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Dead-beat control in the behavioral approach

Mauro Bisiacco, Maria Elena Valcher

Abstract

In this paper the concepts of controllability and zero-controllability of a variable w, appearing either

in a standard or in a latent variable description (as manifest variable), are introduced and characterized.

By assuming this perspective, the dead-beat control (DBC) problem is posed as the problem of designing

a controller, involving both w and the latent variable c, such that, for the resulting controlled behavior,

the variable w goes to zero in a finite number of steps in every trajectory. Zero-controllability of w

turns out to be a necessary and sufficient condition for the existence of “admissible” DBC’s as well as

for the existence of regular DBC’s. The class of minimal DBC’s, namely DBC’s with the least possible

number of rows, is singled-out and a parametrization of such controllers is provided. Finally, a necessary

and sufficient condition for the existence of DBC’s that can be implemented via a feedback law, for

which w is the input and the latent variable c the corresponding output, is provided.

Index Terms

Behavior, nilpotent (autonomous) behavior, controllability, zero-controllability, dead-beat controller.

I. INTRODUCTION

As clarified in some recent papers dealing with control in the behavioral setting [13], [20],

the traditional perspective to control problems has deeply intertwined the idea of control itself

with the concepts of input, output and feedback. This perspective, however, fails to provide the

appropriate framework where to cast the controller design problem in a number of interesting

cases, as, for instance, the design of passive car suspensions and of insulation equipments for

noise abatement, or ships stabilization [18], [19], [20]. This is mainly due to the fact that the

feedback control paradigm is based on the assumption that measurements of the output variables
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can be obtained, based on which the control input can be generated. As clearly illustrated in

[20] for the special case of car suspensions, however, this assumption does not always prove to

be a realistic one, and the control problem thus needs to be posed in rather different terms.

As first suggested in [17] and later explored in [18], [19], the behavioral approach provides a

natural framework where control problems can be addressed in the utmost generality and without

any a priori assumption regarding input/output partition and feedback connection. Indeed, in this

setting, the control target is that of restricting the behavior trajectories to a subset of “good ones”

and this goal is achieved by interconnection, namely by constraining either all or a subset of the

system variables to obey an additional family of laws, which represent the controller laws.

Stimulated by these first contributions, there has been quite a number of papers on the control

within the behavioral framework (for instance, [1], [2], [4], [6], [13]). In these papers two

fundamental control set-ups have been explored: the full interconnection case and the partial

interconnection case. In the former, it is assumed that all variables are the target of the control

problem (for instance, the stabilization problem) and at the same time they are all available

for interconnection. In the latter, the system variables are partitioned in two (or possibly more)

groups, by distinguishing between to be controlled variables, typically denoted by w, which

are the object of the control specifications, and control variables, denoted by c, which are the

means through which the control target is achieved. Indeed, the controller achieves the desired

result by restricting the behavior of the variables in c which are the only ones available for

interconnection.

In this flow of research, two contributions [7], [11] address the control problem under different

perspectives: in [7] the control is achieved through the control variables alone, but both w and

c are target variables, in [11] the situation is just the symmetric one, since all variables are

available for control but the control target is just w. Our approach has several similarities with

the one explored in [11], as we will describe in detail later.

In this paper we explore the dead-beat control (DBC) problem for discrete-time behaviors

defined on Z+. Surprisingly enough and to the best of our knowledge, this problem has not

been previously addressed, probably due to the fact that most of the contributions in the field

have focused either on continuous-time behaviors or on discrete-time behaviors defined on Z

(and hence characterized by potentially bi-infinite trajectories), for which the DBC problem has
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no meaning. In investigating this problem, we take a perspective that differs both from the full

interconnection and from the partial interconnection set-ups, in that we assume that only the to

be controlled variable w must be “driven to zero in a finite number of steps”, but the control laws

restrict the evolutions of both w and c. So, there is full interconnection for control purposes,

but the control target is just the variable w.

This perspective is very close to the one assumed in [11], where the concept of extended

interconnection was first introduced. However, while in this paper we assume that the latent

variable model of the system behavior is a priori given, and hence the variable c and its behavior

are problem data, in [11] the Authors assume as a priori information only the behavior B of w,

and search for both a latent variable description of B and an extended controller through which

the control target (referring to w alone) may be achieved. In this sense, while the variable c in

[11] plays just an instrumental role, in the present set-up it represents physical variables that

can be used for control, but on which we impose no requirements. This viewpoint seems to us

closer to the classical idea underlying the DBC design for state-space models, since the target is

that of driving to zero (only) the state variable, but the control law involves both the state and

the input.

Clearly, the partial interconnection problem represents a special case of the control problem

here addressed. On the other hand, also our set-up could be restated as a partial interconnection

problem, provided that the system description is fictitiously expanded by replacing the latent

variable c with c̃ = (c,w). However, this approach exhibits some inconvenient, due to the

increased computational complexity and the loss of a clear-cut distinction between the variable

roles. On the other hand, it must be said that the DBC problem has not been previously addressed,

not even in the partial interconnection case, so reducing our problem set-up to that one would

not bring any benefit. We will further comment on this issue later in the paper, when dealing

with the parametrization problem.

The investigation of the DBC problem under this perspective requires to introduce new

concepts of controllability and of zero-controllability of the variable w. Consistently, it will turn

out that the possibility of designing DBC’s with good properties (admissibility or regularity)

that drive to zero in a finite number of steps all the trajectories w, by constraining both w and

c, is just equivalent to the zero-controllability of w. Special attention will be devoted to the
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class of minimal DBC’s, by this meaning DBC’s with the least number of rows, for which a

parametrization will be provided. Such parametrization is quite complex, as it resorts both to

polynomial and to rational parameters, under the constraint that the obtained result is polynomial.

As clarified by an example, if we try to use only polynomial parameters, in general we cannot

obtain a unique parametrization but families of distinct parametrizations. We will compare the

parametrization here obtained with the one derived in [9] for the class of stabilizing controllers,

obtained through partial interconnection.

The paper is organized as follows: at the end of this section and in section 2 background

material about polynomial matrices and behaviors defined on Z+ is recalled. The interested

reader is referred to [3], [5], [14], [12], [16] for further details. In section 3, the properties of

controllability and zero-controllability of a variable w, that represents either the entire system

variable or the manifest variable in a latent variable description, are introduced, respectively, and

characterized. Dead-beat controllers are the focus of section 4, where some preliminary results

are given. In section 5 admissible DBC’s and regular DBC’s are presented and it is shown that

such controllers are available if and only if w is zero-controllable. Minimal DBC’s in turn are

available only under the zero-controllability assumption, and a parametrization of such DBC’s

is given in section 6. Finally, in section 7, necessary and sufficient conditions for the existence

of DBC’s that can be obtained through a feedback connection of the controller to the original

system are provided.

Notation. We consider here polynomial matrices with entries in R[z] and, occasionally, Laurent

(L-polynomial, for short) polynomial matrices, having entries in R[z, z−1]. A polynomial matrix

H(z) ∈ R[z]p×q is right monomic [5] if rank H(λ) = q for every λ ∈ C \ {0}. This means that

H(z) is of full column rank and the GCD of its maximal (i.e., qth) order minors is a monomial

czh, c ∈ R\{0}, h ∈ Z+. H(z) is right monomic if and only if it admits a Laurent polynomial left

inverse or, equivalently, the diophantine equation L(z)H(z) = zNIq, in the unknown polynomial

matrix L(z), is solvable for some nonnegative integer N .

H(z) ∈ R[z]p×q is right prime if rank H(λ) = q for every λ ∈ C. Right prime matrices

are special cases of right monomic matrices. Actually, right primeness characterizations can be

obtained by simply replacing in the previous equivalent conditions the word “monomial” with

“unit” and the integer N by zero. Every full column rank matrix H(z) can be expressed as
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H(z) = H̄(z)∆(z), where H̄(z) is right prime and ∆(z) is nonsingular square. When so, ∆(z)

is called a greatest right divisor of H(z). Left monomic matrices, left prime matrices and greatest

left divisors are similarly defined and characterized. Every polynomial matrix H(z) factorizes

over R[z] as H(z) = L(z)R(z), where L(z) is of full column rank and R(z) is left prime. (*

verificare che cio’ sia consistente con quanto serve nelle proofs *)

The concepts of left annihilator and, in particular, of minimal left annihilator (MLA, for

short) of a given polynomial matrix H(z) have been originally introduced in [10] and can be

summarized as follows: if H(z) is a p×q polynomial matrix of rank r, a polynomial matrix M(z)

is a left annihilator of H(z) if M(z)H(z) = 0. A left annihilator M̃(z) of H(z) is an MLA if it

is of full row rank and for any other left annihilator M(z) of H(z) we have M(z) = P (z)M̃(z)

for some polynomial matrix P (z). It can be easily proved that, when r < p, an MLA always

exists, it is a (p− r)× p left prime matrix and is uniquely determined modulo a unimodular left

factor. If the given H(z) has full row rank, then for consistency we define [9] its MLA as the

“void” matrix with 0 rows and p columns. In that case, if K(z) is a given matrix with p rows,

then M(z)K(z) is again void.

In the following, for the sake of simplicity, the size of any vector will be denoted by means

of the same typewritten letter that is used for denoting the vector itself. Accordingly, the vector

w will have w entries, c will have c entries, etc.

II. BASIC RESULTS ABOUT BEHAVIORS WITH TRAJECTORIES IN (Rw)Z+

In this paper, all trajectories will be assumed defined on the time set Z+ of nonnegative

integers. The left (backward) shift operator on (Rv)Z+ , the set of trajectories defined on Z+ and

taking values in Rv, is defined as

σ : (Rv)Z+ → (Rv)Z+ : (v0,v1,v2, · · ·) 7→ (v1,v2,v3, · · ·).

If R(z) =
∑L

i=0Riz
i ∈ R[z]p×q is a polynomial matrix, we associate with it the polynomial

matrix operator R(σ) =
∑L

i=0Riσ
i. Results about polynomial matrix operators acting on (Rq)Z+

can be found in [16], where these results have been derived with (and compared to) those about

the more common set-up of polynomial matrix operators acting on (Rq)Z. Further comparisons

between these two settings have been later carried on in [12] and in [14], where the few

differences between the two settings have been pointed out. In this section, we only recall a
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few basic results. The interested reader can refer to [3] for more details. It can be proved that

R(σ) describes an injective map from (Rq)Z+ to (Rp)Z+ if and only if R(z) is a right prime

matrix, and a surjective map if and only if R(z) is of full row rank.

In this paper, by a behavior B ⊆ (Rw)Z+ we mean the linear and left shift invariant set of

solutions w = {w(t)}t∈Z+ of a system of difference equations

R0w(t) +R1w(t+ 1) + · · ·+RLw(t+ L) = 0, t ∈ Z+, (1)

with Ri ∈ Rp×w. This system is equivalently described as

R(σ)w = 0, (2)

where R(z) :=
∑L

i=0Riz
i belongs to R[z]p×w, and this leads to the short-hand notation B =

ker R(σ). It has been shown in [16] that every behavior B can be described as the kernel of a

full row rank polynomial matrix, and that B1 := ker R1(σ) ⊆ ker R2(σ) =: B2 if and only if

R2(z) = P (z)R1(z) for some polynomial matrix P (z). A behavior B1 included in B2 is called

a sub-behavior of B2.

A behavior B is said to be autonomous if there exists δ ∈ N such that if w1,w2 ∈ B and

w1|[0,δ−1] = w2|[0,δ−1], by this meaning that w1(t) = w2(t) for t ∈ [0, δ − 1], then w1 = w2.

B = ker R(σ) ⊆ (Rw)Z+ , with R(z) ∈ R[z]p×w, is autonomous if and only if R(z) is of full

column rank w [15], [16]. From the previous comment about full row rank kernel representations,

we deduce that every autonomous behavior can be expressed as the kernel of a nonsingular square

polynomial matrix. In general, an autonomous behavior B = ker R(σ) includes finite support

trajectories if and only if rank R(0) < w. Autonomous behaviors for which there exists δ ∈ N

such that all their trajectories have (finite) supports included in [0, δ − 1] are called nilpotent

(autonomous) and they are kernels of polynomial matrix operators R(σ) corresponding to right

monomic matrices [15]. In particular, if R(z) is nonsingular square, ker R(σ) is nilpotent if and

only if detR(z) = c · zδ, for some c ∈ R \ {0} and some δ ∈ Z+. If an autonomous behavior is

not nilpotent, it includes at least one infinite support trajectory. It is worthwhile to remark that

when dealing with behaviors defined on Z, nilpotency cannot arise [15]. In fact, the only finite

support trajectory of an autonomous behavior defined on Z is the zero one, and the kernel (on

Z) of a monomic matrix coincides with the zero behavior.
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III. CONTROLLABILITY AND ZERO-CONTROLLABILITY PROPERTIES

We here recall the definition of controllability of a behavior and introduce that of zero-

controllability. The former has been investigated quite in detail. In particular, in [21] several

definitions of controllability have been introduced and compared, thus showing that some of

them are independent of the choice of the independent variable set (namely they hold both for

Z+ and for Z, and they extend to all the possible multidimensional cases), while others are not.

The definition of zero-controllability here introduced is original.

Definition 1: [21] A behavior B ⊆ (Rw)Z+ is said to be controllable if there exists some

nonnegative integer L such that for every N ∈ N and every pair of trajectories w1,w2 ∈ B,

there exists w̄ ∈ B such that w̄|[0,N−1] = w1|[0,N−1] and w̄|[N+L,+∞) = w2|[0,+∞).

Controllable behaviors are endowed with very strong properties [21]. In particular, every

controllable behavior can be described as B = ker R̄(σ), for some left prime matrix R̄(z) ∈

R[z]p×w. Given any behavior B, we define its controllable part, denoted by Bc, as the largest

controllable sub-behavior of B. We have the following fundamental decomposition theorem.

Theorem 1: Given B = ker R(σ) ⊆ (Rw)Z+ , assume that R(z) factorizes as R(z) = L(z)R̄(z),

with L(z) ∈ R[z]p×r of full column rank and R̄(z) ∈ R[z]r×w left prime. Then

i) there exist some controllable behavior B′c and some autonomous behavior Ba such that

B = B′c ⊕ Ba. B′c is uniquely determined as Bc, the controllable part of B, and it can be

described as kerR̄(σ), while Ba can be chosen with a certain degree of freedom.

ii) For every (full column rank) matrix Ha ∈ R[z]pa×w, such that Ba = kerHa(σ) appears in

any such decomposition, we have that

g.c.d.{maximal order minors of Ha(z)} = g.c.d.{maximal order minors of L(z)}.

Proof: The first part of the theorem has been proved in [14]. The second part has been

proved in the continuous-time case in [8].

We now move to the definition and characterization of zero-controllability of a behavior.

Definition 2: A behavior B ⊆ (Rw)Z+ is said to be zero-controllable if there exists some

nonnegative integer L such that for every N ∈ N and every trajectory w ∈ B, there exists

w̄ ∈ B such that w̄|[0,N−1] = w|[0,N−1] and w̄|[N+L,+∞) = 0.
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Zero-controllability can be related to the concept of set-controllability introduced in [11] (see

Definition 4.1), and here recalled in the special case of behaviors defined on Z+.

Definition 3: Given a behavior B ⊆ (Rw)Z+ and a sub-behavior B′ ⊆ B, the behavior B is

set-controllable to B′ if there exists some nonnegative integer ρ such that for every trajectory

w ∈ B, there exists w′ ∈ B′ so that for every choice of two disjoints sets T1, T2 ⊂ Z+, with

distance d(T1, T2) := min{|t1 − t2| : t1 ∈ T1, t2 ∈ T2} > ρ, and every b ∈ Z+, a trajectory

w̄b ∈ B can be found, satisfying:

w̄b(t) =

{
w(t), t ∈ T1;

w′(t− b), t ∈ T2 and t− b ∈ T2.

At first sight, zero-controllability seems to be equivalent to set-controllability to the zero

behavior, however, this is not the case. As shown in the following proposition, zero-controllability

corresponds to the weaker property of set-controllability to a nilpotent autonomous behavior.

Proposition 1: Given a behavior B = ker (R(σ)) ⊆ (Rw)Z+ , with R(z) ∈ R[z]p×w, the

following statements are equivalent ones:

i) B is zero-controllable;

ii) R(z) = L(z)R̄(z), for some right monomic L(z) and some left prime matrix R̄(z);

iii) B = Bc ⊕ Ba, where Bc is the controllable part of B and Ba is a nilpotent behavior;

iv) there exists a nilpotent behavior B′ ⊆ B such that B is set-controllable to B′.

Proof: i) ⇒ ii) Assume that B is zero-controllable, and express, without loss of generality,

R(z) as R(z) = L(z)R̄(z), with L(z) ∈ R[z]p×r of full column rank and R̄(z) ∈ R[z]r×w

left prime. If L(z) were not right monomic, a (possibly complex) α 6= 0 and some vector

v ∈ Cr,v 6= 0, could be found such that L(α)v = 0. Then the (possibly complex valued)

trajectory z(t) := αtv, ∀ t ∈ Z+, satisfies L(σ)z(t) = 0 for every t ∈ Z+. Express z as

z = zr + izi, where zr is the real part of z and zi its imaginary part. Of course, both these

sequences are real valued, belong to ker L(σ), and at least one of them has infinite support (since

the trajectory z has this property). We call zL ∈ (Rr)Z+ such an infinite support trajectory. Since

R̄(z) is left prime and hence it is of full row rank, it defines a surjective map on Z+. This

implies that there exists w ∈ (Rw)Z+ such that zL = R̄(σ)w, and clearly w ∈ B. Suppose now

that we want to drive to zero the sequence w starting from t = N +L, meanwhile preserving it
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on the first N time instants, namely we want to find w̄ ∈ B such that w̄|[0,N−1] = w|[0,N−1] and

w̄|[N+L,+∞) = 0. If we choose N sufficiently large, we constrain a large enough portion of w̄ to

coincide with w and therefore we constrain, in turn, a large initial portion of the corresponding

image R̄(σ)w̄ to coincide with zL. But since R̄(σ)w̄ must belong to the autonomous behavior

kerL(σ), by constraining its initial part we essentially impose that the whole trajectory R̄(σ)w̄

coincides with zL. Since zL has infinite support, so does any w̄ such that R̄(σ)w̄ = zL. This

implies that w cannot be replaced by a finite support sequence w̄ and hence zero-controllability

does not hold.

ii) ⇔ iii) Follows from Theorem 1, since L(z) is right monomic if and only if every matrix

Ha(z) such that B = Bc ⊕ kerHa(σ) is right monomic.

iii) ⇒ iv) Follows from Theorem 4.2 in [11].

iv) ⇒ i) Obvious.

Remark 1: As far as the previous proposition is concerned, it is worthwhile noticing what the

characterizations ii) and iii) become in two special cases: when R(z) is either of full row rank, or

of full column rank. In the former case, the matrix L(z) appearing in part ii) is square monomic

(possibly unimodular), and when L(z) is unimodular B = Bc. On the other hand, when R(z) is

of full column rank, R̄(z) is square unimodular, and hence R(z) is right monomic. Accordingly,

the controllable part of B is the zero behavior, and B = Ba.

To conclude the section we want to relate the concepts of controllability and of zero-con-

trollability. Given a behavior B defined on Z, the finite support trajectories of B belong to its

controllable part, since all the nonzero trajectories of an autonomous behavior have necessarily

infinite support. Consequently, controllability and zero-controllability turn out being equivalent

properties. This is not the case, however, when working on Z+, and the two properties become

equivalent only when we introduce an additional feature.

Differently from what happens for behaviors defined on Z, in general behaviors on Z+ are only

left shift-invariant. As a consequence, we can always claim that σB ⊆ B. If also the converse

is true, we call the behavior “permanent”.

Definition 4: [16], [21] A behavior B ⊆ (Rw)Z+ is permanent if σB = B (namely every

trajectory w ∈ B is the shifted version σw̄ of some other trajectory w̄ ∈ B).
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Proposition 2: Given a behavior B ⊆ (Rw)Z+ , the following statements are equivalent:

i) B is permanent;

ii) R(z) = L(z)R̄(z), for some full column rank matrix L(z), with L(0) of full column rank,

too, and some left prime matrix R̄(z);

iii) B = Ba ⊕ Bc, where Bc is the controllable part of B, and Ba is an autonomous behavior

devoid of finite support trajectories.

Proof: The equivalence i) ⇔ ii) can be found in [16], [21]. The proof of ii) ⇔ iii) can be

derived, again, from Theorem 1.

The following results can be easily derived from the previous ones.

Proposition 3: Consider a behavior B ⊆ (Rw)Z+ .

i) B is controllable if and only if it is zero-controllable and permanent [21];

i) B is controllable if and only if it is set-controllable to {0} [11];

iii) B = Bap⊕Ban⊕Bc, where Bc is the controllable part of B, Bap is an autonomous behavior

devoid of finite support trajectories and Ban is a nilpotent behavior.

The concepts of controllability and zero-controllability can be extended to the case of behaviors

described by means of latent variable models, that often are the ones naturally arising from first

principles modeling. Consider the following difference equation:

Rw(σ)w(t) = Rc(σ)c(t), t ∈ Z+, (3)

where Rw(z) and Rc(z) are polynomial matrices of sizes p×w and p×c, respectively. We refer

to w as to the manifest variable, and to c as to the latent variable. According to the standard

notation for control problems in the behavioral setting (see, for instance, [1], [2], [4], [6], [11]),

Bfull := {(w, c) ∈ (Rw)Z+ × (Rc)Z+ satisfying (3)}, (4)

is the full system behavior, while

B := {w ∈ (Rw)Z+ : ∃ (w, c) ∈ (Rw)Z+ × (Rc)Z+ satisfying (3)} (5)

is the manifest behavior. Bfull represents a latent variable description of the behavior B. This

latter, in turn, represents the projection of Bfull on the variable w, i.e. B = PwBfull. It is well
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known (see [8]), that if Mc(z) represents a minimal left annihilator of Rc(z), then

B = PwBfull = ker(Mc(σ)Rw(σ)).

Clearly, if Rc(z) is of full row rank, Mc(z) and hence Mc(z)Rw(z) are void matrices with w

columns, and hence B = (Rw)Z+ .

When dealing with latent variable descriptions, it is quite natural to introduce the concepts of

controllability (of zero-controllability) by referring to the variable w alone, and not to the pair

(w, c).

Definition 5: Given a behavior Bfull, the manifest variable w is

• controllable if there exists some nonnegative integer L such that for every N ∈ N, every

(w, c) ∈ Bfull, and every w∗ ∈ B, one can find (w̄, c̄) ∈ Bfull such that

w̄|[0,N−1] = w|[0,N−1], and w̄|[N+L,+∞) = w∗|[0,+∞);

• zero-controllable if there exists some nonnegative integer L such that for every N ∈ N and

every (w, c) ∈ Bfull, one can find (w̄, c̄) ∈ Bfull such that

w̄|[0,N−1] = w|[0,N−1], and w̄|[N+L,+∞) = 0.

The characterization of both properties can be obtained in terms of B, the projection of the

full behavior Bfull on its manifest variables w. Consequently, we have the following results

whose proofs are straightforward and hence omitted.

Proposition 4: Given a behavior Bfull, described as in (3), the following statements are

equivalent:

i) the variable w is (zero-)controllable;

ii) the behavior B is (zero-)controllable;

iii) McRw = LR̄, where L(z) is right prime (right monomic), while the right factor R̄(z) is

left prime.

Remark 2: It is worthwhile to remark that even if we have resorted to the classical concept of

latent variable representation for the behavioral description (3), the vector c does not necessarily

represent variables whose role is only instrumental in the description of the evolution of the

manifest variable w. Both w and c are system variables at the same level, however the control
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requirements are expressed only in terms of w. Accordingly, the control problems will have

only w as a target, while c will only be available for control purposes. For this reason, in the

following, w will also be referred to as to-be-controlled variable.

As it is easily seen, (zero-)controllability of w in Bfull is a weaker property with respect to

(zero-)controllability of the pair (w, c). Indeed, (zero-)controllability of (w, c) always implies

(zero-)controllability of w, while the converse is not true. This will allow us to solve control

problems even in cases in which standard (both fully and partially interconnected) controllers

do not work, as it will be clarified in the sequel.

EXAMPLE 1 Consider the behavior Bfull described as in (3), with Rw(z) = Rc(z) = z − 1.

Clearly, Bfull = ker [Rw(σ) −Rc(σ) ] is neither controllable nor zero-controllable, as the full

row rank matrix [Rw(z) −Rc(z) ] is not left monomic (and hence not even left prime), however

it is easily seen that since Rc(z) is of full row rank, w is both controllable and zero-controllable.

IV. DEAD-BEAT CONTROLLERS

In this paper, by a controller of a given behavior (3) we mean a system (a set of difference

equations) that constrains the trajectories of both the latent variable c and of the to-be-controlled

variable w, and hence is described by a difference equation of the following type

P (σ)w(t) = Q(σ)c(t), ∀ t ∈ Z+, (6)

for suitable polynomial matrices P (z) and Q(z). We define the controller behavior as

C := {(w, c) ∈ (Rw)Z+ × (Rc)Z+ satisfying (6)}.

The overall behavior of the system obtained by interconnecting the system (3) with the controller

(6) is

Kfull := Bfull ∩ C = ker

[
Rw(σ) −Rc(σ)

P (σ) −Q(σ)

]
. (7)

The target of the control problem, however, is not the whole behavior Kfull, but only its projection

on the to-be-controlled variable w, and accordingly we define the controlled behavior as

K := {w ∈ (Rw)Z+ : ∃ c ∈ (Rc)Z+ such that (w, c) ∈ Bfull ∩ C} = PwKfull.

This perspective is different both from the one adopted in the full interconnection case and from

the one adopted in the partial interconnection case [18], [19], in that the controller acts both
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on c and on w, as in the full interconnection case, but the target is only w, as in the partial

interconnection case. As commented upon in the Introduction, a similar perspective was taken

in [11], where the concept of extended interconnection was introduced. However in [11] the

starting point is only B, and Bfull can in turn be properly chosen in order to achieve the control

target.

Within the class of controllers we are interested in those that make the resulting controlled

behavior autonomous and nilpotent. We refer to them as to dead-beat controllers.

Definition 6: Given a behavior Bfull, a controller (6) is said to be a dead-beat controller

(DBC) for the system if in every trajectory (w, c) ∈ Kfull, the component w(t), t ∈ Z+, has

finite support, which amounts to saying that the behavior K is nilpotent.

The concept of DBC is rather intuitive and very much in line with the philosophy underlying

the definitions introduced in the previous section: through a dead beat controller, that makes use

of both the latent variable c and of the to be controlled variable w, we aim at ensuring that all

the trajectories of w go to zero in a finite number of steps. What happens of the latent variable

is not relevant, and we may even accept that, in order to ensure that w goes to zero in a finite

number of steps and remains zero, the control action related to c may last forever.

EXAMPLE 1 (continued) Consider the behavior Bfull described in Example 1 and correspond-

ing to Rw(z) = Rc(z) = z−1. We have already seen that, as a whole, Bfull is neither controllable

nor zero-controllable, while w alone is both controllable and zero-controllable. If we attempt

to solve the dead-beat control problem by resorting either to (regular) full interconnected con-

trollers or to (regular or not) partially interconnected controllers [13], the problem is unsolvable.

However, dead-beat controllers in the sense of the previous definition exist. It is easy to verify

that the choice P (z) = 1 and Q(z) = 0 leads to w(t) = 0, t ≥ 0. The prize to pay consists in

the fact that c(t) does not vanish, in general, since c is constant but not necessarily zero.

A characterization of the DBC’s can be easily found, and it requires a preliminary lemma.

Lemma 1: Given a behavior described as in (3), a polynomial pair (P (z), Q(z)) defines a

DBC (6) for the system if and only if

Γ(z) := M(z)

[
Rw(z)

P (z)

]
(8)
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is right monomic, where M(z) is an MLA of

[
Rc(z)

Q(z)

]
.

Proof: Since Kfull is described as in (7), if

[
Rc(z)

Q(z)

]
were of full row rank then K = (Rw)Z+

and hence (P (z), Q(z)) could not define a DBC. So, an MLA M(z) of this matrix exists and

K can be expressed as

K = ker

(
M(σ)

[
Rw(σ)

P (σ)

])
.

Therefore K is nilpotent if and only if Γ(z) is right monomic.

Theorem 2: Given a behavior described as in (3), a pair (P (z), Q(z)) defines a DBC (6) for

the system if and only if the equation

X(z, z−1)

[
Rw(z) −Rc(z)

P (z) −Q(z)

]
= [ Iw 0 ] (9)

has an L-polynomial solution X(z, z−1).

Proof: If the pair defines a DBC then, by the previous lemma, we know that, given an

MLA M(z) of

[
Rc(z)

Q(z)

]
, the matrix Γ(z) given in (8) is right monomic. So, Γ(z) admits an

L-polynomial left inverse, say LΓ(z, z−1). But then

LΓ(z, z−1)M(z)

[
Rw(z) −Rc(z)

P (z) −Q(z)

]
= [ Iw 0 ] ,

and hence equation (9) has the L-polynomial solution X(z, z−1) = LΓ(z, z−1)M(z).

Conversely, if (9) holds, then, in particular, X(z, z−1) is a left annihilator of

[
Rc(z)

Q(z)

]
. Conse-

quently,

X(z, z−1) = F (z, z−1)M(z),

for some L-polynomial matrix F (z, z−1). This implies

F (z, z−1)M(z)

[
Rw(z)

P (z)

]
= Iw,

and therefore the polynomial matrix

Γ(z) = M(z)

[
Rw(z)

P (z)

]
has the left L-polynomial inverse F (z, z−1), which ensures that Γ(z) is right monomic. By the

previous lemma, this implies that the pair (P (z), Q(z)) defines a DBC for the system.
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V. ADMISSIBLE AND REGULAR DBC’S

In the previous section we have introduced the concept of DBC and showed how to characterize

the pairs (P (z), Q(z)) that correspond to the DBC’s of a given behavior (3). It is worthwhile

noticing that in doing so we did not introduce any assumption on the system, and indeed every

system admits a deadbeat controller. In fact, the goal of forcing to zero all the trajectories of

K in a finite number of steps, is always achievable, independently of the behavior properties: it

is sufficient to choose, for instance, the controller P (z) = Iw and Q(z) = 0, to ensure that K is

the zero behavior.

This result may sound absurd, and indeed the contradictions deriving from the use of a

controller that does not satisfy any additional requirement have been detected by Jan Willems

in his first fundamental contribution about control in the behavioral setting [19]. When focusing

on the specific case of DBC’s, the reason for this contradiction is that it is always possible to

restrict the behavior trajectories to the zero set, but this is obtained by resorting to meaningless

controllers that essentially rule out any system evolution but the trivial one. For this reason it

is fundamental to understand what are the features that an admissible DBC should reasonably

endow the resulting controlled system with.

Dead beat controllers for standard state-space models provide good suggestions in this direc-

tion. Given a state-space model, if we decide to apply the DBC starting at some time N > 0,

we expect to find among the trajectories of the controlled behavior at least one finite support

trajectory that coincides with the original trajectory w ∈ B in the initial window [0, N − 1].

When moving to the general behavior setting, what we expect is that the DBC performs its task

without constraining the initial portion of the trajectories in B: so if it starts working at time

t = N , it does not affect the samples of the trajectory in some initial window [0,M−1] provided

that N −M is large enough.

By assuming this perspective, we want to introduce the concept of admissible DBC. To this

end, we need some mathematical preliminaries. Consider the difference equation (7), describing

the behavior Kfull of the overall system. As we enlightened within the proof of Lemma 1,

if C defines a DBC for system (3), the matrix

[
Rc(z)

Q(z)

]
cannot be of full row rank. If so,
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K = (Rw)Z+ , and hence it could not be a nilpotent behavior. An MLA M(z) of

[
Rc(z)

Q(z)

]
can

always be described as follows:

M(z) =

[
Mc(z) 0

M1(z) M2(z)

]
,

where Mc(z) is an MLA of Rc(z). Accordingly, the behavior K can be equivalently described

as

K = Pw Kfull = ker

([
Mc(σ) 0

M1(σ) M2(σ)

] [
Rw(σ)

P (σ)

])

= ker

[
Mc(σ)Rw(σ)

M1(σ)Rw(σ) +M2(σ)P (σ)

]
⊆ ker [Mc(σ)Rw(σ) ] = B.

(10)

Starting from C, we introduce the delayed controllers Ci, i ∈ Z+, described by the difference

equation

σiP (σ)w(t) = σiQ(σ)c(t), t ∈ Z+. (11)

If we denote by Ki the controlled behavior obtained corresponding to Ci, we can describe it as

Ki = ker

([
Mc(σ) 0

M
(i)
1 (σ) M

(i)
2 (σ)

][
Rw(σ)

σiP (σ)

])
= ker

[
Mc(σ)Rw(σ)

M
(i)
1 (σ)Rw(σ) + σiM

(i)
2 (σ)P (σ)

]
, (12)

where

Mi(z) =

[
Mc(z) 0

M
(i)
1 (z) M

(i)
2 (z)

]

is an MLA of

[
Rc(z)

ziQ(z)

]
. Clearly, C = C0, K = K0 and M(z) = M0(z).

The controller Ci acts on the trajectories (w, c) of Bfull as the original controller C, but instead

of performing the control action from t = 0 onward, it starts at t = i. Note, however, that this

does not mean that the controlled trajectories are unconstrained at the time instants preceding

t = i. We want to show that if C is a DBC for the given system, then every Ci is.

Lemma 2: Given a behavior described as in (3), if the controller C described by the difference

equation (6) is a DBC for the system, then such is any controller Ci, i ∈ Z+, described as in

(11).

Proof: If C is a DBC for the system, then the corresponding controlled behavior K, described

as in (10), is nilpotent and hence[
Mc(z)Rw(z)

M1(z)Rw(z) +M2(z)P (z)

]
=

[
Mc(z) 0

M1(z) M2(z)

] [
Rw(z)

P (z)

]
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is right monomic. We also notice that an MLA [M
(i)
1 (z) M

(i)
2 (z) ] of

[
Rc(z)

ziQ(z)

]
, can be

obtained from the polynomial matrix [ ziM1(z) M2(z) ] by simply extracting its greatest left

divisor ∆i(z), namely:

∆i(z) [M
(i)
1 (z) M

(i)
2 (z) ] = [ ziM1(z) M2(z) ] ,

with ∆i(z) nonsingular square and [M
(i)
1 (z) M

(i)
2 (z) ] left prime. Accordingly, Ki, the con-

trolled behavior corresponding to Ci, can be expressed as

Ki = ker

([
Mc(σ) 0

M
(i)
1 (σ) M

(i)
2 (σ)

] [
Rw(σ)

σiP (σ)

])
and it is immediately seen that

Ki ⊆ ker

([
Mc(σ) 0

σiM1(σ) M2(σ)

][
Rw(σ)

σiP (σ)

])
= ker

[
Mc(σ)Rw(σ)

σi(M1(σ)Rw(σ) +M2(σ)P (σ))

]
.

Since the matrix[
Mc(z)Rw(z)

zi(M1(z)Rw(z) +M2(z)Q(z))

]
=

[
I 0

0 ziI

]([
Mc(z) 0

M1(z) M2(z)

] [
Rw(z)

P (z)

])
is right monomic, Ki is a nilpotent behavior and hence Ci is a DBC.

The result of the previous lemma allows us to introduce the following definition of admissible

DBC.

Definition 7: Given a behavior Bfull, a dead-beat controller C described as in (6) is said to

be admissible if there exists L ∈ Z+ such that for every w ∈ B = PwBfull and every N ∈ N,

there exists w̄ ∈ KL+N , the nilpotent behavior obtained corresponding to the controller CL+N ,

such that w̄(t)|[0,N−1] = w(t)|[0,N−1].

We are in a position to relate zero-controllability of w to the existence of an admissible DBC.

Theorem 3: A behavior Bfull described as in (3) admits an admissible DBC if and only if w

is zero-controllable. If this is the case, then every DBC is admissible.

Proof: Assume, first, that the system admits an admissible DBC C, described by the matrix

pair (P (z), Q(z)), and, hence K, described as in (10), is a nilpotent behavior. This implies that
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there exists M ∈ Z+ such that all trajectories in K are zero for t ≥ M . On the other hand, we

have shown that for every i ∈ Z+

Ki ⊆ ker

[
Mc(σ)Rw(σ)

σi(M1(σ)Rw(σ) +M2(σ)Q(σ))

]

⊆ ker

(
σi

[
Mc(σ)Rw(σ)

M1(σ)Rw(σ) +M2(σ)Q(σ)

])
,

and the behavior on the right hand-side is nilpotent, with trajectories which are identically zero

at least for t ≥ i+M . So, also the trajectories of Ki have finite support included in [0, i+M−1],

and this is true for every i ∈ Z+.

Since C is an admissible DBC, there exists L ∈ Z+ such that for every N ∈ N and every

w ∈ B a trajectory w̄ ∈ KL+N ⊆ B can be found, coinciding with w in [0, N − 1]. Such a

trajectory w̄ is surely zero for t ≥ L + N + M . So, we have proved that there exists L∗ ∈ N,

specifically L∗ := M + L, such that for every w ∈ B there exists a trajectory w̄ ∈ KL+N ⊆ B

coinciding with w in [0, N−1] and zero for t ≥ N+L∗. This proves that w is zero-controllable.

We have already pointed out that a DBC always exists, independently of the behavior proper-

ties. We want to show that when w is zero-controllable, every DBC is admissible (this, obviously,

implies that there exists an admissible one). Let (P (z), Q(z)) be the pair of polynomial matrices

that describes a DBC. We have only to verify that it is admissible. By the zero-controllability

property, there exists a nonnegative integer L such that for every N ∈ N and every (w, c) ∈ Bfull,

one can find (w̄, c̄) ∈ Bfull such that

w̄|[0,N−1] = w|[0,N−1], and w̄|[N+L,+∞) = 0. (13)

We want to show that this same nonnegative integer L makes the definition of admissible DBC

satisfied. To this end we have to show that for every N ∈ N and every w ∈ B, there exists

w̄ ∈ KL+N coinciding with w in [0, N − 1]. By resorting to the same reasonings we previously

used, we can claim that

KL+N = ker

([
Mc(σ) 0

M
(L+N)
1 (σ) M

(L+N)
2 (σ)

][
Rw(σ)

σN+LP (σ)

])

= ker

([
I 0

M
(L+N)
1 (σ) M

(L+N)
2 (σ)

][
Mc(σ)Rw(σ)

σN+LP (σ)

])
.
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So, it is easy to see that the same trajectory w̄ ∈ B that satisfies (13), and whose exis-

tence is ensured by the zero-controllability property, is necessarily a trajectory of both B =

ker(Mc(σ)Rw(σ)) and ker(σL+NP (σ)). Therefore w̄ ∈ KL+N and this makes the definition of

admissible DBC satisfied.

The following example illustrates why a delayed DBC unavoidably constraints the whole

controlled trajectory, and hence admissible DBC’s do not exist for behaviors for which w is not

zero-controllable.

EXAMPLE 2 Consider the behavior described by the following difference equation:[
σ − 1 0

0 σ − 1

][
w1(t)

w2(t)

]
=

[
1

0

]
c(t), t ∈ Z+.

For this behavior, w = [w1 w2 ]T is not zero-controllable. Let C be any DBC for this system.

Despite each delayed controller Ci (i ∈ Z+) seems to start its control action only at t = i, it

actually imposes the constraint w2(t) = 0 for any t ≥ 0. This is due to the fact that the plant

equations constrain w2(t) to assume a constant value, and the DBC action ensures that w2(t) = 0

after a finite number of steps. Therefore no DBC can be admissible, since it constrains the second

component of the trajectory w(t) to be zero-valued independently of the time when the DBC

starts to act. In other words, there is no possibility of driving to zero a trajectory w(t) unless

w2(0) = 0.

In the literature about behaviors, particular attention has been devoted to the so-called regular

interconnections [1], [2], [19]. The connection of a plant and a controller is a regular one if the

controller laws are not redundant with respect to the system laws.

Definition 8: Given a behavior Bfull described as in (3), a DBC C described as in (6) is

regular if

rank

[
Rw(z) −Rc(z)

P (z) −Q(z)

]
= rank [Rw(z) −Rc(z) ] + rank [P (z) −Q(z) ] .

By making use of the characterization of set-controllable behaviors given in [11], Theorem

5.7, in terms of extended regular interconnections, which are just regular controllers described as

in (6), we will show that a regular DBC exists if and only if w is zero-controllable. In addition,

for the class of behaviors described as in (3) and characterized by certain values of w, c and
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rank Rc(z), the DBC’s are described by polynomial matrices [P (z) −Q(z) ] whose number

of rows is lower bounded by the minimal value w− p+ r. Such minimal DBC’s can always be

obtained under the zero-controllability assumption and only in that case. So, as a general result,

the zero-controllability of w is the property that allows to design DBC’s that are effective and

not redundant. For all the behaviors that do not exhibit this property, control to zero can be

obtained only at the expenses of redundancy.

Theorem 4: Consider a behavior described as in (3), and assume without loss of generality

that [Rw(z) −Rc(z) ] ∈ R[z]p×(w+c) is of full row rank. Let r be the rank of Rc(z). The

following statements are equivalent:

i) w is zero-controllable;

ii) there exists a DBC that corresponds to a polynomial matrix [P (z) −Q(z) ] with w−p+ r

rows;

iii) there exists a regular DBC.

Proof: i) ⇒ ii) Suppose that w is zero-controllable. If Rc(z) is of full row rank, then

p = r and a DBC that corresponds to a polynomial matrix [P (z) −Q(z) ] with w rows is

simply P (z) = Iw and Q(z) = 0. If Rc(z) is not of full row rank, we let

U(z) :=

[
Sc(z)

Mc(z)

]
be a unimodular matrix such that

U(z)Rc(z) =

[
Bc(z)

0

]
,

with Bc(z) := Sc(z)Rc(z) of full row rank. Accordingly we set

U(z)Rw(z) =

[
Bw(z)

Mc(z)Rw(z)

]
.

By the full row rank assumption on [Rw(z) −Rc(z) ], the matrix Mc(z)Rw(z) is of full row

rank, and we can factorize it as Mc(z)Rw(z) = L(z)R̄(z), with L(z) nonsingular square and

R̄(z) ∈ R[z](p−r)×w left prime. In the special case when L(z)R̄(z) is nonsingular square, R̄(z)

is a unimodular factor. By assumption i), L(z) is square monomic and hence detL(z) = zk for

some k ∈ Z+.
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If R̄(z) is unimodular, then w − p + r = 0 and, indeed, by choosing as P (z) and Q(z)

the void matrices we obtain a DBC, since K = B is nilpotent. If R̄(z) is not unimodular,

let C̄(z) ∈ R(w−p+r)×w be a completion of R̄(z) to a unimodular matrix. Then by choosing

P (z) = C̄(z) and Q(z) = 0, we obtain the DBC we were searching for.

ii) ⇒ iii) Let P (z) and Q(z) be polynomial matrices such that [P (z) −Q(z) ] defines a

DBC with w − p + r rows for the system (3). We want to prove that P (z) and Q(z) define a

regular DBC. To this end, let U(z) be a unimodular matrix such that

U(z)

[
Rc(z)

Q(z)

]
=

 R̃c(z)

0

 ,
where R̃c(z) is of full row rank r̃. Clearly, as rankR̃c(z) ≥ rankRc(z), r̃ ≥ r. Accordingly,

U(z)

[
Rw(z)

P (z)

]
=

 R̃w(z)

P̃ (z)

 ,
where P̃ (z) ∈ R[z](w+r−r̃)×w. Since K = ker P̃ (σ), in order for K to be a nilpotent behavior, it

must be rank P̃ (z) = w. But this implies w + r − r̃ ≥ w, namely r − r̃ ≥ 0. On the other hand,

we know that r ≤ r̃, so it must be r = r̃. This means that P̃ (z) is nonsingular square. Finally,

rank

[
Rw(z) −Rc(z)

P (z) −Q(z)

]
= rank

[
R̃w(z) −R̃c(z)

P̃ (z) −0

]
= rankP̃ (z) + rankR̃c(z) = w + r = p+ (w− p+ r)

= rank [Rw(z) −Rc(z) ] + rank [P (z) −Q(z) ] .

This completes the proof.

iii)⇒ i) By Theorem 5.7 in [11], if there exists a regular controller described as in (6) such that

K = B′ is nilpotent, then B is set-controllable to the nilpotent behavior B′ ⊂ B, but as shown

in Proposition 1, this amounts to saying that B is zero-controllable.

Remark 3: It is worthwhile noticing that, as clarified within the proof, w − p + r is the

minimal number of rows a DBC may exhibit. Indeed, this is the minimal number of rows that

a controller C needs in order to make K = PwBfull autonomous. So, it is not surprising that

if such a DBC can be found then it is necessarily a regular one, namely it does not introduce
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any kind of redundancy. However, regular DBC’s are not necessarily minimal, as shown by the

following example.

EXAMPLE 3 Consider the behavior described by the following difference equation:

(σ − 1)w(t) = [ 1 1 ] c(t), t ∈ Z+,

where w = p = r = 1. w is controllable and hence zero-controllable. The DBC described by the

following equations [
−1

0

]
w(t) =

[
1 1

0 1

]
c(t), t ∈ Z+,

is clearly regular, however it is not minimal as it has 2 > w− p+ r = 1 rows.

On the other hand, when w is zero-controllable, all DBC’s are admissible, but obviously not

all admissible DBC’s are regular, as shown by the following example.

EXAMPLE 4 Consider the behavior described by the following difference equation:[
σ − 1

σ + 1

]
w(t) =

[
1 0

0 1

]
c(t), t ∈ Z+.

w is zero-controllable and the DBC described by the following equations[
−1

0

]
w(t) =

[
1 0

0 1

]
c(t), t ∈ Z+,

is (admissible but) not regular.

These two examples clarified that the concepts of admissible, regular and minimal DBC’s are

distinct ones, even if zero-controllability of w is a necessary and sufficient condition for the

existence of DBC’s of any of these classes. The following picture describes how such classes

are related.
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Figure 1: Classes of DBC’s for systems with w zero-controllable.

VI. MINIMAL DBC PARAMETRIZATION

Given a behavior described as in (3), with w zero-controllable and [Rw(z) −Rc(z) ] ∈

R[z]p×(w+c) of full row rank matrix, we want to provide a parametrization of all minimal DBC’s

of the system, namely all DBC’s with the minimal number of rows and hence associated with

some polynomial matrix

[P (z) −Q(z) ] ∈ R[z](w−p+r)×(w+c),

where r denotes the rank of Rc(z). By Theorem 3, each such DBC will be admissible. By

Theorem 4 (and following remark), it will also be regular and the matrix [P (z) −Q(z) ] will

necessarily be of full row rank.

In order to solve this problem, we proceed as in the proof of Theorem 4. We distinguish the

case r < p from the case r = p.

• Case 1: If r < p, we let

U(z) :=

[
Sc(z)

Mc(z)

]
be a unimodular matrix such that

U(z)Rc(z) =

[
Bc(z)

0

]
,

with Bc(z) ∈ R[z]r×c of full row rank. Note that Mc(z) is an MLA of Rc(z). Accordingly we

set

U(z)Rw(z) =

[
Bw(z)

Mc(z)Rw(z)

]
,
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and we factorize Mc(z)Rw(z) as ∆M(z)R̄(z), with ∆M(z) (p − r) × (p − r) square monomic

and R̄(z) ∈ R[z](p−r)×w left prime. Clearly, B = ker(Mc(σ)Rw(σ)). Accordingly, Kfull can be

described as the kernel of the following polynomial matrix Bw(z) −Bc(z)

∆M(z)R̄(z) 0

P (z) −Q(z)

 ∈ R[z](w+r)×(w+c). (14)

Let V (z) be a unimodular matrix such that

V (z)

[
Bc(z)

Q(z)

]
=

[
R̃c(z)

0

]
,

with R̃c(z) of full row rank. As shown in the proof of Theorem 4, rank R̃c(z) = rank Bc(z) =

rank Rc(z) = r. This implies that all the rows of Q(z) must be linearly dependent (on R(z))

on the rows of Bc(z):

Q(z) = W (z)Bc(z), ∃ W (z) ∈ R(w−p+r)×r(z). (15)

Consequently, Kfull can be described as the kernel of Bw(z) −Bc(z)

∆M(z)R̄(z) 0

P (z) −W (z)Bc(z)

 ∈ R[z](w+r)×(w+c),

under the constraint that W (z)Bc(z) is polynomial. Let DW (z)−1NW (z) be a left coprime matrix

fraction description (MFD) of W (z). This amounts to saying that [NW (z) −DW (z) ] is an MLA

of

[
Bc(z)

W (z)Bc(z)

]
. Accordingly

K = ker

([
∆M(σ)R̄(σ)

NW (σ)Bw(σ)−DW (σ)P (σ)

])
.

K is nilpotent if and only if

HTOT (z) =

[
∆M(z)R̄(z)

NW (z)Bw(z)−DW (z)P (z)

]
is square monomic. If we represent (without loss of generality) NW (z)Bw(z)−DW (z)P (z) as

NW (z)Bw(z)−DW (z)P (z) = [TR(z) TC(z) ]

[
R̄(z)

C̄(z)

]
,

where C̄(z) is a completion of R̄(z) to a unimodular matrix and TR(z), TC(z) are polynomial

matrices, then HTOT (z) is square monomic if and only if TC(z) is square monomic. So, to
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summarize, in the case r < p, the matrices of the DBC’s with minimal number of rows are all

the polynomial matrices that can be obtained as

Q(z) = W (z)Bc(z)

P (z) = W (z)Bw(z)−DW (z)−1 [TR(z) TC(z) ]

[
R̄(z)

C̄(z)

]
,

(16)

where W (z) is a rational matrix, D−1
W (z)NW (z) is a left coprime MFD of W (z), TR(z) and

TC(z) are polynomial matrices, and TC(z) is square monomic.

• Case 2: if Rc(z) is of full row rank (namely r = p), then Sc(z) = Ip, Bc(z) = Rc(z),

Bw(z) = Rw(z) and the matrix Mc(z)Rw(z) does not appear. So, we can apply the same

reasoning as in Case 1 and obtain that Kfull can be described as the kernel of[
Rw(z) −Rc(z)

P (z) −W (z)Rc(z)

]
∈ R[z](w+r)×(w+c),

where W (z) is a rational matrix such that W (z)Rc(z) is polynomial. If we denote, again, by

DW (z)−1NW (z) a left coprime MFD of W (z), then

K = ker (NW (σ)Rw(σ)−DW (σ)P (σ)) ,

and this is a nilpotent behavior if and only if the square matrix

HTOT (z) = NW (z)Rw(z)−DW (z)P (z)

is monomic. This brings us to the parametrization:

Q(z) = W (z)Rc(z)

P (z) = W (z)Rw(z)−DW (z)−1TC(z),
(17)

where W (z) is a rational function, D−1
W (z)NW (z) is a left coprime MFD of W (z), and TC(z)

is square monomic.

EXAMPLE 5 Consider a behavior described as in (3), with

Rw(z) =

[
1

1

]
, Rc(z) =

[
1 + z 0

0 1 + z

]
.

It is easily seen that Rc(z) (and hence, a fortiori, [Rw(z) −Rc(z) ]) is of full row rank. So, w

is zero-controllable and we are in Case 2 previously discussed (namely p = r = 2). We express

the polynomial matrix Q(z) as

Q(z) = [ q1(z) q2(z) ] = W (z)Rc(z) = (z + 1) [w1(z) w2(z) ] ,
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where w1(z) and w2(z) are rational functions. Clearly, it must be

W (z) = [w1(z) w2(z) ] = [ q1(z)
z+1

q2(z)
z+1

] .

Two cases possibly arise: (a) W (z) is polynomial, namely both q1(z) and q2(z) are multiple of

z+ 1; (b) W (z) is not polynomial, which amounts to saying that at least one between q1(z) and

q2(z) is not a multiple of z + 1.

Case (a): If W (z) is polynomial, a left coprime MFD of W (z) is DW (z)−1NW (z) with

DW (z) = 1 and NW (z) = W (z) = [w1(z) w2(z) ]. Accordingly

P (z) = W (z)Rw(z)− TC(z) = [w1(z) w2(z) ]

[
1

1

]
− TC(z) = w1(z) + w2(z)− TC(z),

where TC(z) is monomic. So, a parametrization in terms of the polynomials w1(z), w2(z) and

TC(z), this latter constrained to be monomic, is:

Q(z) = [ (z + 1)w1(z) (z + 1)w2(z) ] (18)

P (z) = w1(z) + w2(z)− TC(z).

Case (b): In this case DW (z) = z + 1 and NW (z) = [ q1(z) q2(z) ] . Accordingly

P (z) = W (z)Rw(z)−DW (z)−1TC(z)

= (z + 1)−1 [ q1(z) q2(z) ]

[
1

1

]
− (z + 1)−1TC(z) =

q1(z) + q2(z)− TC(z)

z + 1
,

where TC(z) is monomic. Clearly, the only way for P (z) to be polynomial is by imposing that

(z + 1) | q1(z) + q2(z) − TC(z). This implies q1(z) + q2(z) − TC(z) = (z + 1)q3(z). So, by

expressing q2(z) as

q2(z) = (z + 1)q3(z)− q1(z) + TC(z),

we can obtain a parametrization in terms of the polynomials q1(z), q3(z) and TC(z), this latter

constrained to be monomic:

Q(z) = [ q1(z) (z + 1)q3(z)− q1(z) + TC(z) ] (19)

P (z) = q3(z).
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Remark 4: Note that the pairs (Q,P ) obtained through (18) are all different from the pairs

described in (19), as it is easily seen by equating their expressions. So, (18) and (19) represent

two disjoint DBC’s families, which parametrize all the minimal complexity DBC’s. Therefore

this example clearly shows that the parametrization problem is a very complicate one, as a

double parametrization is required even if the example is very simple, being DW just a scalar

polynomial.

Remark 5: By referring to the previous parametrizations, it is worthwhile noticing that a

(in general, proper) subset of all pairs (P (z), Q(z)) that correspond to minimal DBC’s can be

easily obtained from (16) and (17), by simply constraining W (z) to be a polynomial matrix and

therefore DW (z) to be equal to Iw−p+r.

Remark 6: As anticipated in the Introduction, it would possible to restate the DBC problem

addressed in this paper as a DBC problem achieved through partial interconnection. This would

require to fictitiously replace the variable c with the variable c̃ = (c,w), that introduces a copy

of the to-be-controlled variable. By exploiting this trick, we could adapt the parametrization of

the “minimal” stabilizing controller (through partial interconnection) provided in [9] in order to

achieve a parametrization of the minimal DBC’s. This solution, even if feasible, would bring to

a parametrization (of course, equivalent but) different from ours; and in several instances this

method for obtaining a parametrization of the minimal DBC’s would lead to much more involved

calculations with respect to those required by our method1. Nonetheless, it must be remarked

that even the parametrization in [9] resorts to multiple polynomial parameters, and in several

cases the set of all minimal DBC’s would be the union of disjoint sets of parametrized DBC’s.

The problem of finding a complete parametrization of all the (minimal or not) DBC’s of a

given plant remains however an open one, which needs further investigation.

VII. INPUT/OUTPUT STRUCTURE OF DBC’S

The concepts of zero-controllability and of DBC investigated in the previous sections represent

a generalization of the perspective and set-up commonly adopted for state-space models: there

is a variable to be controlled to zero (the to be controlled variable w) and the control action is

1Unfortunately, to support our claim by means of examples we should provide a detailed description of the parametrization

obtained in [9], a task that we believe is out of the purposes of this paper.
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obtained by linking the values of w and of the latent variable c. Accordingly, one may want

to investigate under what conditions it is possible to obtain a DBC that naturally implements a

feedback law, by this meaning that for such a DBC c represents the controller output and w

the controller input. This amounts to searching for conditions ensuring that a polynomial pair

(P (z), Q(z)) can be found, with Q(z) full row rank or, in particular, nonsingular square, such

that the corresponding system (6) is a DBC for the system (3). We have the following result.

Proposition 5: Given a system described as in (3), with w zero-controllable, the following

statements are equivalent:

i) the following condition holds:

w ≤ rank [Rw(z) −Rc(z) ] ; (20)

ii) there exists a DBC described as in (6) with [P (z) −Q(z) ] ∈ R[z]c×(w+c), and Q(z)

nonsingular square;

iii) there exists a DBC described as in (6) with [P (z) −Q(z) ] ∈ R[z]k×(w+c), and Q(z) of

full row rank.

Proof: Assume w.l.o.g. that [Rw(z) −Rc(z) ] ∈ R[z]p×(w+c) is a full row rank matrix, so

that condition (20) becomes w ≤ p. Also, we let r denote the rank of Rc(z) and we assume,

as in the previous sections, that the behavior Bfull is described as the kernel of the following

polynomial matrix: [
Bw(z) −Bc(z)

∆M(z)R̄(z) 0

]
∈ R[z]p×(w+c),

where Bc(z) is of full row rank, and the matrices ∆M(z) and R̄(z), if they exist (provided that

Rc(z) is not of full row rank, namely that r < p) are square monomic and left prime, respectively.

It entails no loss of generality assuming Bc(z) = ∆c(z)R̄c(z), where ∆c(z) is nonsingular square

and R̄c(z) is left prime. Also, we denote by C̄(z) ∈ R[z](w−p+r)×w a completion of R̄(z) to a

unimodular matrix and by C̄c(z) ∈ R[z](c−r)×c a completion of R̄c(z) to a unimodular matrix

(they can possibly be void matrices or unimodular matrices in case the matrices we are completing

are already unimodular or, on the contrary, void matrices, respectively).

i) ⇒ ii) If p ≥ w, then r ≥ w− p+ r. We want to show that

[P (z) −Q(z) ] =

[
Bw(z)−

[
Iw−p+r

0

]
C̄(z) −∆c(z)R̄c(z)

0 −C̄c(z)

]
} r

} c− r
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is a DBC we are searching for. Surely Q(z) is nonsingular square since

Q(z) =

[
∆c(z) 0

0 Ic−r

][
R̄c(z)

C̄c(z)

]
.

On the other hand, it is easily seen that an MLA of

∆c(z)R̄c(z)

0

Q(z)

 =


∆c(z)R̄c(z)

0

∆c(z)R̄c(z)

C̄c(z)


is given by [

0 Ip−r 0 0

Ir 0 −Ir 0

]
,

and therefore Kfull is described as the kernel of the following polynomial matrix

[
0 Ip−r 0 0

Ir 0 −Ir 0

] 
Bw(z)

∆M(z)R̄(z)

Bw(z)−

[
Iw−p+r

0

]
C̄(z)

0



=

[
∆M(z)R̄(z)[
Iw−p+r

0

]
C̄(z)

]
=

∆M(z) 0

0 Iw−p+r

0 0

[ R̄(z)

C̄(z)

]
,

which is clearly right monomic, thus proving that the given controller is a DBC.

ii) ⇒ iii) Obvious.

iii) ⇒ i) Suppose that a DBC (6) with Q(z) k × c full row rank exists. Then, by Theorem 2,

an L-polynomial matrix exists such that

X(z, z−1)

[
Rw(z) −Rc(z)

P (z) −Q(z)

]
= [ Iw 0 ] .

Since X(z, z−1) is a left inverse of

[
Rw(z)

P (z)

]
its rank is w. On the other hand, being a left

annihilator of

[
Rc(z)

Q(z)

]
its rank must be not greater than the rank of an MLA for the same

matrix. So,

w ≤ (p+ k)− rank

[
Rc(z)

Q(z)

]
≤ (p+ k)− k = p,
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where we have used the fact that rank

[
Rc(z)

Q(z)

]
≥ rank Q(z) = k.

As previously recalled, a DBC with Q(z) either of full row rank or nonsingular square

corresponds to the possibility of implementing the control action through a feedback connection,

with w as an input (a maximal input in the nonsingular square case) and c as an output (possibly

including some free variables, in turn). It is worthwhile to remark a few aspects:

• The previous proposition states that such DBC’s exist if and only if the cardinality of w is

not greater than the number of (independent) equations of the plant. If condition (20) does

not hold, the controller has to impose direct constraints on the to be controlled variables in

order to achieve the task of driving them to zero in a finite number of steps. This means

that it has to constrain a priori the trajectories of w of the original behavior in order to

guarantee that the control action is successful. Indeed, it is easy to see that when Q(z) is

not of full row rank, we can always obtain for the DBC an equivalent description of the

following type:

P1(σ)w(t) = Q1(σ)c(t),

P2(σ)w(t) = 0, t ∈ Z+,

with Q1(z) of full row rank and P2(z) 6= 0. The former equation represents a feedback

control action, while the latter represents a constraint directly imposed on the to-be-con-

trolled variables.

• (* lo teniamo o e’ pericoloso?? *) The previous proposition bears some similarities with

analogous results in [13] (see Section 7). It must be remarked, however, that the two settings

are rather different since in [13] the partial interconnection case is considered, and the

problem of splitting the control variable c in the form (c1, c2), with c2 (maximally) free

for the controller, is considered. Clearly, also in that case a constraint similar to (20) has

been obtained.

• One may wonder why considering also the case when Q(z) is of full row rank instead of

just the case when Q(z) is nonsingular square. The reason is that, in general, if we accept

that Q(z) is only of full row rank, we can obtain DBC’s of lower complexity. In particular,

if we impose that Q(z) is nonsingular square we may end up considering DBC’s that are

not regular and hence introduce some redundancy with respect to the original system laws.
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