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Abstract

In this paper we study a generalized tracking and disturbance rejection problem

for multidimensional behaviours. Given a multidimensional plant, our first goal

is to design a compensator to be connected to the plant through regular partial

interconnection, in such a way that the overall controlled system is autonomous

and stable, when no exogenous signal acts on the system. On the other hand, when

exogenous signals affect the controlled system evolution, we want to impose that

a suitable linear combination of the overall system trajectories is “negligibile” in a

sense we will clarify within the paper. This problem set-up formalizes a number of

classical control problems, first of all tracking of some (reference) signal together

with rejection of another (disturbance) signal. The adopted approach is extremely

general and it is based on the idea of describing all behaviour trajectories as the

sum of a “transient signal” and a “steady state” component, a decomposition that

relies on Gabriel’s localization theory. Necessary and sufficient conditions for the

problem solvability are provided, and the compensators that satisfy the control

goal are characterized in terms of an internal model condition. Furthermore, a

parametrization of all such compensators is provided.

Keywords: Tracking, disturbance rejection, multidimensional linear system, behav-

ioural approach.
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1 Introduction

Stabilization and regulation problems within the behavioural approach have a long his-

tory. Stimulated by two milestone contributions [20, 21], dealing with the control of

one-dimensional behaviours, a long stream of research on these topics flourished, deal-

ing either with one-dimensional (1D) behaviours (e.g. [1, 3, 4, 12]) or with the wider

class of multidimensional (nD) behaviours [5, 6, 8, 13, 18].

In the behavioural framework, controlling a plant amounts to restricting the set of

its trajectories to a proper subset, whose elements display desired properties (typically,

but not solely, some form of convergence). So, stabilization, either by partial or by

full interconnection, consists in designing a second system, the controller, that once

connected with the original plant (either by means of all the plant variables or by a

proper subset of them) makes it possible to achieve this goal. One of the main features

of the behavioural approach lies in its capability of treating the system dynamics with-

out imposing any input/output partition on the system variables. This is particularly

appropriate when the plant under investigation has to become part of a larger, intercon-

nected, system, since it is the specific interconnection structure that determines what

are the inputs and what are the outputs. A simple but rather paradigmatic example is

represented by passive circuits, for which the choice of assuming either the voltage

or the current as input signal is strictly related to the way they are connected with the

external generators. Consistently with this perspective, in most of the aforementioned

references stabilization and regulation problems have been posed and solved without

assuming any input/output partition of the system variables.

The tracking and disturbance rejection problem for 1D behaviours was first ad-

dressed in [3], where necessary and sufficient conditions for the problem solvability,

under the assumption that the exogenous system generating both the reference signal

and the disturbance is autonomous, have been provided. Interestingly enough, the solv-

ability conditions involve the well-known internal model principle, first pointed out in

the behavioural context for observers in [19]. An algorithm to explicitly construct con-

trollers that achieve these goals was also proposed in [3].

In [2], the set-up introduced in [3] was generalized, to deal with more general stabi-

lization goals (design of T-stabilizing compensators) and by introducing a target func-
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tion that can formalize a number of classical control problems, first of all the tracking

of a reference signal, meanwhile rejecting a disturbance acting on the system.

The aim of this paper is to extend the results derived in [2] to the multidimensional

case to deal with stabilization and regulation problems for nD behaviours. The main

results derived in this manuscript represent neat, but highly non-trivial, generalizations

of the results provided in section 4 of [2]. Indeed, the mathematical set-up required to

extend the analysis to the nD case deeply relies on advanced algebraic concepts, like

Serre subcategories [16] and localization according to Gabriel [17]. Gabriel localiza-

tion was first applied to system theoretic questions in [8], and later refined. In order

to make the proofs accessible also to non-specialists, we have tried to briefly recall the

main definitions and results about these topics in a preliminary section. We refer the

reader to [15] for a more thorough description of the theory.

In detail, the paper is organized as follows: Section 2 recalls the basic concepts

about behaviours, interconnection of behaviours, and negligibility of modules and sig-

nals, as well as some technical results about Gabriel localization and its use in defining

the steady-state and the transient part of the behaviour trajectories. Two technical re-

sults, fundamental to develop the subsequent theory, are also presented. Section 3

addresses stabilization by partial and regular interconnection, by assuming that no ex-

ogenous signal acts on the overall controlled system. A parametrization of all such con-

trollers is provided. Section 4 tackles the same stabilization problem in the presence of

exogenous signals, which will later represent the reference signal and the disturbance.

Lemma 18, at the end of the section, allows to extend the previous parametrization to

this more general set-up. Finally, in Section 5, the general tracking and disturbance

rejection problem for nD behaviours is posed and solved, and a parametrization of all

controllers that achieve this goal is given. Sections 3 to 5 contain a comprehensive

running example where the results and parametrizations are demonstrated.

A preliminary version of some of the results contained in this paper has been pre-

sented at the 21st International Symposium on Mathematical Theory of Networks and

Systems (MTNS 2014), see [14].

2 Preliminaries

In this section we introduce the framework adopted in the paper to investigate the con-

trol design problems.

2.1 Main Ingredients

We consider a noetherian integral domain A, which is called the ring of operators, and a

signal space F , which is an injective cogenerator over A [7, p. 31]. From Section 2.10

onwards we will assume that the injective cogenerator F is large. Later on (see As-

sumption 5) we will introduce an additional condition on A and thus slightly restrict

the set of eligible operator rings A. The scalar product of f ∈ A with w ∈F is denoted

by f ◦w. Given an A-module (in the following simply a “module”) U = A1×kR⊆ A1×l

generated by the rows of a matrix R ∈ Ak×l , we define the behaviour associated with U
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as the set1

B =U⊥ := {w ∈F
l : U ◦w = 0, i.e., ∀η ∈U, η ◦w = 0}= {w ∈F

l : R◦w = 0}.

Conversely, given a behaviour B, the module of equations associated with B is

B
⊥ := {η ∈ A1×l : η ◦B = 0, i.e., ∀w ∈B, η ◦w = 0}.

From the definition of behaviour, it follows immediately that B⊥⊥ = B, but since F

is a cogenerator the identity B⊥ =U⊥⊥ =U holds, too [7, Cor. 47, Cor. 48, p. 29].

Standard examples are the following:

Example 1. 1. Let A = F[s] = F [s1, . . . ,sn] be the polynomial ring in n variables over

a field F and consider the large injective cogenerator F = FNn
of sequences in F

indexed by multi-indices µ ∈ Nn. The ring A acts on F via shifts, i.e., for µ ∈ Nn

and w ∈F the signal sµ ◦w is defined by

(sµ ◦w)(t) = w(t + µ) for t ∈ Nn,

where we use the multi-index notation sµ = s
µ1
1 · · · s

µn
n . The behaviours in this set-

ting are the solution sets of systems of finitely many linear partial difference equa-

tions with constant coefficients.

Assume that F is algebraically closed. Another relevant signal module in this situ-

ation is the space of polynomial-exponential multisequences Ffin = ∑λ∈Fn F [t]tλ ,

where F [t] = F[t1, . . . , tn]. This space is an injective cogenerator, but it is not large.

We use the subscript “fin” to indicate that this is the space of those sequences w

such that the A-module A ◦w generated by w is finite dimensional as vector space

over the base field F .

2. Again, assume that A = F [s] = F [s1, . . . ,sn] is the polynomial ring in n variables,

but reduce the choices for F to F = R or F = C. As signal space F choose either

the space F = C ∞(Rn,F) of smooth functions or D ′(Rn,F) of distributions (both

spaces are large injective cogenerators), and the action of A on F is the one by

differentiation

si ◦w =
∂w

∂ ti
.

Here, the behaviours are the sets of solutions of systems of finitely many linear

partial differential equations with constant coefficients.

Similarly to the discrete case, for F = C the polynomial-exponential functions

Ffin = ∑λ∈Cn C[t]eλ•t , where λ • t := ∑n
i=1 λiti, form the (not large) injective co-

generator of functions w for which C[s]◦w is a finite dimensional vector space over

C.

1The notation ⊥ was first used in this context in [7, p. 21]. The notions of orthogonal complement of a

submodule U ⊆ A1×l and of a behaviour B ⊆F l are induced by the bilinear form

A1×l×F
l −→ A : (η , w) 7−→ η ◦w,

i.e., η ⊥ w if and only if η ◦w = 0.
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2.2 The Image of a Behaviour

For a behaviour B ⊆F l and a matrix P ∈ Av×l , the image of B under the map P◦ is

P◦B = {P◦w ∈F v : w ∈B}. Because of the injectivity of the signal module F l ,

the image P◦B is again a behaviour, i.e., the solution set of finitely many equations.

These equations can be obtained as follows:

Let (X , Y ) ∈ Ak1×(l+v) be a universal (or minimal) left annihilator of the block

matrix (R
P). This amounts to saying that

A1×k1(X , Y ) =
{
(η , η1) ∈ A1×(k+v) : (η , η1)(R

P) = 0
}
.

Then the image of B under P◦ is [7, Thm. 34, p. 24]

P◦B = (A1×k1Y )⊥ = {w̃ ∈F
v : Y ◦ w̃ = 0}.

Consider the special case when

B =
{
(w1

w2
) ∈F

l1+l2 : (R1, R2)◦ (
w1
w2
) = 0

}
(1)

and P = (0, idl2). Then the map P◦ is the projection on the variable w2, i.e., projw2
:

(w1
w2
) 7−→ w2, and

projw2
(B) = P◦B = {w2 ∈F

l2 : ∃w1 ∈F
l1 : (w1

w2
) ∈B}

= {w2 ∈F
l2 : (XR2)◦w2 = 0},

where, in this case, X is a universal left annihilator of R1.

In this set-up, the variables w2 are free for the behavior B if projw2
(B) = F l2 .

This property is equivalent to the rank condition rank(R1) = rank(R1, R2) and implies

that there exists a matrix H ∈ Kl1×l2 with entries in the quotient field K := quot(A),
such that R2 = R1H. A behaviour B = (A1×kR)⊥ ⊆ F l with no free variables is

called autonomous and it is necessarily described by a full column rank matrix, namely

rank(R) = l.

2.3 Input/Output Behaviours

Let B be the behaviour described as in Equation (1). We denote the subbehaviour of

B consisting of the trajectories of B whose components w2 are identically zero by

Nw1
(B) := {w1 ∈F

l1 : (R1, R2)◦
(w1

0

)
= R1 ◦w1 = 0}= (A1×kR1)

⊥.

A behaviour

B =
{
( y

u) ∈F
p+m : P◦ y = Q◦ u

}
, (P,−Q) ∈ Ak×(p+m), (2)

is an input/output (IO) behaviour with input u and output y if u is maximally free in

B, i.e., if u is free and B0 := Ny(B) = {y ∈F p : P◦ y = 0} is autonomous. This is

equivalent to the rank condition p = rank(P) = rank(P, −Q) and implies the existence

of a unique transfer matrix H ∈ K p×m satisfying Q = PH.
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2.4 Interconnection of Behaviours

The (full) interconnection of two behaviours Bi =U⊥i ⊆F l , Ui = A1×kiRi, i = 1,2, is

their intersection

B1∩B2 = {w ∈F
l : U1 ◦w = 0 and U2 ◦w = 0}

= {w ∈F
l : (U1 +U2)◦w = 0}= (U1 +U2)

⊥ =
(

A1×(k1+k2)
(

R1
R2

))⊥
.

Such an interconnection is regular if the sum U1 +U2 is a direct sum, i.e., if the inter-

section U1∩U2 consists of the zero element, or, equivalently,

rank
(

R1
R2

)
= rank(R1)+ rank(R2).

Given two behaviours

B =
{
(w1

w2
) ∈F

l1+l2 : (R1, R2)◦ (
w1
w2
) = 0

}
, with (R1, R2) ∈ Ak1×(l1+l2),

B̃ =
{
(w2

w3
) ∈F

l2+l3 : (R̃2, R̃3)◦ (
w2
w3
) = 0

}
, with (R̃2, R̃3) ∈ Ak2×(l2+l3),

their partial interconnection via w2 is the behaviour defined as

B∧w2
B̃ =

{(w1
w2
w3

)
F

l1+l2+l3 : (w1
w2
) ∈B, (w2

w3
) ∈ B̃

}

=
{(w1

w2
w3

)
F

l1+l2+l3 :
(

R1 R2 0

0 R̃2 R̃3

)
◦
(w1

w2
w3

)
= 0
}
.

The partial interconnection is called regular if the sum

A1×k1(R1, R2, 0)+A1×k2(0, R̃2, R̃3)

is a direct one.

2.5 Serre Subcategories and Negligibility

In order to introduce a general notion of stability, first we introduce negligibility of

modules and signals via a Serre subcategory C of modules with /0 6= C( ModA, where

ModA denotes the category of all A-modules. A Serre subcategory is a full subcategory

closed under isomorphism, subobjects, factor objects, extensions and direct sums [16,

Chap. I].

In the following we give some examples of Serre subcategories.

Example 2. 1. A multiplicatively closed subset T ⊆ A induces the Serre subcategory

C(T ) := {M ∈ModA : MT = 0},

where MT = {m
t

: m ∈M, t ∈ T}.

If A is a principal ideal domain, for example a polynomial ring in one variable over

a field, every Serre subcategory of ModA is induced by a multiplicatively closed

set T . For this reason, the theory of Serre categories and Gabriel localization is

not necessary for one-dimensional systems theory. In higher dimensions, however,

there are Serre subcategories which are not of the type C(T ) (see Example 6).

6



Nonetheless, Serre subcategories of the type C(T ) are important also in multidi-

mensional systems theory, for example the one induced by the set of all monomials

T = {asµ = as
µ1
1 · · · s

µn
n : a ∈ F \ {0}, µ ∈ Nn} ⊆ F [s1, . . . ,sn],

which leads to dead-beat stability. Also, time autonomy can be characterized via a

multiplicatively closed set, see [10, Def. and Cor. 3.3, Thm. 3.7].

2. Let A = C[s] = C[s1, . . . ,sn]. For any point λ ∈Cn, denote by

m(λ ) =
n

∑
i=1

C[s](si−λ1) = { f ∈C[s] : f (λ ) = 0}

the maximal ideal associated with λ and set Mm(λ ) = {
m
t

: m ∈ M, t ∈ C[s] \
m(λ )}. Any disjoint decomposition Cn = Λ1⊎Λ2, with Λ2 6= /0, induces the Serre

subcategory

C(Λ1) = {M ∈ModA : Mm(λ ) = 0 for all λ ∈ Λ2}.

We will elaborate on the system theoretic relevance of Serre subcategories of the

type C(Λ1) in Example 3, below.

3. Let A = F [s1, . . . ,sn] and denote by spec(A) and max(A) the sets of prime ideals

and maximal ideals of A, respectively. The Serre subcategory

Cfin = {M ∈ModA : Mp = 0 for all p ∈ spec(A)\max(A)}

is used when it is acceptable that the control goal is achieved up to a finite dimen-

sional error behaviour only (see [9, Sec. 2 and Thm. 3.3]).

We will use this Serre subcategory in the examples of Sections 3 to 5.

An A-module, in particular a behaviour, is C-negligible if it belongs to C, and a

signal w ∈F is C-negligible if the A-module generated by w, namely A ◦w is in C.

As a consequence, a behaviour is C-negligible if and only if all its trajectories are C-

negligible.

Furthermore, from C 6= ModA it follows that C consists of torsion modules only.

Therefore, a C-negligible behaviour cannot have free variables and is always autono-

mous.

A behaviour B = (A1×kR)⊥ given by a matrix R is C-negligible if and only if the

factor module A1×l/A1×kR is in C, too. This equivalence is crucial since it provides a

way to characterize the (analytical) properties of the behaviour’s trajectories in alge-

braic terms, i.e., as properties of the factor module, the module of equations A1×kR and

the matrix R.

2.6 Transient Signals and Steady States

In the following, the C-radical RaC(M) of an arbitrary A-module M will play an im-

portant role. It is the largest C-negligible submodule of M, i.e.,

RaC(M) := sup{N ⊆M : N ∈ C} ∈ C.

Clearly, M is C-negligible if and only if it is equal to its C-radical.
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The Serre subcategory C induces a direct sum decomposition of the signal space

F = RaC(F )⊕F2.

The radical is unique, however, in general, its direct complement is not, i.e., there are

many possible choices of F2
∼= F/RaC(F ) and none of them is preferrable over the

others. The signals w ∈ RaC(F ) are C-negligible and often called transient signals,

while the signals in F2 are called steady states. The latter ones form a system of repre-

sentatives of the equivalence classes of signals of F (and all the other representatives

differ from them by C-negligible signals). The direct sum decomposition carries over

to vectors of signals

F
l = RaC(F )l ⊕F

l
2 = RaC(F

l)⊕F
l
2

and to behaviours

B = (B∩RaC(F
l))⊕ (B∩F

l
2) = RaC(B)⊕ (B∩F

l
2). (3)

From this decomposition it follows immediately that B is C-negligible if and only if

B∩F l
2 = {0}.

Example 3. 1. For Serre subcategories C(T ) induced by a multiplicatively closed set

T ⊆ A, the signals w that are C(T )-negligible are those that are annihilated by some

element in T , i.e., for which there is a t ∈ T such that t ◦w = 0. In the dead-beat

case the negligible signals are the nilpotent ones.

2. In the standard continuous case of Example 1, part 2, with A = C[s] and the signal

space Ffin of polynomial-exponential functions, we consider a Serre subcategory

C(Λ1) induced by a disjoint decomposition Cn = Λ1 ⊎Λ2 as in Example 2, part

2. The C(Λ1)-negligible signals are those polynomial-exponential functions whose

exponents lie all in Λ1, and they form the radical RaC(Λ1)(Ffin) = ∑λ∈Λ1
C[t]eλ•t ,

where we use again the notation λ • t = ∑n
i=1 λiti. Consequently, a behaviour B is

C(Λ1)-negligible if and only if all the exponents λ appearing in its trajectories lie

in Λ1. One possible choice for the direct complement of RaC(Λ1)(Ffin) is F2 =

∑λ∈Λ2
C[t]eλ•t .

The characteristic variety of a module M = A1×l/A1×kR is the set

char(M) = {λ ∈Cn : Mm(λ ) = 0}

and it is equal to the variety of rank singularities2

{λ ∈ Cn : rank(R(λ ))< rank(R)}

of R. Therefore, the behaviour B = (A1×kR)⊥ is C(Λ1)-negligible if and only if

the spectral condition char(M)⊆ Λ1 is satisfied.

The decompositionCn =Λ1⊎Λ2 with Λ2 = {z∈C : ℜ(z)> 0}n is often used. For

one-dimensional systems, C(Λ1)-negligibility with respect to this decomposition

is the standard Hurwitz stability of autonomous systems, i.e., all the trajectories

converge to zero as time goes to infinity.

2In case that R is a square matrix, the characteristic variety is the zero set of the characteristic polynomial

det(R) of R.
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For discrete systems the situation is similar, but different decompositions Cn =
Λ1 ⊎Λ2 are relevant – for example Λ2 = {z ∈ C : |z| > 1}n, which is a gener-

alization of one-dimensional Schur stability. C(Λ1)-negligibility with respect to

Λ1 = Cn \
(
{z ∈ C : |z| > 1}×{z ∈ C : |z| = 1}n−1

)
is related to L2-stability of

time autonomous systems (see [11, Eq. (14), Thm. 5.6]). In [13, Def. 2, Thm. 8]

it is shown that asymptotic stability on sub-cones of the grid Z2 corresponds to the

location of the exponents of the behaviour’s polynomial-exponential trajectories,

i.e., to a decomposition Cn = Λ1⊎Λ2.

3. For A = C[s] in the continuous as well as in the discrete case the radical of the

signal space F with respect to the Serre subcategory Cfin from Example 2, part

3, consists of all polynomial-exponential functions or sequences, respectively, i.e.

RaCfin
(F ) = Ffin.

It should be remarked that, in general, neither RaC(B) nor B∩F l
2 are behaviours

in F l , i.e., in particular, that the A-submodule

B∩F
l
2 = {w ∈F

l : R◦w = 0}∩F
l
2 = {w ∈F

l
2 : R◦w = 0}

of F l , in general, cannot be written in the form

B∩F
l
2 = {w ∈F

l : R̃◦w = 0}=
(

A1×k̃R̃
)⊥

for any matrix R̃ ∈ Ak̃×l .

Example 4. This phenomenon appears already in the one-dimensional case. In the

continuous situation we use the polynomial ring in one variable A = C[s1] and the

signal space Ffin of polynomial-exponential functions. Set Λ1 = {λ ∈ C : ℜ(λ )< 0}
and Λ2 = C \Λ1. We consider the Serre subcategory C(Λ1) = C(T ), where T = {t ∈
C[s1] : t(λ ) 6= 0 for all λ ∈Λ2} is the set of Hurwitz stable polynomials. The behaviour

B = {w ∈Ffin : 0 ◦w = 0}= Ffin is the unrestricted behaviour in one variable. The

radical of B is

RaC(Λ1)(B) = RaC(Λ1)(Ffin) = ∑
λ∈Λ1

C[t]eλ t .

Assume that RaC(Λ1)(Ffin) is a behaviour, i.e., that there is a matrix R̃∈ Ak̃×1 such that

RaC(Λ1)(Ffin) = (A1×k̃R̃)⊥. Since A is a principal ideal domain and RaC(Λ1)(F ) is a

behaviour in one unknown we can assume without loss of generality that the matrix

R̃ is of size 1× 1, i.e., a single polynomial. Since all the elements of Λ1 appear as

exponents in the trajectories of RaC(Λ1)(Ffin), all the elements of Λ1 have to be zeros

of the polynomial R̃. Since Λ1 is an infinite set, R̃ must be the zero polynomial. But then

RaC(Λ1)(Ffin) = (AR̃)⊥ = B = Ffin which is a contradiction, because RaC(Λ1)(Ffin)
is a proper subset of Ffin.

Similarly, one can show that the direct complements F2 of RaC(Λ1)(Ffin) are not

behaviours.

In the one-dimensional case, the non-autonomous behaviours of various sizes are

the only ones where this effect appears. In more than one dimension, however, it is

easy to construct autonomous behaviours with this property. Take, for example, the

two-dimensional behaviour B = {w ∈ Ffin : s1 ◦w = 0}. As long as the two sets

Λi∩
(
{0}×C

)
, i = 1, 2, have infinite cardinality neither RaC(Λ)(B) nor B∩F2 are

behaviours.
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It is, however, still possible to interpret the sets B∩F l
2 as behaviours. In order to

do this in Section 2.10, we need to introduce Gabriel localization, along with some of

its properties (Sections 2.7, 2.8 and 2.9).

2.7 C-closed Modules and Gabriel Localization

Gabriel localization with respect to a Serre subcategory C [17, Chap. IX] is a gener-

alization of the usual localization of modules with respect to a multiplicatively closed

subset T ⊆ A.

To show how the properties of the usual localization are generalized we start by

assuming without loss of generality that T is saturated3. The modules ModAT
over the

ring of fractions AT are exactly those A-modules for which the map

M −→ HomA(At,M),

m 7−→ (at 7→ atm),

is an isomorphism for all t ∈ T . Thus ModAT
is a subcategory of ModA. This inclusion

can be expressed via the the injection functor

ModAT

⊆
−→ModA,

M 7−→M,

by which every AT -module M is treated as an A-module. The injection functor has a

right adjoint, which is uniquely determined up to an isomormphism. This right adjoint

is the the localization functor

(−)T : ModA −→ModAT
,

M 7−→MT = {m
t

: m ∈M, t ∈ T}.

The set T induces the Serre subcategory C(T ) = {M ∈ModA : MT = 0} and, since T

is saturated, the identity

T = {t ∈ A : A/At ∈ C(T )} (4)

holds, i.e., T can be retrieved from C(T ).
In the generalization to arbitrary Serre categories C, the role of the t ∈ T and the

cyclic ideals At is played by ideals a⊆ A whose factor module A/a lies in C.

We define the subcategory ModA,C ⊆ModA of C-closed modules which are those

A-modules M such that for all ideals a⊆ A whose factor module A/a lies in C the map

M −→ HomA(a,M),

x 7−→ (a 7→ ax),

is an isomorphism. Again, the injection functor ModA,C
⊆
−→ModA has a right adjoint,

which is uniquely determined up to an isomorphism by this property and called the

Gabriel localization functor

QC : ModA −→ModA,C .

If the Serre subcategory is of the form C(T ) then ModA,C(T) = ModAT
and the

Gabriel localization functor is equal to the usual one, i.e., QC(T )(−) = (−)T .

3Saturated means that if a product t1t2 is in T then both factors have to lie in T , too.
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2.8 Properties of Gabriel Localization

In the following, the Serre subcategory C will be fixed. Therefore, we will omit the

suffixes and write Q and Ra instead of QC and RaC, respectively.

Every C-closed module is a Q(A)-module. This holds in particular for the Gabriel

localization Q(M) of an A-module M. Furthermore, the functor Q is such that, for

every M, M1, M2 ∈ModA,

M ∈ModA,C⇐⇒M = Q(M), (5a)

Q(Q(M)) = Q(M), (5b)

M ∈ C⇐⇒Q(M) = {0}, (5c)

M1 ⊆M2 =⇒Q(M1)⊆Q(M2), (5d)

RaC(M) = {0}=⇒M ⊆Q(M). (5e)

In general, however, M cannot be embedded in Q(M), i.e., M cannot be interpreted as

a submodule of Q(M). Also, Gabriel localization preserves direct sums and intersec-

tions, i.e.,

Q(M1⊕M2) = Q(M1)⊕Q(M2), for M1,M2 ∈ModA, (5f)

Q(M1∩M2) = Q(M1)∩Q(M2), for M1,M2 ⊆ N ∈ModA, (5g)

but not arbitrary sums. Indeed, only the inclusion

Q(M1 +M2)⊇Q(M1)+Q(M2), for M1,M2 ⊆ N ∈ModA (5h)

holds, in general.

2.9 The Multiplicatively Closed Set Induced by a Serre Category

Let C be an arbitrary Serre subcategory of ModA. Equation (4) motivates the defini-

tion of the multiplicatively closed set T (C) = {t ∈ A : A/At ∈ C} and the associated

localization

(−)T (C) : M 7−→MT (C) for M ∈ModA .

In general the two localizations QC(−) and (−)T (C) do not coincide. Nevertheless, the

two are related and the latter one is important for the former one, in particular when

trying to design algorithms to test properties and parametrize solutions. We make the

following assumption which holds in all standard situations.

Assumption 5. In the rest of the article we will make the steady assumption that the

two localizations of the ring A are equal, i.e., QC(A) = AT(C) holds. This assumption

holds, for instance, whenever the ring A is a unique factorization domain, in particular

if it is a polynomial ring A = F[s1, . . . ,sn] over some field F .

However, we do not assume that QC(−) = (−)T (C), i.e., in general we will consider

in this paper modules for which the two localizations do not coincide.

Example 6. 1. Let A = C[s] and consider a Serre subcategory C(Λ1) induced by a

disjoint decomposition Cn = Λ1 ⊎Λ2 with Λ2 6= /0 as in Example 2, part 2. The

multiplicatively closed set induced by this Serre subcategory is the set

T (C(Λ1)) = {t ∈ C[s] : t(λ ) = 0 =⇒ λ ∈ Λ1}

11



of all polynomials which vanish only on a subset of Λ1 – in the continuous standard

case these are the Hurwitz polynomials.

Now we focus on the decomposition Λ1 = {0} and Λ2 =Cn\{0}, where n> 2. The

only polynomials which vanish only on a subset of the singleton set {0} are the non-

zero constants, i.e., we have T (C(Λ1)) =C\{0} and consequently MT (C(Λ1)) = M

for all modules M ∈ModC[s].

On the other hand, it can be proved that the module M = C[s]/m(0) is C(Λ1)-
negligible and therefore, by Property 5c, QC(Λ1)

(
C[s]/m(0)

)
= 0 in contrast to(

C[s]/m(0)
)

T (C(Λ1))
= C[s]/m(0) 6= 0.

Since the polynomial ring C[s] is a unique factorization domain, the identity

QC(Λ1)(C[s]) = C[s]T (C(Λ1)) = C[s]

holds.

In general, it is very difficult to determine for given decompositions Cn = Λ1⊎Λ2

whether the two localization functors are the same. For example, for the general-

ized Hurwitz situation with Λ2 = {z∈C : ℜ(z)> 0} the two localizations coincide

if n = 1 or n = 2 but it is not known whether this holds also for higher dimensions.

2. Let A be a noetherian integral domain which is not a principal ideal domain and

consider the Serre subcategory

Cfin = {M ∈ModA : Mp = 0 for all p ∈ spec(A)\max(A)}

from Example 2, part 3. Similarly to the situation above, it holds that the multi-

plicatively closed set T (Cfin) is just the set of invertible elements of the operator

ring4 (see [8, Lem. 3.2] and [9, Eq. (2)]) and thus MT (Cfin)
= M for all A-modules

M. But again, for any maximal ideal m we have A/m∈ C and thus QCfin
(A/m) = 0,

i.e. QCfin
(−) 6= (−)T (Cfin).

As for the Gabriel localization functor and the C-radical, we will write T := T (C)
from now on.

The Gabriel localization Q(U) ⊆Q(A1×l) = A1×l
T of a module of equations U =

A1×kR, R ∈ Ak×l , is an AT -submodule of A1×l
T , and thus it is finitely generated by a

matrix R′ ∈ Ak′×l
T , i.e., we have

Q(U) = A1×k′

T R′. (6)

Let K denote the quotient field of A. The chain of inclusions

U ⊆UT = A1×k
T R⊆Q(U) = A1×k′

T R′ = Q(UT )

⊆ KU = K1×kR = KQ(U) = K1×k′R′ ⊆ K1×l
(7)

does always hold, but in general the two sets UT and Q(U) are not equal. As a conse-

quence of properties (5b), (5d) and (7), one has the set of equivalences

Q(U1)⊆Q(U2)⇐⇒U1⊆Q(U2)⇐⇒ (U1)T ⊆Q(U2), for U1, U2⊆A1×l . (8)

The matrix R′ in Equation (6) can be computed via the following algorithm.

4In the case that A = F[s] is a polynomial ring over a field, this means that T (Cfin) = F \{0}.
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Algorithm 7 ([15, Alg. 3.9]). Let U = A1×kR ⊆ A1×l with R ∈ Ak×l . To find a matrix

R′ ∈ Ak′×l such that Q(U) = A1×k′

T R′ compute a reduced primary decomposition

U =
⋂

p∈ass(A1×l/U)

U(p)

of U in A1×l, where ass(M) denotes the associator5 of a module M and the modules

U(p)⊆ A1×l are p-primary, i.e., ass(A1×l/U(p)) = {p}. Then form the set

P := {p ∈ ass(A1×l/U) : A/p /∈ C}

and compute a matrix R′ ∈ Ak′×l such that A1×k′R′ =
⋂

p∈PU(p). This matrix satisfies

A1×kR′ = Q(U).

For polynomial rings A the computations of the primary decomposition and of the

intersection are implemented in various computer algebra systems, for instance in SIN-

GULAR6. The methods for testing whether A/p ∈ C depend on the specific Serre sub-

category.

Example 8. 1. If C= C(T ) for a multiplicatively closed set T then QC(T )(U) =UT =

A1×k
T R, i.e., one can choose R′ = R and does not need Algorithm 7.

2. If C= C(Λ2) for a disjoint decomposition Cn = Λ1⊎Λ2 then A/p ∈ C(Λ2) if and

only if the zero set of p is contained in Λ1. In many cases this criterion can be

checked with the algorithm described in the first paragraph of [15, Sec. 7].

3. If C = Cfin then A/p ∈ Cfin if and only if p is a maximal ideal. This condition can

be checked using a computer algebra system.

In the following technical lemma we use the properties of Gabriel localization to

show an identity that will come in handy in Corollary 24.

Lemma 9. Let U1 and U2 be two submodules of A1×l or of A1×l
T . Then

Q(Q(U1)+U2) = Q(U1 +U2).

Proof. ⊇. This inclusion follows from (7) (U1⊆Q(U1)) and from property (5d) (since

M1 =U1 +U2 ⊆M2 = Q(U1)+U2).

⊆. From (7) and (5d), again, we infer U2⊆Q(U2) and Q(Q(U1)+U2)⊆Q(Q(U1)+
Q(U2)). By using (5h), (5b) and (5d), we conclude

Q(Q(U1)+U2)⊆Q(Q(U1)+Q(U2))
(5h),(5d)

⊆ Q(Q(U1 +U2))
(5b)
= Q(U1 +U2).

2.10 Steady State Behaviours and Duality

The steady states F2 form a Q(A) = AT module. The direct sum decomposition of the

signal space in transient signals and steady states allows us to write down the scalar

multiplication explicitly:

a

t
◦w = y2 for a ∈ A, t ∈ T, and w ∈F2,

where y = y1 + y2 ∈ RaC(F )⊕F2 is a solution of t ◦ y = a ◦w.

5ass(M) is the set of all prime ideals p such that there is a monomorphism from A/p to M.
6http://www.singular.uni-kl.de/
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Such a solution y does always exist since F is an injective A-module and hence divis-

ible over A.

The fact that F is a large injective cogenerator in ModA implies that the module

F2 is an injective cogenerator in the category ModA,C and this, in turn, induces the

following duality theory between steady state behaviours in F l
2 and C-closed submod-

ules of equations of A1×l
T . The AT -scalar multiplication on F2 carries over to multiple

components. It gives rise to the bilinear form

A1×l
T ×F

l
2 −→ AT : (η , w) 7−→ η ◦w,

and to a corresponding notion of orthogonality:

Ũ⊥2 = {w ∈F
l
2 : Ũ ◦w = 0} for AT -submodules Ũ ⊆ A1×l

T ,

B̃
⊥2 = {η ∈ A1×l

T : η ◦ B̃ = 0} for AT -submodules B̃ ⊆F
l
2.

Also, Ũ⊥2⊥2 = Ũ for C-closed Ũ ⊆ A1×l
T and B̃⊥2⊥2 = B̃ for C-closed F2-behaviours

B̃ over AT . We denote this concept of orthogonality by ⊥2 to distinguish it from the

earlier one given for submodules of A1×l and of F l .

The steady state behaviour B∩F l
2 is C-closed. It is therefore an AT -module and

(B∩F
l
2)
⊥2 = {η ∈ A1×l

T : η ◦ (B∩F
l
2) = 0}= Q(A1×kR) = A1×k′

T R′ (9)

holds, i.e., the module of equations of B∩F l
2 is finitely generated as an AT -module by

the rows of R′. This means that, although in general B∩F l
2 it is not an A-behaviour

in F l , it is an AT -behaviour in F l
2.

As a consequence, given two behaviours B = (A1×kR)⊥ and B̃ = (A1×k̃R̃)⊥, one

has the following set of equivalent conditions:

B∩F
l
2 ⊆ B̃∩F

l
2⇐⇒{w ∈F

l
2 : R◦w = 0} ⊆ {w ∈F

l
2 : R̃◦w = 0}

⇐⇒Q(A1×kR)⊇Q(A1×k̃R̃)⇐⇒∃X ∈ Ak̃′×k′

T : R̃′ = XR′

(8)
⇐⇒Q(A1×kR)⊇ A1×k̃R̃⇐⇒∃X ∈ Ak̃×k′

T : R̃ = XR′,

(10)

where Q(A1×kR) = A1×k′

T R′ and Q(A1×k̃R̃) = A1×k̃′

T R̃′.

2.11 The Image of a Steady State Behaviour

Consider a behaviour B = (A1×kR)⊥ ⊆F l , a matrix P ∈ Av×l and the associated map

P◦ as described in Section 2.2. The image of B∩F l
2 under P◦ is

P◦ (B∩F
l
2) = (P◦B)∩F

v
2 .

In other words,

{u ∈F
v : ∃w ∈B∩F

l
2 : P◦w = u}= {u ∈F

v
2 : ∃w ∈B : P◦w = u}.

Now we take a look at the dual map between row spaces A1×·. Let V ⊆ A1×v and

U ⊆ A1×l be submodules with VP ⊆U – for example V = (P ◦B)⊥ and U = B⊥ =
A1×kR – and consider the homomorphism

·P : V −→U

η 7−→ ηP,
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induced by P. Because of Assumption 5, we have Q(V ) ⊆ A1×v
T and Q(U) ⊆ A1×l

T .

The functor Q sends the homomorphism ·P to

Q(·P) : Q(V )−→Q(U),

η 7−→ ηP,
(11)

i.e., the map Q(·P) is again the multiplication of row vectors by P. As a consequence,

Q(V )P ⊆Q(V P) = Q(im(·P)) ⊆Q(U). The same holds for AT -modules V ⊆ A1×v
T

and U ⊆ A1×l
T .

2.12 Free Variables and C-stable IO Behaviours

Since the free variables of a behaviour (in particular, of an IO behaviour) are only

related to the ranks of the matrices involved in the behaviour representation, a variable

is free in B if and only if the same variable is free in B∩F l
2.

An IO behaviour B = (A1×k(P, −Q))⊥ with (P, −Q) ∈ Ak×(p+m) is C-stable if its

autonomous part B0 = (A1×kP)⊥ is C-negligible, i.e., equivalently, B0 ∈ C or B0 ∩

F
p

2 = {0} or Q(A1×kP) = A
1×p
T [8, Thm. and Def. 4.2]. If this is the case, then the

entries of the transfer matrix lie in AT and

B∩F
p+m

2 =
{
( y

u) ∈F
p+m

2 : y = H ◦ u
}
, (12)

i.e., H ∈ A
p×m
T can be seen as an operator that maps every steady state input to the

corresponding steady state output [15, Cor. 3.8].

Lemma 10. Consider a behaviour B = {(w1
w2
) ∈F l1+l2 : (R1, R2) ◦ (

w1
w2
) = 0} with

free variables w2 and let H ∈ Kl1×l2 be such that R2 =−R1H. Assume that the entries

of H lie in AT , i.e., H ∈ A
l1×l2
T . Let R′1 ∈ A

k′×l1
T be such that Q(A1×kR1) = A1×k′

T R′1.

Then the module of equations of the steady state behaviour of B, i.e., of B∩F
l1+l2
2 ,

is

(B∩F
l1+l2
2 )⊥2 = A1×k′

T R′1(idl1 , −H) = A1×k′

T (R′1, −R′1H).

In the special case when B = (A1×k(P, −Q))⊥ is a C-stable IO behaviour, we obtain

(B∩F
p+m

2 )⊥2 = A
1×p
T (idp, −H). (13)

Proof. Since

(B∩F
l1+l2
2 )⊥2

(9)
= Q(A1×k(R1, R2)) = Q(A1×k

T (R1, R2))

= Q(A1×k
T R1(idl1 , −H)),

we need to show that Q(A1×k
T R1(idl1 , −H)) = A1×k′

T R′1(idl1 , −H).
Consider the isomorphism

φ : A1×k
T R1 −→ A1×k

T R1(idl1 , −H)

η1 7−→ η1(idl1 , −H) = (η1, η1H),

with inverse
φ−1 : A1×k

T R1(idl1 , −H)−→ A1×k
T R1

(η1, η2) 7−→ η1.
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Applying the functor Q leads to the isomorphism

ψ := Q(φ) : Q(A1×k
T R1)−→Q(A1×k

T R1(idl1 , −H))

η1 7−→ η1(idl1 , −H),

with inverse

ψ−1 = Q(φ−1) = Q(φ)−1 : Q(A1×k
T R1(idl1 , −H))−→Q(A1×k

T R1)

(η1, η2) 7−→ η1.

Notice that ψ and ψ−1 are given by the same matrices as the original maps. We use

Q(A1×kR1) = Q(A1×k
T R1) = A1×k′

T R′1 to infer that

Q(A1×k
T R1(idl1 , −H)) = ψ

(
ψ−1

(
Q(A1×k

T R1(idl1 , −H))
))

= ψ(Q(A1×k
T R1)) = ψ(A1×k′

T R′1) = A1×k′

T R′1(idl1 , −H).

If B = (A1×k(P, −Q))⊥ is a C-stable IO behaviour then its transfer matrix H has

entries in AT and PH = Q. Consequently, H satisfies the conditions of the lemma.

Furthermore, Q(A1×kP) = A
1×p
T . So, the assertion follows as a special case of what

has been proven above.

3 Stabilization by Partial Interconnection

As a first step, we formally introduce the stabilization problem. Then we state and

prove our main result on stabilization (Theorem 13), followed by a parametrization of

the stabilizing compensators. We conclude the section with Example 15 which we will

expand in Sections 4 and 5.

In the following, we will steadily assume that /0 6= C ( ModA is a fixed Serre sub-

category of modules satisfying Assumption 5, i.e., QC(A) = AT (C), and we will refer

to it in order to define the concept of C-negligibility and hence of C-stabilizability.

Definition 11. Given a plant

P =
{
(w

c ) ∈F
lw+lc : (Rw, Rc)◦ (

w
c ) = 0

}
, (14)

with (Rw, Rc)∈Akp×(lw+lc). The to-be-controlled variable w is of size lw and the control

variable c is of size lc. We say that the compensator

C = {c ∈F
lc : Cc ◦ c = 0}, (15)

with Cc ∈ Akc×lc , C-stabilizes the plant P if the partial interconnection

P ∧c C =

{(
w

c

)
∈F

lw+lc :

(
Rw Rc

0 Cc

)
◦

(
w

c

)
= 0

}

is

1. regular, i.e., A1×kp(Rw, Rc)∩A1×kc(0, Cc) = {0}, and

2. C-negligible, i.e., P ∧c C ∈ C.
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We call a plant C-stabilizable if it admits a (partial regular) C-stabilizing compensator.

The second item of the previous definition is the control goal, namely, that all tra-

jectories in the interconnected behaviour should be C-negligible. If the interconnection

were not regular, the equations of the compensator could conflict with those of the

plant and this would leave no viable trajectory, whereas a regular interconnection can

always be seen as an input-output feedback connection (see [21]). Furthermore, the

the controller may only affect the control variable c directly and any influence on the

variable to be controlled w must be exerted via the control variable.

The diagram illustrating the connection of a plant and a compensator is given in

Figure 1.

C

P w

c

Figure 1: The interconnection diagram for the problem of stabilization by partial inter-

connection.

The first goal of this section is to find necessary and sufficient conditions for the

existence of a C-stabilizing compensator for a given plant. To this end, we need a

preliminary lemma.

Lemma 12. Let P and C be a plant and compensator, described as in (14) and (15),

respectively, for suitable matrices (Rw, Rc) ∈ Akp×(lw+lc) and Cc ∈ Akc×lc . Also, let

R′ = (R′w, R′c) ∈ A
k′p×(lw+lc)

T and C′c ∈ A
k′c×lc
T be matrices such that

Q(A1×kp(Rw, Rc)) = A
1×k′p
T R′ and Q(A1×kcCc) = A

1×k′c
T C′c.

The behaviour C is a C-stabilizing compensator for the plant P if and only if the sum

of A
1×k′p
T R′ and A

1×k′c
T (0, C′c) is a direct one and it coincides with A

1×(lw+lc)
T , namely

A
1×k′p
T R′⊕A

1×k′c
T (0, C′c) = A

1×(lw+lc)
T .

Proof. By properties (5g) and (7) and the fact that Q({0}) = {0} (which follows from

{0} ∈ C 6= /0 and (5c)) we have

A1×kp(Rw, Rc)∩A1×kc(0, Cc) = {0}

⇐⇒Q(A1×kp(Rw, Rc))∩Q(A1×kc(0, Cc)) = {0}.

Hence, the interconnection P ∧c C is regular if and only if the sum of the Gabriel

localizations of the modules of equations of P and C is direct.

Moreover, due to the direct sum decomposition (3) of a behaviour and Property

(5c), we have that P ∧c C ∈ C if and only if

Q(P ∧c C )∼= (P ∧c C )∩F
lw+lc
2 =

{
(w

c ) ∈F
lw+lc
2 :

(
Rw Rc
0 Cc

)
◦ (w

c ) = 0
}
= {0}.
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This is equivalent to

A
1×(lw+lc)
T

ass. on A
= Q(A1×(lw+lc)) = Q

(
A1×(kp+kc)

(
Rw Rc
0 Cc

))

= Q

(
A1×kp(Rw, Rc)⊕A1×kc(0, Cc)

)

(5f)
= Q

(
A1×kp(Rw, Rc)

)
⊕Q

(
A1×kc(0, Cc)

)

= A
1×k′p
T R′⊕A

1×k′c
T (0, C′c).

The previous characterization allows us to derive a necessary and sufficient condi-

tion for the existence of a C-stabilizing compensator, given in Theorem 13 below.

For the proof of this theorem as well as for the resulting parametrization of all sta-

bilizing compensators we need the following parametrization of all direct complements

of A
1×k′p
T R′ in A1×l

T , where l := lw + lc. This technical result was first used in [8] for the

parametrization of C-stabilizing feedback compensators.

First of all, there exists a direct complement of A
1×k′p
T R′ in A1×l

T if and only if the

inhomogeneous linear equation

R′G0R′ = R′ (16)

in the unknown G0 ∈ A
l×k′p
T has a solution7.

If G̃0 is a specific solution of (16), then the solutions of (16) are those and those

only taking the form G0 = G̃0−Y , as Y varies in the set of solutions of the associated

homogeneous equation R′Y R′ = 0. Accordingly, to every such solution G0 of (16) we

can associate the matrix C0 := idl−G0R′ = (idl−G̃0R′)+YR′ =: C̃0 +YR′ ∈ Al×l
T that

satisfies A
1×k′p
T R′⊕A1×l

T C0 = A1×l
T . More in detail, every direct complement of A

1×k′p
T R′

can be obtained via a solution Y of the homogeneous linear matrix equation R′YR′ = 0

and there is the one-to-one correspondence

{Y ∈ A
l×k′p
T : R′YR′ = 0}/{Y : YR′ = 0}←→ {U ⊆ A1×l

T : A
1×k′p
T R′⊕U = A1×l

T }

defined by the following map (see [8, Thms. 2.12, 2.13]):

Y 7−→ A1×l
T (idl−(G̃0−Y)R′) = A1×l

T (C̃0 +YR′), (17)

where Y is any representative of the class Y = Y + {Ỹ : ỸR′ = 0}.
We are now in a position to state and prove the following result.

Theorem 13. Given a plant P , described as in (14) for some suitable matrix (Rw, Rc)

∈ Akp×(lw+lc), let R′ = (R′w, R′c) ∈ A
k′p×(lw+lc)

T be such that

Q(A1×kp(Rw, Rc)) = A
1×k′p
T R′.

The following statements are equivalent:

1. There exists a C-stabilizing compensator C for P .

2. The module A
1×k′p
T R′ has a direct complement in A

1×(lw+lc)
T , i.e., there exists a

G0 ∈ A
l×kp

T such that R′G0R′ = R′, and A
1×k′p
T R′w = A

1×lw
T , i.e., R′w has a left

inverse over AT .

7The same equation over the ring of operators A appeared already in [22, Cor. 5.2], where it was used to

characterize those plants that are controllable to zero by interconnection.
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Proof. 1 =⇒ 2. Let C , described as in (15), be a C-stabilizing compensator for P ,

and let C′c ∈ A
k′c×lc
T be such that Q(A1×kcCc) = A

1×k′c
T C′c.

Then, by Lemma 12, we have

A
1×k′p
T (R′w, R′c)⊕A

1×k′c
T (0, C′c) = A1×l

T ,

i.e., A
1×k′p
T (R′w, R′c) = A

1×k′p
T R′ is a direct summand of A1×l

T (equivalently, A
1×k′p
T R′

has a direct complement in A1×l
T ). Furthermore, by focusing only on the first com-

ponents in the previous identity, we get A
1×k′p
T R′w⊕A

1×k′c
T 0= A

1×lw
T , i.e., A

1×k′p
T R′w =

A
1×lw
T , thus proving that R′w has a left inverse over AT .

2 =⇒ 1. Since A
1×k′p
T R′ is a direct summand of A1×l

T , equation (16) has a solution G̃0 ∈

A
l×k′p
T and the row space of the matrix C̃0 := idl−G̃0R′ ∈Al×l

T is a direct complement

of A
1×k′p
T R′. Let X ∈ A

lw×k′p
T be a left inverse of R′w, and partition the matrix C̃0 as

C̃0 = (C̃0w, C̃0c), where the first block consists of lw columns, while the second one

of lc columns. The matrix Y :=−C̃0wX =−
((

idlw

0

)
− G̃0R′w

)
X satisfies

R′Y R′ =−R′
(

idlw
0

)

︸ ︷︷ ︸
=R′w

XR′+R′G̃0R′w︸ ︷︷ ︸
=R′w

XR′ = 0.

From the parametrization (17) it follows that the module A1×l
T C1 with C1 := C̃0 +

YR′ is also a direct complement of A
1×k′p
T R′. Furthermore, C1w = C̃0w− C̃0wXR′w =

C̃0w− C̃0w = 0, i.e., the matrix C1 = (C1w, C1c) = (0, C1c) has the correct block

structure. Let t ∈ T be a common denominator of the entries of Cc. Then tC1 =
(0, tC1c) ∈ Akc×(lw+lc) and the module A

1×kc
T tC1 = A

1×kc
T C1 is a direct complement

of A
1×k′p
T R′. By this argumentation, the behaviour

C := {c ∈F
lc : (tC1c)◦ c = 0}

is a C-stabilizing compensator of P .

Remark 14. The second condition of item 2. in Theorem 13 is equivalent to the ex-

istence of a C-observer of w from c for the plant P [15, Thm. 4.4]. The existence

of a C-stabilizing compensator for P by (regular) partial interconnection via c is thus

equivalent to the existence of a C-stabilizing compensator for P by (regular) full in-

terconnection and the existence of a C-observer of w from c for P .

Now we give a parametrization of all C-stabilizing compensators for the plant P .

We assume that such a compensator exists and use the same notation as in the proof of

Theorem 13. In particular, we let G̃0 denote a solution of R′G0R′ = R′, and X ∈ A
lw×k′p
T

a left inverse of R′w. Hence the row space of

C1 = (0, C1c) = (idl−G̃0R′)−
((

idlw
0

)
− G̃0R′w

)
XR′

= idl−
(

G̃0 +
((

idlw
0

)
− G̃0R′w

)
X

)
R′ ∈ Al×l

T

(18)
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represents a direct complement of A
1×k′p
T R′. Then the matrix C1c defines a (partial

regular) C-stabilizing compensators of the plant P (up to a multiplication by a suitable

t ∈ T ). To determine all the other compensators, we proceed as follows. We set C̃(Y ) :=

C1 +YR′, where Y ∈ A
l×k′p
T satisfies R′YR′ = 0, and block-partition C̃(Y ) as

C̃(Y ) = (C̃w(Y ), C̃c(Y )).

We easily notice that

C̃w(Y ) = C1w︸︷︷︸
=0

+YR′w = 0⇐⇒ Y R′w = 0,

i.e., the first block of C̃(Y ) (corresponding to w) is zero if and only if Y ∈ A
l×k′p
T is a left

annihilator of R′w. If L ∈ A
m×k′p
T is a universal left annihilator of R′w, all left annihilators

of R′w of size l× k′p are described as Y = ZL for some Z ∈ Al×m
T . So, we can associate

with every Z ∈ Al×m
T satisfying R′ZLR′ = 0 the AT -matrix

C(Z) := C̃(ZL) =C1 +ZLR′ = (0, C̃c(ZL)) =: (0, Cc(Z)). (19)

To obtain a stabilizing compensator one has to multiply the matrix Cc(Z) by a common

denominator t ∈ T of its entries. Bijectivity of this parametrization can be obtained by

factoring out the module {Z : ZLR′ = 0}, similarly to what was done in (17).

Of course, there are many behaviours C̃ that satisfy (C̃ ∩F
lc
2 )⊥2 = A1×l

T Cc(Z) for

a given Z, thus we have not parametrized all stabilizing compensators for the plant

P . However, all those behaviours C̃ have the same steady state behaviour, namely

{c ∈F
lc
2 ; Cc(Z)◦ c = 0}, and only their transient trajectories differ. In this sense, we

have parametrized the C-stabilizing compensators of P up to their C-negligible, i.e.,

transient parts.

We conclude this section with a comprehensive example, which we will extend in

the following sections.

Example 15. We use the complex polynomial ring A=C[s] =C[s1,s2] in two variables

and the Serre subcategory

C := Cfin = {M ∈ModA : Mp = 0 for all p ∈ spec(A)\max(A)}

from Example 2, part 3. The signal space F is an arbitrary large injective cogenerator,

for instance one of those from Example 1 – both the continuous as well as the discrete

case are fine.

The only prime ideals in A are the maximal ideals m(λ ) = A(s1−λ1)+A(s2−λ2),
λ ∈C2, the principal ideals generated by the irreducible polynomials in A and the zero

ideal, thus spec(A) \max(A) = {Ap : p irreducible}∪{0}. Furthermore, recall from

Assumption 5 and Example 6, part 2, that in this situation T = T (Cfin) = C\ {0} and

Q(A) = AT = A. This implies that all computations will take place over the polynomial

ring A = C[s].
We consider the plant P =

{
(w

c ) ∈F 1+3; R◦ (w
c ) = 0

}
with one to-be-controlled

variable w ∈F and three control variables c =
( c1

c2
c3

)
∈F 3 given by the matrix

R =
(
Rw Rc

)
=




0 p(s1−λ1) s1−λ1 0

0 p(s2−λ2) s2−λ2 0

0 0 0 −1

1 −1 0 0


 ∈ C[s]4×4
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of rank 3 with λ = (λ1, λ2) = (−1, 2) ∈ C2 and p = s3
1 + 3s2

1− s2 ∈ C[s] irreducible.

Notice that these equations imply w = c1 and c3 = 0 (we will use c3 in Section 5 for the

disturbance). In the first two equations one can identify a C-negligible dynamics asso-

ciated with the maximal ideal m(λ ) and a non-negligible one related to the principal

prime ideal Ap.

The Gabriel localization of A1×4R is

Q(A1×4R) = A1×3R′ with R′ =
(
R′w R′c

)
=

(
0 0 0 1
1 −1 0 0

0 p 0 0

)
. (20)

We solve the linear matrix equation (16) over A and obtain

{G0 : R′G0R′ = R′}=

(
0 1 0
0 0 0
0 0 1
1 0 0

)

︸ ︷︷ ︸
=G̃0

+A

(
−1 0 0
−1 0 0
p 0 0
0 0 0

)
+A

(
0 −1 0
0 −1 0
0 p 0
0 0 0

)
+A

(
0 0 −1
0 0 −1
0 0 p
0 0 0

)
.

The matrix

C0 = id4−G̃0R′ =




0 1 0 0
0 1 0 0

0 −p 0 0

0 0 0 0


=: C1

does already have the correct block structure and therefore we set C1 =
(
0 C1c

)
=

C0. If we use the compensator C = (A1×4C1c)
⊥ we obtain (after performing some

simplifying row operations on the matrix) the system

(P ∧c C )⊥ = A1×5




1 0 0 0
0 1 0 0

0 0 s1−λ1 0

0 0 s2−λ2 0

0 0 0 1


 ,

where all variables are zero except for c2 which exhibits a C-negligible dynamics asso-

ciated with m(λ ).
Now we derive the parametrization of all C-stabilizing compensators of P . A

universal left annililator of R′w =
(

0
1
0

)
is

L =
(

1 0 0
0 0 1

)
∈ A2×3. (21)

Introducing the parameter matrix Z =

( z1 z2
z3 z4
z5 z6
z7 z8

)
∈ A4×2 leads to

R′ZLR′ =

(
0 z8 p z8 z7

0 (z2−z4)p z2−z4 z1−z3

0 (z4 p+z6)p z4 p+z6 z3 p+z5

)

and the condition R′ZLR′ = 0 allows us to simplify the parameter matrix to

Z =

( z1 z2
z1 z2
−z1 p −z2 p

0 0

)
.

With Equation (19) we arrive at

C(Z) =C1 +ZLR′ =




0 1+z2 p z2 z1

0 1+z2 p z2 z1

0 −p−z2 p2 −z2 p −z1 p

0 0 0 0


 .
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The first and the second line of C1 and Z (and therefore also of C(Z)) are equal, the

third line is a multiple of the first one and the fourth line is zero, thus all but the first

line can be omitted and, after renaming, we obtain

C1 =
(
0 C1c

)
=
(
0 1 0 0

)
, Z =

(
z1 z2

)
and

C(Z) =
(
0 C1(Z)

)
=
(
0 1+ z2p z2 z1

)
.

(22)

The set of all C-stabilizing compensators is parametrized by

A1×2 −→ {C-stabilizing compensators C of P},

Z =
(
z1 z2

)
7−→

(
A
(
1+ z2p z2 z1

))⊥
.

For example, the choice z1 = 0, z2 = 1 leads to

(P ∧c C )⊥ = A1×5




1 −1 0 0

0 s1−λ1 0 0
0 s2−λ2 0 0

0 −3 1 0

0 0 0 1


 ,

where both the the control variables and the to-be-controlled variable w = c1 exhibit

C-negligible dynamics.

4 Stabilization in the presence of external signals

In the previous section we have addressed the stabilization problem by assuming that

the only variables involved are the control variable c and the to be controlled variable

w. A more realistic scenario is the one where also external signals, acting on the plant

and the compensator (see Figure 2), appear in the system description. Specifically, we

assume for the plant and the controller the descriptions:

P =
{(

w
c
v

)
∈F

lw+lc+lv : (Rw, Rc, Rv)◦
(

w
c
v

)
= 0
}

C =
{
( c

u) ∈F
lc+lu : (Cc, Cu)◦ (

c
u) = 0

}

with (Rw, Rc, Rv) ∈ Akp×(lw+lc+lv) and (Cc, Cu) ∈ Akc×(lc+lu). As before, lw is the

size of the variable to be controlled w and lc denotes the size of the control variable

c. The disturbance v has lv components and the reference signal u is of size lu. In the

following, we use the notation l1 := lw + lc, l2 := lv + lu and l := l1 + l2.

C

P w

u

v

c

Figure 2: The interconnection diagram for the problem of stabilization by partial inter-

connection with additional exogenous signals.
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Definition 16. We say that C is a C-stabilizing compensator for P in the presence of

exogenous signals if

1. the partial interconnection P ∧c C is regular,

2. ( v
u) is free in P ∧c C ,

3. Nw,c(P)∧c Nc(C ) ∈ C.

The rationale behind items one and three is the same as in the previous section: the

control shall be exerted only via the control variable c and not restrict what already is

restricted (regular interconnection), and the resulting behaviour, for v = 0 and u = 0,

consists only of C-negligible signals. As the ports u and v are used later to insert

disturbances and to connect the system with a reference signal generator, respectively,

v and u cannot be restricted by P ∧c C , i.e., they have to be free (item 2). Otherwise,

it may happen for instance that the interconnected behaviour restricts the nature of

disturbances that can affect it.

It is worthwhile remarking that, as a consequence of the previous definition, if C is

a C-stabilizing compensator for P then P ∧c C is a C-stable IO behaviour with input

( v
u) and output (w

c ). The following technical lemma is of fundamental importance since

it allows to extend the analysis of the previous section to the case of interconnection

with exogenous signals.

Lemma 17. The following facts are equivalent:

1. P ∧c C is regular and ( v
u) is free in P ∧c C ;

2. Nw,c(P)∧c Nc(C ) is regular, v is free in P and u is free in C .

Proof. 2 =⇒ 1. In the computation

rank
(

Rw Rc Rv 0
0 Cc 0 Cu

)
6 rank(Rw, Rc, Rv, 0)+ rank(0, Cc, 0, Cu)

= rank(Rw, Rc, Rv)+ rank(Cc, Cu)
∗
= rank(Rw, Rc)+ rank(Cc)

†
= rank

(
Rw Rc
0 Cc

)
6 rank

(
Rw Rc Rv 0
0 Cc 0 Cu

)

the equality indicated by ∗ holds because v and u are free in P and C , respec-

tively, while the regularity of Nw,c(P)∧c Nc(C ) implies the equality †. As a

consequence, all the relations are actually equalities. Since the expressions in the

first two lines of the computation are equal, the interconnection P ∧c C is regular.

On the other hand, the fact that the expressions in the last line of the computation

are equal implies that ( v
u) is free in P ∧c C .

1 =⇒ 2. Using similar reasonings we obtain

rank
(

Rw Rc
0 Cc

)
6 rank(Rw, Rc)+ rank(0, Cc)

6 rank(Rw, Rc, Rv, 0)+ rank(0, Cc, 0, Cu)

∗
= rank

(
Rw Rc Rv 0
0 Cc 0 Cu

)
†
= rank

(
Rw Rc
0 Cc

)
.
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Again, the equality due to the regularity is indicated by ∗, and the one following

from the freeness by †. All relations are equalities, therefore Nw,c(P)∧c Nc(C )
is regular. Furthermore, from

rank(Rw, Rc)6 rank(Rw, Rc, Rv),

rank(Cc)6 rank(Cc, Cu), and

rank(Rw,Rc)+ rank(Cc) = rank(Rw,Rc,Rv)+ rank(Cc,Cu)

we conclude that rank(Rw, Rc) = rank(Rw, Rc, Rv) and rank(Cc) = rank(Cc, Cu),
i.e., that v and u are free in P and C , respectively.

A direct consequence of this lemma is that C is a C-stabilizing compensator for

P in the presence of exogenous signals if and only if v is free in P , u is free in C

and the behaviour Nc(C ) is a C-stabilizing compensator for Nw,c(P) in the previous

set-up, namely without external signals. The next lemma formalizes this fact, by estab-

lishing the relationship between the C-stabilizing compensators for Nw,c(P) and the

C-stabilizing compensators for P , in the presence of external signals.

Lemma 18. Assume that v is free in P .

1. If (A1×kcCc)
⊥ is a C-stabilizing compensator for Nw,c(P), then for every D ∈

Alc×lu and t ∈ T we have that (A1×kc(tCc, CcD))⊥ is a C-stabilizing compensator

for P .

2. If (A1×kc(Cc, Cu))
⊥ is a C-stabilizing compensator for P then (A1×kcCc)

⊥ is

a C-stabilizing compensator for Nw,c(P), and there exists a matrix D ∈ A
lc×lu
T

such that Cu =CcD.

Proof. 1. Since t ∈ T , the element t is invertible in AT . This implies that A
1×kc
T tCc =

A
1×kc
T Cc, and hence

Q(A1×kctCc) = Q(A1×kc
T tCc) = Q(A1×kc

T Cc) = Q(A1×kcCc).

This implies that also (A1×kctCc)
⊥ is a C-stabilizing compensator for Nw,c(P).

Furthermore, since the columns of CcD belong to the column space of Cc over the

quotient field K, we have rank(tCc) = rank(tCc, CcD). In other words, the variables

u (corresponding to the right block) are free in (A1×kc(tCc, CcD))⊥. The assertion

follows from Lemma 17.

2. (A1×kcCc)
⊥ is a C-stabilizing compensator for Nw,c(P) by point 3. of Definition

16 and Lemma 17. By assumption, P ∧c C is a C-stable IO behaviour with input

( v
u) and output (w

c ). Thus by [8, Thm. and Def. 4.2] there exists a transfer matrix

(
H1 H2

H3 H4

)
∈ A

l1×l2
T such that

(
Rw Rc

0 Cc

)(
H1 H2

H3 H4

)
=

(
Rv 0

0 Cu

)
.

This implies, in particular, that CcH4 =Cu. So, the statement holds for D =H4.

From the previous lemma it follows that there are no constraints on the choice of the

matrix D ∈ A
lc×lu
T . Lemma 18 and Equation (19) lead to the following parametrization
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of the C-stabilizing compensators of the plant P:

{(Z, D) ∈ A
l1×m
T ×A

lc×lu
T : R′ZLR′ = 0}

−→ {(C ∩F
lc+lu
2 )⊥2 : C is a stabilizing compensator for P},

(Z, D) 7−→ A
1×l1
T (Cc(Z), Cc(Z)D),

(23)

where Cc(Z) :=C1c +ZLR′c as in (19), Q(A1×kp(Rw, Rc)) = A
1×k′p
T R′, R′ = (R′w, R′c) ∈

A
k′p×(lw+lc)

T and L ∈ A
m×k′p
T is a universal left annihilator of R′w. In order to obtain the

matrix of the compensator, one has to multiply the matrix (Cc(Z), Cc(Z)D) by a com-

mon denominator t ∈ T of its entries. Also, in this case, if we want to establish a

bijective correspondence between the matrix parameters Z and D and the compen-

sators, we have to keep into account the fact that all pairs of parameters (Z1, D1) and

(Z2, D2) that satisfy (Z1−Z2)LR′ = 0 and Cc(Z1)D1 =Cc(Z2)D2 yield the same com-

pensator. Furthermore, also in this context the parametrization we have obtained is up

to C-negligible behaviours.

Example 19. We extend Example 15 and therefore use all the objects and notations

introduced there. We add an external variable v ∈F to the plant and equate it to the

third control variable c3, which was unused yet. To accommodate this, we modify the

matrix R as

R =
(
Rw Rc Rv

)
=




0 p(s1−λ1) s1−λ1 0 0

0 p(s2−λ2) s2−λ2 0 0

0 0 0 −1 1
1 −1 0 0 0


 ∈ A4×(1+3+1).

It holds that rank
(
Rw Rc Rv

)
= rank

(
Rw Rc

)
, i.e., v is free in P .

We also add an external variable u ∈ F to the compensator. The compensators

without external signals are parametrized via Cc(Z) =
(
1+ z2p z2 z1

)
where Z =(

z1 z2

)
∈ A1×2 (recall that in this setting AT = A holds). According to Lemma 18, the

columns of Cu have to be linear combinations of the columns of Cc and the coefficients

can be freely chosen, thus with D =

(
d1
d2
d3

)
∈ A3×1 we obtain the parametrization

A1×2×A3×1 −→ {C-stabilizing compensators C of P},

(Z, D) 7−→
(

A
(
Cc(Z) Cc(Z)D

))⊥
,

with Cc(Z) =
(
1+ z2 p z2 z1

)
∈ A1×3 and

Cc(Z)D = (1+ z2 p)d1 + z2d2 + z1d3 ∈ A.

The choice Z = 0 and D = 0 leads to the compensator matrix

(
Cc Cu

)
=
(
1 0 0 0

)

and to the interconnected behaviour P ∧c C resp. its module of equations

(P ∧c C )⊥ = A1×5




1 0 0 0 0 0
0 1 0 0 0 0

0 0 s1−λ1 0 0 0

0 0 s2−λ2 0 0 0

0 0 0 −1 1 0


 .
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The external variable u does not appear in the system. The two blocks of variables

(w, c1, c2) and (c3, v) are separated which means, in particular, that the exogenous

signal v has no influence on the to-be-controlled-variable w.

On the contrary, the choices Z =
(
−1 0

)
and D = 0 lead to

(
Cc Cu

)
=
(
1 0 −1 0

)

and to

(P ∧c C )⊥ = A1×5




1 −1 0 0 0 0

0 1 0 −1 0 0

0 1 0 0 −1 0

0 p(s1−λ1) s1−λ1 0 0 0
0 p(s2−λ2) s2−λ2 0 0 0


 ,

i.e., the to-be-controlled variable w is equal to the external signal v. If v is interpreted

as a disturbance, then w = v is a relation which is utterly undesirable. In Example 26

we will see that the choice z1 = −1 which led to this situation is not permitted if

disturbance rejection is part of the control goal.

5 Regulation by Partial Interconnection

Consider a plant P and a compensator C , described as in Section 4. In addition,

assume that the external signals v and u, acting on P and C , are trajectories of two

behaviours
EP = {v ∈F

lv : V ◦ v = 0}, V ∈ Ak1×lv ,

EC = {u ∈F
lu : U ◦ u = 0}, U ∈ Ak2×lu ,

(see Figure 3).

EC

EP

C

P w

u

v

c

Figure 3: The interconnection diagram for the regulation problem.

Introduce the matrix

K = (Kw, Kc, Kv, Ku) ∈ Ak×(lw+lc+lv+lu).

The control goal we investigate in this section is that of finding a C-stabilizing com-

pensator C such that K ◦

(
w
c
v
u

)
is C-negligible for every trajectory

(
w
c
v
u

)
of the inter-

connected behavior

B := EP ∧v P ∧c C ∧u EC =

{(
w
c
v
u

)
∈F

l :

(
Rw Rc Rv 0
0 Cc 0 Cu
0 0 V 0
0 0 0 U

)
◦

(
w
c
v
u

)
= 0

}
, (24)

i.e., for every trajectory

(
w
c
v
u

)
such that

(
w
c
v

)
∈P , ( c

u) ∈ C , v ∈ EP and u ∈ EC .

For example, the choice K = (id, 0, 0, − id) corresponds to designing a compensator
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in such a way that, in the interconnected behaviour, the trajectories of the tracking

error variable K ◦

(
w
c
v
u

)
= w− u are C-negligible. This means that the variable to be

controlled, w, coincides (modulo a transient signal) with the variable to be tracked, u,

independently of the other variables, in particular of the disturbance v.

Definition 20. By referring to the set-up introduced in this and in the previous section

as illustrated in Figure 3, we say that a behaviour C is a C-regulator for P , with respect

to EP , EC and K, if the following conditions are satisfied:

1. C is a C-stabilizing compensator for P in the presence of exogenous signals in

the sense of Definition 16 in Section 4 and

2. K ◦B is C-negligible, where B is the interconnected behaviour.

The second part of Definition 20 clearly represents the main objective of the C-

regulator. One may wonder whether the first requirement is really necessary or not. In

principle, it may be possible that the C-regulation problem can be solved without in-

troducing this constraint. However, it is clear that for example the tracking and distur-

bance rejection problem C-regulator problem with K = (id, 0, 0, − id) only focuses on

the behaviour of the to-be-controlled variable w. So, without the stabilization require-

ment, the case may occur that w is following the desired reference signal, meanwhile

rejecting the disturbances, but the control variable c grows unpredictably, possibly with

damaging effects on the system functioning.

Notice that from condition 1. of Definition 20 it follows that the interconnection

P ∧c C is regular and ( v
u) is free in this behaviour. Consequently, by the structure

of the matrix description given in (24), it follows that B = EP ∧v P ∧c C ∧u EC is a

regular interconnection, too.

Theorem 21. Assume that C is a C-stabilizing compensator for P . Then K ◦B ∈ C,

namely K ◦B is C-negligible, if and only if

(EP ×EC )∩F
l2
2 ⊆ projv,u

(
(P ∧c C )∩ (A1×kK)⊥

)
∩F

l2
2

=

{
( v

u) ∈F
l2
2 : ∃(w

c ) ∈F
l1
2 such that

(
Rw Rc Rv 0
0 Cc 0 Cu

Kw Kc Kv Ku

)
◦

(
w
c
v
u

)
= 0

}
.

Proof. Necessity. Assume that K ◦B ∈ C. Let ( v
u)∈ (EP×EC )∩F

l2
2 . The behaviour

P ∧c C is an IO behaviour and this property is preserved when moving to (P ∧c

C )∩F l
2 . Let thus (w

c ) ∈F
l1
2 be such that

(
w
c
v
u

)
∈ (P ∧c C )∩F l

2 . Then

(
w
c
v
u

)
∈

B∩F l
2. From K ◦B ∈ C we infer (K ◦B)∩F l

2 = K ◦(B∩F l
2) = 0 and conclude

that K ◦

(
w
c
v
u

)
∈ K ◦ (B∩F l

2) = 0, i.e., K ◦

(
w
c
v
u

)
= 0.

Sufficiency. Let

(
w
c
v
u

)
∈B∩F l

2. Then ( v
u) ∈ (EP ×EC )∩F

l2
2 and thus, by assump-

tion, there exists
(

w̃
c̃

)
∈F

l1
2 such that

(
w̃
c̃
v
u

)
∈ (P ∧c C )∩F

l
2 and K ◦

(
w̃
c̃
v
u

)
= 0.
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But from the definition of B it follows that also

(
w
c
v
u

)
∈ (P ∧c C )∩F l

2. Thus

the difference

(
w
c
v
u

)
−

(
w̃
c̃
v
u

)
lies in (P ∧c C )∩F l

2 too, and since the inputs of this

trajectory are zero,
(

w−w̃
c−c̃

)
∈ Nw,c ((P ∧c C ))∩F

l1
2 is an element of the steady

states of the autonomous part. But since P ∧c C is C-stable, i.e., its autonomous

part is C-negligible, this trajectory must be zero. Therefore, w = w̃, c = c̃ and

K ◦

(
w
c
v
u

)
= K ◦

(
w̃
c̃
v
u

)
= 0.

This ensures that (K ◦B)∩F k
2 =K ◦(B∩F l

2) = 0, i.e., that K ◦B is C-negligible.

The following algorithm provides a procedure to test whether the necessary and

sufficient condition provided in the previous theorem is satisfied.

Algorithm 22. Consider a plant P and a compensator C , described as at the begin-

ning of section 4, external behaviours EP and EC , and a control goal K, described as

at the beginning of this section. In order to test whether C is a C-regulator for this

set-up, the following steps need to be taken:

1. Verify that C is a C-stabilizing compensator for P . Check the conditions

rank(Rw, Rc, Rv) = rank(Rw, Rc),

rank(Cc, Cu) = rank(Cc)

rank
(

Rw Rc
0 Cc

)
= rank(Rw, Rc)+ rank(Cc)

to ascertain the freeness of v and u and the regularity of the interconnection. The

methods to test if Nw,c(P)∧c Nc(C ) is C-negligible depend on the specific Serre

subcategory C.

For example, consider a Serre subcategory of the type C(Λ1) induced by a disjoint

decomposition Cn = Λ1 ⊎Λ2 as in Example 2, part 2. An autonomous behaviour

B = {w ∈ F l; R ◦w = 0} is C(Λ1)-negligible if its variety of rank singularities

{λ ∈ Cr : rank(R(λ ))< l}, is contained in Λ1, see Example 3, part 2. To test this,

one computes the determinants of all l× l-submatrices of R and checks whether

their common zeros lie in Λ1 using the algorithm described in the first paragraph

of [15, Sec. 7].

2. Compute a universal left annihilator X ∈ Am×(kp+kc+k) of

(
Rw Rc
0 Cc

Kw Kc

)
and matrices

V ′ ∈ A
k′1×lv
T and U ′ ∈ A

k′2×lu
T such that

Q(A1×k1V ) = A
1×k′1
T V ′ and Q(A1×k2U) = A

1×k′2
T U ′,

(see [15, Alg. 3.9]). Then, check if the inhomogeneous linear matrix equation

Y
(

V ′ 0
0 U ′

)
= X

(
Rv 0
0 Cu

Kv Ku

)

has a solution Y ∈ A
m×(k′1+k′2)
T . If this is the case, C is a C-regulator.
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Solving systems of inhomogeneous linear equations over some quotient ring AT can

be difficult and it is still an unsolved problem in many cases. However, in [15, Sec. 7]

an algorithm is given that performs this task in a number of important situations.

In the remainder of this section, we will extend the parametrization of C-stabilizing

compensators provided in Section 4 to a parametrization of C-regulators.

Lemma 23. Given the plant P =
{(

w
c
v

)
∈F l1+lv : (Rw, Rc, Rv)◦

(
w
c
v

)
= 0
}

, as-

sume that v is a free variable for P and that Nw,c(P) = (A1×kp(Rw, Rc))
⊥ is C-

stabilizable. Let R′ ∈ A
k′p×l1
T be such that Q(A1×kp(Rw, Rc)) = A

1×k′p
T R′. Then there

exists a matrix R′v ∈ A
k′p×lc

T such that

(P ∩F
l1+lv
2 )⊥2 = Q(A1×kp(Rw, Rc, Rv)) = A

1×kp

T (R′, R′v).

Proof. Let C = (A1×kcCc)
⊥ be a C-stabilizing compensator for Nw,c(P). Then

Nw,c(P)∧c C =
(

A1×(kp+kc)
(

Rw Rc
0 Cc

))⊥

is C-negligible, and hence autonomous, and P ∧c C =
(

A1×(kp+kc)
(

Rw Rc Rv
0 Cc 0

))⊥
is

a C-stable IO behaviour with input v and output (w
c ). Let H ∈ A

l1×lv
T be its transfer

matrix. Then
(

Rw Rc
0 Cc

)
H =

(
Rv
0

)
, in particular (Rw, Rc)H = Rv, and Lemma 10 implies

Q(A1×kp(Rw, Rc, Rv)) = A
1×k′p
T R′(idl1 , H) = A

1×k′p
T (R′, R′v),

where R′v := R′H ∈ A
k′p×lv

T .

Corollary 24. Let C be a C-stabilizing compensator for

P =
{(

w
c
v

)
∈F

l1+lv : (Rw, Rc, Rv)◦
(

w
c
v

)
= 0
}
.

Assume, according to Lemma 23, that

Q(A1×kp(Rw, Rc, Rv)) = A
1×k′p
T (R′w, R′c, R′v),

where we have split the matrix R′ into two blocks as R′ = (R′w, R′c). Denote by

(WR′ , WC, WK) ∈ A
r×(k′p+kc+k)

T a universal left annihilator of

(
R′w R′c
0 Cc

Kw Kc

)
. Finally, set

(EP ∩F
lv
2 )⊥2 = Q(A1×k1V ) = A

1×k′1
T V ′ and (EC ∩F

lu
2 )⊥2 = Q(A1×k2U) = A

1×k′2
T U ′,

for suitable matrices V ′ and U ′ with entries in AT . Then C is a C-regulator for P with

respect to EP , EC , and K if and only if

A1×r
T (W ′R, WC, WK)

(
R′v 0

0 Cu
Kv Ku

)
⊆ A

1×(k′1+k′2)
T

(
V ′ 0
0 U ′

)
.

Proof. We introduce the notation

B2 :=

{(
w
c
v
u

)
∈F

l
2 :

(
R′w R′c R′v 0

0 Cc 0 Cu
Kw Kc Kv Ku

)
◦

(
w
c
v
u

)
= 0

}
.
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Then {
( v

u) ∈F
l2
2 : (WR′ , WC, WK)

(
R′v 0

0 Cu
Kv Ku

)
◦ ( v

u) = 0

}
= projv,u(B2).

From

Q

(
A1×(kp+kc+k)

(
Rw Rc Rv 0
0 Cc 0 Cu

Kw Kc Kv Ku

))

= Q

(
A

1×kp

T (Rw, Rc, Rv, 0)+A
1×(kc+k)
T

(
0 Cc 0 Cu

Kw Kc Kv Ku

))

∗
= Q

(
Q

(
A

1×kp

T (Rw, Rc, Rv, 0)
)
+A

1×(kc+k)
T

(
0 Cc 0 Cu

Kw Kc Kv Ku

))

= Q

(
A

1×k′p
T (R′w, R′c, R′v, 0)+A

1×(kc+k)
T

(
0 Cc 0 Cu

Kw Kc Kv Ku

))

= Q

(
A

1×(k′p+kc+k)

T

(
R′w R′c R′v 0
0 Cc 0 Cu

Kw Kc Kv Ku

))
,

where equality ∗ holds because of Lemma 9, it follows that (P ∧c C )∩ (A1×kK)⊥ ∩
F l

2 = B2. By Theorem 21, C is a C-regulator if and only if

(EP ×EC )∩F
l2
2 ⊆ projv,u((P ∧c C )∩ (A1×kK)⊥∩F

l
2) = projv,u(B2).

By duality of F2-behaviours (10), this is equivalent to

Q

(
A

1×(k′p+kc+k)

T (W ′R, WC, WK)

(
R′v 0
0 Cu

Kv Ku

))
⊆Q

(
A1×(k1+k2)

(
V 0
0 U

))

= A
1×(k′1+k′2)
T

(
V ′ 0
0 U ′

)
,

and this is the case if and only if

A
1×(k′p+kc+k)

T (W ′R, WC, WK)

(
R′v 0

0 Cu
Kv Ku

)
⊆ A

1×(k′1+k′2)
T

(
V ′ 0
0 U ′

)
.

Corollary 25. Under the same assumptions and notation as in Corollary 24, let W =

(WR′ , WC, WK) ∈ A
r×(k′p+kc+k)

T be a universal left annihilator of

(
R′w R′c
0 C1c

Kw Kc

)
, where C1c

is the matrix given in (18).

Let C ⊆F lc+lu be a C-stabilizing compensator for P , so that, by referring to the

parametrization (23), there exist matrix parameters Z with R′ZLR′ = 0 (where L is a

universal left annihilator of R′w) and D such that

(C ∩F
lc+lu
2 )⊥2 = A

1×l1
T (Cc(Z), Cc(Z)D), where Cc(Z) =C1c +ZLR′c.

Then C is also a C-regulator if and only if there exist matrices B1 ∈ A
r×k′1
T and B2 ∈

A
r×k′2
T such that

WR′R
′
v−WCZLR′v +WKKv = B1V ′,

WCC1cD+WCZLR′cD+WKKu = B2U ′.
(25)

Proof. Since LR′w = 0, we have



R′w R′c
0 Cc(Z)

Kw Kc


=




idk′p
0 0

ZL idl1 0

0 0 idk




︸ ︷︷ ︸
=: S∈A

(k′p+l1+k)×(k′p+l1+k)

T




R′w R′c
0 C1c

Kw Kc


 .
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The matrix S is invertible over AT and therefore WS−1 = (WR′ −WCZL, WC, WK) is a

universal left annihilator of

(
R′w R′c
0 Cc(Z)

Kw Kc

)
. The assertion follows now from Corollary 24.

Corollary 25 is the basis for modifying the parametrization of the C-stabilizing

compensators given in Section 4 to a parametrization of the C-regulators with respect

to the external behaviours EP and EC and the control goal K. The notation is the same

as in Corollary 25 and (23). The following surjective map parametrises all regulators

for the given setting, up to C-negligible behaviours:

{(Z, D) ∈ A
l1×m
T ×A

lc×lu
T : R′ZLR′ = 0, ∃(B1, B2) ∈ A

r×k′1+k′2
T s. t. Eq. (25) holds}

−→ {(C ∩F
lc+lu
2 )⊥2 : C is a C-regulator for P},

(Z, D) 7−→ A
1×l1
T (Cc(Z), Cc(Z)D).

(26)

Bijectivity of this parametrization is obtained by using, again, the equivalence relation

for the parameters described in the text after (23).

We conclude the article with an example of a combined tracking and disturbance

rejection regulation problem.

Example 26. We use all the data introduced in Examples 15 and 19, in particular the

plant

P =
{(

w
c
v

)
∈F

1+3+1; R◦
(

w
c
v

)
= 0
}

with R =
(
Rw Rc Rv

)
=




0 p(s1−λ1) s1−λ1 0 0
0 p(s2−λ2) s2−λ2 0 0

0 0 0 −1 1

1 −1 0 0 0


 ∈ A4×(1+3+1).

Let q = s1s2 + s1− 1 ∈ C[s] and τ = (3, −4) ∈ C2. We consider disturbances v in the

external behaviour

EP = {v ∈F ; V ◦ v = 0} with V =
(

q(s1−τ1)
q(s2−τ2)

)
∈ A2×1.

Let r = s2
1 + s2

2− 1 ∈ C[s] and ξ = (1, 0) ∈C2. The admissible reference signals u for

tracking are the trajectories of

EC = {u ∈F ; U ◦ u = 0} with U =
(

r(s1−ξ1)
r(s2−ξ2)

)
∈ A2×1.

Both the disturbance and the reference signal have a C-negligible part associated with

the maximal ideals m(τ) and m(ξ ) as well a non-negligible part corresponding to the

irreducible polynomials q and r, respectively. Consequently, the Gabriel localizations

of the two modules of equations are

Q(A1×2V ) = AV ′, where V ′ = q ∈ A1×1, and

Q(A1×2U) = AU ′, where U ′ = r ∈ A1×1.

The control goal is given by the matrix

K =
(
Kw Kc Kv Ku

)
=
(
1 0 0 0 0 −1

)
∈ A1×6,
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i.e., the to-be-controlled variable w should track u up to a C-negligible signal and the

distrubance v should have no significant effect.

To be able to apply Equation (25), we use the matrices R′c and R′v from Equation (20)

and the matrix C1c from Equation (22) to form the block matrix




R′w R′c

0 C1c

Kw Kc


=




0 0 0 1

1 −1 0 0

0 p 1 0

0 1 0 0

1 0 0 0


 .

A universal left annihilator of this matrix is

(
WR′ WC WK

)
=
(
0 −1 0 −1 1

)

The matrix R′v is R′v =
(
−1
0
0

)
. We use the universal left annihilator L =

(
1 0 0
0 0 1

)
of R′w

from Equation (21) and the parameter matrices Z =
(
z1 z2

)
and D =

(
d1
d2
d3

)
. Inserting

everything into Equation (25), we obtain the two equations

−z1 = B1q and

(1+ z2 p)d1 + z2d2 + z1d3 + 1 =−B2r,

where B1, B2 ∈ A. Here we can see that the choice z1 =−1 which we made at the end

of Example 19 is not compatible with the first equation and is therefore not suitable for

disturbance rejection.

The choices

z1 = q, z2 = 1, d1 = 0, d2 = r− 1, d3 = 0, B1 =−1 and B2 =−1

satisfy the equations and lead to the matrix

(
Cc(Z) Cc(Z)D

)
=
(
C1c +ZLR′c (C1c +ZLR′c)D

)
=
(
1+ p 1 q r− 1

)

and the C-regulator

C =
{
( c

u) ∈F
3+1;

(
Cc(Z) Cc(Z)D

)
◦ ( c

u) = 0
}
.

Finally, we check whether the compensator really satisfies the control goal. The

module of equations of the interconnected behaviour B from Equation (24) is

B
⊥ = (EP ∧v P ∧c C ∧u EC )

⊥ = A1×9




0 p(s1−λ1) s1−λ1 0 0 0

0 p(s2−λ2) s2−λ2 0 0 0

0 0 0 −1 1 0
1 −1 0 0 0 0

0 1+p 1 q 0 r−1

0 0 0 0 q(s1−τ1) 0

0 0 0 0 q(s2−τ2) 0

0 0 0 0 0 r(s1−ξ1)
0 0 0 0 0 r(s2−ξ2)




.

The module of equations of the error behaviour K ◦B is

(K ◦B)⊥ = A1×3

(
s2
2+12s1+10s2−12

s1s2−8s1−7s2+8

s2
1+4s1+4s2−5

)
=m(λ )∩m(τ)∩m(ξ ),
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and the primary decomposition shows that it is C-negligible: the error consists only of a

C-negligible influence of the dynamics of P∧c C associated with m(λ ), a C-negligible

effect caused by the disturbance corresponding to m(τ) and a C-negligible deviation

associated with m(ξ ) of the to-be-controlled variable from the tracking signal.
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