
Observability and reconstructibility of Probabilistic Boolean
Networks

Ettore Fornasini and Maria Elena Valcher

Abstract—In this paper observability and reconstructibility
properties of Probabilistic Boolean Networks (PBNs) on a finite
time interval are addressed. By assuming that the state update
follows a probabilistic rule, while the output is a deterministic
function of the state, we investigate under what conditions the
knowledge of the output measurements in [0, T ] allows the exact
identification either of the initial state or of the final state of
the PBN. By making use of the algebraic approach to PBNs,
the concepts of observability, weak reconstructibility and strong
reconstructibility are introduced and characterized. Set theoretic
algorithms to determine all possible initial/final states compatible
with the given output sequence are provided.

Index Terms - Probabilistic Boolean Networks, observability,
weak/strong reconstrucitbility.

I. INTRODUCTION

The current wide-spread interest in Boolean (control)
networks (BNs/BCNs) and Probabilistic Boolean networks
(PBNs), as effective models of gene regulatory networks, must
be credited to Stuart Kauffman. In [10], he first noted that cells
regulatory genes behave like switches, taking “on/off” status
(1/0, respectively). As the switching often obeys some proba-
bilistic law, PBNs are very convenient models to describe the
dynamics of genetic networks. This first intuition stimulated
a long stream of research, adopting BNs, PBNs and BCNs to
model gene regulatory networks (e.g., [2], [6], [9], [16], [20]).

In the last decade, D. Cheng and co-authors proposed an
algebraic approach to BNs, BCNs and PBNs [3], [4], [5] that
relies on the semi-tensor product and allows to represent logic
networks by means of state-space models. Indeed, every state
of a finite-state system can be represented by a canonical
vector, and logic relationships by means of logic matrices.
Consequently, Boolean (control) networks can be represented
as discrete-time (bi)linear systems. On the other hand, a
probabilistic Boolean network can be viewed as a Boolean
network whose state updating structure switches within a finite
set of different models. At each time, the model selection,
and hence the switching from the current model into the
next one, obeys a given probabilistic law. Equivalently, a
PBN can be thought of as a BN in which each state has a
family of different successors, and the transition probabilities
are known. Fundamental issues as controllability, reachability,
state feedback stabilization and optimal control of PBNs have
been investigated in the literature [12], [14], [15], [17], [18],
[19], with special attention for the application of these results
in gene regulatory networks. On the other hand, the research
on the observability and reconstructibility of PBNs is still at
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an early stage [8], [11], [22], and we are not aware of any
general theory of reconstructibility for PBNs.

Observability and reconstructibility properties for PBNs
offer some interesting challenges. When dealing with a BN, if
its output is known in some time window [0, T ], it is natural to
investigate what are the initial/final states compatible with the
given output. Accordingly, observability and reconstructibility
are defined as the properties to be able to uniquely identify the
initial or final state, respectively, for every measured output.
For a PBN, the knowledge of an output sequence in [0, T ]
allows to determine the sets of all initial/final states compatible
with the given sequence, and to introduce a probability distri-
bution on these sets. In this perspective, the natural extension
of the observability and reconstructibility definitions given for
BNs is that of requiring that for every output sequence the
support of the probability distribution consists of a single
(initial or final) state, and hence the initial or final states can be
uniquely determined (i.e., with probability 1) from the output
measurements. The aim of this paper is to investigate these
concepts of observability and reconstructibility. It is worth
remarking that the observability definitions given in [8], [11],
[22] are in the same spirit. Indeed, in [8] observability is
defined in a weaker form by imposing that no pair of states
is undistinguishable in [0, T ], thus ruling out that two distinct
states generate the same output sequence with probability 1.
In [11] a state is said to be observable if there is at least one
output sequence that can be associated with that initial state
and with no other initial state. Finally, in [22] the authors adopt
two definitions of observability: the first one is equivalent to
ours, and imposes that for every pair of distinct initial states
the corresponding output sequences on a finite window are
distinct with probability 1, the second one, that is equivalent
to the one investigated in [8], is weaker, and requires that
such a probability is not zero. It is worth noticing that all
these notions are substantially deterministic, since they impose
that certain properties hold either with probability 1 or with
nonzero probability. These definitions not only are the natural
extensions of the standard definitions given for BNs (see
the discussion in the Introduction of [22]), but are the first
unavoidable step one has to take to investigate these concepts
for logic systems whose transitions follow a probabilistic
rule. A weaker notion of observability, called asymptotical
observability in distribution (AOD), has been introduced in
[22], and it corresponds to the case when, “for any two
distinct initial states, the probability of distinguishability tends
to one as the observation period tends to infinity.” This is
an interesting concept, that may be regarded as a benchmark
rather than as a property of practical interest, since in reality
the evaluation of the initial/final state must be possible in finite
time and hence with a finite number of measurements. Other



weaker definitions of observability and reconstructibility could
be proposed by allowing, for instance, that the probability
distributions of the initial/final states have an arbitrarily small
distance ε from a distribution having a single state as support.
However, this target does not seem easy to achieve until the
aforementioned deterministic problems have been completely
explored.

In this paper we address the observability and recon-
structibility properties for PBNs, by assuming that the state
vector updates according to some probabilistic rule, while
the output measurements are deterministic functions of the
state vector. This set-up, adopted also in [8] and [22], is
justified by the fact that in a lot of situations the output
measurements are logic combinations of the state variables
unaffected by uncertainty, for instance they are simply a
subset of the state measurements. On the other hand, the
definition and the results presented in this paper for the
observability property would require minor modifications if
we would assume a probabilistic model also for the output
equation. By making use of the algebraic approach to PBNs,
introduced by D. Cheng and co-authors (see [5], Chapter 19),
we convert the expression of the PBN into algebraic form
and we define and investigate for this model the concept of
observability. When a PBN is observable, an upper bound on
the minimal length of the observation window that allows to
uniquely determine the initial state is provided. Two concepts
of reconstructibility, called weak reconstructibility and strong
reconstructibility, are then introduced. This is motivated by the
fact that the probabilistic nature of a PBN makes the problem
more articulated than the one for deterministic models. Indeed,
for a BN, once the state x(T ) has been determined from the
output sequence y(0),y(1), ...,y(T ), all the subsequent states
x(t), t ≥ T, can be uniquely determined, too. For PBNs,
on the contrary, the case may occur that, for a given output
sequence y(t), t ∈ Z+, the knowledge of y(0),y(1), ...,y(T )
allows to uniquely identify x(T ), but the output sequence
y(0),y(1), ...,y(T + 1) does not allow to uniquely determine
x(T + 1). In general, weak reconstructibility does not imply
strong reconstructibility, as it can be shown by very simple
counterexamples. Set theoretic algorithms that determine the
family of all initial or final states compatible with an admissi-
ble output sequence are provided. If the PBN is observable in
[0, T ] the observability algorithm terminates with a singleton,
i.e., a set of cardinality 1, in at most T steps. On the other
hand, if it is strongly reconstructible in [0, T ], the output of
the reconstructibility algorithm is a singleton for all t ≥ T .
Algebraic versions of these algorithms, based on elementary
Boolean algebra, and hence very easy to implement, are
proposed.

Notation. Given two nonnegative integers k, n ∈ Z+, with
k ≤ n, the symbol [k, n] denotes the set {k, k + 1, . . . , n}.
We consider Boolean vectors and matrices, taking values in
B = {0, 1}, with the usual logical operations (And ∧, Or ∨,
Negation · ). δik denotes the ith canonical vector of size
k, Lk the set of all k-dimensional canonical vectors, and
Lk×n ⊂ Bk×n the set of all k × n matrices whose columns
are canonical vectors of size k. A matrix L ∈ Lk×n can

be represented as L = [ δi1k δi2k . . . δink ] , for suitable
indices i1, i2, . . . , in ∈ [1, k]. [A]`j is the (`, j)th entry of
the matrix A. There is a bijective correspondence between
Boolean variables X ∈ B and vectors x ∈ L2, defined by the

relationship x =

[
X
X

]
.

The (left) semi-tensor product n between matrices (and hence,
in particular, vectors) is defined as follows [5]. Given L1 ∈
Lr1×c1 and L2 ∈ Lr2×c2 , we set

L1 nL2 := (L1⊗ IT/c1)(L2⊗ IT/r2), T := l.c.m.{c1, r2}.

The semi-tensor product is an extension of the standard matrix
product, by this meaning that if c1 = r2, then L1 n L2

= L1L2. Note that if x1 ∈ Lr1 and x2 ∈ Lr2 , then
x1 n x2 ∈ Lr1r2 . By resorting to the semi-tensor product,
we can extend the previous correspondence to a bijective
correspondence [5] between Bn and L2n . Indeed, given X =
[X1 X2 . . . Xn ]

> ∈ Bn, set

x :=

[
X1

X1

]
n
[
X2

X2

]
n . . .n

[
Xn

Xn

]
.

II. OBSERVABILITY OF PBNS

In this paper by a Probabilistic Boolean Network (PBN)
we mean a discrete-time Boolean system described by the
following equations [8], [11]

X(t+ 1) = f(X(t)),
Y (t) = h(X(t)), t ∈ Z+,

(1)

where X(t) and Y (t) denote the n-dimensional state variable
and the p-dimensional output variable at time t, taking values
in Bn and Bp, respectively. f and h are (logic) functions,
namely maps f : Bn → Bn and h : Bn → Bp. We assume
that while h is a fixed logic function, at each time t ∈ Z+

the logic map f takes values in a set {f1, f2, . . . , fM}, and
we denote by pi the probability that the logic map f takes the
value fi. Note that such a probability is independent of t and
of X(t).
Upon representing the state and the output vectors X(t) and
Y (t) by means of their equivalent x(t) and y(t) in LN and
LP , respectively, where N := 2n and P := 2p, at each time
t the BN (1) corresponding to a specific choice of the pair
(fi, h), i ∈ [1,M ], can be described as [5]

x(t+ 1) = Li n x(t) = Lix(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(2)

where Li ∈ LN×N and H ∈ LP×N are matrices whose
columns are canonical vectors of size N and P , respectively.
Therefore the PBN is a switched Boolean Network [13]:

x(t+ 1) = Lσ(t)x(t),
y(t) = Hx(t), t ∈ Z+,

(3)

where σ(t) ∈ [1,M ], and Pr{σ(t) = i} = pi.

Definition 1. Given a PBN (3) and a time instant T ∈ Z+, we
say that y(0),y(1), . . . ,y(T ), with y(t) ∈ LP ,∀ t ∈ [0, T ],
is an admissible output sequence if it can be generated in
[0, T ] by the PBN (3) corresponding to some initial condition



x(0) = δiN ∈ LN and some switching signal σ : [0, T − 1]→
[1,M ].

Definition 2. Given a time instant T ∈ Z+, the PBN (3) is
observable in [0, T ] if, for every admissible output sequence
y(0),y(1), . . . ,y(T ), it is possible to uniquely identify the
corresponding initial condition x(0) = δiN . The PBN is
observable if it is observable in some interval [0, T ].

Remark 1. Despite a PBN can be thought of as the BCN

x(t+ 1) = Ln u(t) n x(t),
y(t) = Hx(t), t ∈ Z+,

(4)

with L :=
∑M
i=1 piLi, driven by the stochastic input sequence

u(t) ∈ LM , Pr{u(t) = δiM} = pi, the standard observability
problem for BCNs, as stated in [7], [21] is intrinsically differ-
ent, as the identification of the initial state x(0) depends on the
knowledge of both the output sequence y(0),y(1), . . . ,y(T ) ∈
LP and the input sequence u(0),u(1), . . . ,u(T − 1) ∈ LM .
In the case of a PBN, we assume, on the contrary, that the
input is not available, a situation that is reminiscent of the
“observability with unknown-inputs problem” (see [1]).

In order to analyze the observability problem, we introduce
the observability matrix Oσ,T associated with a specific se-
quence σ(t), t ∈ [0, T − 1]:

Oσ,T :=


H

HLσ(0)
HLσ(1)Lσ(0)

...
HLσ(T−1) . . . Lσ(1)Lσ(0)

 . (5)

We provide the following result, whose proof is elementary
and hence omitted.

Proposition 2. Given a PBN (3) and a time instant T ∈ Z+,
let σ1, σ2, . . . , σR, where R = MT , be all the possible distinct
sequences σ(t), t ∈ [0, T − 1], taking values in [0,M ]. The
PBN is observable in [0, T ] if and only if for every choice of the
indices i, j ∈ [1, R] and h, k ∈ [1, N ], condition Oσi,T δhN =
Oσj ,T δkN implies h = k.

If all columns of the matrix

OT := [Oσ1,T Oσ2,T . . . OσR,T ] (6)

are distinct, then the PBN is observable in [0, T ] (and, in this
particular case, one can identify from the output observation
also the sequence σi).

Remark 3. If the output update would follow a prob-
abilistic model, too, namely y(t) would be expressed as
y(t) = Hσ(t)x(t), the previous proposition would still hold,
provided that the matrices Oσi,T would be suitably de-
fined by replacing each block HLσ(t−1) . . . Lσ(1)Lσ(0) with
Hσ(t)Lσ(t−1) . . . Lσ(1)Lσ(0).
In [22], finite-time observability with probability 1 is proved to
be equivalent to a form of set-reachability, and set reachability
is characterized in turn by resorting to STG reconstruction.
We believe that while STG reconstruction is a valuable means

to investigate set reachability, the current characterisation of
observability is simpler to derive and check.

Proposition 4. A PBN (3) is observable if and only if it is
observable in [0, N(N + 1)/2].

Proof. It is clear that if a PBN is observable in [0, T ], then
it is observable in every interval [0, T ′] with T ′ ≥ T . On the
other hand, suppose that T = N(N+1)

2 and there exist two
initial states x1(0) = δiN and x2(0) = δjN , i 6= j, and two
sequences σ1(t), t ∈ [0, T − 1], and σ2(t), t ∈ [0, T − 1],
such that the corresponding output sequences, say y1(t) and
y2(t), t ∈ [0, T ], coincide at every time instant. Since the
set of all unordered pairs {a, b} with a, b ∈ [1, N ], and a

not necessarily distinct from b, has cardinality1 N(N+1)
2 , the

number of distinct pairs in {{x1(t),x2(t)} : t ∈ [0, T ]} is
at most N(N+1)

2 . Consequently, there exist 0 ≤ τ < τ̄ ≤ T
such that {x1(τ),x2(τ)} = {x1(τ̄),x2(τ̄)}. We distinguish
two cases:
(1) If (x1(τ),x2(τ)) = (x1(τ̄),x2(τ̄)) (and this is the case, in
particular, if x1(τ) = x2(τ)), then define the two (eventually
periodic) switching sequences

σ̄1(t) :=

{
σ1(t), t ∈ [0, τ̄ − 1];
σ̄1(t− τ̄ + τ), t ≥ τ̄ ,

σ̄2(t) :=

{
σ2(t), t ∈ [0, τ̄ − 1];
σ̄2(t− τ̄ + τ), t ≥ τ̄ .

(2) If (x1(τ),x2(τ)) = (x2(τ̄),x1(τ̄)), then define the two
(eventually periodic) switching sequences

σ̄1(t) :=

{
σ1(t), t ∈ [0, τ̄ − 1];
σ̄2(t− τ̄ + τ), t ≥ τ̄ ,

σ̄2(t) :=

{
σ2(t), t ∈ [0, τ̄ − 1];
σ̄1(t− τ̄ + τ), t ≥ τ̄ .

In both cases, corresponding to the switching sequences2 σ̄1
and σ̄2, the two initial states x1 = δiN and x2 = δjN , i 6= j,
generate exactly the same output sequence at every time t ∈
Z+, and hence the system cannot be observable in any time
window [0, T ′], T ′ ≥ T .

Note that also Proposition 4 applies to PBNs whose output
update follows the probabilistic rule described in Remark 3.
In order to further analyze the observability problem, we pro-
vide an algorithm to identify - when possible - the initial state
associated with a given output sequence y(0),y(1), . . . ,y(T ),
taking values in LP . If the output sequence is admissible, the
algorithm provides the set X0 of all initial states compatible
with that output sequence and, when the PBN is observable
in [0, T ], it uniquely identifies the initial state. On the other
hand, if the output sequence is not admissible, eventually the
set X0 becomes empty. To introduce the algorithm, we need to

1Note that we are assuming that {a, b} = {b, a}, but we are not ruling out
the case when a = b.

2Note that in case (1) the switching sequence is eventually periodic of
period T = τ̄ − τ , while in case (2) the period is T = 2(τ̄ − τ), since the
new sequences σ̄1 and σ̄2 alternate the portions of σ1 and σ2 in [τ, τ̄ − 1].



define (see [7]) the set of states that produce the same output
value. Specifically, for every t ∈ [0, T ], we set

C(y(t)) := {δiN ∈ LN : HδiN = y(t)}.

We also introduce the set of one-step predecessors of a family
of states T ⊂ LN :

P(T ) := {δiN ∈ LN : ∃h ∈ [1,M ] such that Lhδ
i
N ∈ T }.

Clearly, one can inductively define the set of k-step predeces-
sors of the family T , Pk(T ), as

P1(T ) = P(T ), Pk(T ) = P
(
Pk−1(T )

)
.

It is worth noting that the previous sets are very easy to
compute, since

C(y(t)) = {δiN ∈ LN : y(t)>HδiN = 1}
= {δiN ∈ LN : [H>y(t)]i = 1},

Pk(T ) = {δiN : [Lk]ji 6= 0,∃ j such that δjN ∈ T }.

Algorithm 1 [Determines X0, the set of initial states
compatible with the output sequence y(0),y(1), . . . ,y(T )]
Input: y(0),y(1), . . . ,y(T )
Output: X0

Initialization: t← 0 and X0 ← C(y(0))
Loop process: while t ≤ T − 1 and X0 6= ∅ do
t← t+ 1
X0 ← X0 ∩ Pt(C(y(t)))
end while

Remark 5. The possible outcomes of the algorithm are three:
(1) The algorithm terminates at some time t ∈ [0, T ] with
X0 = ∅. If so, the output sequence is not admissible. (2)
The algorithm terminates at t = T with |X0| = 1 and hence
it uniquely identifies the initial condition. (3) The algorithm
terminates at t = T with |X0| > 1, providing the set of all
initial conditions compatible with the given output sequence.

The previous algorithm can be easily implemented by
resorting to a sequence of algebraic operations involving
Boolean matrices and vectors. To this goal we first need to
introduce the Boolean sum of the matrices Li, i ∈ [1,M ], i.e.,
LB := ∨Mi=1Li ∈ BN×N . Also, we introduce the following
N -dimensional Boolean vectors:
• s(t) := H>y(t), t ∈ [0, T ], is the Boolean vector whose
ith entry is 1 if and only if δiN ∈ C(y(t));

• v(t) is the Boolean vector whose ith entry is 1 if and only
if x(0) = δiN is an initial state vector compatible with
the output sequence y(0),y(1), . . . ,y(t). Note that v(t)
represents the set of possible estimates of x(0) one can
make based on the output samples y(0),y(1), . . . ,y(t),
and hence provides the same information as the set X0

at step t of Algorithm 1.
Finally, we observe that a state δjN is a one-step predecessor
of one of the states δiN such that [s(t)]i = 1 if and only
if the set of unitary entries in the jth column of LB is a
subset of the set of unitary entries of s(t). It is not hard to
see that the Boolean vector whose unitary entries are those

and those only corresponding to the one-step predecessors of
the states represented by s(t) can be expressed as [L>B s(t)].
This expression corresponds to first evaluating the (entrywise)
negation of vector s(t), then multiplying it by L>B , and finally
calculating the negation of the vector L>B s(t). Similarly, we
can obtain the Boolean vector representing all the k-step
predecessors of the states represented by s(t) as [(L>B )ks(t)].
In light of the previous remarks, Algorithm 1 can be rephrased
as follows.

Input: y(0),y(1), . . . ,y(T )
Output: v(T )
Initialization: t← 0, s(0)← H>y(0) and v(0)← s(0)
Loop process: while t ≤ T − 1 do
t← t+ 1
s(t)← H>y(t) and v(t)← v(t− 1) ∧ [(L>B )ts(t)]
end while

Example 1. Consider the PBN (3), with N = 8, P = 4,
M = 2, and L1 = [ δ78 δ18 δ28 δ38 δ28 δ48 δ68 δ78 ] ,
L2 = [ δ88 δ78 δ38 δ38 δ28 δ58 δ78 δ78 ] , H =
[ δ14 δ34 δ14 δ44 δ44 δ24 δ34 δ14 ] and p1 = p2 = 1/2.
Applying the algorithm to the admissible output sequence
y(0) = δ14 , y(1) = δ14 , y(2) = δ34 , y(3) = δ14 , y(4) = δ34 ,
one gets:
t = 0, s(0) = δ18 + δ38 + δ88 = v(0).
t = 1, s(1) = δ18 + δ38 + δ88 ,v(1) = δ18 + δ38 .
t = 2, s(2) = δ28 + δ78 ,v(2) = δ18 + δ38 .
t = 3, s(3) = δ18 + δ38 + δ88 ,v(3) = δ38 .

So, the algorithm uniquely identifies the state x(0) = δ38 .

III. RECONSTRUCTIBILITY OF PBNS

When dealing with reconstructibility of PBNs, we need
to introduce two distinct notions, a weak one and a strong
one. This situation is different not only from what happens
with the observability of PBNs, as discussed in the previous
section, but also with what happens when dealing with the
reconstructibility of BCNs. We start with the weak notion and
then comment on the rationale that led us to introduce also a
strong one.

Definition 3. Given a PBN (3) and a time instant T ∈ Z+, the
PBN is weakly reconstructible in [0, T ] if for every admissible
output sequence y(0),y(1), . . . ,y(T ) taking values in LP ,
there exists τ ∈ [0, T ] (depending on the specific output
sequence) such that the knowledge of the output samples
y(0),y(1), . . . ,y(τ) allows to uniquely identify x(τ) ∈ LN .
The PBN is weakly reconstructible if it is weakly recon-
structible in some interval [0, T ].

Weak reconstructibility is quite a different property with
respect to observability. Indeed, due to the stochastic nature
of the state transitions, and differently from what it happens
with linear state-space models and with BCNs, the fact that
one can identify x(τ) at a specific time τ , based on the output
observation till time τ , does not ensure that when the next
output sample is acquired at time τ + 1 we can still uniquely
identify x(τ + 1). So, based on the specific output sequence,



the time instant within [0, T ] at which we are sure about the
state value may change. On the other hand, due to the time-
invariance of the PBN, if weak reconstructibility is possible in
some finite window [0, T ], then it is possible in every window
[T1, T2], with T2−T1 ≥ T . This leads to the following result.

Proposition 6. Given a PBN (3), the following facts are
equivalent:

i) there exists T ∈ Z+, such that the PBN is weakly
reconstructible in [0, T ];

ii) there exists T̄ ∈ Z+, such that for every admissible
output sequence y(t), t ∈ Z+, an infinite sequence of
time instants {τk}+∞k=0 can be found, with τ0 := 0 ≤ τ1 <
τ2 < . . . and τk+1 − τk ≤ T̄ , such that the state vectors
x(τk), k ≥ 1, of the PBN are uniquely determined.

Proof. i) ⇒ ii) Suppose that i) holds for some T , and hence
for every admissible output sequence y(0),y(1), . . . ,y(T ) ∈
LP , there exists τ1 ∈ [0, T ] such that the knowledge of the out-
put samples y(0),y(1), . . . ,y(τ1) allows to uniquely identify
x(τ1) ∈ LN . But then, by applying the same reasoning to the
admissible output sequence y(τ1 + 1),y(τ1 + 2), . . . ,y(τ1 +
T + 1) ∈ LP , we can find τ2 ∈ [τ1 + 1, τ1 + T + 1] such
that the knowledge of the output sequence y(τ1 + 1),y(τ1 +
2), . . . ,y(τ1 +T +1) ∈ LP allows to uniquely identify x(τ2),
with τ2− τ1 ≤ T + 1, and so on. So, ii) holds for T̄ = T + 1.
ii) ⇒ i) is obvious.

Remark 7. Reconstructibility of PBNs is different from
reconstructibilty of BCNs [7], due to the fact that one needs
to “reconstruct” the final state based only on the output se-
quence, while ignoring the “input” (equivalently, the switching
sequence σ(t), t ∈ Z+).

We now provide an algorithm to reconstruct - when possible
- the final state x(τ) associated with a given output sequence
y(0),y(1), . . . ,y(τ), at some time τ ∈ [0, T ]. For the sake of
simplicity, we assume that the output sequence is admissible.
The algorithm stops either when x(τ) is uniquely determined
at some time τ ∈ [0, T ] or when t = T and if so it provides the
set XT of all final states at t = T compatible with that output.
To introduce the algorithm, we need to define the concept of
one-step successors of a family of states T ⊂ LN :

S(T ) := {δiN ∈ LN : δiN = Lhδ
j
N , ∃h ∈ [1,M ],∃δjN ∈ T }.

Such a set is easy to determine, since

S(T ) = {δiN : [L]ij 6= 0,∃ j such that δjN ∈ T }
= {δiN : [LB]ij = 1,∃ j such that δjN ∈ T }.

Algorithm 2 [Uniquely identifies x(τ) at some time τ ∈
[0, T ] or, if not possible, determines the set XT of final states
compatible with the output sequence y(0),y(1), . . . ,y(T )]
Input: y(0),y(1), . . . ,y(T )
Output: either a canonical vector x(τ) at some time τ ∈ [0, T ]
or XT
Initialization: t← 0 and Xt ← C(y(t))
Loop process: while t ≤ T − 1 and |Xt| 6= 1 do

t← t+ 1
Xt ← S(Xt−1) ∩ C(y(t)).
end while

Also in this case, we may rewrite Algorithm 2 in algebraic
form by making use of the same notation previously adopted to
describe Algorithm 1. In this context we use v(t) to denote the
Boolean vector whose ith entry is 1 if and only if x(t) = δiN
is a state vector at time t compatible with the output sequence
y(0),y(1), . . . ,y(t). We note that if v(t− 1) is the Boolean
vector whose unitary entries represent the state vectors that at
t − 1 are compatible with y(0),y(1), . . . ,y(t − 1), then the
Boolean vector whose unitary entries represent the successors
of all such state vectors is simply LBv(t − 1). We then get
the following result.

Input: y(0),y(1), . . . ,y(T )
Output: either v(t) ∈ LN for some t ∈ [0, T ] or v(T )
Initialization: t← 0, s(0)← H>y(0) and v(0)← s(0)
Loop process: while t ≤ T − 1 and v(t) 6∈ LN do
t← t+ 1
s(t)← H>y(t) and v(t)← s(t) ∧ LBv(t− 1)
end while
We introduce, now, a strong definition of reconstructibility and
then relate it to the weak one, previously defined.

Definition 4. Given a PBN (3) and a time instant T ∈ Z+, we
say that the PBN is strongly reconstructible in [0, T ] if, given
any admissible output sequence y(0),y(1), . . . ,y(T ) ∈ LP ,
it is possible to uniquely identify x(T ) ∈ LN . The PBN (3)
is strongly reconstructible if it is strongly reconstructible in
some interval [0, T ].

Remark 8. Compared to weak reconstructibility, strong
reconstructibility represents the possibility of identifying in a
deterministic way all the final states from the output trajec-
tories at the same time T (and not within the time window
[0, T ]). This is equivalent to saying that identification of the
final state x(t) from y(0),y(1), . . . ,y(t) ∈ LP is possible
for every t ≥ T , and not just for an infinite sequence of
time instants. Indeed, if the knowledge of the output se-
quence y(0),y(1), . . . ,y(T ) ∈ LP allows to uniquely identify
x(T ) ∈ LN , then the knowledge of y(1),y(2), . . . ,y(T+1) ∈
LP allows to uniquely identify x(T + 1) ∈ LN , and so on.

Clearly, strong reconstructibility requires the existence of a
subset S of LN such that, once we know that the state x(t)
belongs to S and we measure the output sample at t + 1,
y(t+ 1), we can uniquely identify the successor x(t+ 1) of
x(t) belonging to the class C(y(t+ 1)). In other words, there
must be a set S of state vectors whose successors generate
distinct outputs. The largest such set is defined as follows

Ŝ := {δiN ∈ LN : ∀ h, k ∈ [1,M ], Lhδ
i
N 6= Lkδ

i
N

⇒ HLhδ
i
N 6= HLkδ

i
N} (7)

and it provides the key ingredient that relates weak recon-
structibility and strong reconstructibility.

Proposition 9. Given a PBN (3), the following facts are
equivalent:



i) the PBN is strongly reconstructible;
ii) the PBN is weakly reconstructible and there exists a set
S ⊆ Ŝ that is invariant, by this meaning that if δiN ∈ S
then for every h ∈ [1,M ] the vector LhδiN belongs to S
in turn, and attractive, namely for every x(0) ∈ LN and
every σ : Z+ → [1,M ] there exists τ ∈ Z+ such that
x(t) ∈ S for every t ≥ τ .

Proof. i) ⇒ ii) Strong reconstructibility obviously implies
weak reconstructibility, because if the PBN state can always
be identified at the time instant T , then, in particular, it can be
identified at some time τ ∈ [0, T ]. On the other hand, strong
reconstructibility implies (see Remark 8) that there exists
T ∈ Z+ such that, for every admissible output sequence, it is
possible to uniquely identify x(t) from y(0),y(1), . . . ,y(t) ∈
LP , for every t ≥ T . If x(T ) would not be in Ŝ, then there
would be two possible successors of x(T ) generating the same
output, but this means that the case may occur that once the
sample y(T + 1) is acquired it is not possible to uniquely
identify x(T + 1) even if x(T ) is known. On the other hand,
the same argument can be used for all the states x(t), t ≥ T .
But this means that x(t) ∈ Ŝ for every t ≥ T . Therefore all
such states belong to a subset S of Ŝ that is invariant. Finally,
since every state trajectory eventually enters such a set S , this
means that S is attractive.
ii) ⇒ i) If the system is weakly reconstructible, then, for
every admissible output sequence y(t), t ∈ Z+, there exists
a diverging sequence of time instants {τk}+∞k=1 such that the
knowledge of the output sequence y(t), t ∈ Z+ allows to
uniquely identify x(τk). On the other hand, the attractiveness
of S ensures that there exists k∗ ∈ Z+ such that x(τk) ∈ S
for every k ≥ k∗. But then x(t) ∈ S for every t ≥ τk∗ and
this ensures that the knowledge of x(t) and y(t + 1) allows
to uniquely identify also x(t+ 1). Therefore x(t) is uniquely
identified for every t ≥ τk∗ .

A simple PBN that is weakly but not strongly recon-
structible is proposed in the following example.

1

2

3

5

4

y=d13 y=d23

y=d33

Example 2. Consider the PBN (3), with N = 5, P = 33 and
M = 2

L1 = [ δ25 δ45 δ55 δ15 δ15 ] , L2 = [ δ35 δ45 δ55 δ15 δ15 ] ,

H = [ δ13 δ13 δ13 δ23 δ33 ]

3Note that the fact that N and P are powers of 2 is irrelevant in our
analysis.

and p1 = p2 = 1/2. The directed graph corresponding to the
PBN is illustrated in Figure 1, below. A circle labelled “i”
represents the state vector δiN , while the three square boxes
represent the three possible output values. Edges connecting
circles represent possible state transitions, while an arc from a
circle to a square box indicates the output value corresponding
to a state vector. It is very easy to verify that the PBN is
weakly reconstructible in [0, 2]. On the other hand it is not
strongly reconstructible, since every time the state trajectory
moves from δ15 to either δ25 or to δ35 , we cannot understand
from the output sample in which state we are.
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