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Abstract

We consider Boolean control networks (BCNs), and in particular Boolean networks (BNs), in the framework of symbolic
dynamics (SD). We show that the set of state-space trajectories of a BCN is a shift space of finite type (SFT). This observation
allows to extend two important analysis tools from SD, namely, the Artin-Mazur zeta function and the topological entropy,
to BNs and BCNs. Some of the theoretical results are illustrated using a BCN model of the core network regulating the
mammalian cell cycle.
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1 Introduction

Boolean network (BNs) are useful modeling tools for
dynamical systems whose state-variables can attain
two possible values. Examples include artificial neural
networks with threshold function type neurons (see,
e.g. Hassoun (1995)), and models for the interactions
and the emergence of social consensus between simple
agents (see, e.g. Green et al. (2007)). BNs are recently
attracting considerable attention as computational
tools in systems biology, and, in particular, as models
for genetic regulation networks. Here each gene is either
expressed (ON) or not expressed (OFF) (Chaos et al.
(2006); Kauffman et al. (2003); Li et al. (2004)). Kauff-
man (1969) has studied the behavior of large, randomly
constructed nets of these binary genes. His pioneering
ideas stimulated research in the theoretical analysis
of the dynamics of large-scale BNs, especially using
tools from the fields of complex systems and statistical
physics (see, e.g. Albert and Barabasi (2000); Aldana
(2003); Drossel et al. (2005); Kauffman (1993)).

BNs have also been used to model various cellular
processes. Specific examples include: the complex cel-
lular signaling network controlling stomatal closure in
plants (Li et al. (2006)), the molecular pathway between
two neurotransmitter systems, the dopamine and glu-
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tamate receptors (Gupta et al. (2007)), carcinogenesis,
and the effects of therapeutic intervention (Szallasi and
Liang (1998)).

Many biological systems have exogenous inputs and
it is natural to extend BNs to Boolean control net-
works (BCNs) by adding Boolean inputs. For example,
in a BCN modeling the progression of a disease, a bi-
nary input may represent whether a certain medicine is
administered or not at each time step.

Cheng et al. (2011) have developed an algebraic state-
space representation (ASSR) of BCNs (and, in partic-
ular, of BNs). This representation has proved useful
for studying control-theoretic questions, as they reduce
BCNs to linear switched systems whose input, state
and output variables are canonical vectors. A drawback
of the ASSR is its computational complexity, as the
ASSR of a BN with n state-variables includes a 2n × 2n

matrix. Thus, any algorithm based on the ASSR has
an exponential time-complexity. A natural question is
whether better algorithms exist. Zhao (2005) has shown
that determining whether a BN has a fixed point is
NP-complete. Akutsu et al. (2007) has shown that sev-
eral control problems for BCNs are NP-hard. Laschov
et al. (2013) have shown that the observability prob-
lem for BCNs is also NP-hard. Thus, unless P = NP ,
these analysis problems for BCNs cannot be solved in
polynomial time.

We develop a new approach to the analysis of BCNs
based on symbolic dynamics (SD) (Lind and Marcus
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(1995)). The main object of study in SD is shift spaces.
We show that the set of all possible trajectories of a BCN
is a shift space. Consequently, many results and analy-
sis tools from SD are immediately applicable to BCNs.
We demonstrate this by defining and computing the zeta
function and the topological entropy of a BCN. The zeta
function stores the number of limit cycles of a dynamical
system and their lengths, while the topological entropy
is a nonnegative real number that measures how rich the
control is. We illustrate some of the theoretical results
using a BCN model of an important biological process:
the regulation of the mammalian cell cycle.

The remainder of this note is organized as follows. Sec-
tion 2 reviews BNs, BCNs, and some definitions and
tools from SD. Section 3 includes our main results. Sec-
tion 4 details the biological example.

Notation. We consider Boolean vectors and matrices,
with entries in S := {0, 1}, and the usual logical oper-
ations (And ∧, Or ∨, Negation ·). [A]ℓj is the (ℓ, j)th
entry of the matrix A. The canonical vector δi

N ∈ SN ,
i = 1, . . . , N , is the ith column of the identity matrix IN .
A matrix L whose columns are canonical vectors is called
a logical matrix. Note that L maps any canonical vector
into a canonical vector. A permutation matrix P is a non-
singular square logical matrix. An N × N permutation

matrix is cyclic if it takes the form
[

δ2
N δ3

N . . . δN
N δ1

N

]

.

The semi-tensor product (STP) (Cheng et al. (2011))
of A ∈ R

m×n and B ∈ R
p×q is

A ⋉ B := (A ⊗ Iα/n)(B ⊗ Iα/p) ∈ R
(mα/n)×(qα/p),

where ⊗ denotes the Kronecker (or tensor) product,
and α is the least common multiple of n and p. If n = p,
then A ⋉ B = (A⊗ I1)(B ⊗ I1) = AB. Hence, the semi-
tensor product is a generalization of the standard matrix
product that provides a way to multiply two matrices
with arbitrary dimensions.

A matrix A ∈ SN×N is associated with a directed graph
G(A) = (V, E) in the following way (Brualdi and Ryser
(1991)). V = {1, . . . , N} is the set of vertices, while
E ⊆ V × V is the set of edges (or arcs). There is an arc
(j, ℓ) from j to ℓ if and only if [A]ℓj = 1. A sequence
j1 → j2 → · · · → jr → jr+1 in G(A) is a walk of length r
from j1 to jr+1 provided that (j1, j2), . . . , (jr, jr+1) are
arcs of G(A). A closed walk is called a cycle. A cycle γ
with no repeated vertices is called elementary, and its
length |γ| coincides with the number of (distinct) vertices
appearing in it.

Conversely, to every directed graph G = (V, E), with
V = {1, 2, . . . , N}, we associate an adjacency matrix
A ∈ SN×N with [A]ℓj = 1 if and only if (j, ℓ) ∈ E.

2 Preliminaries

A BCN is a discrete-time logical dynamical system

X1(k + 1) = f1(X1(k), . . . , Xn(k), U1(k), . . . , Um(k)),

...

Xn(k + 1) = fn(X1(k), . . . , Xn(k), U1(k), . . . , Um(k)),

where Xi, Ui ∈ S, and each fi is a Boolean function, i.e.
fi : Sn+m → S. It is useful to write this in vector form as

X(k + 1) = f(X(k), U(k)). (1)

A BN is a BCN without inputs, i.e.

X(k + 1) = f(X(k)). (2)

D. Cheng et al. have developed an algebraic state-space
representation of BCNs using the semi-tensor product
of matrices. In this set-up, any Boolean variable Xi,
taking values in S, is associated with the vector xi :=
[

Xi X̄i

]⊤

, taking values in {δ1
2 , δ

2
2}. The definition of

the STP implies that x := x1 ⋉ x2 ⋉ . . . ⋉ xn is a vector
in S2n

that includes all the minterms of the Xis. Note
that, being a vector of distinct minterms, x is a canon-
ical vector. Any Boolean function f : Sn → S can be
represented as a sum of minterms, and this implies that
the STP can be used to provide an ASSR of BCNs.
Theorem 1. (Cheng and Qi (2010)) Consider the
BCN (1). Set x(k) := x1(k) ⋉ · · · ⋉ xn(k), and u(k) :=
u1(k) ⋉ · · · ⋉ um(k). There exists a unique logical ma-

trix L ∈ S2n×2n+m

, called the transition matrix of the
BCN, such that

x(k + 1) = L ⋉ u(k) ⋉ x(k). (3)

Algorithms for converting a BCN from the form (1) to its
ASSR (3), and vice versa, may be found in (Cheng et al.
(2011)). Similarly, the BN (2), with n Boolean variables,
may be represented in the ASSR

x(k + 1) = Lx(k), (4)

where x(k) ∈ S2n

and L ∈ S2n×2n

. Note that the fact
that a BN may be represented in a linear form using
the vector of minterms has been known for a long time
(see, e.g., Cull (1971, 1975)), but the ASSR provides
an explicit algebraic form that is particularly suitable
for control-theoretic analysis. For example, it can be
used to derive an ASSR of the adjoint control system
(see Laschov and Margaliot (2011, 2012)).

Given the ASSR (4) of a BN, we can associate it
with the directed graph G(L) = G(V, E), where
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Fig. 1. Vertex graph of the golden mean shift.

V = {δ1
2n , . . . , δ2n

2n}, and there is a directed edge from

vertex δj
2n to vertex δi

2n if and only if [L]ij = 1.

We now describe some basic ideas from SD (Lind and
Marcus (1995)). Given an alphabet A (e.g. the binary
alphabet S), and a set of strings F with symbols in A,
let XF denote the set of (one-sided) infinite sequences of
symbols that do not contain any string in F . The shift
operator σ : XF → XF , defined by σ(.x0x1x2 . . . ) :=
.x1x2x3 . . . , shifts any (one-sided) infinite sequence one
position to the left. If F is a finite set, then the dynam-
ical system (XF , σ) is called a shift of finite type (SFT).
If XF can be defined by means of a finite set of forbid-
den strings, all of which have length k + 1, then (XF , σ)
is called a k-step SFT.

Alternatively, a k-step SFT may be described by its set
of allowed strings of length k + 1. This leads to a useful
graph-theoretic representation, called the vertex graph.
By restricting our attention to 1-step SFTs, we can as-
sociate with any such SFT a vertex graph whose vertices
correspond to the possible symbols in A, and there is a
directed edge from vertex j to vertex i if and only if ji
is an allowed string. Each vertex graph with N vertices
can be represented by its adjacency matrix A ∈ SN×N .

For example, if A = S then X{11} is the set of all binary
sequences that do not contain the string 11. (X{11}, σ) is
called the golden mean shift (GMS) (Williams (2004)).
Alternatively, it can be characterized by the set of its al-
lowed strings of length 2, namely, {00, 01, 10}. The asso-
ciated vertex graph has two vertices (0 and 1, or, equiv-
alently δ2

2 and δ1
2), and is depicted in Fig. 1. Every ele-

ment of X{11} corresponds to an (infinite) walk on this
vertex graph, and vice versa. The adjacency matrix cor-

responding to the vertex graph of X{11} is A =

[

1 1

1 0

]

.

For an SFT (XF , σ), let pi denote the number of period i
sequences, i.e. sequences x such that σi(x) = x. The
Artin-Mazur zeta function ζ : R → R is a bookkeeping
device for storing all the pis, defined by

ζ(t) := exp

(

∞
∑

i=1

pi
ti

i

)

. (5)

This implies that given ζ, one can easily obtain every pi

as

pi =
1

(i − 1)!

di

dti
ln(ζ(t))

∣

∣

∣

∣

t=0

. (6)

The next result provides an algebraic expression for the
zeta function in terms of the adjacency matrix of the
vertex graph.
Theorem 2. (Bowen-Lanford formula) (Lind and Mar-
cus (1995)) Suppose that (XF , σ) is an SFT over an
alphabet with N symbols. Let G be its vertex graph and
A ∈ SN×N the associated adjacency matrix. Then

ζ(t) = (tNPA(1/t))−1, (7)

where PA(s) := det(sIN − A).

The topological entropy of a shift space (XF , σ) is

h := lim
ℓ→∞

1

ℓ
log(Nℓ), (8)

where Nℓ is the number of allowed strings of length ℓ.
In other words, h is the “growth rate” of the number
of allowed blocks of a given length. Existence of the
limit in (8) follows from combining the fact that Nℓ+h ≤
NℓNh with Fekete’s Lemma (see e.g. van Lint and Wil-
son (2001)).
Example 1. Recall that the GMS consists of all the bi-
nary sequences with no consecutive 1’s. The number of
allowed strings of length ℓ satisfies the recursion

Nℓ+2 = Nℓ+1 + Nℓ, (9)

with N1 = 2, N2 = 3. Indeed, we can form an allowed
string of length (ℓ + 2) by either adding 01 to an al-
lowed string of length ℓ, or by concatenating 0 to ev-
ery allowed (ℓ + 1) string. Eq. (9) implies that Nℓ−2 =
Fℓ, the ℓth Fibonacci number. It is well-known that Fℓ

grows exponentially as cγℓ, for some constant c, where
γ := (1 +

√
5)/2 ≈ 1.618 is the golden mean (Williams

(2004)). Hence, the topological entropy of the GMS is

lim
ℓ→∞

1

ℓ
log(cγℓ+2) = log(γ).

Suppose that (XF , σ) is an SFT over an alphabet with N
symbols, and let A be the N×N adjacency matrix of the
associated vertex graph. The number of allowed ℓ-strings

of the SFT is Nℓ =
∑N

i,j=1[A
ℓ−1]ij . Combining this with

the Perron-Frobenius theory (Lind and Marcus, 1995,
Ch. 4) yields

h = log λA, (10)

where λA is the Perron root of A.
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3 Main results

Given a BCN, define its set of state-trajectories as

AS := {X(0)X(1) . . . : X(k + 1) = f(X(k), U(k)),

U(k) ∈ Sm, X(0) ∈ Sn},

i.e., the state trajectories over all possible controls and
initial conditions. Note that for a BN this becomes

{X(0)X(1) . . . : X(k + 1) = f(X(k)), X(0) ∈ Sn},

The next result shows that the trajectories of a BCN
(and hence of a BN) is a 1-step SFT.
Theorem 3. In the ASSR (3), the set of state tra-
jectories of a BCN is a 1-step SFT over the alpha-
bet {δ1

2n , . . . , δ2n

2n}.
Proof. Set Li := L ⋉ δi

2m , i = 1, . . . , 2m, where L is the
transition matrix of the BCN, and define

M := L1 ∨ L2 ∨ . . . ∨ L2m . (11)

Consider the SFT (XFS
, σ), where

FS := {δi
2nδj

2n : [M ]ji = 0}. (12)

Note that FS = {δi
2nδj

2n : [M ⋉ v]ji = 0, ∀v ∈
{δ1

2m , . . . , δ2m

2m}}. Suppose that w = .δi0
2nδi1

2nδi2
2n · · · ∈ AS .

Then for any k there exists a j = j(k) such that

δ
ik+1

2n = Ljδ
ik

2n . Thus, [Lj]ik+1ik
= 1, so [M ]ik+1ik

= 1.
By (12), this implies that w is a string of the SFT.

Conversely, suppose that w = .δi0
2nδi1

2nδi2
2n . . . is a string

of the SFT. By the definition of F , this implies that
[M ]ik+1ik

= 1 for all k. Thus, there exists a j = j(k)

such that [Lj ]ik+1ik
= 1, i.e. δk+1

2n = L ⋉ δj
2m ⋉ δk

2n , so w
is a trajectory of the BCN.

Note that M is the adjacency matrix of the graph asso-
ciated with the allowed strings of length 2 in the SFT.
The next result follows from Theorem 3 by replacing M
with L.
Corollary 1. The set of trajectories of a BN in the
ASSR (4) is a 1-step SFT over the alphabet {δ1

2n , . . . , δ2n

2n}.

Note that not all 1-step SFTs over a finite alphabet can
be represented as the set of trajectories of a BN. For ex-
ample, the GMS includes an infinite number of distinct
sequences, whereas any BN has a finite number of dis-
tinct trajectories.

3.1 Zeta function of a Boolean control network

Since a BCN (2) induces an SFT and the matrix M is
the adjacency matrix of the corresponding graph, the
Bowen-Lanford formula yields the following result.

δ
1
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δ
3

8

δ
2

8
δ
7

8

δ
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8

δ
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δ
5

8

δ
8
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Fig. 2. State-transition graph for the BN in Example 2.

Corollary 2. The zeta function of a BCN satisfies
ζ(t) = (t2

n

PM (1/t))−1, where PM (s) := det(sI2n − M)
is the characteristic polynomial of M .
Corollary 3. The zeta function of a BN with ASSR (4)
satisfies

ζ(t) = (t2
n

PL(1/t))−1. (13)

Example 2. Consider the BN

X1(k + 1) = (X1(k) ∧ X2(k)) ∨ (X1(k) ∧ X3(k))

∨ (X̄1(k) ∧ X̄2(k) ∧ X̄3(k)),

X2(k + 1) = X1(k) ∨ (X2(k) ∧ X3(k)),

X3(k + 1) = (X1(k) ∧ X̄2(k)) ∨ (X2(k) ∧ X̄3(k)).

Here n = 3 and L = [δ2
8 δ1

8 δ1
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8 ] ∈ S8×8. A
calculation yields

PL(s) = s8 − s6 − s3 + s. (14)

So, by (13),

ζ(t) =
1

t8(t−8 − t−6 − t−3 + t−1)
=

1

t7 − t5 − t2 + 1
.

Hence, ln ζ(t) = − ln(t7 − t5 − t2 + 1). Thus,

p1 =
1

0!

d ln ζ(t)

dt

∣

∣

∣

∣

t=0

= 0, p2 =
1

1!

d2 ln ζ(t)

dt2

∣

∣

∣

∣

t=0

= 2,

and proceeding in this fashion yields p3 = 0, p4 = 2,
and p5 = 5.
Fig. 2 depicts the graph associated with this BN. It may be
seen that there are no equilibrium points (corresponding
to period 1 sequences), so p1 = 0. Also, there are two
period 2 sequences, namely, .δ1

8δ
2
8δ

1
8δ2

8 ... and .δ2
8δ1

8δ
2
8δ

1
8 ....

Each of them is also a period 4 sequence. Finally, each
vertex in the cycle of length 5 is the initial state of a
period 5 sequence.

The concept of period ν sequences is closely related
to that of limit cycles. An ordered ν-tuple of distinct
Boolean vectors (X i1 , X i2 , . . . , X iν ) is called a limit cy-
cle of length ν of the BN if: (1) X(0) = X ij implies
that X(1) = X ij+1 for j = 1, 2, . . . , ν−1; and (2) X(0) =
X iν implies that X(1) = X i1 . Clearly, a limit cycle of
length ν corresponds to ν sequences of period ν, and
also to ν sequences of period 2ν, ν sequences of period
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3ν, etc. For an integer ν > 0, let D(ν) denote the set
of proper divisors of ν (i.e., excluding ν itself). Let qν

denote the number of distinct limit cycles of length ν.
Then q1 = p1, and for ν > 1,

qν = (pν −
∑

j∈D(ν)

pj)/ν. (15)

For the BN in Example 2, (15) yields q1 = p1 = 0,
q2 = (p2 − p1)/2 = 1, q3 = (p3 − p1)/3 = 0, q4 =
(p4 − p1 − p2)/4 = 0, and q5 = (p5 − p1)/5 = 1.

The state-transition graph of a BN can be partitioned
into isolated components, each of them consisting of a
limit cycle and a number of states accessing it. Based
on this observation, the following useful expression for
PL(s) was derived.
Proposition 1. (Fornasini and Valcher (2013)) Given
a BN, let L ∈ S2n×2n

be the transition matrix of the as-
sociated ASSR (4). There exist r ∈ N and a permutation
matrix P such that

P⊤LP = blockdiag{D1, D2, . . . , Dr},

with Di :=

[

Ni 0

Ti Ci

]

∈ Sni×ni , (16)

where Ci ∈ Ski×ki , ki ≥ 1, is a cyclic matrix and Ni ∈
S(ni−ki)×(ni−ki) is a nilpotent matrix. Consequently,

PL(s) =

r
∏

i=1

PDi
(s) = s(2n−

∑

r

i=1
ki) ·

r
∏

i=1

(ski − 1). (17)

Example 3. Consider the BN in Example 2. The ASSR

is given by n = 3, L =
[

δ2
8 δ1

8 δ1
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8

]

. For

the permutation matrix P =
[

δ3
8 δ2

8 δ1
8 δ4

8 δ5
8 δ6

8 δ7
8 δ8

8

]

,

P⊤LP =
[

δ3
8 δ3

8 δ2
8 δ5

8 δ6
8 δ7

8 δ8
8 δ4

8

]

, which is in the

form (16) with r = 2, n1 = 3, k1 = 2, n2 = 5,
and k2 = 5.

Combining Proposition 1 with Corollary 3 yields the fol-
lowing result.
Corollary 4. The zeta function of a BN satisfies

ζ(t) =

r
∏

i=1

ζi(t), (18)

where ζi(t) := (1 − tki)−1 is the zeta function of the i-th
(isolated) component of the BN (consisting of all states
that access the i-th limit cycle), and k1, k2, . . . , kr are the
lengths of the distinct limit cycles of the BN. Moreover,

as qv = |{i : ki = v}|, v ∈ N, then

ζ(t) =

max{kj}
∏

i=1

(1 − ti)(−qi).

Example 4. Consider again the BN in Example 2. The
characteristic polynomial of L factorizes as PL(s) =
s(s2−1)(s5−1). By Proposition 1, the BN has one limit
cycle of length 2, and one limit cycle of length 5. Equiva-
lently, its zeta function is ζ(t) = ζ1(t)ζ2(t), with ζ1(t) :=

1
1−t2 and ζ2(t) := 1

1−t5 .

3.2 Topological Entropy of a Boolean control network

Definition 1. The topological entropy of the BCN (1)
is

hS := lim
j→∞

1

j
log |Aj

S |, (19)

where Aj
S is the set of state trajectories of length j.

In a BCN with n state variables, the number of distinct
state-trajectories of length j is bounded above by 2nj .
Hence,

hS ≤ lim
j→∞

1

j
log 2nj = n log 2.

This upper bound is attained, for example, by the (triv-
ial) BCN X(k + 1) = U(k).
Example 5. Consider the BCN

X(k + 1) = U(k) ∨ (Ū(k) ∧ X̄(k)).

For U(k) = 1 [U(k) = 0], we have X(k + 1) = 1
[X(k + 1) = X̄(k)]. The possible state trajectories of
length one are, of course, 0 and 1, so |A1

S | = 2. To de-
termine A2

S, we calculate all possible sequences of length
two. This yields A2

S = {11, 10, 01}, so |A2
S | = 3. More

generally, from the two possible sub-systems we see that
all sequences, except for those that contain two consec-
utive zeros, can appear. This is analogous to the GMS,
so |Aj+2

S | = |Aj+1
S | + |Aj

S |, and hS = log γ.

Our main result in this subsection, obtained by Com-
bining Thm. 3 and (10), provides a simple way for com-
puting hS using the ASSR.
Corollary 5. The topological entropy of a BCN satisfies

hS = log λM , (20)

with M defined as in (11).
Example 6. Consider the BCN in Example 5. The
ASSR is given by (3) with n = m = 1, and L =
[

1 1 0 1

0 0 1 0

]

. Thus, L1 = L ⋉ δ1
2 =

[

1 1

0 0

]

, L2 = L ⋉ δ2
2 =

5



[

0 1

1 0

]

, and M = L1 ∨ L2 =

[

1 1

1 0

]

. The eigenvalues of

this matrix are (1 ±
√

5)/2, so (20) yields hS = log γ.
Corollary 6. The topological entropy of a BN is h = 0.
Proof. By (17), any eigenvalue λ of L satisfies either λ =
0 or |λ| = 1. Since the state space of a BN is finite, there
must be at least one limit cycle, so r in (17) satisfies r ≥
1. Hence, 1 is always an eigenvalue, so λL = 1.

Indeed, the entropy measures how the number of admis-
sible strings grows with the length of the string. A BN is
an autonomous system, whose trajectories are uniquely
determined by the initial condition. Since the number Nℓ

of distinct trajectories of length ℓ is a constant, indepen-
dent of ℓ, h is necessarily zero.

The next result shows how Corollary 5 can be used to
obtain more general results.
Proposition 2. Consider the BCN:

X1(k + 1) = X2(k),

...

Xn−1(k + 1) = Xn(k),

Xn(k + 1) = U(k).

The topological entropy of this “n-th order shift-register”
is hS = log 2 for every n.
Proof. Fix arbitrary A, B ∈ Sn. There exists a unique
control sequence that steers the BCN from X(0) = A
to X(n) = B, namely, U(i) is bit i + 1 of B, i =
0, 1, . . . , n − 1. In the ASSR, [Mn]ij is the number of
distinct state-trajectories with n + 1 symbols beginning
with δj

2n and ending with δi
2n , so we conclude that Mn =

12n,2n , where 1v,w denotes the v ×w matrix with all en-
tries equal to 1. The Perron root of Mn is 2n (correspond-
ing to the eigenvector 12n,1), so hS = log λM = log 2.

4 Regulation of the mammalian cell cycle

The cell cycle is a temporal sequence of molecular events
that take place in a cell, leading to its division and du-
plication. This is the process by which a single-cell fer-
tilized egg develops into a mature organism, as well as
the process by which hair, skin, blood cells, and some
internal organs are renewed.

The cell cycle is divided into several phases. DNA repli-
cation occurs during the Synthesis (or S) phase. Growth
stops and cellular energy is focused on the orderly divi-
sion into two daughter cells at the Mitosis (or M) phase.
The S and M phases are separated by two gap phases, G1
(between M and S) and G2 (between S and M). A fifth
phase, called G0, corresponding to a quiescent state, can
be reached from G1 in the absence of stimulation. Gap
phases enable the cell to monitor its environment and
internal state before committing to the S or M phase.

Mammalian cell division is tightly controlled, as it must
be coordinated with the overall growth of the organism,
and to address specific needs, e.g. wound healing. Faults
in this control process can either kill a cell through apop-
tosis or cause mutations that may lead to cancer. Cell cy-
cle coordination is achieved through extra-cellular posi-
tive and negative signals whose balance decides whether
a cell will divide or remain in the G0 resting phase.

The positive signals or growth factors ultimately elicit
the activation of Cyclin D (CycD) in the cell. Faure
et al. (2006) developed a BCN model for the core net-
work regulating the mammalian cell cycle. The model
includes a single Boolean input corresponding to the ac-
tivation/inactivation of CycD in the cell. The model also
includes nine Boolean state-variables X1(t), . . . , X9(t)
representing the activity/inactivity at time t of nine
different proteins: Rb, E2F, CycE, CycA, p27, Cdc20,
Cdh1, UbcH10, and CycB, respectively. The BCN model
is

X1(t + 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))

∨ (X5(t) ∧ Ū(t) ∧ X̄9(t)),

X2(t + 1) = (X̄1(t) ∧ X̄4(t) ∧ X̄9(t))

∨ (X5(t) ∧ X̄1(t) ∧ X̄9(t)),

X3(t + 1) = X2(t) ∧ X̄1(t),

X4(t + 1) = (X2(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧ X8(t)))

∨ (X4(t) ∧ X̄1(t) ∧ X̄6(t) ∧ (X7(t) ∧ X8(t))),

X5(t + 1) = (Ū(t) ∧ X̄3(t) ∧ X̄4(t) ∧ X̄9(t))

∨ (X5(t) ∧ (X3(t) ∧ X4(t)) ∧ Ū(t) ∧ X̄9(t)),

X6(t + 1) = X9(t),

X7(t + 1) = (X̄4(t) ∧ X̄9(t)) ∨ X6(t) ∨ (X5(t) ∧ X̄9(t)),

X8(t + 1) = X̄7(t)

∨ (X7(t) ∧ X8(t) ∧ (X6(t) ∨ X4(t) ∨ X9(t))),

X9(t + 1) = X̄6(t) ∧ X̄7(t). (21)

This model is based on a logical regulatory graph of
the interactions between the different proteins; see Faure
et al. (2006) and the references therein for the details.

Faure et al. (2006) consider the case where either U(t) ≡
1 (i.e. in the presence of CycD) or U(t) ≡ 0, so the BCN
yields two possible BNs denoted BN1 and BN0, respec-
tively. Their simulations show that BN1 admits a glob-
ally attracting periodic trajectory composed of 7 states.
The sequence of state transitions along this trajectory
qualitatively matches cell cycle progression. BN0 admits
a single state that is globally attracting. This state cor-
responds to the G0 phase.

Since n = 9 and m = 1, L ∈ S512×1024. Set Li :=
L⋉ δi

2, i = 1, 2. A calculation shows that det(sI −L2) =
s511(s − 1), so Proposition 1 implies that BN0 admits
a single cycle with length 1 (i.e., an equilibrium point).
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Similarly, det(sI − L1) = s505(s7 − 1), so Proposition 1
implies that BN1 admits a single cycle with length 7.
This cycle is

δ416
512 → δ477

512 → δ469
512 → δ498

512 → δ378
512 → δ316

512 → δ284
512 → δ416

512

A calculation yields λM = 1.8522, so the topological
entropy of this BCN is log 1.8522. More work is needed
in order to understand the meaning of entropy in BCNs
that model biological systems.
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