq

]
,

this means that

PwmK = ker
[
Mr(σ1, σ2)Rm(σ1, σ2)

Cm(σ1, σ2)

]
= kerHm(σ1, σ2),

is nilpotent. This is equivalent to the fact that Hm(z1, z2) is right monomic.

[Sufficiency] By reversing the last part of the previous reasoning, we can claim that if
Hm(z1, z2) is right monomic, then PwmK is nilpotent, and hence there exists M ∈ Z+

such that wm ∈ PwmK implies wm(h, k) = 0 in SM→. Since every (wr,wm) ∈ K
satisfies (5.6), it follows that

Rr(σ1, σ2)wr(h, k) = 0, ∀ (h, k) ∈ SM→,
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and if Lr(z1, z2) satisfies

Lr(z1, z2)Rr(z1, z2) = zδ1Iwr ,

for some δ ∈ Z+, then

σδ1wr(h, k) = 0, ∀ (h, k) ∈ SM→,

which amounts to saying that

wr(h, k) = 0, ∀ (h, k) ∈ SM+δ→.

So, Cm(z1, z2) defines a DBC for B, and since B is zero-time-controllable, such DBC
is also admissible.

Remark 6.2. A complete description of all TS-polynomial matrices Cm(z1, z2)
that make the matrix Hm(z1, z2) right monomic is a little involved and probably not
worth the effort. We want to provide, however, a parametrization of a large class of
such matrices: all matrices described in the following way

Cm(z1, z2) = zν1I − P (z1, z2)Mr(z1, z2)Rm(z1, z2),
ν ∈ Z+,
P (z1, z2) TS− polynomial,

make Hm(z1, z2) right monomic. Indeed, from

[P (z1, z2) I ]
[

Mr(z1, z2)Rm(z1, z2)
zν1I − P (z1, z2)Mr(z1, z2)Rm(z1, z2)

]
= zν1I,

it is immediately seen that Hm(z1, z2) admits an L-polynomial inverse, and hence it
is right monomic.

We now characterize all the matrices Cm(z1, z2) that describe (admissible) DBCs
that drive to zero the variables wr alone.

Proposition 6.3. Consider a 2D behavior B described as in (5.6), with
Rr(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wr and Rm(z1, z2) ∈ R[z1, z2, z

−1
2 ]p×wm. Let Mr(z1, z2) ∈

R[z1, z2, z
−1
2 ](p−rank(Rr))×p be an MLA of Rr(z1, z2), and let Lr(z1, z2) be a TS-

polynomial matrix of size wr × p such that

Lr(z1, z2)Rr(z1, z2) = zδ1Iwr ,

for some δ ∈ Z+. Suppose that the following two conditions hold:

a) wr is reconstructible from wm;

b) wr is zero-time-controllable.
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The TS-polynomial matrix Cm(z1, z2) ∈ R[z1, z2, z
−1
2 ]q×wm defines a (necessarily ad-

missible) DBC for wr if and only if there exists ν ∈ Z+ such that

kerHm(σ1, σ2) ⊆ ker(zν1Lr(σ1, σ2)Rm(σ1, σ2)),(6.2)

where Hm(z1, z2) is defined as in (6.1).

Proof. [Necessity] If Cm(z1, z2) defines an admissible DBC for wr, then the
projection of

K = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −Cm(σ1, σ2)

]
over wr is nilpotent, which means that there exists M ∈ Z+ such that wr ∈ PwrK
implies wr(h, k) = 0 in SM→. On the other hand, as we showed in the proof of the
previous proposition, PwmK = kerHm(σ1, σ2). We want to prove that (6.2) holds.

For every (wr,wm) ∈ K, condition

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k), ∀ (h, k) ∈ Z+ × Z,

implies

σδ1wr = Lr(σ1, σ2)Rm(σ1, σ2)wm(h, k), ∀ (h, k) ∈ Z+ × Z,

and hence

0 = Lr(σ1, σ2)Rm(σ1, σ2)wm(h, k), ∀ (h, k) ∈ SM+δ→.

This proves that wm ∈ ker(σM+δ
1 Lr(σ1, σ2)Rm(σ1, σ2)).

[Sufficiency] Consider the controlled behavior K, obtained corresponding to Cm(z1,
z2). We have already proved that PwmK = kerHm(σ1, σ2). So, if (6.2) holds,

PwmK ⊆ ker(σν1Lr(σ1, σ2)Rm(σ1, σ2)),

for some ν ∈ Z+. Therefore, for every (wr,wm) ∈ K, condition

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k), ∀ (h, k) ∈ Z+ × Z,

implies

σδ+ν1 wr(h, k) = σν1Lr(σ1, σ2)Rr(σ1, σ2)wr(h, k)
= σν1Lr(σ1, σ2)Rm(σ1, σ2)wm(h, k)
= 0, ∀ (h, k) ∈ Z+ × Z.

Therefore wr(h, k) = 0 in Sδ+ν→. This proves that Cm(z1, z2) defines a DBC for
wr, and since wr is zero-time-controllable, such a DBC is also admissible.

Remark 6.4. Clearly, the characterization given in Proposition 6.3 is weaker
than the one given in Proposition 6.1. Indeed, this latter can be rewritten as: “there
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exists ν ∈ Z+ such that kerHm(σ1, σ2) ⊆ ker(σν1Iwm),” and when this condition is
verified a fortiori condition (6.2) is.

Remark 6.5. As in the previous case, we can provide a parametrization of a
class of matrices Cm(z1, z2) such that the corresponding Hm(z1, z2) satisfies condi-
tion (6.2). We want to show that all the matrices described in the following way

Cm(z1, z2) = zν1Lr(z1, z2)Rm(z1, z2)− P (z1, z2)Mr(z1, z2)Rm(z1, z2),
ν ∈ Z+,
P (z1, z2) TS− polynomial,

make (6.2) satisfied. Indeed, from

[P (z1, z2) I ]
[

Mr(z1, z2)Rm(z1, z2)
zν1Lr(z1, z2)Rm(z1, z2)− P (z1, z2)Mr(z1, z2)Rm(z1, z2)

]
= zν1Lr(z1, z2)Rm(z1, z2),

it is immediately seen that (6.2) holds.

7. Observer-based DBCs

In the previous sections we have explored the possibility of driving either all or part
of the system variables to zero, by resorting to a partial interconnection controller
acting on the measured variables alone. We have seen that the existence of admissible
DBCs that drive to zero either (wr,wm) or wr is equivalent to the reconstructibility
of wr together with the zero-time-controllability either of the whole behavior B

or of wr. These two properties have proved to be equivalent, respectively, to the
existence of a dead-beat observer and of an admissible dead-beat controller acting
on all the variables (namely a full interconnection controller), this latter targeting
either (wr,wm) or wr.

So, the idea naturally arises that a DBC by partial interconnection could al-
ways be realized as an “observer-based DBC”, by this meaning that we can first
design a dead-beat observer that provides an estimate ŵr of the unaccessible but
relevant variables wr, and then design a full interconnection DBC, acting on the
pair (ŵr,wm), and driving to zero either (wr,wm) or wr. Also, in this case we
will address the “admissibility” issue, by this meaning that we will impose that the
(shifted versions of the) DBCs allow to preserve the initial portion either of the pair
of trajectories (wr,wm) or of the trajectory wr alone.

Consider a 2D behavior described as in

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,(7.1)

where Rr(z1, z2) and Rm(z1, z2) are TS-polynomial matrices of size p×wr and p×wm,
respectively. Suppose that ŵr is the estimate of wr provided by a (possibly consis-
tent) DBO, based on the knowledge of the measured variables wm, and described
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as follows:

Q(σ1, σ2)ŵr(h, k) = P (σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,(7.2)

where the TS-polynomial matrices Q(z1, z2) and P (z1, z2) have size d×wr and d×wm,
respectively. Finally, we introduce a full interconnection (w.r.t. the pair (ŵr,wm))
controller

Cr(σ1, σ2)ŵr(h, k) = Cm(σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,(7.3)

where the TS-polynomial matrices Cr(z1, z2) and Cm(z1, z2) have size q × wr and
q × wm, respectively. The overall system is the one depicted in Figure 1

System Observer

Controller

wr(t) ŵr(t)wm(t)

Fig.1 Observer-based DBC structure.

and its behavior Ktot is described by the following difference equation:Rr(σ1, σ2) −Rm(σ1, σ2) 0
0 −P (σ1, σ2) Q(σ1, σ2)
0 −Cm(σ1, σ2) Cr(σ1, σ2)

 wr(h, k)
wm(h, k)
ŵr(h, k)

 = 0, (h, k) ∈ Z+×Z.(7.4)

If we set

Htot(z1, z2) :=

Rr(z1, z2) −Rm(z1, z2) 0
0 −P (z1, z2) Q(z1, z2)
0 −Cm(z1, z2) Cr(z1, z2)

 ,
clearly Ktot = kerHtot(σ1, σ2).

The estimated variables ŵr represent additional variables, that need to be elimi-
nated in order to reduce ourselves to the partial interconnection problem consid-
ered in the previous sections. Indeed, we are interested in the behavior K :=
P(wr,wm)Ktot, which can be described as follows. If [MQ(z1, z2) MCr(z1, z2) ] is

an MLA of
[
Q(z1, z2)
Cr(z1, z2)

]
, then

[
Ip 0 0
0 MQ(z1, z2) MCr(z1, z2)

]

is an MLA of

 0p×wr

Q(z1, z2)
Cr(z1, z2)

. This implies that

K = ker
[
Rr(σ1, σ2) −Rm(σ1, σ2)

0 −(MQ(σ1, σ2)P (σ1, σ2) +MCr(σ1, σ2)Cm(σ1, σ2))

]
.(7.5)
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So, in order to investigate the existence and admissibility of observer-based DBCs,
we need to address the existence and admissibility of partial interconnection DBCs
taking the special form

[MQ(σ1, σ2)P (σ1, σ2)+MCr(σ1, σ2)Cm(σ1, σ2)]wm(h, k) = 0, (h, k) ∈ Z+×Z,(7.6)

where the TS-polynomial matrices appearing in (7.6) have the interpretation pre-
viously given. It is worth noticing that having reduced the observer-based DBC
problem to the problem of designing DBCs, by partial interconnection, taking the
form

C = ker [ 0 −(MQ(σ1, σ2)P (σ1, σ2) +MCr(σ1, σ2)Cm(σ1, σ2)) ] ,

by the results derived in the previous sections, it immediately follows that the
admissibility of an observer-based DBC will always be related to the zero-time-
controllability property (either of the whole behavior B or of the variables wr,
alone).

Now we are in a position to show that the same conditions that allow to solve
the two DBC problems (by partial interconnection) allow to solve the analogous
observer-based DBC problems.

Proposition 7.1. Given a 2D behavior B, described as in (7.1), the following
conditions are equivalent:

i) there exists an observer-based [admissible] DBC for the behavior B, described
as in (7.2)-(7.3);

ii) wr is reconstructible from wm [and B is zero-time-controllable].

Proof. i) ⇒ ii) Suppose that there exists an observer-based [admissible] DBC
for B. Since K = P(wr,wm)Ktot is nilpotent, the matrix[

Rr(z1, z2) −Rm(z1, z2)
0 −(MQ(z1, z2)P (z1, z2) +MCr(z1, z2)Cm(z1, z2))

]
is right monomic, and this ensures that Rr(z1, z2) is right monomic, too. Finally, as
previously remarked, if the observer-based DBC is admissible, this means that the
controller

C = ker [ 0 −(MQ(σ1, σ2)P (σ1, σ2) +MCr(σ1, σ2)Cm(σ1, σ2)) ]

is an admissible DBC for the behavior B, and hence B is zero-time-controllable.

ii) ⇒ i) If wr is reconstructible from wm, Rr(z1, z2) is right monomic, and
by choosing (Q(z1, z2), P (z1, z2)) = (Rr(z1, z2), Rm(z1, z2)) we obtain a (consistent)
DBO. We aim at showing that by choosing Cr(z1, z2) = 0 and Cm(z1, z2) = Iwm we
obtain an observer-based [admissible] DBC for the behavior B. It is easy to verify
that in this case

MQ(z1, z2) =
[
Mr(z1, z2)

0

]
and MCr(z1, z2) =

[
0
Iwm

]
,
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and this leads to rewrite (7.6) in the following form:[
Mr(σ1, σ2)P (σ1, σ2)

Iwm

]
wm(h, k) = 0, (h, k) ∈ Z+ × Z.

So, being both Rr(z1, z2) and
[
Mr(z1, z2)P (z1, z2)

I

]
right monomic matrices, it eas-

ily follows that

K = ker

Rr(σ1, σ2) −Rm(σ1, σ2)
0 −Mr(σ1, σ2)P (σ1, σ2)
0 −I

 ,
is a nilpotent behavior. Finally, under the additional assumption that B is zero-
time-controllable, the observer-based DBC is necessarily an admissible one.

Remark 7.2. It is easy to see that, under assumption ii) of the previous
proposition, for every choice of a DBO and a DBC we obtain an observer-based
[admissible] DBC. In fact, from the description of Ktot it follows

Rr(σ1, σ2)wr(h, k) = Rm(σ1, σ2)wm(h, k),
Cr(σ1, σ2)ŵr(h, k) = Cm(σ1, σ2)wm(h, k), (h, k) ∈ Z+ × Z,

that can be rewritten as[
Rr(σ1, σ2) −Rm(σ1, σ2)
Cr(σ1, σ2) −Cm(σ1, σ2)

] [
wr(h, k)
wm(h, k)

]
=
[

0
Cr(σ1, σ2)

]
(wr(h, k)− ŵr(h, k)).(7.7)

Since the first matrix appearing in the previous equation is right monomic, a TS-
polynomial matrix L(z1, z2) exists such that

σδ1

[
wr(h, k)
wm(h, k)

]
= L(σ1, σ2)

[
Rr(σ1, σ2) −Rm(σ1, σ2)
Cr(σ1, σ2) −Cm(σ1, σ2)

] [
wr(h, k)
wm(h, k)

]
= L(σ1, σ2)

[
0

Cr(σ1, σ2)

]
(wr(h, k)− ŵr(h, k))

for some δ ∈ Z+. As the signal wr(h, k)− ŵr(h, k) is zero on some half-plane SM→,
the right hand side of the previous identity is a trajectory with support included in
a vertical strip. So, both wr and wm have the same property, thus showing that K
is a nilpotent behavior. This ensures that (7.6) defines a DBC for B. Moreover, in
case of zero-time-controllability, this DBC is necessarily an admissible one.

We now address observer-based DBCs targeting only the relevant variables.

Proposition 7.3. Given a 2D behavior B, described as in (7.1), the following
conditions are equivalent:

i) there exists an observer-based [admissible] DBC for the variables wr, de-
scribed as in (7.2)-(7.3);
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ii) wr is reconstructible from wm [and wr is zero-time-controllable].

Proof. i) ⇒ ii) Suppose that there exists an observer-based [admissible] DBC
for wr. Clearly, PwrKtot = PwrK, and, by assumption, PwrK is nilpotent. From
(7.5), it follows that

PwrK = ker(A1(σ1, σ2)Rr(σ1, σ2))

where [A1(z1, z2) A2(z1, z2) ] is an MLA of[
Rm(z1, z2)

MQ(σ1, σ2)P (z1, z2) +MCr(z1, z2)Cm(z1, z2)

]
.

As A1(z1, z2)Rr(z1, z2) is right monomic, then Rr(z1, z2) is monomic, too. Finally,
if the observer-based DBC for wr is admissible, this means that the controller

C = ker [ 0 −(MQ(σ1, σ2)P (σ1, σ2) +MCr(σ1, σ2)Cm(σ1, σ2)) ]

is an admissible DBC for wr, and hence wr is zero-time-controllable.

ii) ⇒ i) By choosing (Q(z1, z2), P (z1, z2)) = (Rr(z1, z2), Rm(z1, z2)), Cr(z1, z2)
= 0 and Cm(z1, z2) = Iwm as in the previous Proposition 7.1, we get an observer-
based DBC for B, and hence a fortiori for wr. Under the additional zero-time-
controllability assumption on wr,

C = ker [ 0 −(MQ(σ1, σ2)P (σ1, σ2) +MCr(σ1, σ2)Cm(σ1, σ2)) ]

is an admissible DBC for wr, and hence the observer-based DBC is admissible.

Remark 7.4. A remark analogous to Remark 7.2 holds true also for observer-
based DBCs targeting only wr. Starting from equation (7.7), and by premultiplying

it by an MLA of
[
Rm(z1, z2)
Cm(z1, z2)

]
, we obtain the following equation

A(σ1, σ2)wr(h, k) = B(σ1, σ2)(wr(h, k)− ŵr(h, k)), (h, k) ∈ Z+ × Z,

for suitable TS-polynomial matrices A(z1, z2) and B(z1, z2), with A(z1, z2) right mo-
nomic, since we are now dealing with a DBC for wr alone. By the same reasoning
adopted in the previous remark, it follows that wr belongs to a nilpotent behavior,
thus showing that (7.6) defines a DBC for wr. Moreover, in case of zero-time-
controllability of wr, this DBC is necessarily an admissible one.
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8. Conclusions

In this paper we have addressed the dead-beat control problem, by partial inter-
connection, of 2D behaviors, defined on the grid Z+ × Z and having the time as
independent variable. The existence of such a DBC, driving to zero (in a finite num-
ber of time instants) either all or part of the system variables, is equivalent to the
reconstructibility of the variables that are not accessible for control. On the other
hand, if we constrain our search to “admissible” DBCs, we have to introduce the ad-
ditional assumption that either B or the relevant variables are zero-time-controllable.
Such characterizations prove to be also the necessary and sufficient conditions for
solving the same problem by resorting to an observer-based (admissible) dead-beat
controller.
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