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Abstract

In this paper we consider a supervisory control scheme for non-homogenous multi-agent systems.

Each agent is modeled through an independent strictly proper SISO state space model, and the su-

pervisory controller, representing the information exchange among the agents, is implemented in turn

via a linear state-space model. Controllability and observability of the overall system are characterized,

and some preliminary results about stability and stabilizability are provided. The paper extends to non-

homogenous multi-agent systems some of the results obtained in [3], [4], [6] for the homogenous case.

Index Terms

Multi-agent system, supervisory control, controllability, asymptotic stability/stabilizability, polyno-

mial matrices.

I. INTRODUCTION

Several systems in the areas of manufacturing, transportation, and telecommunications can be

effectively represented as networks of agents, mutually interacting and exchanging information.

Dynamical interactions among agents, and the intrinsic complexity of many physical networks,

make the analysis and control of multi-agent network systems quite a challenging task, mostly

M.E. Valcher is with the Dipartimento di Ingegneria dell’Informazione, Università di Padova, via Gradenigo 6/B, 35131
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due to complexity issues. Research efforts in this area have been quite significant in the last

decade. Some fundamental contributions on this topic appeared in [2], [7], [10].

In order to make the analysis computationally more tractable, the simplifying assumption

that the agents have common dynamics and identical local controllers is often introduced. As a

consequence, they can all be described by the same state-space model and by the same transfer

function. So, the overall formation dynamics can be represented as the interconnection of a scalar

(diagonal) transfer matrix and of a feedback control block, that represents the communication

exchange among the agents [2].

Under these assumptions, Hara and co-authors have been able to describe the overall homoge-

neous multi-agent system dynamics as a linear system with generalized frequency variable [3],

[4], [5], [6], [12], and to derive powerful results regarding controllability, H2- and H∞-norm

computation, stability and stabilizability of the overall system.

In this paper we consider the same control configuration as in [3], [4], but we drop the

homogeneity assumption on the agents, thus considering the more realistic scenario when each

agent is characterized by a distinct strictly proper transfer function. Consequently, the overall

system is an interconnection of a diagonal transfer matrix and of a supervisory controller (also

referred to in the literature as cooperative output feedback). This apparently small change has

significant consequences in terms of complexity, as the analysis of the system properties turns

out to be much more involved. In this paper we provide a complete characterization of the

controllability (and, by duality, of the observability) property of the overall dynamic system, as

well as some preliminary results about stability and stabilizability. Comparisons with the results

derived in [3], [4], [6], [12] are performed, and results are illustrated with several examples.

In section II we introduce the system model: the agents dynamics will be the plant, while the

information exchange among the agents will be described by the supervisory controller. Sections

III and IV provide a complete characterization of the controllability property of the overall

system. Comments and comparisons regarding this characterization are provided in section V.

Finally, in section VI, the stability and stabilization problems are introduced and framed in the

general setting of output feedback problem. Some either necessary or sufficient conditions are

provided, together with counter-examples.

Before proceeding, we introduce some notation. Given two integers k, n ∈ Z+, with k ≤ n,

we denote by [k, n] the set {k, k + 1, . . . , n}. We let ei,n denote the ith canonical vector of Rn,



namely the n-dimensional vector with all its entries equal to zero except for the ith which is 1.

For en,n we will use the simpler notation en. If M is a matrix, we denote by [M ]ij its (i, j)th

entry. The diagonal (or block diagonal) matrix with diagonal entries (blocks) Mi, i ∈ [1, n],

is denoted by diag{M1,M2, . . . ,Mn}. A diagonal matrix with all identical diagonal entries is

called a scalar matrix.

We let C− and C+ be the open left half complex plane and the closed right half complex

plane, respectively. We let R[s] and R(s) denote the ring of polynomials and the field of rational

functions with real coefficients in the indeterminate s. A square polynomial matrix (in particular,

a polynomial) is Hurwitz if it is of full rank at every point s ∈ C+. Given a polynomial matrix

P (s) ∈ R[s]n×k, we say that P (s) is left prime if it has full row rank in every point s of the

complex plane C.

II. SYSTEM DESCRIPTION AND CORRESPONDING STATE REALIZATION

We consider n SISO autonomous agents, each of them described by a strictly proper state-

space model Σi = (Ai,bi, c
>
i ) of size ki, i ∈ [1, n]. Let hi(s) ∈ R(s), i ∈ [1, n], be the strictly

proper scalar transfer function of the ith agent. We represent the transfer functions of the n

agents by means of the diagonal transfer matrix

H(s) = diag{h1(s), h2(s), . . . , hn(s)}. (1)

Accordingly, the matrix H(s) has a state space realization Σp = (A,B,C) (referred to in the

following as, “the plant”), of dimension K := k1 + k2 + . . .+ kn, given by the direct sum of the

n realizations Σi, i.e.

A = diag{A1, A2, . . . , An}, B = diag{b1,b2, . . . ,bn}

C = diag{c>1 , c>2 , . . . , c>n }. (2)

It is worthwhile to point out that the block diagonal structure of the matrices A,B and C in (2)

allows us to say that Σp = (A,B,C) is controllable (observable) if and only if each realization

Σi = (Ai,bi, c
>
i ) is controllable (observable).

We consider a (proper rational) n-dimensional supervisory controller Σc = (A0, B0, C0, D0)

of transfer matrix G0(s) ∈ R(s)p×m, that acts on the plant in such a way that the overall

interconnected scheme has desired properties (specifically, controllability and stability) and/or



performances (normally expressed in terms of H2 or H∞ norms [5]). The logical scheme

describing the plant and the supervisory controller connection is given in Figure 1.
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Fig. 1: Supervisory control scheme.

If we denote by up and yp the input and the output of the plant, and by u and y the input and

output of the controller (as well as of the overall system), the system in Figure 1 corresponds

to feeding the plant state-space model Σp = (A,B,C) with the output feedback signal

up = A0yp(t) +B0u(t), (3)

and to represent as output, the measurement of the overall system

y(t) = C0yp(t) +D0u(t).

Equivalently, we can think of the system as one obtained by replacing the integrator block

in the standard scheme describing the state space realization (A0, B0, C0, D0), with a state

space realization of H(s). In both cases, the block diagram of the overall interconnected system

becomes

- B0
- h+ - (A,B,C) - C0

- h+ -
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�
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Fig. 2: Block diagram for the overall system Σsc.

and the state-space model of the overall system Σsc is

ẋ(t) = (A+BA0C)x(t) +BB0u(t), (4)

y(t) = C0Cx(t) +D0u(t), (5)

where x(t) is the K-dimensional state-variable. Using standard computation, it is easy to show

that the transfer matrix of the system Σsc is1 Wsc(s) = C0(H(s)−1−A0)
−1B0 +D0 ∈ R(s)p×m.

In the sequel we will refer to the overall system matrices as to Σsc = (A,B, C,D), by this

meaning that we will set

A := A+BA0C, B := BB0,

C := C0C, D := D0.

In sections III and IV we investigate controllability of the overall system (4)-(5) in detail, and

extend the results obtained to the observability analysis.

III. CONTROLLABILITY OF THE OVERALL SYSTEM: PRELIMINARIES

The following lemma extends Lemma 2.1 in [3], by resorting to a different approach.

Lemma 1: If the controlled system Σsc = (A,B, C,D) is controllable then all the realizations

Σi = (Ai,bi, c
>
i ), i ∈ [1, n], are controllable.

Proof: Suppose, by contradiction, that at least one of the Σi’s is not controllable and

hence the pair (A,B) is not. Then λ ∈ C and a nonzero vector v ∈ RK can be found such that

v> [λIK − A B ] = [ 0> 0> ] .

But then, it is easy to see that

v> [λIK −A B ] = v> [λIK − A−BA0C BB0 ] = [ 0> 0> ] .

This implies that (A,B) is not controllable.

As a matter of fact, if B0 has rank n, then the controllability of each realization Σi is also

sufficient for the controllability of Σsc.

1Note that H(s) is a square diagonal matrix, and hence it is always invertible.



Proposition 1: If rank(B0) = n, then Σsc is controllable if and only if all the realizations

Σi = (Ai,bi, c
>
i ), i ∈ [1, n], are controllable.

Proof: The necessity has been proved in Lemma 1. So, we only need to prove the

sufficiency. Suppose, by contradiction, that Σsc is not controllable. Then a number λ ∈ C and a

nonzero vector v ∈ RK can be found such that

v> [λIK −A B ] = v> [λIK − A−BA0C BB0 ] = [ 0> 0> ] .

But since B0 is of full row rank, condition v>BB0 = 0> implies v>B = 0>. Therefore the

previous identity implies v> [λIK − A B ] = [ 0> 0> ] . This means that (A,B) is not

controllable and hence at least one of the pairs (Ai,bi) is not controllable.

In view of Proposition 1, in the sequel we will assume that rank(B0) < n. Also, as a

consequence of Lemma 1, we will assume that all the realizations Σi, i ∈ [1, n], are controllable.

Therefore, without loss of generality (w.l.o.g.) we assume (as in [3]), that they are in canonical

controller form [8]:

Ai =



0 1 0

0 0 1
. . .

...
... . . . . . . 0

1

−a(i)
0 −a(i)

1 −a(i)
2 . . . −a(i)

ki−1


bi =



0

0
...

0

1



c>i = [ c
(i)
0 c

(i)
1 c

(i)
2 . . . c

(i)
ki−1 ] .

(6)

From the canonical controller form, it is clear that,

hi(s) =
c
(i)
ki−1s

ki−1 + . . .+ c
(i)
1 s+ c

(i)
0

ski + a
(i)
ki−1s

ki−1 + . . .+ a
(i)
1 s+ a

(i)
0

.

In order to simplify the notation, we set bi = eki
,

a>i := [ a
(i)
0 a

(i)
1 a

(i)
2 . . . a

(i)
ki−1 ] ,

and we denote the matrix Ai of size ki × ki in companion form [8], having in the last row the

coefficients −a>i by Cki
(−a>i ). Note that

det(sIki
− Ai) = det(sIki

− Cki
(−a>i )) = ski + a

(i)
ki−1s

ki−1 + . . .+ a
(i)
1 s+ a

(i)
0 .



As a consequence,

A =

Ck1(−a>1 )
. . .

Ckn(−a>n )


B = diag{ek1 , . . . , ekn} C = diag{c>1 , . . . , c>n }.

Before proceeding we notice that in order to study the controllability of the pair (A,B) we

can introduce w.l.o.g. the simplifying assumption that B0 is of full column rank and takes the

following form

B0 =



Im

b̂>m+1
...

b̂>n


, b̂>i ∈ R1×m, i ∈ [m+ 1, n].

Indeed, if B0 = BlBr, with Bl of full column rank and Br of full row rank, it is easy to see that

(A, BB0) is controllable if and only if (A, BBl) is controllable. On the other hand, once we

assume that B0 is of full column rank m, we can always postmultiply it by the inverse of one

of its nonsingular m×m submatrices, thus obtaining an identity submatrix. Finally, by applying

suitable permutations to the blocks of BB0 (and hence of A = A+BA0C), we can assume that

B := BB0 =



ek1

ek2
. . .

ekm

ekm+1b̂
>
m+1

...

eknb̂
>
n


, (7)

namely that in the upper part we have a block diagonal matrix whose diagonal blocks are

canonical vectors, while the bottom part consists of n −m blocks, each of them composed of

all zero rows except for the last one that coincides with b̂>i , i ∈ [m + 1, n]. This amounts to

assuming for B0 the aforementioned structure.



Under the previous simplifying assumptions, B is described as in (7) while A is expressed as:

A=


Ck1(−d>11) −ek1d

>
12 . . . −ek1d

>
1n

−ek2d
>
21 Ck2(−d>22) . . . −ek2d

>
2n

...
... . . . ...

−eknd
>
n1 −eknd

>
n2 . . . Ckn(−d>nn)

 ,

where

D :=


d>11 d>12 . . . d>1n

d>21 d>22 . . . d>2n
...

... . . . ...

d>n1 dn2> . . . d>nn

 =


a>1 0> . . . 0>

0> a>2 . . . 0>

...
... . . . ...

0> 0> . . . a>n

− A0


c>1 0> . . . 0>

0> c>2 . . . 0>

...
... . . . ...

0> 0> . . . c>n

.
It is worthwhile noticing that A is a multivariable companion matrix. Unfortunately, the system

is not in multivariable canonical form and hence it is not necessarily controllable.

Since the pair (A,B) is controllable if and only if [1] (A + BK,B) is controllable for any

choice of K, we take advantage of the structure of B to simplify the problem. Specifically, the

choice K = [ Im 0 ] D ensures that the matrix A+ BK becomes as in

A+BK =



Ck1(0
>)

. . .

Ckm(0>)

0

−ekm+1r
>
m+11 . . . −ekm+1r

>
m+1m

... . . . ...

−eknr
>
n1 . . . −eknr

>
nm

Ckm+1(−r>m+1m+1) . . . −ekm+1r
>
m+1n

... . . . ...

−eknr
>
nm+1 . . . Ckn(−r>nn)


,

(8)

where the vector coefficients r>ij can be expressed as

R :=


r>m+11 r>m+12 . . . r>m+1n

r>m+21 r>m+22 . . . r>m+2n
...

... . . . ...

r>n1 r>n2 . . . r>nn

 (9)

=

[ −b>m+1
...

−b>n

In−m

]


a>1 0> . . . 0>

0> a>2 . . . 0>

...
... . . . ...

0> 0> . . . a>n

− A0


c>1 0> . . . 0>

0> c>2 . . . 0>

...
... . . . ...

0> 0> . . . c>n


 . (10)



We are in a position now, to state the characterization of the controllability for the overall

controlled system.

IV. CONTROLLABILITY CHARACTERIZATION

Proposition 2: Suppose that rank(B0) < n and all the realizations Σi = (Ai,bi, c
>
i ), i ∈

[1, n], are controllable. Then Σsc is controllable if and only if the polynomial matrix

Ψ(s) :=

[
R

−b̂>m+1
...

−b̂>n

In−m

]
·



diag




1

s
...

sk1−1

 , . . . ,


1

s
...

skn−1




diag{sk1 , . . . , skm} 0

0 diag{skm+1 , . . . , skn}


(11)

is left prime.

Proof: To prove the result, we prove that Σsc is controllable if and only if the pair (A +

BK,B), for the given feedback matrix K, is controllable. This can be accomplished by resorting

to the PBH matrix

P(s) := [ sIK − (A+ BK) B ] , (12)

namely by verifying that it has full row rank K for every s ∈ C.
We first consider the case s = 0, which is clearly an eigenvalue of the matrix A + BK. It

is easily seen that rank(P(0)) = rank([A+ BK B ]) coincides with the rank of the matrix
(13), obtained from [A+ BK B ] by means of elementary row operations,

Ck1(0
>)

. . .

Ckm
(0>)

0

ek1

. . .

ekm

−ekm+1 r̃
>
m+11 . . . −ekm+1 r̃

>
m+1m

...
. . .

...

−ekn r̃>n1 . . . −ekn r̃>nm

Ckm+1(−r̃>m+1m+1) . . . −ekm+1 r̃
>
m+1n

...
. . .

...

−ekn r̃>nm+1 . . . Ckn(−r̃>nn)

0



,

(13)



where the vectors r̃>ij are obtained from the corresponding r>ij by replacing all the entries, except

for the first one, with zeros. In other words, r̃>ij = r>ij [ e1,kj
0 . . . 0 ] . By the structure of

the previous matrix equation, it is clear that such a matrix is of full row rank if and only if the

matrix R0 = R · diag{e1,k1 , e1,k2 , . . . , e1,kn}, with R defined as in (9), is of full row rank.
Next, we need to find necessary and sufficient conditions for the PBH matrix P(s) to be of

full row rank for s ∈ C, s 6= 0. Assume that s is a fixed nonzero complex number. Again, by
applying elementary row operations to the matrix P(s), we can obtain the matrix (14) (see next
page), whose rank coincides with rank(P(s)),

sIk1 − Ck1(0
>)

. . .

sIkm
− Ckm

(0>)

0

ek1

. . .

ekm

0

Dkm+1(p̃m+1m+1(s)>) . . . ekm+1 p̃m+1n(s)>
...

. . .
...

ekn
p̃nm+1(s)> . . . Dkn

(p̃nn(s)>)

ekm+1qm+1(s)>
...

ekn
qn(s)>


(14)

where

Dki
(p̃ii(s)

>) :=



s −1

s −1
. . . . . .

s −1

p̃ii(s)
>

 ,

p̃ij(s)
> := [ 0 0 . . . 0 pij(s) ] ,

pij(s) :=



r>ij


1

s
...

skj−1

 , if i 6= j;

r>ij


1

s
...

skj−1

+ skj , if i = j;



qi(s)
> := b̂>i

 s
k1

. . .

skm

− [ r>i,1 r>1,2 . . . r>i,m ] · diag




1

s
...

sk1−1

 , . . . ,


1

s
...

skm−1




Due to its structure, it is clear that matrix (14) is of full row rank for every s 6= 0 if and only

if the matrix  pm+1,m+1(s) . . . pm+1,n(s) qm+1(s)
>

... . . . ...
...

pn,m+1(s) . . . pn,n(s) qn(s)>


is of full row rank for every s 6= 0. If we refer to the previous matrix as [P (s) Q(s) ], we

can verify that [P (0) Q(0) ] coincides with R0 up to a column permutation and the change

of sign of some columns. So, we have shown that the system Σsc is controllable if and only if

the matrix [P (s) Q(s) ] is left prime.

Finally, it is a matter of simple computations to verify that

Ψ(s) = [P (s) Q(s) ]

[
0 In−m

−Im 0

]
.

As a matter of fact, the polynomial matrix Ψ(s) in (11) can be rewritten in a more revealing

way, by resorting to the expression of R given in (9)-(10). One easily sees that

[
R

−b̂>m+1
...

−b̂>n

In−m

]
=

[ −b̂>m+1
...

−b̂>n

In−m

]
·

·




a>1 0> . . . 0>

0> a>2 . . . 0>

...
... . . . ...

0> 0> . . . a>n

− A0


c>1 0> . . . 0>

0> c>2 . . . 0>

...
... . . . ...

0> 0> . . . c>n

 In

,



so if we set

ni(s) := c>i adj(sIki
− Ai)bi = c>i


1

s
...

ski−1

 , (15)

di(s) := det(sIki
− Ai) = a>i


1

s
...

ski−1

+ ski , (16)

we get

Ψ(s) =

[ −b̂>m+1
...

−b̂>n

In−m

]
·


 d1(s)

. . .

dn(s)

− A0

n1(s)
. . .

nn(s)


 .(17)

The results described above may be encapsulated in the following:

Theorem 1: Suppose that rank(B0) < n and all the realizations Σi = (Ai,bi, c
>
i ), i ∈ [1, n],

are controllable. Then Σsc is controllable if and only if the polynomial matrix Ψ(s) in (17) is

left prime.

V. COMMENTS ON THEOREM 1

Remark 1: The characterization of controllability of Σsc provided in Theorem 1 relies on

checking the primeness of a polynomial matrix. Appropriate caution must be exercised to

take into account numerical difficulties encountered when dealing with large-order polynomial

matrices.

Remark 2: It can be shown that the scalar plant case studied in [4], when H(s) = h(s)In,

namely when all the agents have the same dynamics, is a special case of the characterizations

obtained in the previous sections. For the case when rank(B0) = n the result is quite obvious,

since Proposition 1 provides precisely the same result as Proposition 3.1 (ii) in [4]. Hence, it

suffices to prove that the necessary and sufficient condition given in Theorem 1 is equivalent

to the one obtained in Proposition 3.1 (i) in [4], namely that, when rank(B0) = m < n, Σsc

is controllable if and only if the realization (A,b, c>) of h(s) is minimal and the realization

(A0, B0) of G0(s) is controllable.



To this end we have to prove that Ψ(s) is left prime if and only if the triple (A,b, c>) is

controllable and observable and the pair (A0, B0) is controllable.

We first notice that, when H(s) = h(s)In and all the realizations Σi are (A,b, c>), the matrix

Ψ(s) becomes

Ψ(s) =

[ −b̂>m+1
...

−b̂>n

In−m

]
· (d(s)In − n(s)A0) ,

where n(s) = c>adj(sI − A)b and d(s) = det(sI − A). For every s ∈ C, we distinguish three

cases:

a) d(s) = n(s) = 0;

b) d(s) 6= 0, n(s) = 0;

c) n(s) 6= 0.

In case a) it is clear that Ψ(s) = 0, and this case occurs if and only if s is a common zero

of n(s) and d(s), which implies that the realization (A,b, c>) is either not controllable or not

observable. In case b) it is easy to see that rank(Ψ(s)) = n − m. Finally, in case c), it is a

matter of easy computation to verify that rank(Ψ(s)) = n−m if and only if

rank([ d(s)
n(s)

In − A0 B0 ]) = n.

This corresponds to the controllability of the pair (A0, B0). So, since we have evaluated all

possible cases, we have shown that the characterization given in [4] holds true, as a special case

of Theorem 1.

Remark 3: It is worthwhile noticing that when dealing with the general diagonal case, namely

H(s) is not scalar, then the controllability of the overall system only requires that the agent

state-space models (Ai,bi, c
>
i ) are controllable, and does not require any constraints on the

realization of the controller G0(s). Indeed, by resorting to this supervisory controller we may

ensure controllability of the overall system, even if the original plant is not observable, and

the supervisory controller is not controllable. This result is quite different from the case of n

identical models for the agents.

Example 1: Suppose that n = 2,m = 1 and that the plant has the following transfer matrix

H(s) =

[
h1(s)

h2(s)

]
=

[
1
s+1

1
s−1

]
.



We assume that the realization of h2(s) is minimal, while the realization of h1(s) is not observable

and it has a not observable eigenvalue at 0, so that d1(s) = s(s+ 1) and n1(s) = s. We assume

that the supervisory controller is described by the quadruple Σc = (A0, B0, C0, D0) with

A0 =

[
0 2

4 2

]
, B0 =

[
1

2

]
that is a not controllable pair. Then it easy to verify that

Ψ(s) = [−2 1 ]

([
s(s+ 1) 0

0 s− 1

]
−

[
0 2

4 2

][
s 0

0 1

])
= [−2s2 − 6s s+ 1 ]

is left prime, and hence the overall system is controllable.

Remark 4: The previous characterization of controllability has been obtained under the sim-

plifying assumption that B0 is of full column rank and its first m×m submatrix is the identity

matrix. The generalization of the characterization to the case of an arbitrary B0, however, is

quite immediate. It is easy to see that, under our assumptions, the matrix

Bperp :=


−b̂>m+1

...

−b̂>n

In−m



has rows which are a basis2 for the vector space (Im(B0))
⊥. So, in the general case, we should

just replace this matrix in Ψ(s) with any full row rank matrix whose rows are a basis for the

vector space (Im(B0))
⊥. This allows to immediately derive the analogous characterization for

observability:

Theorem 2: If rank(C0) = n, Σsc is observable if and only if all the realizations Σi =

(Ai,bi, c
>
i ), i ∈ [1, n], are observable. On the other hand, if rank(C0) < n, Σsc is observable if

2It is easy to see that BperpB0 = 0. So, all the rows of Bperp are orthogonal to the columns of B0 and hence belong to

(Im(B0))
⊥. On the other hand, (Im(B0)) is a subspace of Rn of rank m, and Bperp has n −m linearly independent rows.

This ensures that the rows of Bperp are a basis for (Im(B0))
⊥.



and only if all the realizations Σi, i ∈ [1, n], are observable and the polynomial matrix
 d1(s)

. . .

dn(s)

− A0

n1(s)
. . .

nn(s)


 ·Hc,

with Hc a full column rank matrix generating kerC0, and di(s), ni(s) defined as in (15)-(16), is

right prime.

VI. STABILITY AND STABILIZABILITY ANALYSIS

The aim of this section is to provide some preliminary results about the stability and stabiliz-

ability of the controlled system Σsc = (A,B, C,D). Specifically, we will deal with two issues:

1) [Stability problem] assuming that A0 is given, under what conditions the matrix A has all

the eigenvalues within the open left half complex plane C−?

2) [Stabilizability problem] assuming that the supervisory controller is not given, under what

conditions a matrix A0 can be found such that A has all the eigenvalues in C−?

We first note that, by resorting to standard matrix computations, we can express the characteristic

polynomial of A as

∆A(s) = det(sIK − A−BA0C) =

∏n
i=1 ∆Ai

(s)∏n
i=1 d̂i(s)

·∆∗(s),

where ∆∗(s) := detM∗(s), with

M∗(s) :=


d̂1(s)

. . .

d̂n(s)

−A0


n̂1(s)

. . .

n̂n(s)

 (18)

and each pair (n̂i(s), d̂i(s)) provides a coprime representation of the function hi(s). So, it is clear

that A is Hurwitz if and only if all the eigenvalues of the non-controllable or non-observable

part of each system Σi belong to C− and the polynomial ∆∗(s) is Hurwitz. So, in the sequel

we will always assume that all the systems Σi are minimal realizations (as a consequence, n̂i(s)

and d̂i(s) will coincide with ni(s) and di(s), defined in (15) and (16)), and we will focus on

the conditions under which ∆∗(s) is (or may become) Hurwitz.

As far as stability analysis is concerned, the structure of M∗(s) is more complicated than the

structure of the analogous matrix for the case of homogeneous agents, thus making it significantly



more difficult to extend the characterizations obtained in [3], [4], [12]. Indeed, when H(s) =

h(s)In, and n(s)/d(s) is a coprime representation of h(s), then

∆∗(s) = det[d(s)In − A0n(s)],

and it has been shown that ∆∗(s) is Hurwitz if and only if for every λ ∈ σ(A0), p(λ, s) :=

d(s)−λn(s) is Hurwitz. This result can be partially extended to a necessary condition for ∆∗(s)

to be Hurwitz in the general non-homogeneous case.

Proposition 3: A necessary condition for ∆∗(s) = detM∗(s), with M∗(s) given in (18), to

be Hurwitz is that

∀ λ ∈ σ(A0),@ ŝ ∈ C+ : pi(λ, ŝ) := di(ŝ)− λni(ŝ) = 0,∀ i ∈ [1, n]. (19)

Proof: Suppose, by contradiction, that ∃ λ ∈ σ(A0) and ŝ ∈ C+, such that di(ŝ)−λni(ŝ) =

0,∀ i ∈ {1, 2, . . . , n}. So, if v> is a left eigenvector of A0 corresponding to λ, it is easily seen

that v> lies in the left kernel of M∗(ŝ). This contradicts the fact that M∗(s) and hence ∆∗(s)

is Hurwitz.

Unfortunately, while necessary, condition (19) is not sufficient, as illustrated in the example

below.

Example 2: Assume

d1(s) = s2 − s+ 5, n1(s) = 1, d2(s) = s2 + s, n2(s) = s+ 1,

A0 =

[
1 1

−1 −1

]
→ σ(A0) = {0, 0}.

It is easily seen that p1(0, s) = d1(s) and p2(0, s) = d2(s) have no common zero in C+, however

∆∗(s) = (s + 1)(s3 + 0s2 + 3s + 5) is not Hurwitz. Note, however, that a matrix A0 such that

M∗(s) is Hurwitz exists. For instance

A0 =

[
−12 6

3 −2

]
.

As far as the stabilization problem is concerned, due to the structure of the overall system

matrix A = A + BA0C, it is immediately seen that this is a static output feedback problem,

where A0 is the static output feedback matrix. Notice that this is consistent with what we said

in section II and, in particular, with equation (3). Unfortunately, it is well known that the static

output feedback problem is difficult and still unsolved (see [11] for a survey).



When Kimura’s condition [9] is satisfied, which in this specific case means that K =
∑n

i=1 ki ≤

2n − 1, then a solution can always be found. The case when all hi(s) are first order transfer

functions trivially falls in this case, but it is interesting to notice that the structure of M∗(s) allows

to immediately find a diagonal solution A0. Indeed, if we assume w.l.o.g. that di(s) = s − λi
and ni(s) = βi, then it is easily seen that for [A0]ii = λi+1

βi
, we get

di(s)− ni(s)[A0]ii = s− λi + βi
λi + 1

βi
= s+ 1,

and hence for

A0 = diag

{
λ1 + 1

β1

, . . . ,
λn + 1

βn

}
we obtain ∆∗(s) = (s+ 1)n.

A similar reasoning applies to the case when all transfer functions hi(s) are of second order

with a stable zero. If so, we may assume without loss of generality that di(s) = s2 + ais + bi

and ni(s) = cis+ pi, with ci · pi > 0. So, a sufficiently large ri > 0 can be found such that

di(s) + sign(ci)rini(s) = s2 + (ai + |ci|ri)s+ (bi + |pi|ri)

has all positive coefficients. But then, by Descartes’ rule of signs, the polynomial is Hurwitz

and A0 = diag {sign(c1)r1, . . . , sign(cn)rn} is the matrix that stabilizes the system.

Generally speaking, the stabilization by means of a diagonal A0 is possible if and only if, for

every i ∈ [1, n], there exists [A0]ii such that di(s)− [A0]iini(s) is Hurwitz, a condition that can

be easily tested via the Routh-Hurwitz criterion, or by the root locus criterion (or by Nyquist

criterion) by noticing that this is equivalent to find Ki such that the feedback system Kihi(s)
1−Kihi(s)

is

BIBO stable. Indeed, a simple root-locus argument allows to say that if each hi(s) is minimum

phase, and either one of the following two conditions holds: (a) the relative degree of each hi(s)

(namely deg di(s)− deg ni(s)) is not greater than 1 or (b) the relative degree of each hi(s) is 2

and the sum of the poles is smaller than the sum of the zeros; then a sufficiently large Ki can

be found such that Kihi(s)
1−Kihi(s)

is BIBO stable [11].

Stabilization by means of a diagonal A0 is referred to in [6] as solely stabilization, to mean

that each single agent can be independently stabilized, as opposed to cooperative stabilization,

obtained by means of a matrix A0 whose off-diagonal entries are not all zeros. In the special

case when H(s) is a scalar matrix, solely stabilization and cooperative stabilization prove to

be equivalent properties for certain classes of functions h(s), but they are nonetheless distinct.



However, even when a diagonal scalar matrix A0 cannot be found, the stabilization problem can

be significantly simplified, as shown in the following proposition that extends a result given in

[6].

Proposition 4: Given a scalar matrix H(s) = h(s)In, with strictly proper diagonal entries

h(s) = n(s)
d(s)
∈ R(s), the following facts hold:

i) If n is odd, there exists A0 such that det[d(s)In − A0n(s)] is Hurwitz if and only if there

exists a scalar matrix A0 for which this is true.

ii) If n is even, there exists A0 such that det[d(s)In − A0n(s)] is Hurwitz if and only if there

exists a block-diagonal A0, with 2× 2 identical diagonal blocks, for which this is true.

Proof: Clearly, for each item only one implication needs to be proved. According to [6],

[12], if there exists A0 such that det[d(s)In − A0n(s)] is Hurwitz, then, for every λ ∈ σ(A0),

p(λ, s) = d(s)− λn(s) is Hurwitz.

i) If n is odd then at least one of the eigenvalues of A0, say λ∗, is real, but then we have that

A0 = λ∗In is the desired diagonal matrix.

ii) If n is even and at least one of the eigenvalues of A0 is real, we can apply the same reasoning

as in point i) (and the 2×2 diagonal blocks are, in fact, diagonal). If all the eigenvalues of A0 are

complex, then we can always assume that they are all distinct conjugate pairs σi±jωi, i ∈ [1, n/2]

(indeed if A0 makes ∆∗(s) Hurwitz, then so does a slightly perturbed version of it, and the

eigenvalues of A0 are a continuous function of its parameters). Let T be a nonsingular matrix

such that

T−1A0T = diag

{[
σ1 ω1

−ω1 σ1

]
, . . . ,

[
σn/2 ωn/2

−ωn/2 σn/2

]}
.

Then the result is true, for instance, for

A0 = diag

{[
σ1 ω1

−ω1 σ1

]
, . . . ,

[
σ1 ω1

−ω1 σ1

]}
.

The previous result, for n odd, allows us to derive a sufficient condition for stabilizability in

the general non-homogeneous case.

Proposition 5: Set d(s) :=
∏n

i=1 di(s) and n(s) :=
∏n

i=1 ni(s). If K =
∑n

i=1 ki =
∑n

i=1 deg di(s)

is an odd number and there exists Ã0 such that det[d(s)IK − Ã0n(s)] is Hurwitz, then there

exists A0 such that ∆∗(s) is Hurwitz.



Proof: If the assumptions in the proposition hold, then, as in the proof of the previous

proposition, there exists λ ∈ R such that d(s)− λn(s) =
∏n

i=1 di(s)− λ
∏n

i=1 ni(s) is Hurwitz.

But then for

A0 =


0 1

. . . . . .
. . . 1

λ 0


the matrix M∗(s) has determinant d(s)− λn(s) and hence it is Hurwitz.

The converse, however, is not true, as shown by the simple example hi(s) = 1/(s−1), (namely

di(s) = (s− 1), ni(s) = 1) for i ∈ [1, 3], for which A0 (= −ρI3, ρ > 1) can be found such that

∆∗(s) is Hurwitz, but the stabilization problem for d(s) = (s−1)3 and n(s) = 1 is not solvable.

As a general statement, it is rather intuitive that solely stabilization is a stronger property with

respect to cooperative stabilization for diagonal matrices H(s). A guess one could make is that

they are equivalent properties for transfer functions with no zeros, and hence described in the

form

hi(s) =
βi
di(s)

, βi ∈ R \ {0}, deg di ≥ 1.

However, this is not generally true, as shown by the following

Example 3: Assume

d1(s) = s2 − s+ 5, n1(s) = 1, d2(s) = s2 + 2s, n2(s) = 1.

It is easily seen that d1(s)− [A0]11n1(s) = s2 − s+ (5− [A0]11) is never Hurwitz, and hence a

diagonal solution A0 does not exist. However, for

A0 =

[
2 2

4 −4

]
we get

∆∗(s) = s4 + s3 + 5s2 + 2s+ 4,

which can be verified to be Hurwitz by means of the Routh-Hurwitz criterion.

Up to now we have derived sufficient conditions for stabilizability. We now provide a necessary

condition for diagonal matrices H(s) whose diagonal entries hi(s) = ni(s)
di(s)

have all relative

degree greater than or equal to 2. Assume without loss of generality, that each di(s) is monic



and hence can be described as di(s) = ski +
∑ki−1

j=0 dijs
j . By recalling the standard formula for

the determinant of a matrix:

∆∗(s) =
∑
π

(−1)sign(π)[M∗(s)]1π(1) . . . [M
∗(s)]nπ(n),

where the summation is taken over all possible permutations π of the first n positive integers,

we can easily deduce that

∆∗(s) =
n∏
i=1

di(s)−
n∑
i=1

aiini(s) ·

(∏
j 6=i

dj(s)

)
+ ∆lo(s),

where ∆lo(s) is a polynomial of lower order with respect to the other two terms. As the relative

degree of each hi(s) is greater than or equal to 2, then

deg

(
n∏
i=1

di(s)

)
≥ deg

(
n∑
i=1

aiini(s)

(∏
j 6=i

dj(s)

))
+ 2,

and hence the leading coefficient (the coefficient of sK , K =
∑

i=1 ki), as well as the coefficient

of sK−1 in ∆∗(s) depend uniquely on
∏n

i=1 di(s). So, a necessary condition for ∆∗(s) to be

Hurwitz is that the coefficient of sK−1 in ∆∗(s),
∑n

i=1 di,ki−1, is strictly positive.

Example 4: Assume

d1(s) = s2 − s+ 5, n1(s) = 1, d2(s) = s2 + s, n2(s) = 1.

It is easily seen that d1(s)d2(s) = s4 + 0s3 + 4s2 + 5s, while deg nidj = 2 and deg ninj = 1.

Consequently, for every choice of A0, we have ∆∗(s) = s4 + 0s3 + as+ b,∃ a, b ∈ R, which is

never Hurwitz.
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