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Computing the projected reachable set of stochastic
biochemical reaction networks modelled by

switched affine systems
Francesca Parise, Maria Elena Valcher and John Lygeros

Abstract—A fundamental question in systems biology is what
combinations of mean and variance of the species present in
a stochastic biochemical reaction network are attainable by
perturbing the system with an external signal. To address this
question, we show that the moments evolution in any generic net-
work can be either approximated or, under suitable assumptions,
computed exactly as the solution of a switched affine system.
We then propose a new method to approximate the reachable
set of such switched affine system. A remarkable feature of our
approach is that it allows one to easily compute projections of the
reachable set for pairs of moments of interest, without requiring
the computation of the full reachable set, which can be prohibitive
for large networks. As a second contribution, we also show how to
select the external signal in order to maximize the probability of
reaching a target set. To illustrate the method we study a renown
model of controlled gene expression and we derive estimates of
the reachable set, for the protein mean and variance, that are
more accurate than those available in the literature and consistent
with experimental data.

I. INTRODUCTION

One of the most impressive results achieved by synthetic
biology in the last decade is the introduction of externally
controllable modules in biochemical reaction networks. These
are biochemical circuits that react to external signals, as for
example light pulses [1], [2], [3] or concentration signals [4],
[5], allowing researchers to influence and possibly control the
behavior of cells in vivo. To fully exploit these tools, it is
important to first understand what range of behaviors they
can exhibit under different choices of the external signal. For
deterministic systems, this amounts to computing the set of
states that can be reached by the controlled system trajectories
starting from a known initial configuration [6], [7]. Since
chemical species are often present in low copy numbers
inside the cell, biochemical reaction networks can however be
inherently stochastic [8]. In other words, if we apply the same
signal to a population of identical cells, then every cell will
have a different evolution (with different likelihood), requiring
a probabilistic analysis.
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If we interpret each cell as an independent realization, we
can then study the effect of the external signal on a population
of cells by characterizing how such a signal influences the
moments of the underlying stochastic process. Specifically, in
this paper we pose the following question:

“What combinations of moments of the stochastic process
can be achieved by applying the external signal?”

This approach is motivated for example by biotechnology
applications, where one would like to control the average
behavior of the cells in large populations, instead of each cell
individually [1], [2], [3], [4], [5], [9], [10], [11]. More on the
theoretical side, this perspective can be useful to investigate
fundamental questions on the role of noise in stochastic
biochemical reaction networks, as in the seminal work [12]. It
is well known for example that gene expression noise can be
beneficial for some cell functions and damaging for others.
For instance, [13] found that cell-to-cell variability due to
gene expression noise can lead to significant improvements in
the response of a population to antibiotic challenges. On the
other hand, some processes, as the ones related to organisms
development, rely on precise spatial and temporal events
sequencing and are thus very sensitive to noise [14]. To this
day, researchers are not unanimous on whether in natural
circuits the amount of gene expression noise is subject to
universal scaling laws (the most common conjecture being
that CV 2 = 1/E[mRNA]) or whether it is dependent on the
promoter architecture (and thus subject to natural selection)
[15]. Being able to exploit externally controllable modules as
the ones considered in this paper to artificially tune the level
of noise in a system, can be fundamental to help researchers
understand the causes and most importantly the consequences
of gene expression noise. The method suggested in this paper
is a first step in this direction since it allows one to quantify
the levels of noise (e.g. the mean and variance combinations)
achievable by externally controllable modules, thus enabling
their use in future research.

The cornerstone of our approach is the observation that
while the number of copies in each cell is stochastic, the
evolution of the moments is deterministic. Consequently, the
above question can be reformulated as a reachability problem
in the moment space. To address such a problem we exploit
two specific properties of the application at hand:
P1) Projected reachable set: biologists are often interested in

analyzing the behavior of only a few chemical species of
the possibly many involved in the network. Consequently,
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one is usually only interested in computing the projection
of the reachable set (which is a high-dimensional object)
on some low-dimensional space of interest.

P2) Input structure: we consider controlled biochemical net-
works which are used in finite-time experiments. Con-
sequently, we are interested in the finite-time reachable
set and we assume that the external signal can change
only at K pre-assigned instant of times, for example
corresponding to measurements or cell dilutions, within
a finite set of cardinality I .

Thanks to P2), the moments evolution can be either described
or approximated by a switched affine system (with I modes
and K fixed switching instants). Our first contribution is to
propose a method to approximate the reachable set of such
a switched affine system by exploiting its specific structure,
that is, the fact that the switching signal is a control variable
and that the dynamics in each mode are autonomous and
affine. Our method is an extension of the hyperplane method,
originally proposed in [16] for linear system, and allows one
to compute directly the projection of the reachable set, without
requiring the computation of the entire reachable set first, thus
fully exploiting P1). Our core contribution is to outsource
the complexity of computing the constants required by the
hyperplane method, which depend on the exponential number
of possible sequences, to a mixed integer linear program
(MILP) solver. More precisely, switching between I modes
at K time-points leads to IK different switching inputs. Our
MILP formulation involves only (I+1)K continuous variables
and IK discrete variables. The heavy lifting is thus done by
the MILP solver, for which powerful standard tools are readily
available [17], [18]. A detailed comparison of our method
with the vast literature on reachability analysis is given in
Section III-C.

As a second contribution we show how to apply the pro-
posed reachability method to biochemical reaction networks
by distinguishing two cases:

1) If all the reactions follow the laws of mass action kinetics
and are at most of order one, the system of moments
equations is switched affine. Consequently, for this class
of networks, the above question can be solved by directly
applying the newly suggested hyperplane method in the
moments space;

2) For all other reaction networks the moments equations
are in general non-closed (i.e., the evolution of mean and
variance depends on higher order moments). We show
however that the evolution of the probability of being in
a given state can be described by an infinite dimensional
switched system and that the desired moments can be
computed as the output of such system. We then show:
i) How to approximate such an infinite dimensional
system with a finite dimensional one, by extending the
finite state projection method [19] to controllable net-
works, ii) How to compute the reachable set of the finite
dimensional system by applying the newly suggested
hyperplane method in the probability space, and iii) How
to recover an approximation of the original reachable set
from the reachable set of the finite dimensional system.

As a third contribution, in the last part of the paper we
change perspective and, instead of focusing on population
properties, we consider the behaviour of a single cell (i.e., a
single realization of the process), given a fixed initial condition
or an initial probability distribution. Such perspective has been
commonly employed for the case without external signals, see
e.g. [19], [20], [21], [22]. Our objective is to show how the
external signal can be used to control single cell realizations
by posing the following question

“What external signal should be applied to maximize the
probability that the cell trajectory reaches a prespecified
subset of the state space at the end of the experiment?”

We show that such a problem can be addressed by using
similar tools as those derived for the population analysis.

Outline: In Section II we present the hyperplane method.
In Section III-A we review how to compute the hyperplane
constants for linear systems, while in Section III-B we propose
a new procedure for switched affine systems. We compare our
method with the literature in Section III-C and comment on
possible extensions to infinite reachable sets in Section III-D.
In Section IV we introduce stochastic biochemical reaction
networks and the controlled chemical master equation (CME).
Additionally, we recap how to derive the moments equations
from the CME (Section IV-A) and we derive an extension of
the finite state projection method to controlled biochemical
networks (Section IV-B). In Section V we show how to
compute the reachable set of biochemical networks and in
Section VI we derive the results on single cell realizations.
Section VII illustrates our theoretical results on a gene ex-
pression case study.

We note that part of the results of this paper appeared in our
previous works [23], [24]. Specifically, in [23] we first suggest
the use of the hyperplane method to compute the reachable set
of biochemical networks with linear moment equations, which
we then adapted in [24] to the case of switched affine moment
equations. As better detailed in Section IV-A, the assumptions
made both in [23] and [24] do not allow for bimolecular
reactions, which are instead present in the vast majority of
biochemical networks. The key contribution of this paper is the
generalisation of our analysis to any biochemical network by
using the approach described in point 2) above. The analysis
of single cell realizations is also entirely new.

Notation: Given a < b ∈ N, we set N[a, b] := {a, a +
1, . . . , b}. Given a set S, the symbol ∂S denotes its boundary,
conv(S) its convex hull and |S| its cardinality. For a vector
x ∈ Rn, xp := [x]p denotes its pth component, |x| :=

[|x1|>, . . . , |xn|>]> and ‖x‖∞ := maxp=1,2,...,n |xp| denotes
the infinity norm. 1 denotes a vector of all ones, ei is the
ith canonical vector. Given two random variables Z1, Z2, we
denote by V[Z1] and V[Z1, Z2] their variance and covariance.

II. REACHABILITY TOOLS

A. The reachable set and the hyperplane method

Consider the n-dimensional nonlinear control system

ẋ(t) = f(x(t), σ(t)), t ≥ 0, (1)
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where x is the n-dimensional state and σ the m-dimensional
input function. Set a final time T > 0 and let S be the set
of admissible input functions that map [0, T ] into Rm. We
assume that the function f : Rn × Rm → Rn is such that,
for every initial condition x(0) ∈ Rn and every input function
σ ∈ S, the solution of (1), denoted by x(t;x(0), σ), t ≥ 0, is
well defined and unique at every time t ≥ 0. The reachable
set of system (1) at time T is defined as the set of all states
x ∈ Rn that can be reached at time T , starting from x(0), by
using an admissible input function σ ∈ S.

Definition 1 (Reachable set at time T ). The reachable set at
time T > 0 from x(0) = x0, for system (1) with admissible
input set S, is

RT (x0) := {x ∈ Rn | ∃ σ ∈ S : x = x(T ;x0, σ)}. (2)

One can show that under mild assumptions (see e.g. Fil-
ippov’s theorem, [25, pg 119]) the set RT (x0) is compact.
We show in the subsequent Corollaries 1 and 2 that this is
indeed the case for the linear and switched affine systems
considered in this paper. Computing the reachable set for
nonlinear systems is in general a very difficult task. For
the case of linear systems with bounded inputs a method to
construct an outer approximation ofRT (x0) as the intersection
of a family of half-spaces that are tangent to its boundary (see
Fig. 1) was proposed in [16].

Fig. 1. Illustration of the hyperplane method for a convex reachable set
RT (x0) (in blue). The external parallelogram is the outer approximation, the
region in between the dotted lines is the inner approximation.

We present here a generalisation of this method to sys-
tem (1). For a given direction c ∈ Rn, let us define

vT (c) := max
x∈RT (x0)

c>x, (3)

where, for simplicity, we omitted the dependence of vT (c) on
the initial condition x0. Let

HT (c) := {x ∈ Rn | c>x = vT (c)} (4)

be the corresponding hyperplane. By definition of the constant
vT (c), the associated half-space

HT (c) := {x ∈ Rn | c>x ≤ vT (c)} (5)

is a superset of RT (x0). We note that if ∂RT (x0) is smooth,
then HT (c) is the tangent plane to ∂RT (x0). By evaluating
the above hyperplanes and half-spaces for various directions,

one can construct an outer approximation of the reachable set,
as illustrated in the next theorem. If the reachable set is convex
then an inner approximation can also be derived.

Theorem 1 (The hyperplane method [16]). Given system (1),
an initial condition x0 ∈ Rn, a fixed time T > 0, an integer
number D ≥ 2, and a set of D directions C := {c1, . . . , cD},
define the half-spaces HT (cd) as in (5), for d = 1, . . . , D.

1) The set

RoutT (x0) := ∩Dd=1HT (cd)

is an outer approximation of the reachable set RT (x0)
at time T starting from x0.

2) If the set RT (x0) is convex and for each d = 1, 2, . . . , D,
we select a (tangent) point

x?T (cd) ∈ RT (x0) ∩ HT (cd) (6)

then the set

RinT (x0) := conv
(
{x?T (cd), d = 1, 2, . . . , D}

)
is an inner approximation of the reachable set RT (x0)
at time T starting from x0. �

Remark 1. We note that by construction the outer approx-
imation RoutT (x0) is a convex object. Specifically, when the
number of hyperplanes tends to infinity and their normal
vectors sample uniformly the ball of any norm then RoutT (x0)
approximates exactly the convex hull of RT (x0) (which is an
outer approximation of RoutT (x0) itself). Similarly, for any set
RT (x0), the set RinT (x0) is an inner approximation of the
convex hull of RT (x0). However, the inner approximation of
the convex hull of a set is an inner approximation of the set
itself only if such set is convex, as assumed in the previous
theorem. �

The main advantage of this method is that hyperplanes
are very easy objects to handle and visualise. The main
disadvantage is that the higher the dimension n of the state
space, the higher in general is the number of directions D
required to obtain a good characterisation of the reachable set.
In the next subsection we show that, in cases when only the
projection of the reachable set on a plane is needed, one can
consider only hyperplanes that are perpendicular to the plane
of interest, thus reducing significantly the computational effort.

B. The output reachable set

Let the output of system (1) be

y(t) = Lx(t), (7)

for L ∈ Rp×n, and the output reachable set be the set of all
output values that can be generated at time T from x(0) = x0,
by using an admissible input function σ ∈ S.

Definition 2 (Output reachable set at time T ). The output
reachable set RyT (x0) from x0 at time T > 0, for system (1)
with admissible input set S and output as in (7), is

RyT (x0) := {y ∈ Rp | ∃ x ∈ RT (x0) : y = Lx}.
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For simplicity, in the following we restrict our discussion
to the case of a two-dimentional output vector, that is

y(t) = Lx(t) =

[
l>1 x(t)
l>2 x(t)

]
∈ R2, (8)

for some l1, l2 ∈ Rn, the generalization to higher dimentions
is however immediate. Note that, for any pair of indices
i, j ∈ {1, . . . , n}, i 6= j, one can recover the projection of
the reachable set RT (x0) onto an (xi, xj)-plane of interest by
imposing l1 = ei and l2 = ej . The two-dimentional output
vector case can therefore be applied to study the relation
between the mean behavior of two species or between mean
and variance of a single species in large biochemical networks.

In the following theorem we show that inner and outer
approximations of RyT (x0) can be computed by selecting only
hyperplanes that are perpendicular to the plane of interest.

Theorem 2 (Projection on a two dimensional subspace).
Consider system (1), with output (8) and initial condition
x0 ∈ Rn. Let T > 0 be a fixed time, D ≥ 2 an integer number
and choose D values γd ∈ R. Set cd := l2 − γdl1 ∈ Rn and

Hy,upT (γd) := {y ∈ R2 | y2 ≤ γdy1 + vT (cd)},
Hy,lowT (γd) := {y ∈ R2 | y2 ≥ γdy1 − vT (−cd)},

where vT (cd) are as in (3). Then the set

Ry,outT (x0) := ∩Dd=1[Hy,upT (γd) ∩Hy,lowT (γd)] (9)

is an outer approximation of RyT (x0). Moreover, if RT (x0) is
convex then the set

Ry,inT (x0) := conv
(
{Lx?T (cd), Lx?T (−cd), d = 1, 2, . . . , D}

)
,

(10)

where x?T (cd) is defined as in (6), is an inner approximation
of RyT (x0). �

Proof: By definition, for any ȳ ∈ RyT (x0) there exists
an x̄ ∈ RT (x0) such that ȳ> = [l>1 x̄, l

>
2 x̄]. By Theorem 1,

for any direction cd it holds that RT (x0) ⊂ HT (cd). Conse-
quently, x̄ ∈ RT (x0) implies x̄ ∈ HT (cd). By substituting the
definition of cd given in the statement we get

x̄ ∈ HT (cd)⇔ (cd)>x̄ ≤ vT (cd)⇔
⇔ (l2 − γdl1)>x̄ ≤ vT (cd)⇔ l>2 x̄ ≤ γdl>1 x̄+ vT (cd).

The last inequality implies that ȳ> = [l>1 x̄, l
>
2 x̄] satisfies

ȳ2 ≤ γdȳ1 + vT (cd). Hence ȳ ∈ Hy,upT (γd). By applying
the same reasoning for the direction −cd one gets −ȳ2 ≤
−γdȳ1 + vT (−cd) or equivalently ȳ2 ≥ γdȳ1 − vT (−cd).
Hence ȳ ∈ Hy,lowT (γd). Consequently,RyT (x0) ⊆ Hy,upT (γd)∩
Hy,lowT (γd) for any γd and therefore RyT (x0) ⊆ Ry,outT (x0). If
RT (x0) is convex, then RyT (x0) is convex as well. The points
Lx?T (cd) and Lx?T (−cd) belong to RyT (x0) by construction.
Consequently, by convexity, it must hold that Ry,inT (x0) ⊆
RyT (x0).

III. COMPUTING THE TANGENT HYPERPLANES

The success of the hyperplane method hinges on the possi-
bility of efficiently evaluating, for any given direction c, the
constant vT (c) in (3). Note that this problem is equivalent to
the following finite time optimal control problem

vT (c) := max
σ∈S

c>x(T ) (11)

s.t. ẋ(t) = f(x(t), σ(t)), ∀t ∈ [0, T ],

x(0) = x0.

In the rest of this section, we aim at solving (11) for systems
with the specific structure needed to analyse biochemical
reaction networks. To this end, we start by extending in
Section III-A the result originally derived in [16] for linear
systems with continuous inputs to linear systems with discrete
inputs. This extension is needed because in most biological
applications the input is indeed discrete (see e.g. the gene
expression system discussed in Section VII-A1, where the
input is of the ON/OFF type). Linear systems can only be
used to describe the moment evolution of a restricted class of
biochemical networks. In the subsequent Section IV we show
that in general one obtains a switched affine system. In Section
III-B we suggest a method to solve (11) for such a class of
switched affine systems.

A. Linear systems with bounded input

The hyperplane method was originally proposed for linear
systems with bounded inputs

ẋ(t) = Ax(t) +Bσ(t), (12)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and σ(t) ∈ Rm.
Since biological signals are non-negative and bounded, we
here make the following assumption on the input set S.

Assumption 1. The input function σ belongs to the admissible
set SΣ := {σ | σ(t) ∈ Σ,∀t ∈ [0, T ]}, where Σ = Σ1 × . . .×
Σm. Moreover, there exist σ̄r > 0, r ∈ N[1,m], such that
either (a) every set Σr is the interval Σcr := [0, σ̄r] (continuous
and bounded input set), or (b) for every set Σr there exists
2 ≤ qr < +∞ such that Σdr :=

{
σ1
r , σ

2
r , . . . , σ

qr
r

}
⊂ R≥0

(finite input set), with the convention σ1
r < σ2

r < . . . < σqrr ,
σ1
r = 0 and σqrr = σ̄r. We set Σc := Σc1 × . . . × Σcm, Σd :=

Σd1× . . .×Σdm, and denote by SΣc and SΣd the corresponding
admissible sets.

In the case of a continuous and bounded input set, i.e. under
Assumption 1-(a), it was shown in [16] that it is possible to
solve the control problem in (11) in closed form by using the
Maximum Principle [25].

Proposition 1 (Tangent hyperplanes for linear systems with
bounded and continuous inputs [16]). Consider system (12)
and suppose that Assumption 1-(a) holds. Define the following
admissible input function, expressed component-wise for every
rth entry, r = 1, . . . ,m, as

σ?r (t) : =


σ̄r if c>eA(T−t)br > 0;

0 if c>eA(T−t)br < 0;

0 ≤ σr ≤ σ̄r if c>eA(T−t)br = 0;

(13)
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where br denotes the rth column of B. Then

vT (c) = c>eATx0 +
∑m
r=1 σ̄r

∫ T
0

[
c>eA(T−t)br

]
+
dt, (14)

where [g(t)]+ denotes the positive part of the function g(t),
namely [g(t)]+ = g(t) when g(t) > 0 and zero otherwise.
Suppose additionally that the pair (A, br) is reachable, for
every r ∈ N[1,m]. Then there exists no interval [τ1, τ2], with
0 ≤ τ1 < τ2 ≤ T , such that c>eA(T−t)br = 0 for every
t ∈ [τ1, τ2]. Consequently, a tangent point can be obtained as

x?T (c) := eATx0 +
∫ T

0
eA(T−t)Bσ?(t)dt. (15)

�

By using the explicit characterisation given in Proposition 1
together with Theorems 1 and 2, one can efficiently construct
both an inner and an outer approximation of the (output)
reachable set for linear systems with continuous and bounded
input set Σc, as summarised in the next corollary. Therein
we also prove that the result in [16] can be extended from
continuous and bounded input sets to finite input sets Σd.

Corollary 1 (The hyperplane method for linear systems).
Consider system (12) and suppose that either Assumption 1-
(a) or Assumption 1-(b) holds. Let vT (cd) and x?T (cd) be
computed as in (14) and (15). Then RT (x0) is compact.
Moreover RoutT (x0) and RinT (x0) (Ry,outT (x0) and Ry,inT (x0),
resp.) as defined in Theorem 1 (Theorem 2, resp.) are outer
and inner approximations of RT (x0) (of RyT (x0), resp.).

Proof: In the case of continuous and bounded input,
that is, under Assumption 1-(a), it is well known that the
(finite-time) reachable setRT (x0) is compact and convex. The
statement is therefore a trivial consequence of Theorems 1, 2
and Proposition 1. We here show that the same result holds
also under Assumption 1-(b). The proof of this second part
follows from the fact that the reachable set RcT (x0), obtained
by using the continuous input set Σc, and the reachable set
RdT (x0), obtained by using the discrete input set Σd, coincide.
To prove this, let RbbT (x0) be the reachable set obtained using
Σbbr := {0, σ̄r} for any r, that is, the set of vertices of Σc.
Consider now an arbitrary point x̄ ∈ RcT (x0), which is a
compact set. By definition there exists an admissible input
function in Σc that steers x0 to x̄ in time T . Since Σc is a
convex polyhedron, by [26, Theorem 8.1.2], system (12) with
input set Σc has the bang-bang with bound on the number of
switchings (BBNS) property. That is, for each x̄ ∈ RcT (x0)
there exists a bang-bang input function in Σbb that reaches x̄
in the same time T with a finite number of discontinuities.
Thus x̄ ∈ RbbT (x0). Since this is true for any x̄ ∈ RcT (x0),
we get RcT (x0) ⊆ RbbT (x0). From Σbb ⊆ Σd ⊆ Σc we get
RbbT (x0) ⊆ RdT (x0) ⊆ RcT (x0), concluding the proof.

B. Switched affine systems

In this section, we propose an extension of the hyperplane
method to the case of a switched affine system of the form

ẋ(t) = Aσ(t)x(t) + bσ(t), (16)

where the switching signal σ(t) ∈ N[1, I] is the input
function, I ≥ 2 is the number of modes, x(t) ∈ Rn and

Ai ∈ Rn×n, bi ∈ Rn for all i ∈ N[1, I]. We make the
following assumption.

Assumption 2. The switching signal σ(t) switches K times
within the finite set N[1, I] at fixed switching instants 0 = t0 <
. . . < tK+1 = T , that is, σ ∈ SKI , where

SKI := {σ | σ(t) = ik ∈ N[1, I],∀t ∈ [tk, tk+1), k ∈ N[0,K]}.

For every k ∈ N[0,K] and i ∈ N[1, I] we define Āki :=

eAi(tk+1−tk) and b̄ki = [
∫ (tk+1−tk)

0
eAiτdτ ]bi. Moreover, we

set xk := x(tk). Note that under Assumption 2 the reachable
set of system (16) consists of a finite number of points that
can be computed by solving the state equations for each
possible switching signal. Since the cardinality of the set
SKI grows exponentially with K, this approach is however
computationally infeasible even for small systems. We here
show that, on the other hand, the hyperplane constants defined
in (11) can be computed by solving a mixed integer linear
program (MILP), thus allowing us to exploit the sophisticated
software that has been developed to solve large MILPs in the
last years [17], [18].

Proposition 2 (Tangent hyperplanes for switched affine sys-
tems). Consider system (16) and suppose that Assumption 2
holds. Take a vector M ∈ Rn such that M ≥ |xk| component-
wise for all k ∈ N[0,K]. Then

vT (c)= max
xk,zki ,γ

k
i

c>xK+1 (17a)

s.t. zk+1
i ≤ (Āki xk + b̄ki ) + M(1− γki ), (17b)

zk+1
i ≥ (Āki xk + b̄ki )−M(1− γki ), (17c)

zk+1
i ≥ −Mγki , zk+1

i ≤Mγki , (17d)

zki ∈ Rn, ∀k ∈ N[1,K + 1],∀i ∈ N[1, I], (17e)

γki ∈ {0, 1}, ∀k ∈ N[0,K],∀i ∈ N[1, I], (17f)

xk =
∑I
i=1 z

k
i ∈ Rn, ∀k ∈ N[1,K + 1], (17g)∑I

i=1 γ
k
i = 1, ∀k ∈ N[0,K], (17h)

x0 ∈ Rn assigned. (17i)

Remark 2. The constraints (17b-d) are the big-M reformula-
tion of the system dynamics; the continuous variables zki in
(17e) represent the state that one would get at step k if the
system evolves from k− 1 using the mode i multiplied by γki ;
the discrete variable γki in (17f) is a boolean variable taking
value 1 if the system is in mode i at step k; the fact that at
each step only one mode is used is encoded in (17g-h); (17i)
is the initial condition. �

Proof: To prove the statement we follow a procedure
similar to the one in [27, Section IV.A]. Under Assumption 2
the switching signal σ(t) is such that σ(t) = ik,∀t ∈
[tk, tk+1),∀k ∈ N[0,K]. Therefore, the finite time optimal
control problem in (11) can be rewritten as

vT (c) = max
ik∈{1,...,I}

c>xK+1 (18)

s.t. xk+1 = Ākikxk + b̄kik ∀k ∈ N[0,K]

x0 ∈ R assigned.
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Let us introduce the binary variables γki ∈ {0, 1} defined
so that, for each i ∈ N[1, I] and k ∈ N[0,K], γki = 1
if and only if the system is in mode i in the time interval
[tk, tk+1). Moreover, let us introduce a copy of the state
vector for each possible update of the system in each possible
mode: zk+1

i = (Āki xk + b̄ki )γki . Then (18) is equivalent to the
following optimisation problem

vT (c) := max
xk,zki ,γ

k
i

c>xK+1 (19)

s.t. zk+1
i = (Āki xk + b̄ki )γki , ∀i ∈ Σ,∑I
i=1 γ

k
i = 1, ∀k ∈ N[0,K],

xk =
∑I
i=1 z

k
i , ∀k ∈ N[1,K + 1],

x0 ∈ R assigned.

Finally, by using the big-M method in [28, Eq. (5b)], the first
equality constraint in the optimization problem (19) can be
equivalently replaced by

zk+1
i ≤ (Āki xk + b̄ki ) + M(1− γki ), zk+1

i ≥ −Mγki ,

zk+1
i ≥ (Āki xk + b̄ki )−M(1− γki ), zk+1

i ≤Mγki ,

leading to the equivalent reformulation given in (17).

We summarize our results on the hyperplane method for
switched affine systems in the next corollary, which is an
immediate consequence of Proposition 2 and Theorems 1, 2.

Corollary 2 (The hyperplane method for switched affine
systems). Given system (16), let x0 ∈ Rn be the initial
state and suppose that Assumption 2 holds. Then RT (x0) is
compact. Let vT (cd) be computed as in (17). Then RoutT (x0)
and Ry,outT (x0) as defined in Theorems 1 and 2 are outer
approximations of RT (x0) and RyT (x0), respectively. �

Proof: Under Assumption 2, the reachable set RT (x0)
consists of a finite number IK of points. Each point is obtained
by switching among linear systems K times. Consequently,
RT (x0) is compact. The rest of the proof follows the same
lines as the one of Corollary 1. The only difference among
the hyperplane method for linear and switched affine systems
is the method used to solve (11).

We note that in the case of switched affine systems there
is no guarantee in general that the reachable set is convex.
Consequently, as detailed in Remark 1, an inner approximation
is not available and if one was to consider all possible
directions, then he/she would recover exactly the convex hull
of the projected reachable set (which is an outer approximation
of the true reachable set).

C. Discussion and comparison with the literature

The main result of the previous section is the extension of
the hyperplane method suggested in [16] to switched affine
systems of the form given in (16). We note that the idea
of describing the reachable set as the intersection of tangent
half-spaces is at the core of many reachability methods based
on the concept of support functions. In fact, vT (c) as we
defined in equation (3) is exactly the support function of the
reachable set RT (x0) evaluated for the direction c, see e.g

[29]. In general, both the hyperplane method and methods
based on support functions suffer from two main problems: i)
for generic systems computing the support function is difficult,
ii) to approximate the whole reachable set one needs a number
of directions that is exponential in the system dimension.
What we have shown here is that for biochemical reaction
networks these two problems do not arise because: i) we
showed in Proposition 2 that the burden of computing the
support function for system (16) can be outsourced to an MILP
solver, ii) we showed in Theorem 2 that if one is interested
only in the projection of the reachable set then the number of
directions needed is independent of the system dimension.

It is important to remark that efficient algorithms to tackle
the problem in i) have been proposed in the literature for
many different classes of systems. Specifically, [16] discusses
linear systems with rectangular input constraints, [29], [30],
[31] discuss the case of linear systems whose initial state and
control input belong to generic convex sets, [32], [33] address
linear time-varying systems, [34] discusses bilinear systems
with piecewise constant inputs, while [35], [36] address hybrid
systems. A toolbox based on these methods is described in
[37]. None of the results above can however be applied to
system (16), as we detail next.

Firstly, we note that if the switching sequence σ(t) is fixed
and known, then the switched system ẋ(t) = Aσ(t)x(t) +
Bσ(t)u(t) is actually a linear time-varying system. Therefore
the set of states that such a system can reach when u(t) varies
in the convex control set U can be obtained by using [32]. Our
paper however studies a different reachability problem. In fact
we are interested in computing the set of states that system
(16) can reach when the switching sequence σ(t) varies in the
set I = {1, . . . , I}. Note that in (16) there is no control input
u(t) and the control action is on the switching sequence itself.
Results derived for hybrid systems (e.g. in [35], [36]) cannot
be applied in such a setup because therein the switching is
a function of the continuous state variable and not a control
variable. The closest result to ours is in [34]. Indeed, under
some specific conditions on the matrices Ai and bi, system
(16) can be seen as a bilinear system. However, in [34] one
cannot exploit the fact that only the projection of the reachable
set is needed to tackle problem ii) above.

Secondly, we aim at constructing an approximation of the
reachable set only at the final time T .1 Instead in [29] and
subsequent works the support function of RT is computed by
first computing the support functions of intermediate reachable
sets. This idea of propagating sets of reachable states over time
is at the core of many other types of reachability methods as
well. These include face-lifting methods [38], [39] as well
as methods propagating hyper-rectangles [40], ellipsoids [41],
[42], [43], [44], polytopes [45], [46] or zonotopes [47], [48]
under the assumption that the input belongs to such classes.
For example, we became aware at the time of submission that
the authors of [49] extended our previous works [23], [50]
by suggesting the use of zonotopes. None of these works
is specific for switched systems. Moreover, most of these

1A similar idea is used in [16], [33], [34] where the optimization problem
in (11) is solved by applying Pontryagin maximum principle instead of
formulating an MILP.
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algorithms can only be applied for the computation of the
whole reachable set. Therefore, one cannot take advantage
of the fact that only a low projection of the reachable set
is needed. Finally, we note that in [51] the problem of how
to reconstruct the whole reachable set from two dimensional
projections is discussed. This is different from our setup where
instead the object of interest is the projection itself.

D. Infinite-time reachable sets

Since controlled reaction networks are typically employed
in finite-time experiments, in this paper we focus on the
computation of the finite-time reachable set. Nonetheless, our
results could be extended for computing the infinite-time
reachable set, as defined next.

Definition 3 (Infinite-time reachable set). The infinite-time
reachable set from x0 for system (12) is

R(x0) := {x ∈ Rn | ∃T > 0 s.t. x ∈ RT (x0)}.

For the case of linear systems discussed in Section III-A
we refer to [23] where we prove that the method suggested in
[16] is applicable also to systems with non-negative inputs.

Switched systems of the form given in (16) can be analysed
over the infinite time interval [0,+∞) by imposing that
the switching sequence σ satisfies the following assumption,
which is the equivalent of Assumption 2 for infinite time.

Assumption 2’. The input sequence σ(t) can switch at most
K times in [0,+∞), that is, σ ∈ S∞I

S∞I := {σ |∃tk ≥ 0, ∀k ∈ N[0,K]

s.t. σ(t) = ik ∈ Σ, ∀t ∈ [tk, tk+1)}.

In fact, to compute the constant v(c) of the hyperplane
tangent to R(x0) perpendicularly to the direction c one needs
to solve the infinite-time optimal control problem

v(c) := max
x∈R(x0)

c>x.

Under Assumption 2’, this problem can be solved by means
of dynamic programming by adapting the “switching table
procedure” proposed for infinite time quadratic optimal control
problems in [27, Section V]. We leave the full derivation as
future work.

IV. CONTROLLED STOCHASTIC BIOCHEMICAL REACTION
NETWORKS

A biochemical reaction network is a system comprising S
molecular species Z1, ..., ZS that interact through R reactions.
Let Z(t) = [Z1(t), ..., ZS(t)]> be the vector describing the
number of molecules present in the network for each species
at time t, that is, the state of the network at time t. Since
each reaction r is a stochastic event [8], Z(t) is a stochastic
process. In the following, we always use the upper case to
denote a process and the lower case to denote its realizations.
For example, z = [z1, ..., zS ]> denotes a particular realization
of the state Z(t) of the stochastic process at time t.

A typical reaction r ∈ N[1, R] can be expressed as

ν′1rZ1 + . . .+ ν′SrZS −→ ν′′1rZ1 + . . .+ ν′′SrZS , (20)

where ν′1r, . . . , ν
′
Sr ∈ N and ν′′1r, . . . , ν

′′
Sr ∈ N are the coef-

ficients that determine how many molecules for each species
are respectively consumed and produced by the reaction. The
net effect of each reaction can thus be summarized with
the stoichiometric vector νr ∈ NS , whose components are
ν′′sr − ν′sr for s = 1, . . . , S. We say that a reaction is of order
k if it involves k reactant units (i.e.,

∑S
s=1 ν

′
sr = k) and we

distinguish two classes of reactions:
-uncontrolled reactions that happen, in the infinitesimal inter-
val [t, t+ dt], with probability

αr(θr, z)dt := θr · hr(z) · dt, (21)

where hr(z) is a given function of the available molecules z
and θr ∈ R≥0 is the so-called rate parameter;
- controlled reactions for which there exists an external signal
ur(t) such that the reaction fires at time t with probability

ur(t) · αr(θr, z)dt. (22)

In the following we refer to αr(θr, z) as the propensity of the
reaction and without loss of generality we assume that the con-
trolled reactions are the first Q ones. If hr(z) := ΠS

s=1

(
zs
ν′
sr

)
we say that reaction r follows the laws of mass action kinetics
as derived in [8]. Our analysis can however be applied to
generic functions hr(z), allowing us to model different types
of kinetics, such as the Michaelis-Menten [52, Section 7.3].

To illustrate the following results, we consider a model of
gene expression as running example.

Example 1 (Gene expression reaction network). Consider a
biochemical network consisting of two species, the mRNA (M )
and the corresponding protein (P ), and the following reactions

∅ α1(kr,z)−−−−−−−−→ M M
α3(kp,z)−−−−−−−−→ M + P

M
α2(γr,z)−−−−−−−−→ ∅ P

α4(γp,z)−−−−−−−−→ ∅

where the parameters kr and kp are the mRNA and protein
production rates, while γr and γp are the mRNA and protein
degradation rates, respectively. The empty set notation is used
whenever a certain species is produced or degrades without
involving the other species. In this context, Z = [M,P ]>,
z = [m, p]>, θ = [θ1, θ2, θ3, θ4]> := [kr, γr, kp, γp]

> and the
stoichiometric matrix is

ν := [ν1, ν2, ν3, ν4] =

[
1 −1 0 0
0 0 1 −1

]
.

In the case of mass action kinetics the propensities αr(θr, z)
can be further specified as α1(kr, z) = kr, α2(γr, z) = γr ·
m, α3(kp, z) = kp ·m, α4(γp, z) = γp · p. �

Note that since the propensity of each reaction depends
only on the current state of the system, the process Z(t) is
Markovian. Let p(t, z) := P[Z(t) = z] be the probability that
the realization of the process Z at time t is z. Following the
same procedure as in [8] one can derive a set of equations,
known as chemical master equation (CME), describing the
evolution of p(z, t) as a function of the external signal u(t)
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ṗ(z, t) =

Q∑
r=1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)]ur(t)

+

R∑
r=Q+1

[p(z − νr, t)αr(θr, z − νr)− p(z, t)αr(θr, z)] , ∀z ∈ NS .

(23)

Since the previous set of equations depends on the external
signal u we refer to it as the controlled CME. Typical biochem-
ical reaction networks involve many different species, whose
counts can theoretically grow unbounded. Consequently, the
controlled CME in (23) is a system of infinitely many coupled
ordinary differential equations that cannot be solved, even
for very simple systems. Several analytical and computational
methods have been proposed in the literature to circumvent this
difficulty, see [52], [53], [54] for a comprehensive review. In
the following we limit our discussion to two methods: moment
equations [55] and finite state projection (FSP) [19].

A. The moment equations

We start by considering the case when all the reactions
follow the laws of mass action kinetics and are at most of
order one. In this case for each reaction r the propensity hr(z)
is affine in the molecule counts vector z and one can show
that the moments equations are closed (i.e., the dynamics of
moments up to any order k do not depend on higher order
moments), see for example [56]. Let x≤2(t) be a vector whose
components are the moments of Z(t) up to second order. From
[56, Equations (6) and (7)] one gets

ẋ≤2(t) = A(u(t))x≤2(t) + b(u(t)). (24)

Example 2. Consider the gene expression model of Exam-
ple 1. Assume that the reactions follow the mass action kinetics
and that an external input signal influencing the first reaction,
that is the mRNA production, is available (as in [1], [2], [3],
[4], [5]), so that α1(kr, z) := kr · u(t). Set2

x≤2 := [E[M ],E[P ],V [M,P ],V[P ]]>.

Then the moments evolution over time is expressed as

ẋ≤2(t) = Ax≤2(t) +Bu(t), (25)

where

A =

−γr 0 0 0
kp −γp 0 0
kp 0 −(γr + γp) 0
kp γp 2kp −2γp

 , B =

kr00
0

 .
�

Since the input u(t) may appear in the entries of the A
matrix, the moment equations (24) are in general nonlinear.
To overcome this issue we introduce the following assumption
on the external signal u(t).

Assumption 3. The external signal u(t) can switch at most
K times within the set Σd, as defined in Assumption 1, at
preassigned switching instants 0 = t0 < . . . < tK+1 = T .

2The mRNA follows a birth-death process hence E[M ] = V[M ] [50].

Assumption 3 imposes that the number of switchings and
their timing during a given experiment is fixed a priori.
This assumption can be motivated by the fact that changes
in the external stimulus are costly and/or stressful for the
cells. Moreover, it is trivially satisfied if the stimulus can
only be changed simultaneously with some fixed events, such
as culture dilution or measurements. The great advantage of
Assumption 3 is that, as illustrated in the following remark, it
allows us to rewrite the nonlinear moment equations (24) as a
switched affine system so that the theoretical tools described
in Section III-B can be applied.

Remark 3. The set Σd has finite cardinality I := ΠQ
r=1qr

and we can enumerate its elements as ui, i ∈ N[1, I]. Set
Ai := A(ui) and bi := b(ui), for all i ∈ N[1, I]. For any fixed
external signal u(t) satisfying Assumption 3 we can construct
a sequence of indices in N[1, I] such that, at any time t,
σ(t) = i if and only if u(t) = ui, so that system (24) can be
equivalently rewritten as ẋ≤2(t) = Aσ(t)x≤2(t) + bσ(t). Note
that the switching sequence σ satisfies Assumption 2. �

B. The finite state projection

Let us introduce a total ordering {zj}∞j=1 in the set of
all possible state realizations z ∈ NS . For the system in
Example 1, we could for instance use the mapping

z1 = (0, 0), z2 = (1, 0), z3 = (0, 1), z4 = (2, 0),

z5 = (1, 1), z6 = (0, 2), z7 = (3, 0), z8 = (2, 1), . . .

where (m, p) denotes the state with m mRNA copies and p
proteins (see Fig. 2).

Fig. 2. State space for the gene expression system of Example 1.

Following the same steps as in [19] and setting3 Pj(t) :=
p(zj , t), the controlled CME in (23) can be rewritten as the
nonlinear infinite dimensional system

Ṗ (t) = F (u(t))P (t), (26)

where P (t) is an infinite dimensional vector with entries in
[0, 1]. If the signal u(t) satisfies Assumption 3, then (26) can
be rewritten as an infinite dimensional linear switched system

Ṗ (t) = Fσ(t)P (t), (27)

with switching signal σ(t) constructed from u(t) as detailed
in Remark 3, I = ΠQ

r=1qr modes and matrices Fi := F (ui).
Note that system (27) can also be thought of as a Markov

3Not to be confused with the symbol used to denote the amount of protein.
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chain with countably many states zj ∈ NS and time-varying
transition matrix Fσ(t).

As in the FSP method for the uncontrolled CME [19], one
can try to approximate the behavior of the infinite Markov
chain in (27) by constructing a reduced Markov chain that
keeps track of the probability of visiting only the states
indexed in a suitable set J . To this end, let us define the
reduced order system

˙̄PJ(t) =
[
Fσ(t)

]
J
P̄J(t), P̄J(0) = PJ(0), (28)

where PJ(0) is the subvector of P (0) corresponding to the
indices in J , and [F ]J denotes the submatrix of F obtained
by selecting only the rows and columns with indices in J .
Note that while the full matrix Fσ(t) is stochastic, the reduced
matrix

[
Fσ(t)

]
J

is substochastic. Consequently, the probability
mass is in general not preserved in (28) (i.e. 1>P̄J(t) may
decrease with time). From now on, we denote by P (T ;σ)
and P̄J(T ;σ) the solutions at time T of system (27) and sys-
tem (28), respectively, when the switching signal σ is applied.
The dependence on the initial conditions P (0) and PJ(0) is
omitted to keep the notation compact. As in the uncontrolled
case, the truncated system (28) is a good approximation of
the original system (27) if most of the probability mass lies in
J . However in the controlled case we need to guarantee that
this happens for all possible switching signals. This intuition
is formalized in the following assumption.

Assumption 4. For a given finite set of state indices J , an
initial condition PJ(0), a given tolerance ε > 0 and a finite
instant T > 0,

1
>P̄J(T ;σ) ≥ 1− ε, ∀σ ∈ SKI . (29)

Remark 4. Our subsequent results rely on the assumption that
a set J satisfying Assumption 4 is available. We note that:
i) For a given candidate set J one can find the smallest ε > 0
such that the pair (J, ε) satisfies Assumption 4 by solving an
MILP. In fact Assumption 4 holds if and only if

1− ε ≤ min
σ∈SK

I

1
>P̄J(T ;σ)

s.t. ˙̄PJ(t;σ)=
[
Fσ(t)

]
J
P̄J(t;σ), P̄J(0) = PJ(0).

This problem has the same structure as (11). Therefore, as
illustrated in Section III-B, Assumption 4 can be checked by
solving the MILP (17) for the switched affine system (28) by
setting c = 1 and M = 1.
ii) Finding a good candidate set is usually a recursive pro-
cedure, where one starts with a candidate set J1 (possibly
selected by running a small number of stochastic simulations)
and computes the corresponding error ε1, as in i). If this is
larger than the desired error ε, then a second candidate set
J2 can be obtained by enlarging J1 to include more states and
so on.
iii) Depending on the network it might not always be possible
to find a set J such that Assumption 4 is met for the desired
T and precision ε, e.g. Assumption 4 cannot be met if the
moments blow up in finite-time. Conditions guaranteeing that
this is not the case have been discussed in [57], [58], [59]. �

Under Assumption 4, the following relation between the
solutions of (27) and (28) holds.

Proposition 3 (FSP for controlled CME). If Assumptions 2
and 4 hold, then for every switching signal σ ∈ SKI , it holds

Pj(T ;σ) ≥ P̄j(T ;σ), ∀j ∈ J
‖PJ(T ;σ)− P̄J(T ;σ)‖1 ≤ ε.

Proof: This result has been proven in [19] for linear
systems. We extend it here to the case of switched systems
with K switchings. Note that for any i ∈ N[1, I], Fi := F (ui)
has non-negative off diagonal elements [19]. Hence, using the
same argument as in [19, Theorem 2.1] it can be shown that
for any index set J , and any τ ≥ 0

[exp(Fiτ)]J ≥ exp([Fi]Jτ) ≥ 0, ∀i ∈ 1, . . . , I.

Consider an arbitrary switching signal σ ∈ SKI . We have

PJ(T ;σ) = [ΠK
k=0exp(Fik(tk+1 − tk)) · P (0)]J (30)

≥ ΠK
k=0[exp(Fik(tk+1 − tk))]J · PJ(0)

≥ ΠK
k=0exp([Fik ]J(tk+1 − tk)) · PJ(0) = P̄J(T ;σ).

Moreover, from 1 =
∑∞
j=1 Pj(T ;σ) ≥

∑
j∈J Pj(T ;σ) =

1
>PJ(T ;σ) and Assumption 4, we get

1
>P̄J(T ;σ) ≥ 1− ε ≥ 1

>PJ(T ;σ)− ε. (31)

Combining (30) and (31) yields 0 ≤ 1
>PJ(T ;σ) −

1
>P̄J(T ;σ) ≤ ε, thus ‖PJ(T ;σ)− P̄J(T ;σ)‖1 ≤ ε.

V. ANALYSIS OF THE REACHABLE SET

We here show how the reachability tools of Sections II
and III can be applied to the moment equation and FSP
reformulations derived in Sections IV-A and IV-B, under
different assumptions. Fig. 3 presents a conceptual scheme
of this section.

Fig. 3. Conceptual scheme for the reachable set analysis of biochemical networks.

A. Reachable set of networks with affine propensities via
moment equations

The methods developed in Sections II and III can be applied
to the moments equations in (24) to approximate the desired
projected reachable set. To illustrate the proposed procedure,
we distinguish two cases depending on whether the external
signal u(t) influences reactions of order zero or one.
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1) Linear moments equations: We start by considering the
case when all and only the reactions of order zero are con-
trolled, so that hr(z) = 1 for r ∈ N[1, Q] and hr(z) = ν′r

>
z

for r ∈ N[Q + 1, R]. This is the simplest scenario since the
system of moment equations given in (24) becomes linear

ẋ≤2(t) = Ax≤2(t) +Bu(t), (32)

see [56, Equations (6) and (7)]. Consequently, the theoretical
results of Section III-A can be applied to (32) by setting
σ(t) ≡ u(t). If the external signal u ≡ σ satisfies Assump-
tion 1, both inner and outer approximations of the reachable
set can be computed by using Corollary 1.

2) Switched affine moments equations: Under Assump-
tion 3, (24) can be equivalently rewritten as a switched
affine system, as described in Remark 3. Consequently, the
theoretical results of Section III-B can be applied and an outer
approximation of the reachable set can be computed by using
Corollary 2.

B. Reachable set of networks with generic propensities via
finite state projection

If the network contains reactions of order higher than one or
if the reactions do not follow the laws of mass action kinetics,
then hr(z) might be non-affine. In such cases, the arguments
illustrated in the previous subsection cannot be applied. We
here show how the FSP approximation of the CME derived in
Section IV-B can be used to overcome this problem.

Firstly note that, from system (27), one can compute the
evolution of the uncentered moments of Z(t), as a linear
function of P (t). 4 For example, if we let zjs be the amount of
species Zs in the state zj , then the mean E[Zs] of any species
s can be obtained as l>P (t), by setting l :=

[
z1
s , z

2
s , . . .

]>
,

and the second uncentered moment E[Z2
s ] can be obtained as

l>P (t), by setting l :=
[
(z1
s)2, (z2

s)2, . . .
]>
. Consequently

the desired projected reachable set coincides with the output
reachable set of the infinite dimensional linear switched sys-
tem (27) with linear output

y(t) =
[
l1, l2

]>
P (t), (33)

where l1 and l2 are the infinite vectors associated with any
desired pair of moments. Note that l1 and l2 are non-negative.

Example 1 (cont.) With the ordering introduced at the
beginning of the section, the uncentered protein moments up
to order two can be computed as the output of (27) by setting

l1 =
[

0 0 1 0 1 2 0 1 . . .
]>
,

l2 =
[

0 0 1 0 1 4 0 1 . . .
]>
.

(34)

Let l1j and l2j be the j-th components of the vectors l1 and l2,
respectively, as defined in (33). For a given species of interest
s and set J , we denote by

y1(t;σ) :=

∑
j∈J l

1
j · Pj(t;σ)∑

j∈J Pj(t;σ)
, y2(t;σ) :=

∑
j∈J l

2
j · Pj(t;σ)∑

j∈J Pj(t;σ)
(35)

4The reachable set for the centered moments can be immediately computed
from the reachable set of the uncentered ones, since there is a bijective relation
between the set of centered and uncentered moments up to any desired order.

the moments associated with l1 and l2 conditioned on
the fact that Z(t) is in J and the switching signal σ
is applied. For example if one is interested in the mean
and second order moment of a specific species Zs(t) we
get y1(t;σ) = E [Zs(t) | Z(t) ∈ J, σ(·)] and y2(t;σ) =
E
[
Z2
s (t) | Z(t) ∈ J, σ(·)

]
. The aim of this section is to ob-

tain an outer approximation of the output reachable set of
the infinite system (27) with the nonlinear output (35), by
using computations involving only the finite dimensional sys-
tem (28). To this end, we define the two entries of the output
of the finite dimensional system as

ȳ1(t;σ) :=
∑
j∈J l

1
j · P̄j(t;σ) =: (l̄1)>P̄J(t;σ)

ȳ2(t;σ) :=
∑
j∈J l

2
j · P̄j(t;σ) =: (l̄2)>P̄J(t;σ).

(36)

Fig. 4. Illustration of Theorem 3. The inner grey circle is the reachable set of the
finite dimentional system (28). The dotted grey lines are hyperplanes tangent to such
set. The solid blue lines are obtained by translating such hyperplanes by the constants
δup(γd) and δlow(γd), as computed in Theorem 3, for the upper and lower bounds
respectively. The reachable set of the original system (27) is the blue area, which is
correctly contained in the intersection of the translated hyperspaces (lined region).

The main idea is that the hyperplanes tangent to the
reachable set of the finite system (28) with output (36) can
be computed using the techniques of Section III. In the next
theorem we show that it is possible to translate such hyper-
planes, by suitable constants δup(γd), δlow(γd), to guarantee
that the reachable set of the original infinite system (27) with
the nonlinear output (35) is contained in the intersection of
the translated hyperplanes, as illustrated in Figure 4.

Theorem 3. Suppose Assumptions 3 and 4 hold. Let RyT (x0)
be the output reachable set at time T > 0 of system (27)
with output (35). Choose D values γd ∈ R and set cd :=
(l̄2)− γd(l̄1) ∈ Rn, with l̄1, l̄2 as in (36). Set

Hy,upT (γd) := {w ∈ R2 | w2 ≤ γdw1 + v̄T (cd) + δup(γd)},
Hy,lowT (γd) := {w ∈ R2 | w2 ≥ γdw1 − v̄T (−cd)− δlow(γd)},

where v̄T (cd) is the constant that makes the hyperplane
HT (cd) in (5) tangent to the reachable set of the finite
system (28) (i.e. v̄T (cd) can be computed as in (17)) and

δup(γd) := 2ε
1−ε · (max{0,−γd} · ‖l̄1‖∞ + ‖l̄2‖∞),

δlow(γd) := 2ε
1−ε · (max{0, γd} · ‖l̄1‖∞),

with ε as in Assumption 4. Then the set

Ry,outT (x0) := ∩Dd=1{H
y,up
T (γd) ∩Hy,lowT (γd)}

is an outer approximation of RyT (x0). �
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Proof: Firstly note that if the external signal u satisfies
Assumption 3 then the corresponding switching signal σ(t)
(constructed as in Remark 3) satisfies Assumption 2. Let
R̄yT (x0) be the output reachable set of the finite dimensional
system (28) with output (36). Proposition 2 guarantees that for
any direction cd the constants v̄T (cd) and v̄T (−cd) that make

H̄y,upT (γd) := {w ∈ R2 | w2 ≤ γdw1 + v̄T (cd)}
H̄y,lowT (γd) := {w ∈ R2 | w2 ≥ γdw1 − v̄T (−cd)}

tangent to R̄yT (x0) can be computed by solving the MILP (17)
for system (28). The main idea of the proof is to show that
if we shift the halfspaces H̄y,upT (γd), H̄y,lowT (γd) by suitably
defined constants δup(γd), δlow(γd) we can guarantee that
the original reachable set RyT (x0) is a subset of the shifted
halfspaces Hy,upT (γd),Hy,lowT (γd) defined in the statement.
The result then follows since Ry,outT (x0) is defined as the
intersection of hyperspaces containing RyT (x0).

We show how to derive the constant δup(γd), the derivation
of δlow(γd) is similar. To this end, we start by focusing on
the first component of the output and for simplicity we will
omit the dependence on (T ;σ) in Pj , P̄j , y and ȳ. Take any
switching signal σ ∈ SKI . By taking into account the following
conditions: (1) l1j ≥ 0 for all j ∈ J ; (2) Pj ≥ P̄j for all j ∈ J ,
due to Proposition 3, and (3)

∑
j∈J Pj ≤ 1, we get y1 ≥ ȳ1.

Consequently, at time t = T we have

|y1 − ȳ1| = y1 − ȳ1 =
∑

j∈J l
1
j ·Pj∑

j∈J Pj
−
∑
j∈J l

1
j · P̄j

≤
∑

j∈J l
1
j ·Pj

1−ε −
∑
j∈J l

1
j · P̄j

=
(

1 + ε
1−ε

)∑
j∈J l

1
j · Pj −

∑
j∈J l

1
j · P̄j

= ε
1−ε

∑
j∈J l

1
j · Pj +

∑
j∈J l

1
j · (Pj − P̄j)

≤ ‖l̄1‖∞
(

ε
1−ε

∑
j∈J Pj +

∑
j∈J(Pj − P̄j)

)
≤ ‖l̄1‖∞

(
ε

1−ε + ‖PJ − P̄J‖1
)
≤ ‖l̄1‖∞ 2ε

1−ε ,

where we used
∑
j∈J Pj ≥

∑
j∈J P̄j ≥ 1 − ε (due to

Assumption 4), and Pj ≥ P̄j , ‖PJ−P̄J‖1 ≤ ε (following from
Proposition 3). To summarize, ȳ1 ≤ y1 ≤ ȳ1 + ‖l̄1‖∞ 2ε

1−ε .

Similarly, it can be proven that ȳ2 ≤ y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε .

Consider any pair (y1, y2) ∈ RyT (x0) and the associated
pair (ȳ1, ȳ2) ∈ R̄yT (x0) (i.e. the two output pairs obtained
from (27) and (28) when the same σ is applied). Note that
(ȳ1, ȳ2) ∈ R̄yT (x0) implies (ȳ1, ȳ2) ∈ H̄yT (γd) for any γd.
The previous relations then imply that if γd ≥ 0,

y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε ≤ γ

dȳ1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε

≤ γdy1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε = γdy1 + v̄T (cd) + δup(γd).

On the other hand, when γd < 0

y2 ≤ ȳ2 + ‖l̄2‖∞ 2ε
1−ε ≤ γ

dȳ1 + v̄T (cd) + ‖l̄2‖∞ 2ε
1−ε

≤ γdy1 + v̄T (cd) + (‖l̄2‖∞ − γd‖l̄1‖∞) 2ε
1−ε

= γdy1 + v̄T (cd) + δup(γd).

Therefore for every signal σ and every γd it holds
y2(T ;σ) ≤ γdy1(T ;σ) + v̄T (cd) + δup(γd) and consequently
[y1(T ;σ), y2(T ;σ)]> ∈ Hy,upT (γd).

VI. ANALYSIS OF SINGLE CELL REALIZATIONS

The previous analysis focused on characterising what com-
binations of moments of the stochastic biochemical reaction
network are achievable by using the available external input.
In this section, we change perspective and instead of looking
at population properties we focus on single cell trajectories.
Specifically, we are interested in characterising the probability
that a single realization of the stochastic process will satisfy a
specific property at the final time T (e.g. the number of copies
of a certain species is higher/lower than a certain threshold)
when starting from an initial condition P (0). Note that we can
start either deterministically from a given state zi (by setting
P (0) = ei) or stochastically from any state according to a
generic vector of probabilities P (0). To define the problem
let us call T the target set, that is, the set of all indices i
associated with a state zi in the Markov chain (26) that satisfies
the desired property. Note that this set might be of infinite
size. We restrict our analysis to external signals satisfying
Assumption 3, so that we can map the external signal u to the
switching signal σ, as detailed in Remark 3. For a fixed signal
σ the solution of (27) immediately allows one to compute the
probability that the state at time T belongs to T , and thus
has the desired property, as PT (σ) := 1

>
T P (T ;σ) where 1T

is an infinite vector that has the ith component equal to 1 if
i ∈ T and 0 otherwise. Our objective is to select the switching
signal σ(t) (and thus the external signal u(t)) that maximizes
the probability PT (σ).5 That is, we aim at solving

P?T := max
σ∈SK

I

PT (σ), σ? := arg max
σ∈SK

I

PT (σ), (37)

where I is the cardinality of Σd as by Remark 3. Note that
PT (σ) in (37) is computed according to P (T ;σ) which is an
infinite dimentional vector. In the next theorem we show how
to overcome this issue and approximately solve (37) by using
the FSP approach of Proposition 3 and the reformulation as
MILP given in Proposition 2. To this end, let

σ̄? := arg max
σ∈SK

I

P̄T (σ). (38)

where P̄T (σ) := 1̄
>
T P̄J(T ;σ) is the probability that the final

state of the reduced Markov chain (28) belongs to T ∩ J at
time T given the switching signal σ, and 1̄T is a vector of
size |J | that has 1 in the positions corresponding to states of
J that belong also to T , and 0 otherwise.

Theorem 4. Suppose that Assumptions 3 and 4 hold. Then

PT (σ̄?) ≥ P?T − 2ε.

Moreover (38) can be solved by solving the MILP in (17) for
system (28) with c = 1̄T and M = 1. �

Proof: Under Assumption 3 and 4, for any set T and any
signal σ, we get

1
>
T P =

∑
i∈T Pi ≤

∑
i∈T ∩J Pi +

∑
i/∈J Pi ≤

∑
i∈T ∩J Pi+ε

≤
∑
i∈T ∩J P̄i +

∑
i∈T ∩J |Pi − P̄i|+ ε

≤
∑
i∈T ∩J P̄i + ‖PJ − P̄J‖1 + ε = 1̄

>
T P̄ + 2ε,

5Note that one can use the same tools to maximize the probability of
avoiding a given set D by maximizing the probability of being in T = Dc.
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and 1
>
T P =

∑
i∈T Pi ≥

∑
i∈T ∩J Pi ≥

∑
i∈T ∩J P̄i = 1̄

>
T P̄ ,

where we used Assumption 4 and Proposition 3 and we
omitted (T ;σ) for simplicity. To sum up, for each σ,

P̄T (σ) ≤ PT (σ) ≤ P̄T (σ) + 2ε.

By imposing σ = σ? we get P?T = PT (σ?) ≤ P̄T (σ?)+2ε ≤
P̄T (σ̄?)+2ε. By imposing σ = σ̄? we get P̄T (σ̄?) ≤ PT (σ̄?).
Combining the last two inequalities we get the desired bound.
The last result can be proven as in Proposition 2. Note that P̄
is a vector of probabilities, hence we can set M = 1.

VII. THE GENE EXPRESSION NETWORK CASE STUDY

To illustrate our method we consider again the gene expres-
sion model of Example 1 and determine what combinations
of the protein mean and variance are achievable starting from
the zero state, under different assumptions on the external
signal. The following examples cover a wide range of dif-
ficulties typically encountered in the analysis of stochastic
biochemical reaction networks. In Section VII.A we study
networks with mass action kinetics of order at most one
leading to closed moment equations so that one can use the
tools of Section V-A. Specifically, in Section VII.A1 only
zero order reactions are controlled, leading to linear moment
equations; in Sections VII.A2 and VII.A3 we assume that the
external signal influences also a first order reaction, leading to
a switched system. In Section VII.B we study systems with
non-closed moment equations so that one needs to use the tools
of Section V-B. Specifically, in Sections VII.B1 and VII.B2
we consider two different types of non-linearities which are
Michaelis-Menten and bimolecular reactions, respectively.

For all the reachable set computations we use D = 11.
The overall computation time is therefore the time needed to
solve (11) times 2D (for each direction one needs to compute
both cd and −cd)). As proven in Proposition 1, for linear
systems problem (11) can be solved by evaluating (14). For
switched systems, as proven in Proposition 2, problem (11)
can be solved by solving the MILP in (17). For each case
study, we report the average time needed to solve such MILPs
by using Gurobi 7.5.1 [60] and Matlab R2016b on a notebook
computer running Mac OS X 10.11.6 (CPU: 2.4 GHz Intel
Core i5, Memory: 8 GB 1600 MHz DDR3). When possible
we compare our method with the toolbox CORA [61].6

A. Closed moment equations

1) Single input: Consider the gene expression model with
one external signal and reactions following the mass action
kinetics, as described in Example 2. In this case, the moments
equations are linear and the protein mean and variance can
be obtained by setting L := [e2, e4]> as output matrix for the
linear system (25). Depending on the experimental setup, the
external signal u(t) may take values in the set Σd := {0, 1},

6We note that, contrary to our method that only depends on the parameter
D, the performance of CORA depends on a number of settings, leading
to a trade off between simulation time and accuracy. We tested a number
of different combinations and we report here the most accurate result that
we could achieve. In all the cases we set reductionTechnique=‘girard’. For
the simulations of Section VII.B the amount of memory required by CORA
surpassed the available memory.

if the input is of the ON-OFF type [1], [2], [3], [5], or in the
interval Σc := [0, 1], if the input is continuous [4]. Corollary 1
guarantees the validity of the following results both for Σd

and Σc. The problem of computing an outer approximation of
the reachable set of this system was studied in [50] using ad
hoc methods. In Fig. 5a) we compare the outer approximation
obtained therein (magenta dashed/dotted line) with the inner
(solid red) and outer (dashed blue) approximations that we
obtained using the methods for linear moment equations of
Section V-A1. For Fig. 5, we used the parameters kr =
0.0236, γr = 0.0503, kp = 0.18, γp = 0.0121 (all in units
of min−1) and set T = 360 min. Fig. 5a) shows that the outer
approximation computed using the hyperplane method is more
accurate than the one previously obtained in [50]. Moreover,
since inner and outer approximations practically coincide, this
method allows one to effectively recover the reachable set. The
grey area in Fig. 5a) illustrates the reachable set computed
with the function ‘linearSys’ of the CORA toolbox with
the settings timeStep=1, taylorTerms=4, zonotopeOrder=200,
which were selected to minimise the computation time while
maintaining the same accuracy as the method in Section V-A1.
The simulation time for the method of Section V-A1 is 3.1350
and for CORA is 3.3183 seconds.
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Fig. 5. Figure a) [One external signal]: Comparison of i) the inner (red solid)
and outer (blue dashed) approximations of the reachable set for the protein
mean and variance, according to model (25), computed using the hyperplane
method, ii) the outer approximation computed according to [50] (magenta
dashed/dotted) and iii) the outer approximation computed using CORA (grey
area). The black crosses represent the output for 100 random inputs. Figure
b) [Two external signals]: Comparison of the outer approximations of the
reachable set with two inputs obtained using the hyperplane method (green
solid) and CORA (grey area). The blue dashed line is the reachable set for
one external signal as in part a).

2) Two inputs: Consider again Example 1, but now as-
sume that both the mRNA production and degradation can
be controlled, so that the vector of propensities is α(z) =

[kr ·u1(t), γr ·m·u2(t), kp ·m, γp ·p]> and u(t) :=
[
u1(t)
u2(t)

]
, as

studied in [9]. Note that in this case u2(t) affects the A matrix
in (24) and consequently the system of moment equations
is nonlinear. We therefore assume that switchings can occur
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every 30 min, so that Assumption 3 is satisfied with K = 12
and use the hyperplane method as described in Section V-A2
with input set

Σ2in :=

{[
0
1

]
,

[
0

0.5

]
,

[
1
1

]
,

[
1

0.5

]}
, so that I = 4.

Note that we set the minimum input for the mRNA degradation
to 0.5 > 0 to avoid unboundedness. With these input choices
it is intuitive that the largest possible state is reached when
the mRNA production is at its maximum and the mRNA
degradation is at its minimum. Therefore, in the MILPs we
can use the bound M = x (T ; 0, u(t) = [ 1

0.5 ] ∀t). Fig. 5b)
shows a comparison of the output reachable set for the case
of two inputs versus the one input studied in part 1).

In Fig. 5b) we also compare the obtained reachable set with
the reachable set computed using the function ‘nonlinearSys’
of the CORA toolbox (grey area). Note that the function
‘nonlinearSys’ is designed for generic nonlinear systems with
inputs taking value in a continuous interval. The method in
Section V-A2, on the other hand, is tailored to biological
systems with discrete external signals, leading to (16). For
running ‘nonlinearSys’ we optimised the parameters timeStep,
taylorTerms, zonotopeOrder in the intervals {0.05, 0.1, 0.5},
{4, 6}, {200, 400, 600, 800, 1000, 1200}, the other parameters
were set as in Section 12.1.3 of the CORA manual 2016.
The running time of our algorithm is 77.7076 seconds, the
one of CORA is 46.1436 seconds. One can see that even
though CORA is faster, the reachable set obtained with the
method of Section V-A2 is more precise. This discrepancy may
be partially due to the fact that CORA assumes continuous
input sets while we use discrete inputs. Nonetheless the set
computed by CORA includes negative values, while mean
and variance are always positive. Moreover, the black crosses
in Figure 5b) are computed by simulating the system with
continuous input sets, suggesting that the reachable sets with
continuous and discrete inputs may be identical.

3) Fluorescent protein and experimental data: The way
researchers typically measure the amount of proteins produced
by a cell is by tagging it with a fluorescent marker. To model
this scenario, we assume that 1) the protein P can mature into
a fluorescent protein F according to the additional maturation
and degradation reactions

P
α5(kf ,z)−−−−−→ F, F

α6(γp,z)−−−−−→ ∅,

where α5(kf , z) := kf ·p, α6(γp, z) := γp ·f , kf > 0 is the
maturation rate and, for simplicity, the degradation rate of F
is assumed to be the same as that of P ; 2) the fluorescence
intensity I(t) of each cell can be measured and is proportional
to the amount of fluorescence protein, that is, I(t) = rF (t)
for a fixed scaling parameter r > 0.
Since all the propensities are affine, the system describing the
evolution of means and variances of such augmented network
is

ẋ≤2(t) = Af (u(t))x≤2(t) + bf (u(t)), (39)

where the state vector x≤2(t) and Af (u(t)), bf (u(t)) are

x≤2= [E[M ],E[P ],E[F ],V[M,P ],V[M,F ],V [P ],V[P, F ],V [F ]]>

Af=



d1(u2(t)) 0 0 0 0 0 0 0
kp d2 0 0 0 0 0 0
0 γp d3 0 0 0 0 0
kp 0 0 d4(u2(t)) 0 0 0 0
0 0 0 γp d5(u2(t)) 0 0 0
kp (γp + kf ) 0 2kp 0 d6 0 0
0 −γp 0 0 kp γp d7 0
0 γp kf 0 0 0 2γp d8


,

bf =
[
kru1(t) 0 0 0 0 0 0 0

]>
with d1(u2(t)) = −γru2(t), d2 = −(γp + kf ), d3 = −kf ,
d4(u2(t)) = −(γru2(t) + γp + kf ), d5(u2(t)) = −(γru2(t) + kf ),

d6 = −2(γp + kf ), d7 = −(2kf + γp), d8 = −2kf .

System (39) depends on the parameter vector θ =
[kr, γr, kp, γp, kf , r] (for more details see [62, Supplementary
Information pg. 16]). For the parameters we use the MAP
estimates identified in [23] (all in min−1)

kr = 0.0236 γr = 0.0503 kp = 178.398
kf = 0.0212 γp = 0.0121 r−1 = 646.86

(40)

and we set Lf = [re3, r
2e8]> to compute the mean and

variance reachable set for the fluorescence intensity.
Our first aim is to compare the reachable set of such ex-

tended model with experimental data, when only one external
signal (“1in”) is available. In the case of one input, (39) is
a linear system and the methods of Section V-A1 can be
applied. Fig. 6a) shows the estimated reachable set compared
with the real data collected in [2] and with the reachable
set computed using the ‘linearSys’ function of CORA for
the settings timeStep=1, taylorTerms=4, zonotopeOrder=200.
The simulation time was 4.1279 seconds with the method of
Section V-A1 and 3.6891 seconds with CORA.

Our second goal is to investigate how the reachable set
changes when both mRNA production and degradation are
controlled (“2in”), as studied in [9]. In this case, system (39)
is nonlinear. We therefore set T = 300 min and assume
that switchings can occur every 20 min, so that Assump-
tion 3 is satisfied with K = 15 and use the hyperplane
method as described in Section V-A2 with input set Σ2in

as in Section VII-A2. Fig. 6b) shows a comparison of the
reachable sets obtained for one and two external signals.
Solving the MILP reformulation of problem (11), for such
n = 8 dimentional system, took on average 20.6204 minutes
per direction (minimum=0.1749 sec and maximum=135.2263
min). Overall, the simulation time for computing the outer
approximation with the hyperplane method was 7.5 hrs. Com-
puting the exact reachable set by simulating all the possible
switching signals, assuming that one simulation takes 10−4

sec and neglecting the time needed to enumerate all possible
signals, would take 29.8 hrs. Computing the reachable set with
the function ’nonlinearSys’ of CORA is significantly faster (of
the order of tens of minutes depending on the settings), but
leads to an overly conservative approximation (that includes
the grey region shown in Fig. 6b) as well as negative values).
The black crosses in Fig. 6b) are obtained by simulating the
output of the system for 5000 randomly constructed input
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a)

b)

Fig. 6. Output reachable set of system (39) with output given by y = Lfx and
parameters as in (40). Figure a) [1 external signal]: Comparison between the measured
data and the inner (red contour) and outer (blue lines) approximation of the output
reachable set, for the case “1in”. Different colors refers to data collected in different
experiments. The grey area is the outer approximation computed using CORA. Figure
b) [2 external signals]: Outer approximation of the output reachable set, for the case
“2in”. The two green dots represent the outputs when u(t) = [1, 0.5]> ∀t and u(t) =
[1, 1]> ∀t, respectively. The black crosses represent the output for random signals in
Σ2in. The red solid line is the outer approximation obtained for one external signal, as
in Fig. a). The grey area shows the part of the outer approximation computed using
CORA that lies in the positive orthant (CORA approximation includes negative regions
not shown here because they are not physically relevant).

signals. This simulation illustrates that random approaches
might lead to significantly underestimate the reachable set.

B. Non-closed moment equations

1) Single input and saturation: We consider again Exam-
ple 2, but we now assume that not all the reactions follow the
laws of mass action kinetics. Specifically, we are interested in
investigating how the reachable set changes if we assume that
the number of ribosomes in the cell is limited and consequently
we impose a saturation to the translation propensity. Following
[63], we assume that the translation rate follows the Michaelis-
Menten kinetics so that

α3(kp, z) = k̃p · a·m
b+a·m instead of α3(kp, z) = kp ·m.

For the simulations we impose k̃p = 0.7885, b = 0.06, a =
0.02, so that the maximum reachable protein mean is the
same as in the case without saturation analysed in the pre-
vious subsection. The corresponding propensity function is
illustrated in Fig. 7a). All the other propensities are assumed
as in Section VII-A1. Note that in this case the propensities
are not affine. Consequently, we estimate the reachable set by
using the FSP approach derived in Theorem 3. Specifically we
consider as set J the indices corresponding to states with no
more than 6 mRNA copies and 40 protein copies. This choice
leads to a switched system as in (16) of dimension n = 287.

By assuming T = 360 min and that u can switch any 30 min-
utes in the set Σd = {0, 1}, we obtain an error ε = 2.84 ·10−4

(this error can be computed by solving an MILP as explained
in Remark 4). For each direction, the MILP reformulation of
problem (11) was solved by Gurobi on average in 63.2317
minutes (minimum: 49 sec and maximum: 216.7833 min).
Fig. 7b) shows the comparison of the reachable sets obtained
for the cases with and without saturation. From this plot it
emerges that, for the chosen values of parameters, saturation
leads to a decrease of variability in the population.

a)

b)

Fig. 7. Comparison of the reachable set for the protein mean and variance, according
to the model in Example 2, when all the reactions follows the mass action kinetics (as
in Fig 5a)) and when the translation is saturated. Figure a): h3(z) when the translation
reaction follows the mass action kinetics (dashed blue) or the Michaelis Menten kinetics
(dashed dotted green). Figure b): comparison of the outer approximations of the reachable
sets in the two cases. The blue dashed line is as in Fig 5a). The grey line is the outer
approximation of the reachable set of the FSP system (28), the green dashed dotted line
is the outer approximation of the original system (27) according to Theorem 3.

2) Bimolecular reactions and controlled promoter switch-
ing: As the last case study we consider a system with
bimolecular reactions, as studied in [10], with an additional
layer of complexity given by the presence of a controlled
promoter. Specifically, we assume that a certain gene switches
stochastically between a OFF and ON state, according to the
following reactions

OFF
σ−→ ON, ON

γOFF−−−−→ OFF,

where σ ∈ {0, 1} is the external signal and γOFF is the rate
at which the gene turns naturally off. Controlled promoter
switching of this type can be obtained for example using the
lactose operon [64]. We then assume that when the gene is on
it produces a protein S1, which can dimerise into S2 according
to the reaction network

ON
k1−→ ON + S1, S1 + S1

b−→ S2,

S1
γ1−→ ∅, S2

γ2−→ ∅.

This latter network is as in [10]. For our simulations we used
the parameters found therein, that is, b = 3, γ1 = 2, γ2 = 1.
We also set k1 = 20, γOFF = 0.2. We used a set J such that
S1 ∈ {0, . . . , 10}, S2 ∈ {0, . . . , 20}, ON,OFF ∈ {0, 1}.
Note that since the promoter is always either ON or OFF, we
also imposed that ON + OFF = 1. The resulting switched
system has dimension n = 462. The corresponding reachable
set, for S2 and T = 12 with possible input switching every
time unit, is illustrated in Fig. 8. Solving the MILP for each
direction took on average 113.8 minutes (minimum: 1.5481
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min and maximum: 254.8 min). The associated error was
computed as in Remark 4 and was ε = 0.0012.
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Fig. 8. Reachable set for the mean and second moment of S2 in the system of
Section VII-B2, starting from a promoter in the OFF state. The grey line is the outer
approximation of the reachable set of the FSP system (28), the green dashed dotted line
is the outer approximation of the original system (27) according to Theorem 3.

VIII. CONCLUSION

In the paper we have: i) proposed a method to approximate
the projected reachable set of switched affine systems with
fixed switching times, ii) extended the FSP approach to
controllable networks, iii) illustrated how these new theoretical
tools can be used to analyse generic networks both from a
population and single cell perspective and iv) provided an
extensive gene expression case study using both in silico
and in vivo data. Even though our analysis is motivated by
biochemical reaction networks, our results can actually be
applied to study the moments of any Markov chain with
transitions rates that switch among I possible configurations
at K fixed instants of times. Our results hold both in case
of finite and infinite state space. Finally, we note that the
reachability method derived here could be useful for the
analysis of switched systems with the structure described in
Section III-B, even outside the systems biology domain. To
this end, a more thorough computational study is needed.
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