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Stability properties of a class of positive

switched systems with rank one difference

Ettore Fornasini Maria Elena Valcher

Abstract

Given a single-input continuous-time positive system, described by a pair (A,b), with A a diagonal

matrix, we investigate under what conditions there exists a state-feedback law u(t) = c>x(t) that makes

the resulting controlled system positive and asymptotically stable, by this meaning that A + bc> is

Metzler and Hurwitz. In the second part of this note we assume that the state-space model switches

among different state-feedback laws (c>i , i = 1, 2, . . . , p) each of them ensuring the positivity, and show

that the asymptotic stability of this type of switched system is equivalent to the asymptotic stability

of all its subsystems, while its stabilizability is equivalent to the existence of an asymptotically stable

subsystem.

Index Terms

Positive switched systems, asymptotic stability, stabilizability, Metzler Hurwitz matrices.

I. INTRODUCTION

Recent years have seen a growing interest in systems that are subject to a positivity constraint

on their dynamical variables. There are several motivations for this interest, coming from different

domains of science and technology. In fact, the positivity assumption is a natural one when

describing physical, biological or economical processes whose variables represent quantities that

are intrinsically nonnegative, such as pressures, concentrations, population levels, etc. [7].

By a continuous-time positive switched system (CPSS) we mean a dynamic system consisting

of a family of continuous-time positive state-space models and a switching law, specifying
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when and how the switching takes place. CPSS have been fruitfully used in bioengineering

and pharmacokinetics. For instance, the insulin-sugar metabolism is captured by two different

compartmental models: one valid in steady-state and the other (of course, more complex) which

is suitable to describe the evolution under perturbed conditions, following an oral consumption or

an intravenous injection. The paper by Haddad, Chellaboina and Nersesov [13] provides a very

interesting analysis of hybrid nonnegative systems and, in particular, of hybrid compartmental

systems and their use in modeling physiological systems.

In intracellular systems biology, the continuous time dynamics of signaling pathways are often

combined with the essentially logical machinery of gene expression. Together with transport

delays in protein synthesis, this may lead to hybrid (in particular, switched) systems with time

delays and positivity constraints on the describing variables [14]. Positive switched systems have

also been used to design optimal drug treatments to cope with viral mutation [20].

CPSSs have been the object of an intense research activity, mainly focused on stability [5],

[6], [8], [12], [16], [18], [19], [26] and stabilizability [1], [2], [25]. Special attention has been

devoted to the class of CPSSs that switch among subsystems whose matrices differ by a rank

one matrix [15], [18], [19], [21], [22]. The reason for the interest in these systems is twofold.

On the one hand, they can be thought of as the possible configurations one obtains from a given

single-input system, when applying different state-feedback laws that ensure the positivity of

the resulting closed-loop system. For this reason, the subsystem matrices can be denoted by

A + bc>i , i ∈ {1, 2, . . . , p}. On the other hand, interesting connections have been highlighted

[22] between the quadratic stability of CPSSs, switching between two subsystems of matrices

A and A+ bc>, and the SISO circle criterion for the transfer function c>(sIn − A)−1b.

In [19] it has been proved that, when a CPSS switches between p = 2 subsystems of dimension

n ≤ 3, the Hurwitz property of its subsystem matrices A+bc>i , i ∈ {1, 2}, ensures the asymptotic

stability of the associated CPSS. On the other hand, as one deduces by putting together the results

of [12] and [9], this is also true when the CPSS has dimension n = 2 and consists of an arbitrary

number of subsystems. At the present stage of research, it is not known whether the Metzler

Hurwitz property of the matrices A + bc>i , i ∈ {1, 2, . . . , p}, of size n > 2 ensures that the

associated CPSS is asymptotically stable. In this paper we prove that this is true under the

additional assumption that the matrix A is a diagonal one.

CPSSs described by Metzler matrices A+bc>i , i ∈ {1, 2, . . . , p}, with A diagonal, arise when
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investigating the behavior of non-homogeneous multi-agent systems, each of them described

by a scalar system, evolving under the action of a unique input signal, that coordinates their

behavior. If we assume that different state-feedback strategies may be employed to control the

overall agent behavior, we naturally end up with this class of rank one CPSSs, having a diagonal

system matrix. This kind of model arises also when dealing with compartmental models, with

independent compartments, that are subject to different supervisory control strategies (e.g., tracers

injections whose quantities depend on a weighted sum of the compartment concentrations, as it

happens with some drug treatments).

In addition, the stability result derived in this paper is relevant also for non-positive switched

systems whose subsystem matrices differ by a rank one matrix. Indeed, if we drop the positivity

constraint, it is known that the Hurwitz property of the subsystem matrices alone does not

ensure the asymptotic stability of the associated switched system, and additional conditions are

required [23]. However, from the aforementioned result it follows that when A is diagonalizable,

and the matrices A+ bc>i leave invariant the polyhedral invariant cone generated by n (linearly

independent, but otherwise arbitrarily chosen) eigenvectors of A, then the Hurwitz property of the

matrices A+ bc>i ensures the asymptotic stability of the switched system. It is conjectured that

the existence of a proper polyhedral cone, left invariant by all the Hurwitz matrices A+bc>i , may

lead to obtain a complete characterization of the asymptotic stability property in the non-positive

case.

In the second part of the paper, stabilizability of CPSSs with rank one difference, under the

assumption that A is diagonal, is shown to be equivalent to the the asymptotic stability of at

least one subsystem (i.e., existence of an index i such that A + bc>i is Hurwitz). While the

sufficiency of this condition is obvious, its necessity is not, and essentially reveals that no smart

switching strategy may overcome the drawback related to the fact that all subsystems are not

asymptotically stable. Note that stabilizability of CPSSS that switch among subsystems whose

matrices differ by a rank one matrix has not been addressed before in the literature, except in

[9], where the main focus, however, is on convex combinations of the subsystem matrices.

In detail, the paper is organized as follows: in section II, we present some preliminary results

and consider a continuous-time single-input state-space model with diagonal system matrix A.

Conditions on the vectors b and c that ensure the positivity and the asymptotic stability of the

resulting system ẋ(t) = (A + bc>)x(t) are provided. Section III solves the stability problem
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of the class of rank one CPSSs, while stabilizability is the object of section IV. A preliminary

version of part of the results appearing in this paper was recently presented at the ECC 2013

Conference [10].

Notation. R+ is the semiring of nonnegative real numbers and, for any pair of positive integers

k, n, with k ≤ n, [k, n] is the set of integers {k, k + 1, . . . , n}. The ith entry of a vector v is

denoted by [v]i. We denote by 1n the n-dimensional vector with all unitary entries, and by ei

the ith canonical vector in Rn (n being clear from the context), with all zero entries except

for the ith which is unitary. A matrix (in particular, a vector) A with entries in R+ is called

nonnegative, and if so we adopt the notation A ≥ 0. If, in addition, A has at least one positive

entry, the matrix is positive (A > 0), while if all its entries are positive, it is strictly positive

(A� 0). A Metzler matrix is a real square matrix, whose off-diagonal entries are nonnegative.

A square matrix A is Hurwitz if all its eigenvalues have negative real part.

II. DIAGONAL SYSTEMS AND POSITIVITY PRESERVING STABILIZING FEEDBACK LAWS

Consider a single-input state-space model

ẋ(t) = Ax(t) + bu(t), t ∈ R+, (1)

where x(t) and u(t) are the n-dimensional state variable and the scalar input, respectively, at

time t. We assume that A is diagonal, namely A = diag{λ1, λ2, . . . , λn}, λi ∈ R.

We consider a state feedback law u(t) = c>x(t) that makes the resulting autonomous system

positive, by this meaning that the matrix A+ bc> is Metzler. It is worth noticing that A+ bc>

is Metzler if and only if bc> is Metzler, and this introduces strong constraints on the sign of the

nonzero entries of the vectors b and c. In particular, if all the entries of the vectors b, c ∈ Rn

are nonzero, the product bc> is Metzler if and only if one of the following applies:

• if n = 1, b and c can be arbitrary;

• if n = 2, either all entries of b and c have the same sign (in which case bc> � 0), or

both b and c have two entries of opposite sign and bc> has positive off-diagonal entries

and negative diagonal entries;

• if n > 2, then all entries of b and c have the same sign (and hence, again bc> � 0).

We first explore the eigenvalue allocation problem, namely we investigate where the eigenval-

ues of the matrix A+bc> can be located under the assumption that A is diagonal and A+bc>
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is Metzler. To this end, it entails no loss of generality reordering the state components in such

a way that A,b and c are block-partitioned (with corresponding blocks having the same size)

as follows:

A =


A1

A2

A3

A4

 , b =


b1

b2

0

0

 , c =


c1

0

c3

0

 , (2)

where all the entries of the blocks b1,b2, c1, c3 are nonzero, and each block Ai, i ∈ [1, 4], is

diagonal of size ni. This is a simple consequence of fact that the set [1, n] can be partitioned

into the four (possibly empty) disjoint sets:

I1 := {j ∈ [1, n] : [b]j 6= 0 and [c]j 6= 0},

I2 := {j ∈ [1, n] : [b]j 6= 0 and [c]j = 0},

I3 := {j ∈ [1, n] : [b]j = 0 and [c]j 6= 0},

I4 := {j ∈ [1, n] : [b]j = 0 and [c]j = 0}.

Moreover, we assume w.l.o.g. that A1 = blockdiag{λ̃1Ik1 , λ̃2Ik2 , . . . , λ̃rIkr},with λ̃1 > λ̃2 >

. . . > λ̃r.

Proposition 1: Given a diagonal matrix A ∈ Rn×n, n > 1, and vectors b, c ∈ Rn, described

as in (2), assume that the matrix A+ bc> is Metzler. Then

i) σ(A+ bc>) = σ(A1 + b1c
>
1 ) ∪ σ(A2) ∪ σ(A3) ∪ σ(A4).

Moreover, the spectrum (µ1, µ2, . . . , µn1) of A1 + b1c
>
1 satisfies the following conditions:

ii) if n1 = 1, then µ1 = λ̃1 + b1c1;

iii) if n1 > 2, then λ̃1, λ̃2, . . . , λ̃r are eigenvalues of A1 + b1c
>
1 of multiplicities k1 − 1, k2 −

1, . . . , kr − 1, while the remaining r eigenvalues of A1 + b1c
>
1 , say µ1 > µ2 > . . . > µr,

satisfy

λ̃r < µr < λ̃r−1 < µr−1 < . . . < µ2 < λ̃1 < µ1; (3)

iv) if n1 = 2, then two cases possibly arise: (a) if the diagonal entries of b1c
>
1 are both positive,

then the same conditions as in iii) hold; (b) if the diagonal entries of b1c
>
1 are both negative,

then the 2 eigenvalues of A1 + b1c
>
1 , say µ1 > µ2, satisfy

µ2 < λ̃2 < µ1 < λ̃1, (4)
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if A1 has two distinct eigenvalues, while the case A1 = λ̃1I2 leads to µ1 = λ̃1 and µ2 < λ̃1.

Proof: i) Follows trivially from the structure of A+ bc>:

A+ bc> =


A1 + b1c

>
1 0 b1c

>
3 0

b2c
>
1 A2 b2c

>
3 0

0 0 A3 0

0 0 0 A4

 .
ii) is obvious.

iii) We first note that if n1 > 2, then, A1 + b1c
>
1 can be Metzler if and only if b1c

>
1 is a strictly

positive matrix. We observe that

det(sIn − A1 − b1c
>
1 ) = d(s)− n(s),

where

d(s) := det(sIn − A1), n(s) := c>1 adj(sIn − A1)b1.

Moreover, we can easily see that

d(s) =
r∏
i=1

(s− λ̃i)ki =
r∏
i=1

(s− λ̃i)ki−1 ·
r∏
i=1

(s− λ̃i),

n(s) =
r∏
i=1

(s− λ̃i)ki−1

 r∑
i=1

γi
∏

j∈[1,r],j 6=i

(s− λ̃j)

 ,
where

γi :=

k1+k2+...+ki−1+ki∑
k=k1+k2+...+ki−1+1

[b1]k[c1]k, ∀ i ∈ [1, r], (k0 := 0),

are all positive coefficients. Consequently,

det(sIn − A1 − b1c
>
1 ) =

r∏
i=1

(s− λ̃i)ki−1

 r∏
i=1

(s− λ̃i)−
r∑
i=1

γi
∏

j∈[1,r],j 6=i

(s− λ̃j)

 .
This immediately proves that λ̃1, λ̃2, . . . , λ̃r are eigenvalues of A1 + b1c

>
1 of multiplicities (at

least) k1 − 1, k2 − 1, . . . , kr − 1. Set

ψ(s) :=
r∏
i=1

(s− λ̃i)−
r∑
i=1

γi
∏

j∈[1,r],j 6=i

(s− λ̃j).
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We note that, by the positivity of the γi’s and the ordering of the λ̃i’s,

ψ(s)|s=λ̃1
= 0−

n∑
i=1

γi
∏

j∈[1,n],j 6=i

(λ̃1 − λ̃j) = −γ1

∏
j∈[1,n],j 6=1

(λ̃1 − λ̃j) < 0,

ψ(s)|s=λ̃2
= 0−

n∑
i=1

γi
∏

j∈[1,n],j 6=i

(λ̃2 − λ̃j) = −γ2

∏
j∈[1,n],j 6=2

(λ̃2 − λ̃j) > 0,

ψ(s)|s=λ̃3
= 0−

n∑
i=1

γi
∏

j∈[1,n],j 6=i

(λ̃3 − λ̃j) = −γ3

∏
j∈[1,n],j 6=1

(λ̃3 − λ̃j) < 0,

...

By the change of signs of the polynomial ψ(s) on the real line, we can deduce that it always

has (independently of the specific values of the positive γi’s) r− 1 real zeros, ordinately located

in the intervals (λ̃i, λ̃i−1), i ∈ [2, r]. On the other hand, as the leading coefficient of ψ(s) is

positive, and hence this characteristic polynomial eventually takes positive values on the positive

real axis, it follows that µ1 ∈ (λ̃1,+∞). This proves statement iii).

iv) If n1 = 2, then either b1c
>
1 is strictly positive or it has negative diagonal entries and positive

off-diagonal entries. The first case reduces to the one addressed in part iii). In the second case,

the nonzero pattern of the matrix b1c
>
1 and the fact that it has rank 1 allow to express it as

b1c
>
1 =

[
1

−β

]
[−αK K ] ,

for suitable positive numbers α, β,K. Suppose, first, that A1 has two distinct eigenvalues. Then

det(sI2 − A1 − b1c
>
1 ) = (s− λ̃1)(s− λ̃2)− [−αK K ]

[
s− λ̃2 0

0 s− λ̃1

][
1

−β

]

= (s− λ̃1)(s− λ̃2) +K(α + β)

[
s− βλ̃1 + αλ̃2

α + β

]
.

By considering the positive root locus parametrized by K̃ := K(α + β), we easily see that for

every positive value of K̃ the two roots of det(sI2−A1−b1c
>
1 ) satisfy (4). On the other hand,

if A1 has one single eigenvalue of multiplicity 2, then det(sI2−A1−b1c
>
1 ) = (s− λ̃1)(s− λ̃1 +

K(α + β)), and hence µ1 = λ̃1 is still an eigenvalue, meanwhile the other eigenvalue satisfies

µ2 < λ̃1.

In the light of Proposition 1, regarding the eigenvalue allocation problem, we can now

investigate under what conditions the state-feedback law makes the resulting system not only
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positive but also asymptotically stable, which means that A+bc> is both Metzler and Hurwitz.

Proposition 2: Given a diagonal matrix A ∈ Rn×n, n > 1, and vectors b, c ∈ Rn, described

as in (2), assume that the matrix A+ bc> is Metzler. Then A+ bc> is Hurwitz if and only if

A2, A3 and A4 have negative diagonal entries, and one of the following conditions hold:

i) if n1 = 1, then λ̃1 + b1c1 < 0;

ii) if either n1 > 2 or n1 = 2 and b1c
>
1 � 0, then A1 has negative diagonal entries and

det(sIn1 − A1 − b1c
>
1 )
∣∣
s=0

> 0; (5)

iii) if n1 = 2, and the diagonal entries of the Metzler matrix b1c1 are both negative, then A1

has at least one negative diagonal entry and (5) holds.

Proof: The proof reduces to analyze the Hurwitz property of the block A1 + b1c
>
1 . i) is

obvious. As far as point ii) is concerned, from (3) it is clear that A1 + b1c
>
1 is Hurwitz if and

only if µ1 < 0. By the proof of Proposition 1, this happens if and only if all the λ̃i’s are negative

and the dominant zero of ψ(s) is located in (λ̃1, 0). Since ψ(λ̃1) < 0, and all the other zeros

of ψ(s) are smaller then λ̃1, this latter condition is equivalent to the fact that ψ(0) > 0. On the

other hand, the negativity of the λ̃i’s implies that ψ(0) > 0 if and only if (5) holds.

iii) Also, in this case, by Proposition 1, A1 + b1c
>
1 is Hurwitz if and only if µ1 < 0. This is

the case if and only if either the diagonal entries of A1 are both negative (in which case (5) is

surely verified) or A1 has a negative diagonal entry and µ1 < 0. As in the proof of the previous

part, this is possible if and only if (5) holds.

III. STABILITY ANALYSIS OF POSITIVE SWITCHED SYSTEMS

In the rest of the paper we consider continuous-time positive switched systems (CPSSs)

described by the following equation

ẋ(t) = (A+ bc>σ(t)) x(t), t ∈ R+, (6)

where x(t) is the n-dimensional state variable, σ(t) the switching sequence at time t, taking

values in the set [1, p], A ∈ Rn×n, while b, ci ∈ Rn, for every i ∈ [1, p]. We assume that for

every index i ∈ [1, p], the matrix A + bc>i is Metzler. This latter condition ensures that the
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switched system (6) is positive, by this meaning that if the initial state x(0) is positive the state

trajectory remains in the positive orthant Rn
+ for every choice of the switching sequence.

Definition 1: The CPSS (6) is asymptotically stable if for every initial state x(0) > 0 and

every switching sequence σ(t), t ∈ R+, the state trajectory x(t), t ∈ R+, converges to zero.

If the CPSS is asymptotically stable, all the system matrices A+ bc>i , i ∈ [1, p], are (Metzler

and) Hurwitz. In this section we want to prove that, when A is a diagonal matrix, the fact that

all matrices A + bc>i , i ∈ [1, p], are Hurwitz is also sufficient for asymptotic stability. To this

end, we first notice that we can always assume that A,b, ci, i ∈ [1, p], are block partitioned as

A =


A1

A2

A3

A4

 , b =


b1

b2

0

0

 , ci =


ci,1

0

ci,3

0

 , (7)

where each block Ak, k ∈ [1, 4], is diagonal of size nk, all the entries of the blocks b1 and b2

are nonzero, while the blocks ci,1 and ci,3 are such that there is no index j such that [ci,1]j =

0,∀ i ∈ [1, p], or [ci,3]j = 0, ∀ i ∈ [1, p]. We accordingly partition the state-vector as:

x(t) = [ x1(t)> x2(t)> x3(t)> x4(t)> ]> ,

and the common structure of all the matrices A + bc>i , i ∈ [1, p], easily shows that the CPSS

(6) is asymptotically stable if and only if A2, A3, A4 are Hurwitz and the switched system

ẋ1(t) = (A1 + b1c
>
σ(t),1) x1(t), t ∈ R+, (8)

is asymptotically stable. So, from now on, we will focus on the switched system (8), or,

equivalently, we will assume that the matrices A + bc>i of the switched system (6) satisfy

these two constraints: b is devoid of zero entries and for every k ∈ [1, n] there exists i ∈ [1, p]

such that [ci]k 6= 0. Clearly, the case n = 1 is trivial, and hence we will always assume n > 1.

We first address the case when the vector b has entries of different signs. When so, upon a

suitable permutation b can always be expressed as follows:

b =

[
b+

b−

]
, b+ � 0, b− � 0. (9)

We set n+ := dim b+, and n− := dim b−. We have the following result.
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Proposition 3: Given a diagonal matrix A ∈ Rn×n, n > 1, and vectors b ∈ Rn, and ci ∈

Rn, i ∈ [1, p], assume that b is described as in (9). If n+ ≥ 1, n− ≥ 1, and the matrices

A+ bc>i , i ∈ [1, p], are all Metzler and Hurwitz, then the CPSS (6) is asymptotically stable.

Proof: We distinguish the following subcases:

(a) [n+ > 1 and n− > 1]. If so, bc>i is Metzler if and only if ci = 0. Consequently, each matrix

A+ bc>i is Metzler Hurwitz if and only if A is Hurwitz and ci = 0. Therefore, in this case, the

Metzler Hurwitz property of the matrices guarantees the asymptotic stability of the CPSS (6).

(b) [n+ > 1 and n− = 1] or [n+ = 1 and n− > 1]. Consider, first, the case when n+ > 1

and n− = 1. It is easily seen that bc>i is Metzler if and only if ci = αien, where αi ≥ 0

and en is the nth canonical vector. When so, the Metzler matrix A + bc>i is upper triangular.

But a CPSS whose matrices are all Hurwitz and in the upper triangular form is necessarily

asymptotically stable [17]. The case n+ = 1 and n− > 1 follows the same lines, but it deals

with lower triangular Metzler Hurwitz matrices A+ bc>i , i ∈ [1, p].

(c) [n+ = 1 and n− = 1]. In this case, we first observe that if the matrices A+ bc>i , i ∈ [1, p],

are all Metzler Hurwitz, then (see Proposition 3 in [9]) all their convex combinations are Metzler

Hurwitz, in turn. On the other hand, since we are dealing with a two-dimensional CPSS, the

Metzler Hurwitz property of all the convex combinations of the system matrices ensures [12]

that the CPSS (6) is asymptotically stable.

We now address the case when all the entries of the vector b have the same sign.

Proposition 4: Given a diagonal matrix A ∈ Rn×n, n > 1, and vectors b ∈ Rn, and ci ∈

Rn, i ∈ [1, p], with b either strictly positive or strictly negative, if the matrices A+bc>i , i ∈ [1, p],

are all Metzler and Hurwitz, then the CPSS (6) is asymptotically stable.

Proof: Consider, first, the case when b � 0. Then bc>i is Metzler if and only if ci ≥ 0.

Moreover, by suitable adjusting the result given in case ii) of Proposition 2, A+bc>i is Metzler

Hurwitz if and only if A is Hurwitz and det(sIn − A− bc>i )
∣∣
s=0

> 0. We first note that, by the

Hurwitz property of A it follows that −A−1 is a positive matrix and det(−A) > 0. On the other

hand, as det(sIn − A− bc>i )
∣∣
s=0

= det(−A)[1 + c>i A
−1b], it is clear that under the Hurwitz

assumption on A, det(sIn − A− bc>i )
∣∣
s=0

> 0 holds if and only if 1 + c>i A
−1b > 0. Set w :=

−A−1b. It is easy to see that w� 0 and that (A+bc>i )w = −(1+c>i A
−1b)b� 0,∀ i ∈ [1, p].

This ensures that there exists a common linear copositive Lyapunov function [8], [16] for the
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matrices (A+ bc>i )>, i ∈ [1, p], and hence the positive switched system

ż(t) = A>σ(t)z(t), Aσ(t) ∈ {A+ bc>1 , . . . , A+ bc>p },

is asymptotically stable. But then, for each choice of the switching sequence, the product of the

matrix exponentials converges to the zero matrix and so does its transpose, thus ensuring that

also the positive switched system

ẋ(t) = Aσ(t)x(t), Aσ(t) ∈ {A+ bc>1 , . . . , A+ bc>p },

is asymptotically stable. The case b� 0 can be addressed along the same lines.

Propositions 3 and 4 together prove that, when the vector b is devoid of zero entries, the CPSS

(6) is asymptotically stable if and only if the matrices A+ bc>i , i ∈ [1, p], are Metzler Hurwitz.

On the other hand, we have shown that when b has also zero entries, and the matrices A,b and

ci, i ∈ [1, p], are described as in (7), the asymptotic stability of the CPSS (6) is equivalent to

the Hurwitz property of the blocks A2, A3 and A4 together with the asymptotic stability of the

CPSS (8). So, by putting together all these results, we get the following theorem.

Theorem 1: Let A ∈ Rn×n be a diagonal matrix, and let b, ci ∈ Rn, i ∈ [1, p], be vectors such

that A+ bc>i is Metzler for every index i ∈ [1, p]. The following facts are equivalent:

i) A+ bc>i is Hurwitz for every index i ∈ [1, p];

ii) the CPSS (6) is asymptotically stable.

Remark 2: It is worthwhile to compare Theorem 1 with the results about absolute stability

of positive systems derived in [3], [4]. To this end, it is convenient to reduce the CPSS (6) to the

same form adopted in [3]. We first notice that every switching sequence σ(t) induces a partition

of the time set R+ into p disjoint sets

Ωi := {t ∈ R+ : σ(t) = i}, i ∈ [1, p].

Next, after introducing the output function

y(t) =


y1(t)

y2(t)
...

yp(t)

 =


c>1

c>2
...

c>p

x(t) =: Cx(t),
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we define the nonlinear function

ϕ(y(t), t) =


ϕ1(y1(t), t)

ϕ2(y2(t), t)
...

ϕp(yp(t), t)

 ,
where

ϕi(yi(t), t) =

{
yi(t) = c>i x(t), if t ∈ Ωi;

0, otherwise.

So, by making use of this notation, we can equivalently represent the CPSS (6) as

ẋ(t) = Ax(t) +Bu(t), (10)

y(t) = Cx(t), (11)

u(t) = ϕ(y(t), t), (12)

where B = b1>p . As the nonlinear function ϕ, satisfies the sector condition:

µi ≤ ϕi(yi(t), t)/yi(t) ≤ νi, i ∈ [1, p], (13)

for µi = 0 and νi = 1, upon setting

M =


µ1

µ2

. . .

µm

 = 0p×p N =


ν1

ν2

. . .

νm

 = Ip,

we are in a position to discuss the possibility of applying Theorem 1 in [3]. This theorem states

that, if B and C are nonnegative matrices, then system (10)-(11) is positively absolutely stable in

the class of nonlinearities (12) satisfying (13) if and only if A+BMC is Metzler and A+BNC

is Hurwitz (in the specific case we are considering, if and only if A is Metzler and A+BC is

Hurwitz). Theorem 6 in [4] provides a similar result, under the assumption that M = −N .

As a matter of fact, Theorem 1 in our paper does not follow from Theorem 1 in [3], not

even in the special case when b and ci, i ∈ [1, p], are nonnegative vectors (which represents an

additional assumption with respect to those adopted in our set-up). For instance, consider

A =

[
−1 0

0 −2

]
,b =

[
1

2

]
, c1 =

[
7/8

0

]
, c2 =

[
0

7/8

]
,
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and hence

B = [ b b ] =

[
1 1

2 2

]
C =

[
c>1

c>2

]
=

[
7/8 0

0 7/8

]
.

The matrices A + bc>i , i ∈ [1, 2], are Metzler Hurwitz, but A + BC = A + bcT1 + bcT2 is not

Hurwitz. So, the CPSS (6) is asymptotically stable, but the corresponding system (10)-(11) is

not positively absolutely stable. This shows that Theorem 1 in [3] provides a condition stronger

than asymptotic stability for the class of CPSSs (6) with nonnegative vectors b and ci, i ∈ [1, p],

and it cannot even be applied to this class of systems when any of these vectors have at least

one positive entry.

IV. STABILIZABILITY OF POSITIVE SWITCHED SYSTEMS

Definition 2: The CPSS (6) is stabilizable if for every positive initial state x(0) there exists a

switching sequence σ(t), t ∈ R+, such that the state trajectory x(t), t ∈ R+, converges to zero.

In the general case, a sufficient condition for stabilizability is that at least one of the system

matrices is Hurwitz. More generally, if there exists a convex combination of the system matrices

that is (Metzler and) Hurwitz, then the system is stabilizable [24]. For Metzler matrices that differ

by a rank one matrix, these two sufficient conditions for stabilizability are in fact equivalent

(independently of the fact that A is diagonal or not). To prove this, we first need this technical

lemma that shows this result for a pair of matrices whose difference is a rank one matrix.

Lemma 1: Let A ∈ Rn×n be a Metzler matrix, and assume that b, c ∈ Rn are column

vectors such that A + bc> is Metzler, in turn. There exists α ∈ [0, 1] such that A(α) :=

(1−α)A+α(A+ bc>) = A+αbc> is Hurwitz if and only if either A or A+ bc> is Hurwitz.

Proof: Sufficiency is trivial, so we focus only on the necessity. Clearly, if the Hurwitz

convex combination A(α) corresponds either to α = 0 or to α = 1 there is nothing to prove.

So we assume that A(α) is Hurwitz for some α ∈ (0, 1). Set d(s) := det(sIn −A) and n(s) =

c>adj(sIn − A)b, and note that det(sIn − A(α)) = d(s)− αn(s).

We first assume that A and A+ bc> are both irreducible Metzler matrices. This ensures [7]

that both d(s) and d(s)−n(s) = det(sIn−A−bc>) have a simple strictly dominant real zero.

We let p = λmax(A) denote the strictly dominant real zero of d(s) and z = λmax(A + bc>)

denote the strictly dominant real zero of d(s)− n(s). Upon assuming α = γ
γ+1

, we notice that
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there exists ᾱ ∈ (0, 1) such that A(ᾱ) is Hurwitz if and only if there exists γ̄ > 0 such that

∆γ̄(s) := d(s) + γ̄[d(s)− n(s)]

is Hurwitz. So, we now consider the (positive) root locus corresponding to ∆γ(s), γ > 0. We

make the following remarks:

i) as deg n(s) < deg d(s), the two polynomials d(s) and d(s) − n(s) have the same degree,

which implies that there are no branches going to infinity;

ii) for every γ > 0, ∆γ(s) is (up to a rescaling factor) the characteristic polynomial of an

irreducible Metzler matrix, and hence it has a simple strictly dominant real zero.

We consider the case when p ≥ z; the case p < z can be treated in a similar way. By the

definition of z, in the strip S := {s ∈ C : z ≤ Re(s) ≤ p} there cannot be zeros of d(s)− n(s),

only zeros of d(s). Also, none of the points of the real semiaxis {s ∈ C : Re(s) > p} belongs

to the root locus. We distinguish two cases:

a) in S there is no real zero of d(s);

b) in S there are real zeros of d(s). If so, we denote by pm the maximum real root of d(s)

satisfying pm < p.

In case a), by the rule that to the root locus of ∆γ(s) belong all the points of the real axis

that have at their right an odd number of zeros of d(s) or d(s) − n(s) (counted with their

multiplicities), it follows that the line segment [z, p] belongs to the root locus. This implies that,

as γ varies between 0 and +∞, the real dominant root of ∆γ(s) must belong to that segment.

So, the assumption that ∆γ̄(s) is Hurwitz implies that some point of that segment is negative,

and hence z < 0. This implies that A+ bc> is Hurwitz.

In case b), by the same rule we previously mentioned, the line segment [pm, p] belongs to the

root locus. But since p and pm are two roots of d(s), there must be two branches of the root

locus starting from some point of the segment [pm, p] and leaving the real axis. But this means

that there exist values of γ > 0 for which the zeros with maximum real part are not real, and

this contradicts the fact that for every γ > 0, ∆γ(s) has a simple strictly dominant real zero.

So, case b) is not possible and the result is proved (under the assumption that A and A+ bc>

are both irreducible).

Consider now the case when either A or A + bc> is reducible, and there exists α ∈ [0, 1]

such that A(α) is Hurwitz. Then there exists ε > 0 such that A(α) + ε1n1
>
n is both Hurwitz and
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irreducible. Moreover,

A(α) + ε1n1
>
n = (1− α)(A+ ε1n1

>
n ) + α(A+ ε1n1

>
n + bc>)

and the two Metzler matrices A+ ε1n1
>
n and A+ ε1n1

>
n + bc> are both irreducible. So, by the

previous part of the proof we can claim that either one of the matrices is Hurwitz. This implies

that either A or A+ bc> is Hurwitz.

Proposition 5: Let A ∈ Rn×n be a Metzler matrix, and assume that b, ci ∈ Rn, i ∈ [1, p],

are column vectors such that the matrices A + bc>i , i ∈ [1, p], are Metzler. There exist αi, i ∈

[1, p], 0 ≤ αi ≤ 1, with
∑p

i=1 αi = 1, such that
∑p

i=1 αi(A + bc>i ) is Hurwitz if and only if

there exists i ∈ [1, p] such that A+ bc>i is Hurwitz.

Proof: Sufficiency is obvious, so, again, we only deal with necessity. We prove necessity

by induction on p. We have already shown, in Lemma 1, that the result is true for p = 2. Suppose

it is true for p− 1 ≥ 2 matrices. We want to show that the result is true for p matrices. Assume

that
∑p

i=1 αi(A + bc>i ) is Hurwitz. It entails no loss of generality assuming that αp 6= 0. Set

Ã := A+ bc>p and c̃i := ci− cp. Accordingly, for every i ∈ [1, p− 1], A+ bc>i = Ã+ bc̃>i and

p∑
i=1

αi(A+ bc>i ) =

p−1∑
i=1

αi(Ã+ bc̃>i ) + αpÃ

= (1− αp)
p−1∑
i=1

αi
1− αp

(Ã+ bc̃>i ) + αpÃ

= (1− αp)

[
Ã+ b

(
p−1∑
i=1

αi
1− αp

c̃>i

)]
+ αpÃ.

Since the convex combination of the two Metzler matrices Ã and Ã + b
(∑p−1

i=1
αi

1−αp
c̃>i

)
is

Hurwitz, then, by Lemma 1, either Ã or Ã+b
(∑p−1

i=1
αi

1−αp
c̃>i

)
is Hurwitz. If Ã is Hurwitz, we

are done. On the other hand, the matrix Ã+ b
(∑p−1

i=1
αi

1−αp
c̃>i

)
is a convex combination of the

p− 1 matrices A+ bc>i = Ã+ bc̃>i , i ∈ [1, p− 1]. So, by the inductive assumption, at least one

of them is Hurwitz.

By making use of the previous result, we can provide an important characterization of the

stabilizability property for the class of CPSSs described as in (6), under the additional assumption

that A is a diagonal matrix. As in the previous section, we assume that A,b and each ci, i ∈ [1, p],

are described as in (7), where Ak, k ∈ [1, 4], are diagonal blocks of size nk, all the entries of
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the blocks b1 and b2 are nonzero, while the blocks ci,1 and ci,3 are such that there is no index

j such that [ci,1]j = 0,∀ i ∈ [1, p], or [ci,3]j = 0,∀ i ∈ [1, p]. Also in this case it is easily seen

that the CPSS (6) is stabilizable if and only if A2, A3 and A4 are Hurwitz and the CPSS (8) is

stabilizable. So, in the sequel we consider the stabilizability problem for CPSSs described as in

(6), with A diagonal and b devoid of zero entries. Again, we address separately the case when

b has entries of opposite signs and the case when the nonzero entries have all the same sign.

Proposition 6: Given a diagonal matrix A ∈ Rn×n, n > 1, and vectors b ∈ Rn, and ci ∈

Rn, i ∈ [1, p], assume that b is described as in (9). If n+ ≥ 1, n− ≥ 1, and the matrices

A+ bc>i , i ∈ [1, p], are all Metzler, then the CPSS (6) is stabilizable if and only if there exists

an index i ∈ [1, p] such that the matrix A+ bc>i is Hurwitz.

Proof: Sufficiency is obvious, so we only prove necessity. As in the proof of Proposition

3, we proceed by considering all possible cases:

(a) [n+ > 1 and n− > 1]. If so, A+bc>i is Metzler if and only if ci = 0, and hence all matrices

A+bc>i coincide with A. So, stabilizability requires that all matrices A+bc>i = A are Metzler

Hurwitz.

(b) [n+ > 1 and n− = 1] or [n+ = 1 and n− > 1]. In the first case, all vectors ci take the form

ci = αien for some αi > 0, and hence all matrices A+ bc>i take the form:

A+ bc>i =


λ1

λ2

. . .

λn−1

αib+

λn + αib−


.

So, it is clear that the system is stabilizable only if λ1, λ2, . . . , λn−1 are negative and there exists

at least one index i ∈ [1, p] such that λn + αib− < 0. But this means that there exists an index

i ∈ [1, p] such that A+ bc>i is Hurwitz. The second case is symmetric.

(c) [n+ = 1 and n− = 1]. In this case, A + bc>i is a 2 × 2 Metzler matrix, and for a two-

dimensional CPSS (6) stabilizability is equivalent [1], [2] to the existence of a Hurwitz convex

combination of the matrices. By Proposition 5, this implies that at least one matrix A+ bc>i is

Hurwitz.
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To prove the result in the case when all entries of b have the same sign, we need the following

technical lemmas.

Lemma 2: [1], [2], [11] Consider the CPSS

ẋ(t) = Mσ(t)x(t), t ∈ R+, (14)

with σ(t) taking values in [1, p], and M1,M2, . . . ,Mp ∈ Rn×n Metzler matrices. The CPSS (14)

is stabilizable if and only if there exist r ∈ Z+, i1, i2, . . . , ir ∈ [1, p], τ1, τ2, . . . , τr ∈ R+, such

that the matrix eMi1
τ1eMi2

τ2 . . . eMir τr is Schur.

Lemma 3: Consider the CPSS (14), with σ(t) taking values in [1, p], and M1,M2, . . . ,Mp ∈

Rn×n Metzler matrices. If there exists w � 0 such that Miw ≥ 0,∀ i ∈ [1, p], then the CPSS

(14) is not stabilizable.

Proof: Introduce the CPSS

ż(t) = M>
σ(t)z(t), t ∈ R+. (15)

Consider the Lyapunov function V (z) := w>z and its derivatives along the various subsystems

of (15),

V̇i(z) = w>M>
i z, i ∈ [1, p].

Clearly, for every choice of the switching sequence and every initial condition z(0) > 0,

V (z(t)) ≥ V (z(0)) = w>z(0) > 0, and hence the CPSS (15) is not stabilizable. By Lemma 2,

this implies that for every choice of r ∈ Z+, i1, i2, . . . , ir ∈ [1, p], τ1, τ2, . . . , τr ∈ R+, the matrix

Z := eM
>
i1
τ1eM

>
i2
τ2 . . . eM

>
ir
τr is not Schur. So, neither Z> = eMir τr . . . eMi2

τ2 . . . eMi1
τ1 is Schur,

and this prevents, by Lemma 2, the stabilizability of the CPSS (14).

Proposition 7: Let A ∈ Rn×n, n > 1, be a diagonal matrix and consider vectors b ∈ Rn,

and ci ∈ Rn, i ∈ [1, p], with b either strictly positive or strictly negative, such that the matrices

A + bc>i , i ∈ [1, p], are all Metzler. The CPSS (6) is stabilizable if and only if there exists an

index i ∈ [1, p] such that A+ bc>i is Hurwitz.

Proof: Again, we only need to prove the necessity. Consider, first, the case when b� 0.

We preliminary notice that, as b � 0, A + bc>i is Metzler only if ci ≥ 0, and this ensures

that A + bc>i ≥ A. If the CPSS (6) is stabilizable then, by Lemma 2, there exist r ∈ Z+,

i1, i2, . . . , ir ∈ [1, p], τ1, τ2, . . . , τr ∈ R+, such that Z := e(A+bc>i1
)τ1e(A+bc>i2

)τ2 . . . e(A+bc>ir )τr is
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Schur. But since Z ≥ eAτ1eAτ2 . . . eAτr > 0, this latter matrix must be Schur, too, and hence the

diagonal matrix A must be Hurwitz. Since A is Hurwitz and b� 0, if each A+ bc>i were not

Hurwitz then, by Proposition 2, it should be det(sIn − A− bc>i )
∣∣
s=0
≤ 0 for every i ∈ [1, p].

By proceeding as in the proof of Proposition 4, we can claim that this is equivalent to assuming

that 1 + c>i A
−1b ≤ 0,∀ i ∈ [1, p]. Set w := −A−1b� 0 and note, again, that

(A+ bc>i )w = −(1 + c>i A
−1b)b.

So, if none of the system matrices were Hurwitz, there would be a vector w� 0 such that

(A+ bc>i )w ≥ 0, ∀ i ∈ [1, p],

thus preventing, by Lemma 3, stabilizability. So, A+ bc>i is Hurwitz for some i ∈ [1, p].

By putting together Propositions 6 and 7, we finally get the following result.

Theorem 3: Let A ∈ Rn×n be a diagonal matrix, and let b, ci ∈ Rn, i ∈ [1, p], be vectors such

that A+ bc>i is Metzler for every index i ∈ [1, p]. The following facts are equivalent:

i) there exists i ∈ [1, p] such that A+ bc>i is Hurwitz;

ii) the CPSS (6) is stabilizable.

V. CONCLUSIONS

In this paper we have investigated the class of CPSSs whose subsystems are described by

Metzler matrices taking the form A + bc>i , i ∈ [1, n], where A is a diagonal matrix. For these

systems, stability is equivalent to the seemingly weaker condition that all the subsystem matrices

are Hurwitz, while stabilizability is equivalent to the seemingly stronger condition that one of

the matrices A+ bc>i is Hurwitz. As in general checking stability and stabilizability of CPSSs

is a difficult task, these characterizations are very useful, and it would be of extreme interest to

investigate to what classes of CPSSs the previous results, about stability or stabilizability, can

be extended. In addition, for these systems, it would be important to characterize the set of of

all stabilizing switching sequences, in addition to the trivial constant one.
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