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Abstract

In this monograph we consider the class of continuous-time positive

switched systems. We discuss several problems, including stability, per-

formance analysis, stabilization via switching control, and optimization.

The monograph starts with a chapter where several application exam-

ples are provided, to motivate the interest in this class of systems. The

rest of the monograph is dedicated to the theory of stability, stabiliza-

tion and performance optimization of positive switched systems. The

main existing results are recalled, but also new challenging problems

are proposed and solved. Special attention has been devoted to point

out those results that specifically pertain to positive (linear) switched

systems and do not find a counterpart for the wider class of (nonposi-

tive) linear switched systems.
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Introduction

Positive systems are an important class of systems that frequently arise

in application areas, such as in the chemical process industry, electronic

circuit design, communication networks and biology.

Stability problems arising in the study of positive systems differ

from those pertaining to standard systems. The main difference stems

from the fact that the state variables are confined to the positive or-

thant. Thus, the whole analysis of these systems focuses only on the

trajectories generated under positivity constraints, and consequently

stability can be deduced from the existence of copositive Lyapunov

functions whose derivatives are required to be negative only along the

system trajectories in the positive orthant.

Switched positive systems also arise in a variety of applications.

Examples can be found in TCP congestion control, in processes de-

scribed by non-homogeneous Markov chains, in image processing, in

biochemical networks, etc... Differently from general switched systems,

that have received a lot of attention in the past years, the theory for

positive switched systems is still in a relative infancy.

In this monograph we study the stability, performance evaluation,

stabilization via switching control and optimal control of (continuous-
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time and linear) positive switched systems. We discuss results that have

already been established in the literature, but other results, especially

those regarding norm computation and optimization, are new and in-

tegrated with the previous ones.

In Chapter 2 we present many examples and motivations for study-

ing positive switched systems. These examples include thermal systems,

fluid networks, traffic systems, biological and epidemiological models

and transmission networks. We present some specific problems that

should be inspirational (at least we hope they are) for the subsequent

chapters.

In Chapter 3, we consider the stability problem, namely the prob-

lem of determining stability under arbitrary switching. We show that

this problem can be generalized to the problem of establishing a con-

vergence (or divergence) rate. We characterize the stability property

in terms of the existence of convex homogeneous Lyapunov functions.

In general these functions can be extremely complex, so we provide

some special classes of Lyapunov functions, including copositive linear

and copositive quadratic Lyapunov functions, which are conservative

but simpler to be computed. We also discuss a famous conjecture, now

disproved in the general case, regarding the equivalence between stabil-

ity under arbitrary switching and Hurwitz robustness, namely the fact

that all the matrices in the convex hull of the family of system matrices

are Hurwitz. The statement is true for 2-dimensional systems and false

in general, since Hurwitz robustness is only necessary when the system

dimension n is greater than 2. We also investigate the case when dwell

time is imposed on the switching signals, namely a minimum amount

of time has to elapse between any pair of consecutive switching times.

In Chapter 4 we discuss the performance evaluation of positive

switched systems in terms of several input-output induced norms.

Notwithstanding the fact that, for positive systems, it is often easy

to establish the worst-case signal, namely the one providing the largest

output norm, computing these norms is in general hard. Then we pro-

vide computationally tractable ways to generate upper bounds, for both

arbitrary switching signals and dwell-time constrained ones.

In Chapter 5 we consider the stabilization problem for systems for
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which the switching signal represents a control input. This problem has

some interesting properties that are the counterpart of some proper-

ties established in the stability analysis case. Stabilizability is equiva-

lent to the existence of a concave homogeneous copositive control Lya-

punov function. Again, finding any such function is in general hard,

so we investigate special classes including linear and quadratic coposi-

tive functions. We also provide some sufficient stabilizability conditions

in terms of Lyapunov Metzler inequalities. The disproved conjecture

about stability has a counterpart for the stabilizabity case: is stabiliz-

ability equivalent to the existence of at least one Hurwitz element in the

convex hull of the matrices? Again the is true for 2-dimensional systems

and false in general, as the existence of a Hurwitz convex combination

is only a sufficient condition for stabilization. It is interesting to note

that the existence of a Hurwitz convex combination is a necessary and

sufficient condition for the existence of a smooth homogeneous control

Lyapunov function.

Finally, in Chapter 6, we consider the optimal control problem for

positive systems with a controlled switching signal. We show how some

of the material presented in the previous chapters, such as the Lya-

punov Metzler inequalities technique, can be successfully exploited to

derive some conditions that allow to design a guaranteed cost control.

In addition to the simple numerical examples provided in Chapters

3-5 to illustrate the developed theory, in this chapter simulations are

provided for a couple of “realistic” examples presented in Chapter 2,

dedicated to the motivational part, and specifically: the optimal ther-

apy scheduling for mitigation of the HIV viral load, and the disease free

control applied to a SIS (Susceptible-Infective-Susceptible) epidemio-

logical system.

This survey does not aim at providing an exhaustive account of all

the research problems investigated in the literature and concerned with

positive switched systems. Important issues have been omitted here,

due to page constraints. Among them, it is worth quoting the follow-

ing ones: controllability/reachability (see Fornasini and Valcher [2011],

Santesso and Valcher [2008], Valcher and Santesso [2010], Valcher

[2009], Xie and Wang [2006]), observability of positive switched sys-
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tems (Li et al. [2014]), positive switched systems with delays (Li et al.

[2013a,b], Liu and Dang [2011], Liu and Lam [2012], Xiang and Xiang

[2013]), and interesting characterizations like joint spectral properties

and asymptotic properties of matrix semigroups (Guglielmi and Pro-

tasov [2013], Protasov et al. [2010], Jungers [2012], and extremal norms

for linear inclusions, Mason and Wirth [2014]). For all these topics we

refer the interested Reader to the previous references. On the other

hand, for the topics specifically addressed in this monograph, no ref-

erences are provided in this introduction, being them appropriately

quoted when needed within the text.

1.1 Notation

The notation used throughout the monograph is standard for positive

systems. The sets of real and natural numbers are denoted by R and N,

respectively, while R+ is the set of nonnegative real numbers. Capital

letters denote matrices, small (bold face) letters denote vectors. For

matrices or vectors, (>) indicates transpose. The (`, j)th entry of a

matrix A is denoted by [A]`,j , while the ith entry of a vector x is xi or

[x]i. When the vector x is obtained as the result of some mathematical

operation, e.g. x = Ay, we will generally adopt the latter notation

[Ay]i. The symbol ei denotes the ith canonical vector in Rn, where n

is always clear from the context, while 1n denotes the n-dimensional

vector with all entries equal to 1. The symbol In denotes the identity

matrix of order n.

A (column or row) vector x ∈ Rn is said to be nonnegative, x ≥ 0,

if all its entries xi, i = 1, 2, . . . , n, are nonnegative. It is positive if

nonnegative and at least one entry is positive. In this case, we will use

x > 0. It is said to be strictly positive if all its entries are greater than

0, and in this case, we will use the notation x � 0. The set of all n-

dimensional nonnegative vectors is denoted by Rn+ and referred to as

the positive orthant. The expressions x � y, x > y and x ≥ y mean

that the difference x− y is strictly positive, positive and nonnegative,

respectively. Similar notation is used for the (real) matrices.

The set of n-dimensional nonnegative vectors whose entries sum up
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to 1 is the simplex

An := {α = (α1, . . . , αn) ∈ Rn+ :
n∑
i=1

αi = 1}.

A square matrix A ∈ Rn×n is said to be Metzler1 if its off-diagonal

entries [A]ij , i 6= j, are nonnegative. Every Metzler matrix A has a

real dominant eigenvalue λF ∈ σ(A) satisfying Re(λF ) > Re(λ) for

every λ ∈ σ(A), λ 6= λF . λF is called the Frobenius eigenvalue of A, see

Farina and Rinaldi [2000]. Also, associated with λF there is always both

a left and a right positive eigenvector, known as (left/right) Frobenius

eigenvectors.

An n×n Metzler matrix A is reducible if there exists a permutation

matrix Π such that

Π>AΠ =
[
A11 A12
0 A22

]
,

where A11 and A22 are square (nonvacuous) matrices, otherwise it is

irreducible. It follows that 1× 1 matrices are always irreducible.

A linear state space model described by the linear differential equa-

tion ẋ(t) = Ax(t), where A is a Metzler matrix, is called a positive

system, see Berman et al. [1989], Farina and Rinaldi [2000], Kaczorek

[2002], Krasnoselskii [1964], Luenberger [1979], because it enjoys the

property that any trajectory starting in the positive orthant remains

confined in it.

A square matrix is Hurwitz if all its eigenvalues lie in the open left

half plane. A Metzler matrix is Hurwitz if and only if there exists a

vector v � 0 such that v>A � 0, or, equivalently if and only there

exists a vector w � 0 such that Aw � 0, see e.g. Farina and Rinaldi

[2000].

Given two matrices A ∈ Rn×m and B ∈ Rp×q, the expression C =
A⊗ B ∈ Rnp×mq stands for the usual Kronecker product. If A ∈ Rn×n

and B ∈ Rp×p, their Kronecker sum is defined as A ⊕ B = A ⊗ Ip +
In ⊗ B ∈ Rnp×np. Properties of Kronecker operators can be found in

Graham [1981].

1A Metzler matrix is also known in the literature as “essentially nonnegative
matrix” (see Berman et al. [1989], Horn and Johnson [1985]) or as the opposite of a
“Z-matrix” (see Horn and Johnson [1991]).
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The symbols �,�,≺ and � are used to denote order relations

induced by definiteness properties. For instance, the expression P =
P> � 0 ∈ Rn×n means that P is a (symmetric and) positive definite

matrix, i.e. x>Px > 0 for every x 6= 0. P1 � P2 means that P1 − P2 is

a (symmetric and) positive semi-definite matrix.

1.2 Continuous-time positive switched systems

A continuous-time positive switched system is described by the following

equation

ẋ(t) = Aσ(t)x(t), t ∈ R+, (1.1)

where x(t) denotes the value of the n-dimensional state variable at

time t, and σ(t) is a right-continuous and piece-wise constant mapping

from R+ into the finite set {1, ...,M}. This latter property ensures that

in any bounded time interval the map σ has always a finite number

of discontinuities, known as switching instants and denoted in the fol-

lowing by 0 = t0 < t1 < t2 < . . . . This amounts to saying that σ(t)
takes some constant value ik ∈ {1, 2, . . . ,M} at every t ∈ [tk, tk+1) and

that σ(tk) 6= σ(tk+1). In the sequel, when we will refer to an “arbitrary

switching signal” σ we will always mean an arbitrary switching signal

endowed with the aforementioned properties and we will denote the set

of such switching signals by the symbol D0. The reason for this notation

will be clarified later on.

A function x : R+ 7→ Rn is a solution of (1.1) if, see Shorten et al.

[2007], it is continuous and piecewise continuously differentiable and

if there is a switching signal σ such that (1.1) holds at every t ∈ R+,

except at the switching instants. For every value i taken by the switch-

ing signal σ (at t), ẋ(t) = Aix(t) is a (autonomous2) continuous-time

positive system, which means that Ai is an n×n Metzler matrix. This

ensures that if x(0) belongs to the positive orthant Rn+, then, for every

choice of σ, the state evolution x(t) = x(t; x(0), σ) belongs to Rn+ for

every t ∈ R+. It is worth noticing that also for switched systems the

2In this monograph by an autonomous system we will always mean a system with
no inputs, see Khalil [2002], Sun and Ge [2005], Willems [1970].
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Metzler property of the matrices Ai, i ∈ {1, 2, . . . ,M}, is both neces-

sary and sufficient to ensure that all the state trajectories starting in

the positive orthant remain in Rn+ at all subsequent times, for every

choice of the switching signal. Given any initial state xi ∈ Rn+, any

switching signal σ : R+ 7→ {1, 2, . . . ,M}, and any pair of time instants

t ≥ τ ≥ 0, the state at time t can be expressed as

x(t) = Φ(t, τ, σ)xi,

where Φ(t, τ, σ) represents the state transition matrix of system (1.1)

corresponding to the time interval [τ, t] and the switching signal σ.

Clearly, if we denote by τ = t1 < t2 < · · · < tk < tk+1 = t the

switching instants in the time interval [τ, t] and by ih the value of the

switching signal σ in the time interval [th, th+1), h ∈ {1, 2, . . . , k}, then

Φ(t, τ, σ) = eAik (t−tk) . . . eAi2 (t3−t2)eAi1 (t2−τ).

In the following, we will also consider non-autonomous positive

switched systems, described, for instance (but not only), by the fol-

lowing equations:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),
y(t) = Cσ(t)x(t) +Dσ(t)u(t), t ∈ R+,

(1.2)

where x(t),u(t) and y(t) are the n-dimensional state variable, the m-

dimensional input variable and the p-dimensional output variable, re-

spectively, at time t. For every value i taken by σ (at t), Ai is an n×n
Metzler matrix, while Bi, Ci and Di are nonnegative matrices. Under

these conditions, the nonnegativity of the input at every time t ≥ 0 and

the nonnegativity of the initial condition x(0) ensure the nonnegativity

of the state and output trajectories at every t ≥ 0.
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Motivating applications

Positive systems arise in the description of a good number of dynami-

cal processes of practical significance. In this chapter we present some

examples and problems that we hope will be inspiring and stimulate

an interest in the subsequent theory.

2.1 Some considerations about positivity and monotonicity

We start with some general considerations about positive systems. As

a general statement, an autonomous system is positive if it has the

property that whenever its state variables are nonnegative at a given

time, they remain nonnegative at every subsequent time.

When dealing with linear time invariant systems, this is equivalent to

the Metzler property of the state matrix in the continuous time case,

and to the nonnegativity of the state matrix in the discrete time one.

It is well-known, see Smith [2008], that this is also equivalent to saying

that the system is monotone. This means that given any two initial

conditions xA(0) and xB(0), and upon denoting by xA(t) and xB(t)
the corresponding solutions, we have

xA(0) ≤ xB(0)⇒ xA(t) ≤ xB(t), ∀ t ≥ 0.

9
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In the nonlinear case the concepts of positivity and monotonicity

are not equivalent anymore. Indeed, a system may be positive but not

monotone and vice versa. For instance, the well known Lotka-Volterra

prey-predator model:

ẋ(t) = αx(t)− βx(t)y(t),
ẏ(t) = −γy(t) + δx(t)y(t),

where x represents the prey population and y represents the predator

population, is positive but not monotone. This model has no meaning

unless we restrict our attention to the positive orthant.

On the other hand, a monotone system is not necessarily positive.

For instance, given the first order nonlinear system

ẋ(t) = −(x(t) + 1)2, t ≥ 0,

its solution can be explicitly written as

x(t) = x0 − t(x0 + 1)
1 + t(x0 + 1) , ∀ t ≥ 0.

Therefore for any positive initial condition x0, the state variable be-

comes negative for t > x0
x0+1 , and hence the system is not positive.

However, the system is monotone, since the derivative of x(t) with re-

spect to x0 is positive for any x0 and any t ≥ 0.

Under mild assumptions, see Smith [2008] and Sontag [2007], a

monotone system has a Jacobian matrix that is Metzler when evaluated

at any equilibrium point, and therefore it is “locally positive”.

Even when dealing with the linear monotone (and hence positive)

case, there are many examples of positive systems for which it is

nonetheless reasonable to assume negative initial conditions and hence-

forth negative values for the state variables. For instance, the circuit in

Figure 2.1 is a positive system, if we take the capacitors voltages as state

variables (and assume that the input voltage is positive). Clearly, there

is nothing wrong in assuming negative values for the initial state vari-

ables, since the capacitors may be negatively charged. In other cases,

we are interested in positive state variables, and hence restricting our

attention to the positive orthant is not restrictive.



2.2. Modeling HIV virus therapy switching 11

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

−

+

Figure 2.1: A positive linear system that admits negative initial conditions.

We point out that while positivity in the linear case and mono-

tonicity in the nonlinear case ensure strong system properties, positive

nonlinear systems that are not monotone exhibit no meaningful fea-

tures that prevent them from displaying unexpected behaviors, like it

happens for general nonlinear systems, see Hirsch [1988], Smale [1976].

We start with some examples of autonomous positive switched sys-

tems.

2.2 Modeling HIV virus therapy switching

One the fundamental problems in certain medical therapies is that

viruses are subject to mutations, and drugs are often able to oppose the

growth of some genotypes but not of others. Highly active antiretro-

viral therapies (HAARTs) provide a rapid drop in plasma viral load

with a large reduction of infected cells in patients with HIV infection.

Even after long periods of HAARTs, latently infected cells are still

detectable. Therefore cellular reservoirs may contribute to HIV per-

sistence promoting the emergence of resistant mutants, see Eisele and

Siliciano [2012].

In the last treatment guidelines for HIV infection, AIDSinfo [2011],

clinicians did not achieve a consensus on the optimal time to change

therapy in the event of virological failure (inability to maintain HIV

RNA levels at less than 50 copies/ml under HAART treatment). A

widely accepted strategy (that we refer to as “switch on virological fail-

ure”) is to continue the current therapy until the viral load exceeds a

fixed level (e.g. 500 - 1000 copies/ml). Using a mathematical approach,
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the paper D’Amato et al. [1998] claimed that alternating between thera-

pies may delay the emergence of resistant mutant viruses. In this initial

trial, alternating regimens appeared to outperform virological failure

based treatment. Then switching between treatments may be crucial

to minimize the risk of resistance, Ouattara et al. [2008], Craig and

Xia [2005] and Luo et al. [2011]. Under several simplifying assump-

tions, Hernandez-Vargas et al. [2011] formalized the drug treatment

scheduling problem of HIV infection as an optimal control problem

for a specific class of autonomous positive switched systems. Here we

briefly describe the linear model proposed for this phenomenon. The

Reader is referred to Hernandez-Vargas et al. [2013] for more details.

Assume that there are n different viral genotypes, with viral pop-

ulations, xi, i = 1, ..., n, and M different possible drug therapies that

can be administered. We denote by σ(t) the specific therapy adopted

at time t ≥ 0. Clearly, at every time t, σ takes values in {1, ...,M}.
Under the assumption that macrophage and CD4+T cell counts are

approximately constant until virological failure, see e.g. Perelson and

Nelson [1999], the following linear model can be written in order to

represent the evolution of the populations of genotypes:

ẋi(t) = ρi,σ(t)xi(t)− δxi(t) +
∑
j 6=i

µ ζi,jxj(t), (2.1)

where µ is a small positive parameter representing the mutation rate,

ρi,σ(t) is the replication rate of the ith viral species under the drug ther-

apy σ(t), δ > 0 is the death or decay rate, and ζij ∈ {0, 1} represents

the genetic mutation between genotypes, that is, ζi,j = 1 if and only if

it is possible for genotype j to mutate into genotype i 6= j. Equation

(2.1) can be rewritten in vector form as

ẋ(t) =
(
Rσ(t) − δIn

)
x(t) + µZx(t), (2.2)

where [Z]ij := ζij and Rσ(t) := diag{ρ1,σ(t), ρ2,σ(t), . . . , ρn,σ(t)}. The

previous model can be rewritten as

ẋ(t) = Aσ(t)x(t),

where Aσ(t) := Rσ(t) − δIn + µZ is a Metzler matrix for every value

of σ(t) ∈ {1, 2, . . . ,M}, and hence it is an n-dimensional autonomous

positive switched system.
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Figure 2.2: Genotype mutations and drug efficacy.

To investigate this issue a little deeper, we concentrate on the simple

case (see Hernandez-Vargas et al. [2013]) where only 4 genetic variants

are considered and two antiretroviral therapies are adopted, that is

n = 4 and M = 2. The virus genotypes are the following ones:

• Wild type genotype (WTG): In the absence of any drug, this

would be the most prolific variant. However, it is also the variant

that both drug combinations are designed to oppose, and there-

fore is susceptible to both therapies.

• Genotype 1 (G1): A genotype that is resistant to therapy 1, but

is susceptible to therapy 2.

• Genotype 2 (G2): A genotype that is resistant to therapy 2, but

is susceptible to therapy 1.

• Highly resistant genotype (HRG): A genotype, with low prolifer-

ation rate, but resistant to both drug therapies.

The parameter values proposed in Hernandez-Vargas et al. [2013]

are δ = 0.24 day−1 for the decay rate and µ = 10−4, which is the order

of magnitude typical of the viral mutation rate. These numbers are of

course idealized. We assume a mutation graph that is symmetric and

circular, since only the mutations WTG↔ G1, G1↔ HRG, HRG↔
G2 and G2↔WTG are possible. Other connections would correspond
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Variant Therapy 1 Therapy 2

Wild type genotype (x1) ρ1,1 = 0.05 ρ1,2 = 0.05
Genotype 1 (x2) ρ2,1 = 0.27 ρ2,2 = 0.05
Genotype 2 (x3) ρ3,1 = 0.05 ρ3,2 = 0.27

HR genotype (x4) ρ4,1 = 0.27 ρ4,2 = 0.27

Table 2.1: Replication rates for viral variants and therapy combinations for a sym-
metric case.

to double mutations, which are events of negligible probability. If we

assume as state variables the ones described in Table 2.1, the resulting

mutation matrix is

Z =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 . (2.3)

The replication rates in Table 2.1 are reported from Hernandez-Vargas

et al. [2013].

Under the previous assumptions on the system parameters, the ma-

trices Ai ∈ R4×4

involved in the system description are

Ai =


ρ1,i 0 0 0
0 ρ2,i 0 0
0 0 ρ3,i 0
0 0 0 ρ4,i

+ µ


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , i = 1, 2.

The optimal control problem addressed in Hernandez-Vargas et al.

[2013] consists of choosing a switching rule that minimizes the following

finite-horizon cost function

J := c>x(tf ), (2.4)

where c is a strictly positive cost vector, and tf > 0 is an appropriate

final time.

To conclude the example, note that this system is in general un-

stable or, in other words, it has a negative speed of convergence β
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(see Chapter 3). As explained in Hernandez-Vargas et al. [2013] and

references therein, keeping the virus population at a low level is fun-

damental in the therapy anyway. Simulation results are presented in

Section 6.2.1.

2.3 Epidemiological models

This example is taken from Ait Rami et al. [2014] (see also Blanchini

et al. [2014]). Consider the epidemiological model of a population di-

vided into n groups. Each ith group is divided into two classes: infec-

tives and susceptibles. Let Ii(t) denote the number of infectives at time

t and Si(t) the number of susceptibles at time t. Under the assumption

that the total number Ii(t)+Si(t) = Ni is constant at every time t ≥ 0,

and by setting xi(t) := Ii(t)/Ni one can write, for i = 1, 2, . . . , n:

ẋi(t) = (1− xi(t))
N∑
j=1

βijNj

Ni
xj(t)− (γi + µi)xi(t), (2.5)

where βij > 0 is the rate at which susceptibles in group i are infected by

infectives in group j, γi > 0 is the rate at which an infective individual

in group i is cured and µi > 0 is the death rate in group i (that is equal

to the birth rate appearing in the not written equation of Ṡi, since the

number of individuals in the each group is constant). Note that the set

{x ∈ Rn : 0 ≤ x ≤ 1n} is positively invariant for this system, i.e., if the

initial condition x(0) belongs to this set, then the corresponding state

trajectory remains in the set at all the subsequent times t ≥ 0.

If we assume that M different therapies are introduced to fight the

epidemic, the rate γi is not constant but it depends, at every time t,

on some variable σ(t) ∈ {1, 2, . . . ,M}, that represents the value at t of

the switching signal that orchestrates the different therapies for each

population group. Therefore, we replace γi in (2.5) with γi,σ(t). The

introduction of the therapy scheduling preserves the positive invariance

property of the set {x ∈ Rn : 0 ≤ x ≤ 1n}. We also introduce the

simplifying assumption that the change of therapies does not affect

the rates βij . Finally, we linearize the system around the disease free
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equilibrium point x = 0. The linearized system is then given by

ẋ(t) = Aσ(t)x(t), (2.6)

where σ(t) ∈ {1, 2, . . . ,M} and Ai = Λi + Ā, for some Metzler matrix

Ā and some diagonal matrix Λi, i = 1, 2, . . . ,M . Specifically, [Ā]hk =
βhkNk/Nh and

[Λi]hk =

−γh,i − µh, if h = k;
= 0, if h 6= k.

We can embed system (2.6) into the bilinear system

ẋ(t) = (Λ(u(t)) + Ā)x(t) = (
M∑
i=1

[u(t)]iΛi + Ā)x(t), (2.7)

where, at each time t ≥ 0, the vector u(t) belongs to the simplex

AM := {u ∈ RM+ : 1>Mu = 1}.

Remark 2.1. This relaxation from {ei, i ∈ {1, 2, . . . ,M}}, where ei is

the ith canonical vector, to AM is fundamental in the investigation of

switched systems, as we will see also in the following. Any state trajec-

tory that can be achieved using some u taking values in AM at every

time t, i.e., u : R+ → AM , (equivalently, by means of a switching signal

σ, taking values in {1, 2, . . . ,M}) can be arbitrarily approximated by

a solution achieved through some u : R+ → {ei, i ∈ {1, 2, . . . ,M}},
provided that there are no upper bounds on the switching frequency.

As we will discuss later, in order to define the solution of the switched

system one has to resort to this relaxation, see Aubin [1991]. This re-

laxation is the cornerstone of the theory of differential inclusions and

control theory. The main result basically states that the solution set of

a switched system with (arbitrarily small) dwell time is dense in the set

of the relaxed solutions (solutions of the associated bilinear system or

equivalently of the associated differential inclusion). This result, known

in the literature as Filippov-Wazewski relaxation theorem, can be re-

garded as a generalization of the bang-bang principle in linear control

theory, see Aubin and Cellina [1984], Joo and Tallos [1999].
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In Section 6.2.2 we will address an infinite horizon optimal control

problem for this system, consisting in the minimization of the cost

function ∫ +∞

0
1>x(t)dt,

and provide simulations results.

Often positive (especially linear) systems are of little interest if we

do not consider external inputs. For instance, the capacitor circuit we

previously discussed has no practical use without a voltage supply; the

same can be said about thermal and fluid networks without an inflow,

or traffic models with no external access, examples we will address

in the following. Consequently, the model of general interest in many

applications takes the form

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (2.8)

where, for each value i taken by the switching signal σ(t), Ai is Metzler

and Bi is nonnegative. Moreover, u(t) ≥ 0 at every time t ≥ 0. A lot

of systems can be described, at least approximately, in this form.

When u(t) = ū for every t ≥ 0, namely the input is constant,

the model can be written as an autonomous positive switched system

provided that we augment the state by treating the variables u as

fictitious state variables. In this way we get

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),
u̇(t) = 0,

but we clearly have to impose u(0) = ū.

Alternatively, when the input is constant, and for the sake of sim-

plicity scalar, we can also describe it as a positive affine switched system

of the form

ẋ(t) = Aσ(t)x(t) +Bσ(t), (2.9)

where σ(t) takes values, as usual, in {1, ...,M}, the Ai and the Bi,

i ∈ {1, 2, . . . ,M}, are given Metzler matrices and nonnegative vectors,

respectively.
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2.4 Thermal models

Thermal systems are a popular class of positive systems. Their posi-

tivity nature is naturally enforced, once absolute Kelvin temperatures

are considered, but they are in general positive under certain assump-

tions. For instance, the temperature inside a building cannot be lower

than the external temperature, if a positive amount of heat is supplied.

So, the difference between the internal temperature and the external

temperature is always a nonnegative variable.

A building, regarded as a thermal system, is a switched system if

the heat transfer coefficients between adjacent environments change for

some reason.

Consider for instance the system in Figure 2.3, having three rooms:

the first of them is heated, while the other two are not. Different thermal

transmission coefficients have to be considered depending on whether

the doors are closed or open.

If we assume that the temperatures in the three rooms are x1, x2
and x3, respectively, we can describe the various cases corresponding

to the status (open/closed) of the two doors by means of a linear model

of the form (2.9), with

Ai =

 −αi αi 0
αi −(αi + βi) βi
0 βi −(βi + γ)

 , Bi =

 1
0
0

 ,
for i ∈ {1, 2, 3, 4}, corresponding to the four combinations open-closed

of the two doors. Without restrictions, the external temperature is as-

sumed to be T0 = 0. All the coefficients are positive. The coefficients αi
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Figure 2.3: A switching thermal systems.
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and βi may have two values αi ∈ {αmin, αmax} and βi ∈ {βmin, βmax}
with αmin < αmax and βmin < βmax. So there are four possibilities for

(αi, βi). Precisely,

i = 1 : (αmin, βmin);
i = 2 : (αmax, βmin);
i = 3 : (αmin, βmax);
i = 4 : (αmax, βmax).

Note that we have assumed that heat is supplied to room 1 and the

only dissipation to the external environment is from room 3. The sys-

tem is positive, and, for positive and fixed values of the parameters,

it is exponentially stable. The question is whether this system remains

exponentially stable under arbitrary switching, namely for every choice

of σ. The answer is yes, as it will be shown later.

Thermal systems are usually stable and therefore a more interesting

problem with respect to stability analysis is that of determining the rate

of convergence to zero of their state variables. In the continuous time,

we say that the switched system has rate of convergence β > 0 if there

exists some constant C > 0 such that, for every initial condition x(0)
and every switching signal σ, one has ‖x(t; x(0), σ)‖ ≤ Ce−βt‖x(0)‖
for every t ≥ 0 (see Definition 3.5). The problem of determining or

ensuring a certain convergence speed can be rephrased as a modified

stability analysis/stabilization problem, as we will see later.

So, an interesting question regarding the previous system is what

is the convergence rate we can achieve corresponding to each switching

law, by assuming that the two doors can be opened and closed in any

time sequence. In general, the convergence rate β associated with a

switching law σ satisfies the inequalities:

βworst ≤ β ≤ βbest,

where βworst represents the worst case performance that can be ob-

tained under arbitrary switching, while βbest is the best convergence

rate one can achieve via a controlled switching.

For this thermal system one could expect that the fastest conver-

gence rate, βbest, is achieved by selecting the higher values of the ther-
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mal exchange coefficients (σ = 4), and the slowest convergence rate

βworst by selecting the smaller values of the thermal exchange coeffi-

cients (σ = 1). In general, as we will see later, it is not true that βworst
and βbest are associated with two constant switching signals σ(t).

The two numbers βworst and βbest are in general an “infimum” and a

“supremum”, respectively. The question whenever they can be achieved,

for positive switched systems, and hence they can be a “minimum” and

a “maximum” is still unclear. This problem is strictly related to the

finiteness conjecture for sets of matrices, see for instance Blondel et al.

[2003].

Another interesting question is how the switching law can affect

the system dynamics, leading to the question: what is the highest tem-

perature that can be reached in any of the three rooms, starting from

some given x(0)? Suppose we start from x(0) = 0. No one would doubt

that the maximum (formally, the supremum) temperature x1 in room 1
is achieved, at steady state, by keeping both doors closed. Conversely,

what is the maximum temperature x3 that can be reached in room

3? And how can it be reached? It is possible to show that the maxi-

mum value of the temperature x3 is not obtained as the steady state

temperature reached under a fixed configuration (a constant σ).

Assuming, for explanatory purposes, that high temperatures are

undesirable, then the problem we address is that of finding the “worst

control law” 1, namely the switching signal σ(t), t ∈ [0, T ], such that

J(T ) := x3(T )

is maximized at some given time T > 0. For the sake of simplicity,

we consider a revised version of the previous problem with two rooms

instead of three. This leads to a second order positive affine switched

system described as follows:[
ẋ1
ẋ2

]
=
[
−ασ ασ
ασ −(ασ + γ)

] [
x1
x2

]
+
[

1
0

]
,

and the cost function becomes

J(T ) := x2(T ).
1The problem can be reversed, as one may want to establish the lowest possible

temperature in each room.
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It is not difficult to see that the“worst control” for this problem, namely

the strategy that leads to the maximum temperature in the second

room, consists in keeping the door closed for some time (σ(t) = 1 for

t ∈ [0, t1]), in order to heat up the first room, and then open it (σ(t) = 2
for t ∈ [t1, T ]), in order to release the accumulated heat to the second

room. Assume α1 = 0 (perfect isolation between rooms, when the door

is closed), α2 = 1 (all the heat is transferred from room 1 to room 2,

when the door is open), γ = 1, and T =1. Then, we have that, starting

from x(0) = 0, as far as σ(t) = 1 (closed door), at any time t ∈ [0, t1),
we have

x1(t) = t, x2(t) = 0.

By resorting to elementary computations, one can see that if at time

t = t1 we switch to σ = 2, then we get

x2(t− t1) = f(t− t1), with f(t) = L−1
[ 1
s2 + 3s+ 1

]
,

where L−1 denotes the inverse Laplace transform. The problem solution

requires the maximization of x2(1− t1) = f(1− t1) with respect to t1.

We see that switching changes the nature of the thermal system

that, by its nature, would not overshoot. In other words, if the system

is initialized at x(0) = 0, with a fixed choice of σ, then the evolution

of x2(t), t ∈ [0, 1], is strictly monotonically increasing.

2.5 Fluid network control

By a fluid model we mean any mathematical model adopted to describe

the fluid level in a reservoir. Fluid models are quite similar to thermal

ones. They are nonlinear but they can be reasonably approximated by

linearized models. In this section we will consider the case when the

fluid is stored in various reservoirs and transported from one reservoir

to another by means of pipelines. This situation is typical, for instance,

of water supply networks.

In a fluid network of this type (see Figure 2.4), the flow in each pipe

typically depends on the difference between the levels in the reservoirs.

On the other hand, in a fluid network of the open-channel type, the
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Figure 2.4: A fluid network.
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Figure 2.5: A flood control problem.

flow from one reservoir to another depends solely on the level of the

upper reservoir (see Figure 2.5).

In this latter case, we can provide a linearized model whose equa-

tions, for a system described as in Figure 2.5, are affine of the form

ẋ(t) = Aσ(t)x(t) +B,

with

Aσ =

 −ασ 0 0
ασ −βσ 0
0 βσ −γ

 , B =

 b1
b2
b3

 ,
where B is the vector representing the natural inflow (e.g., the rain).

Suppose that the flow from the first to the second reservoir, and

the flow from the second to the third reservoir are controlled by sluice

gates, both of them having three positions, namely fully open, partially

open or closed. Any intermediate position could be considered as well,

but for simplicity we confine ourselves to this simple case.
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Figure 2.6: The well emptying problem.

We consider the problem of emergency emptying the reservoirs in

case of a flood. When an abnormal rainfall occurs, a typical decision

to take is how to manage the outflow of the system. For instance,

if the upper reservoir has reached a dangerous level, one can control

it by opening the first valve, and hence transferring the fluid to the

downstream reservoir.

The emergency emptying strategy can be formulated as an opti-

mal control problem by considering the following linear integral cost

function: ∫ +∞

0
d>x(t)dt, (2.10)

where d is a positive vector, penalizing each of the reservoir levels.

It is obvious that if we take d = [1 1 1]>, the optimal strategy is the

full opening (the choice of σ corresponding to all sluice gates completely

open), because in this way we maximize the outflow. However, if the

weights are taken in increasing order, i.e. [d]1 < [d]2 < [d]3, then, in

general, it is not convenient to keep the gates constantly open, because

this could cause undesirable flooding conditions to the downstream

reservoirs. This type of optimal control problem will be considered later

for the HIV therapy model.

Consider now the problem of fast emptying two wells that are con-

nected by a pipe, as in Figure 2.6. We assume that only one of the

pumps in A and B can be active. Note that this model can also be

interpreted as a simplified mutating virus problem with two genotypes,

each of them affected by one of the therapies, either A or B. A natural

question one may pose is whether it is more effective to switch fast

between the two configurations (assuming that switching from A to B
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and conversely requires a negligible time) or to dwell for a long time in

anyone of the two configurations before switching.

The model in this case takes the autonomous form: ẋ(t) = Aσ(t)x(t),
with

Aσ =
[
−(α+ β1(σ − 1)) α

α −(α+ β2(2− σ))

]
,

and σ = 1, 2. For simplicity, assume β1 = β2 = β, and embed the

previous system in the associated positive system

ẋ(t) = A(u(t))x(t) = (A1(1− u(t)) +A2u(t)) x(t), (2.11)

where u(t) ∈ [0, 1].
Assuming, temporarily, that u(t) takes the constant value ū, let us

write the expression of the dominant eigenvalue of the matrix A(ū), i.e.

the Frobenius eigenvalue:

λF (ū) = −2α+ β

2 +

√
(2α+ β)2 − 4 (αβ + ū(1− ū)β2)

4 .

The eigenvalue λF (ū) in this case is a convex function for ū ∈ [0, 1],
and it has a minimum for ū = 1/2, that is

λ̄F = −β2 .

So, if u(t) were constant, then the highest convergence speed would

be achieved for ū = 1/2, the value at which the Frobenius (dominant)

eigenvalue achieves its minimum value λ̄F . Since keeping ū = 1/2 con-

stant is not compatible with the switching rule σ = ū + 1 ∈ {1, 2},
the next question is whether this convergence speed can be ensured by

means of a switching strategy.

To this aim let us consider the left Frobenius eigenvector zF of

A(1/2), associated with the (minimal) Frobenius eigenvalue λ̄F =
−β/2, that is zF = [1 1]>, and introduce the linear copositive func-

tion (see Chapter 3) V (x) = z>Fx = x1 + x2. Consider the derivative of

V (x) along the trajectories of system (2.11) for u = ū:

V̇ (x) = z>FA(ū)x =

=
[

1 1
] [ −(α+ βū) α

α −(α+ β(1− ū))

] [
x1
x2

]
= −β[ū 1− ū]x.
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The value of V̇ (x) as ū varies in [0, 1] is necessarily less than or equal

to the value of V̇ (x) we get for ū = 1/2. Indeed, for any x > 0, the

derivative V̇ (x) is an affine function of ū, and therefore the minimum

of V̇ (x) with respect to ū ∈ [0, 1] is achieved at one of the extrema, and

therefore if we evaluate the derivative of V (x) along the trajectories of

the switched system we get

min
σ∈{1,2}

V̇ (x) = min
0≤ū≤1

V̇ (x) ≤ z>FA(1/2)x = λ̄F z>Fx = λ̄FV (x) < 0.

Since V̇ (x) ≤ λFV (x) implies V (x(t)) ≤ eλF tV (x(0)) (see Blanchini

and Miani [2008]), this means that the switching strategy

σ̄(x) ∈ arg min
σ∈{1,2}

V̇ (x),

ensures at least the same convergence speed as the one associated with

the “optimal eigenvalue” λ̄F = −β/2.

It is clear that the slowest convergence speed (worst case) is the one

associated with either σ = 1 or σ = 2, namely, when only one of the two

pumps keeps working and the other does not. In terms of eigenvalues,

the worst convergence speed is associated with any of the Frobenius

eigenvalues λF (0) = λF (1) < 0. This can be seen by considering the

problem of maximizing the derivative V̇ (x) = z>FA(ū)x with respect to

ū. The maximum is achieved either for ū = 0 or ū = 1. This basically

means that the worst strategy is that of starting emptying the well with

the lower level, and keeping the pump in the same position for ever.

Moving back to the optimal strategy

σ(t) ∈ arg min
i∈{1,2}

z>FAix(t),

the corresponding trajectory converges to a sliding mode, Utkin et al.

[1999], as shown in Figure 2.7.

A legitimate question is whether this is a general result for posi-

tive switched systems, namely whether the procedure described here of

minimizing the Frobenius eigenvalue and adopting the copositive linear

function associated with the “optimized eigenvalue” always works well?

We will show in the next example that this is not the case.

So far we have considered the case when the switching law is a

control action. However, there are some interesting problems in which
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Figure 2.7: The trajectories for the well emptying problem.

the configuration cannot be chosen, i.e. σ is an arbitrary switching

signal. Consider a network described as in Figure 2.4, in which the

connections between reservoirs can change. We want to determine the

worst case effect of a natural precipitation.

A problem of interest in fluid networks with switching configura-

tions is the effect of a permanent flow such as rain or a flood. Consider

the positive switched system

ẋ(t) = Aσ(t)x(t) +Bd(t),

where Ai are Metzler matrices and d is a positive and bounded un-

known disturbance, i.e. ‖d(t)‖ ≤ d̄ for every t ≥ 0, and B is a positive

matrix. Let us assume that we take some output measurement on the

system:

y(t) = Cx(t),
with C a positive matrix. Also, suppose for simplicity, that y and d
are both scalar (and hence in the following simply denoted by y and

d). Then the question we investigate is the following one: Assuming

x(0) = 0, what is the worst output given the bound on the input, for

all possible switching signals σ, i.e.,

ȳ = sup
t≥0,σ,|d|≤d̄

|y(t)|?
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This is given by ȳ = µd̄, where µ is the worst L∞–induced norm (see

Chapter 4), i.e.,

µ := sup
t≥0,σ,|d|≤1

|y(t)|.

In order to determine the value of µ, or at least compute an upper

bound on it, one can simply notice that for any switching signal σ(t)
and for x(0) = 0, the following holds. Denote by x+(t) and x−(t)
the solutions corresponding to the constant disturbances d(t) = −1
and d(t) = +1, for every t ≥ 0, respectively. For any solution x(t)
corresponding to some disturbance satisfying −1 ≤ d(t) ≤ 1, and every

t ≥ 0, we get

x−(t) ≤ x(t) ≤ x+(t).
Indeed, z(t) = x+(t) − x(t) is the solution corresponding to the non-

negative input 1 − d(t), while w(t) = x(t) − x−(t) is the solution cor-

responding to the nonnegative input d(t) − 1. Both z(t) and w(t) are

nonnegative solutions. This basically means that this problem can be

solved by limiting our attention to the positive orthant, by considering

only the upper value d = 1.

But then, using the monotonicity of the system, we can come to

the conclusion that, for positive systems with positive outputs, the

“worst case input”, namely the input that provides the output of largest

maximum modulus, is a constant signal equal to the upper bound d̄ (or

to the lower bound −d̄). So, in the case of fluid systems (Figure 2.5),

if the input is bounded as 0 ≤ d(t) ≤ d̄, the worst case input in terms

of L∞-induced norm is the constant one d(t) = d̄. This issue about the

L∞-induced norm will be reconsidered in Section 4.3.

2.6 Congestion control and queueing models

Congestion control. Consider a traffic control problem in a junction,

as sketched in Figure 2.8. There are three main roads (A,B and C)

converging into a “triangular connection” governed by traffic lights.

Three buffer variables, x1, x2 and x3, represent the vehicles waiting at

the three traffic lights inside the triangular loop. We assume that there

are three symmetric configurations as far as the states of the 6 traffic

lights are concerned. In the first configuration, described in Figure 2.8,
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Figure 2.8: The traffic control problem.

we assume that traffic lights corresponding to x1, x2, B and C are

green, while the ones corresponding to x3 and A are red. Accordingly,

• x3 increases proportionally (β > 0) to x2;

• x2 remains approximately constant, receiving inflow from B and

buffer x1, meanwhile giving outflow to A and buffer x3.

• x1 decays exponentially (−γ < 0), since the inflow from C goes all

to x2 and B. The exponential decay takes into account “approx-

imately” the initial transient due to the traffic light switching.

The other two configurations are obtained by a circular rotation of x1,

x2 and x3 (as well as of A,B and C).

We model this problem by means of the switched system:

ẋ(t) = Aσ(t)x(t),

where the switching signal σ, regarded as a control variable, must select
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one of the three subsystems characterized by the matrices:

A1 =

 −γ 0 0
0 0 0
0 β 0

 , A2 =

 0 0 β

0 −γ 0
0 0 0

 , A3 =

 0 0 0
β 0 0
0 0 −γ

 .
In the following we will assume γ = 1 and β = 1. This model, proposed

in Blanchini et al. [2012], is quite interesting since it shows that the

policy of minimizing the Frobenius eigenvalue and adopting a switching

strategy based on the left Frobenius eigenvector does not work. Indeed

no convex Hurwitz combination of the three matrices can be found,

since the characteristic polynomial of the matrix α1A1 +α2A2 +α3A3,

α ∈ A3, the simplex of vectors in R3
+ summing up to 1, turns out to be

p(s, α) = s3 + (α1 + α2 + α3)s2 + (α1α2 + α2α3 + α3α1)s.

So, p(s, α) is not a Hurwitz polynomial for any choice of α ∈ A3, and

hence there are no Hurwitz convex combinations in the convex hull.

Indeed the Frobenius eigenvalue is λF = 0 for any α1, α2, α3, thus

convergence cannot be guaranteed (see Chapter 5).

However, the matrix product eA1T eA2T eA3T is Schur for T = 1 (the

dominant eigenvalue is ≈ 0.69). So, the periodic switching law

σ(t) =


3, t ∈ [3k, 3k + 1);
2, t ∈ [3k + 1, 3k + 2);
1, t ∈ [3k + 2, 3k + 3);

k ∈ Z+, t ≥ 0,

drives the systems state to 0 from any positive initial condition (see

Blanchini et al. [2012] for more details).

This fact shows an interesting difference with respect to the fluid

dynamics case. In the fluid dynamics case, we could find a Hurwitz ma-

trix in the convex hull of the system matrices Ai. Based on this matrix

we have been able to find a stabilizing switching strategy by consid-

ering a Lyapunov function associated with its Frobenius eigenvector.

In the traffic case, a Hurwitz matrix in the convex hull of the matrices

does not exist. For any fixed value of α ∈ A3, the corresponding system

state would not converge to 0, hence no constant strategies

u(t) =

α1
α2
α3

 , t ≥ 0,
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would be effective in this case as in the fluid model. This strategy

would correspond to a“sliding mode” for the system, namely a constant

strategy for the associated system

ẋ(t) = (A1[u]3] +A2[u]3] +A3[u]3]) x(t).

Yet, an asymptotically stabilizing switching strategy exists.

Note that in the proposed stabilizing periodic switching law the

“red” is imposed according to the circular order 3, 2, 1, 3, 2, 1 . . . .

It may be surprising to notice that if the order is changed, not only

the system performance deteriorates, but the system may even become

unstable. Indeed, eA3eA2eA1 is an unstable matrix with spectral radius

≈ 1.90, which means that the switching order is fundamental and the

order 1, 2, 3, 1, 2, 3 ... is unsuitable. A simple explanation is that

switching the red light from 3 to 2 allows for a “fast recovery” from the

congestion for x3 (due to the exponential decay), while switching the

red from 3 to 1 would leave such congestion unchanged. Also, from an

intuitive point of view, in this context chattering, namely an infinitely

fast switching among the various traffic light configurations, would be

catastrophic, while it is quite predictable that to tackle this problem

we must “dwell” on each configuration for a sufficiently long time. We

will come back to this topic in Chapter 5.

We complete the example by considering the effect of a constant

input (the incoming traffic) and hence by considering the positive affine

switched system

ẋ(t) = Aσ(t)x(t) +B,

where B = 13, σ(t) ∈ {1, 2, 3} at every time t ≥ 0, and the matrices

A1, A2 and A3 are described as before, with γ = 1 and β = 1.1. It

turns out that, with these values, eA1T eA2T eA3T is Schur for T > 0.19.

This means that under a periodic strategy with T > 0.19, the system

converges to a periodic trajectory as shown in Figure 2.9.

Note that it is possible to optimize T in order to achieve a strategy

that reduces the buffer levels associated with the periodic trajectory as

much as possible (see Blanchini et al. [2012] for details).

Finally, as we will see in Chapter 5, this example shows that the ex-

istence of a Hurwitz convex combination is sufficient but not necessary

for stabilizability, Blanchini et al. [2012].
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Figure 2.9: State trajectory corresponding to T = 2.1 and x(0) = [10 10 10]>.

Queueing model 1. Traffic congestion models are, in a broad sense,

a special class of queueing systems that can be encountered in many

problems, including production and data processing.

Consider the case of a production line of the type depicted in Fig-

ure 2.10. We assume that there are six processes. Raw materials or

PROCESS 3

PROCESS 2

PROCESS 1 PROCESS 4

PROCESS 5

PROCESS 6

Figure 2.10: The queueing system.

data enter in processes 1, 2, 3, and once the processing is over they

are transferred to one of the processes 4, 5, and 6. We assume that
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each part entering one process remains in the process for an integer

time τi, necessary for the production. At the end, the process outcomes

either are accumulated, or transferred to another machine, or leave the

system.

Each process is associated with a delay-and-store block of the form

J =



0 0 0 0
1 0 0 0
0 1 0 0
...

...
...

...

0 0 1 δ


,

where

• δ = 1 if the processed parts are not removed and consequently

they remain accumulated at the end of the queue;

• δ = 0 if the processed parts at the end of the queue are removed

and transferred elsewhere or to the external system.

If the transferring to another processing phase or to the external en-

vironment (in case of finished products) is managed by agents, it is

reasonable to adopt a discrete-time positive switched model

x(k + 1) = Aσ(k)x(k), k ∈ Z+, (2.12)

where for every value i taken by the switching sequence σ(k), k ∈ Z+,

the matrix Ai is nonnegative. In case of a two-machine system, we

would have, for instance a matrix of the form

Aσ =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 σ − 1 0 0 0
0 0 2− σ 0 0 0
0 0 0 1 0 0
0 0 0 0 1 2− σ


with σ ∈ {1, 2}. We assume that the processing machines work auto-

matically and an operator can either transfer the processed goods from

the first machine to the second one, or remove the processed goods

from the second machine. So,
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• σ = 0 corresponds to the case when the operator is transferring

the parts from the first process to the second one.

• σ = 1 corresponds to the operator removing the final goods from

the second process.

More sophisticated models with several machines and transfer opera-

tors are clearly possible. Note that if the initial condition is a vector

whose entries have integer values, the state-vector is integer-valued at

every time t ≥ 0, which can be useful when applying the model to a

production context.

Queueing model 2. Another popular way to model queueing sys-

tems is by means of Markov chains. In this case one has to deal with

discrete-time positive switched systems described as in (2.12), whose

matrices Ai, i ∈ {1, 2, . . . ,M}, are transition probability matrices, and

hence satisfy 1>nAi = 1>n , ∀i.
Consider the typical discrete-time Markov chain representing the

buffer of a process with random arrivals. In a unitary time step a max-

imum of 2 parts can arrive and we denote by pi, i = 0, 1, 2, the proba-

bility that i parts arrive in the queue. This implies that
∑2
i=0 pi = 1.

Also, we assume that the buffer saturates when it contains 5 parts, and

hence assume as state variables

xi = Probability {i− 1 objects are in the queue}, i = 1, 2, 3, 4, 5.

If the unitary time step is the time necessary for the operator to process

one part, when the operator is active the system can be described as

follows:

x(k + 1) = Aactx(k),

with

Aact =



p0 + p1 p0 0 0 0 0
p2 p1 p0 0 0 0
0 p2 p1 p0 0 0
0 0 p2 p1 p0 0
0 0 0 p2 p1 p0
0 0 0 0 p2 p1 + p2


.
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On the other hand, when the operator is idle, the Markov chain takes

the form

x(k + 1) = Aidlx(k),

with

Aidl =



p0 0 0 0 0 0
p1 p0 0 0 0 0
p2 p1 p0 0 0 0
0 p2 p1 p0 0 0
0 0 p2 p1 p0 0
0 0 0 p2 p1 + p2 1


.

This whole system can be described as in (2.12), with σ ∈ {1, 2}, A1 =
Aact and A2 = Aidl. One can switch between the two matrices Aidl and

Aact in order to keep the buffer at a prescribed level. This problem can

be formulated also in continuous-time.

2.7 Boundedness properties of positive biochemical systems

In general, the properties of positive nonlinear systems are rather dif-

ferent from those of positive linear systems. As previously remarked,

in the non-linear case, a positive system is not necessarily monotone

and vice versa. If we linearize a positive (not monotone) system around

a positive equilibrium, we may find a Jacobian matrix which is not a

Metzler matrix.

Nonetheless some fundamental problems for positive nonlinear sys-

tems can be tackled by resorting to the theory of positive (and linear)

switched systems. For instance, this is the case for the boundedness of

the solutions of certain biochemical systems, see Blanchini and Gior-

dano [2014].

A typical biochemical system takes the form

ẋ(t) = Sg(x) + g0,

where S is a constant matrix (for instance the stoichiometric matrix) g

is a nonlinear function, typically representing the reaction rate, and g0
is a constant input vector. Consider the network represented in Figure

2.11.
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Figure 2.11: A chemical network.

The network is described by the following nonlinear differential equa-

tions: 
ȧ(t) = a0 − ga(a(t))− g∗a(a(t)) + gd(d(t))
ḃ(t) = ga(a(t))− gbc(b(t), c(t))
ċ(t) = g∗a(a(t))− gbc(b(t), c(t))
ḋ(t) = gbc(b(t), c(t))− gd(d(t)).

(2.13)

The functions labelled by g are the reaction rates. These functions are

smooth and strictly increasing in each argument. They are zero if and

only if at least one of the arguments is zero, otherwise they are positive.

The term a0 is a constant input. A typical choice of the functions is

ga(a) = kaa g∗a(a) = k∗aa, gbc(b, c) = kbcbc, gd(d) = kdd, known as

mass action kinetics rate functions, see Feinberg [1987], Del Vecchio

and Murray [2014].

Following Blanchini and Giordano [2014], we can write the equa-

tions as follows (where we have removed the time variable, to simplify

the expressions):
ȧ = a0 − ga(a)

a a− g∗a(a)
a a+ gd(d)

d d,

ḃ = ga(a)
a a− gbc(b,c)

b b,

ċ = g∗a(a)
a a− gbc(b,c)

c c,

ḋ = gbc(b,c)
2b b+ gbc(b,c)

2c c− gd(d)
d d.

Set α := ga/a, β := g∗a/a, γ := gbc/b, δ := gd/d, ε := gbc/c, and assume

g0 := [a0 0 0 0]>.
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We can rewrite the previous system as

ẋ(t) = M(t)x(t) + g0, (2.14)

with g0 = [a0 0 0 0]T and

M(t) =


−(α(t) + β(t)) 0 0 δ(t)

α(t) −γ(t) 0 0
β(t) 0 −ε(t) 0

0 γ(t)
2

ε(t)
2 −δ(t)

 , (2.15)

for a suitable choice of the time-varying functions α(t), β(t), γ(t), δ(t)
and ε(t). If we can assume that these coefficients are bounded as2

0 < ν ≤ α, β, γ, δ, ε ≤ µ

for some positive constants ν and µ, then we can define the set M of

all matrices having the form (2.15), with parameters α(t), β(t), γ(t),
δ(t) and ε(t) subject to these bounds. Any solution of the original non-

linear system (2.13) is also a solution of the positive linear differential

inclusion (2.14) with M(t) ∈ M, see (Blanchini and Giordano [2014],

Blanchini and Miani [2008]). The converse, however, is not true: the

set of all possible solutions of the differential inclusion is a superset of

the set of solutions of the nonlinear system (2.13).

Then the boundedness of the original system trajectories is ensured

if the positive differential inclusion is exponentially stable. On the other

hand, an important result due to Molchanov and Pyatnitskii [1986]

states that the stability of a linear switched system is equivalent to

the stability of the corresponding (relaxed) linear differential inclusion

(2.14) obtained by allowing the parameters to take any value in the

given intervals.

It can be shown, see Blanchini and Giordano [2014], that in this

example the positive switched system is exponentially stable for every

choice of α, β, γ, δ, ε ∈ {ν, µ}. This implies the exponential stability for

arbitrary α(t), β(t), γ(t), δ(t) and ε(t) varying in the interval [ν, µ] and

hence the global boundedness of the solutions of nonlinear biochemical

systems.

2In view of the mean value theorem, this is equivalent to imposing bounds on
the derivatives.
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2.8 Convergence of algorithms

There are several algorithms that can be viewed as positive switched

systems.

Synchronization. Consider the consensus problem in which there

are some agents in a network that can communicate to each other ac-

cording to a given topology. A typical case is the clock synchronization

problem, Dörfler and Bullo [2014].

Figure 2.12: The clock synchronization.

Assuming pairwise communication, each pair of clocks, i and j,

when communicating, update their time indications as follows:

τi(k + 1) = τi(k)− γ(τi(k)− τj(k)),
τj(k + 1) = τj(k)− γ(τj(k)− τi(k)),

where 0 < γ < 1. Therefore the average of their time indications re-

mains the same, but the difference between the two indications de-

creases.

Consider the (undirected) graph that describes all the communica-

tions among n agents/clocks: there is an edge for each pair of clocks that

communicate. Let B be the incidence matrix of such a graph. This is

a matrix whose rows are associated with nodes and whose columns are

associated with arcs. Each column of B has only two nonzero entries:

−1 in the jth position and +1 in the ith position if i and j communi-

cate (the other way round is possible and makes no difference). It can
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be shown that the overall dynamics can be written as

τ(k + 1) = (I − γBB>)τ(k) = (I − γL)τ(k).

The matrix L = BB> is known as Laplacian matrix, Mohar [1991]. It

is symmetric and −L is Metzler. Its element Lij , i 6= j, is −1 if j com-

municates with i, and 0 otherwise. Conversely, the diagonal elements

Lii are positive and equal to the number of clocks communicating with

i. This system is positive if

γ ≤ 1
maxi[L]ii

and we assume that this is the case.

If we assume that the communication topology may vary with time,

instead of being a fixed one, we can obtain the following discrete-time

positive switched system describing the clock synchronization problem:

τ(k + 1) = (I − γLσ(k))τ(k),

where σ takes values in the set of possible communication configura-

tions. Note that the overall system has as equilibrium points all the

vectors with identical entries. So, in particular, τ̄ = 1 is an equilibrium

point and it represents the synchronization (agreement) case.

If the time interval between two consecutive communications (the

unit time in the previous discrete-time model) is small enough, we can

assume a continuous-time model of the form

τ̇(t) = −δLσ(t)τ(t).

where Lσ(t) is the same matrix involved in the discrete-time model and

δ is a suitable positive constant. The natural question is whether the

clocks asymptotically reach such an agreement, under arbitrary switch-

ing, provided that the network remains connected in each configuration.

The answer is positive: the times displayed by the clocks converge

to their initial average values. Indeed one has to consider the fact that

1>nLσ(t) = 0.

If we introduce Ave(τ) := 1>n τ/n, the average value of the en-

tries of τ , namely the average clock time, we have d
dt Ave(τ(t)) =
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−δ1>nLσ(t)τ(t)/n = 0, hence the average is constant, and the state

moves on the linear variety

Ave(τ(t)) = Ave(τ(0)) = const.

Consider the quadratic positive definite function V (τ) := τ>τ/2. By

the properties of the matrix Lσ(t), the derivative of V (τ(t)) along the

system trajectories is

V̇ (τ(t)) = −δτ(t)>Lσ(t)τ(t) ≤ 0.

Since V̇ (τ(t)) is negative semi-definite, we must resort to Lasalle’s in-

variance principle, that we can apply in view of the fact that the Lya-

punov function is non increasing, and hence the state is bounded in a

set of the form {τ : V (τ) ≤ κ}. The boundedness of the state implies

that the state trajectory τ(t) necessarily converges to the set of points

where V̇ (τ) = 0. If the graph is connected for each σ, the only vectors

τ for which V̇ (τ) = 0 are those with equal components, i.e. τ = λ1,

and hence τ(t) asymptotically converges, under arbitrary switching, to

the vector τ̄ with all equal components satisfying Ave(τ̄) = Ave(τ(0)).

Load balancing. An interesting application of positive switched

systems is the Foschini-Miljanic algorithm for power regulation of trans-

mitters, described in Zappavigna et al. [2012]. Essentially, each trans-

mitter is required to regulate its transmitted power based on the pres-

ence of other transmitters. Precisely, if other transmitters are active,

the interference noise increases and hence the transmitter should in-

crease its power.

Upon denoting by pi the power of the ith transmitter, the problem

can be formalized as a continuous-time positive system. Indeed, the

updating equation of the ith transmitter is

ṗi(t) = κi

−pi(t) + γi

∑
j∈Ni

gij
gii
pj(t) + νi

gii

 ,
where κi > 0 is a proportionality constant, the terms gij , for all i

and j, represent the proportionality coefficients between the amount

of noise affecting the transmission i and the power pj generated by

the transmitter j, νi is the natural channel noise, Ni denotes all the
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other nodes different from i that interact with node i, and γi represents

the SINR (Signal-to-Interference-and-Noise-Ratio), assigned to ensure

a given quality of service. Notice that the equilibrium point is such that

pigii∑
j∈Ni gijpj + νi

= γi.

Of course, the equilibrium point needs to be exponentially stable. The

system can be written as the positive system

ẋ(t) = K[−x(t) + Cx(t)] + r = Ax(t) + r,

where x is the vector collecting the variables pi, C is a nonnegative

matrix depending on the coefficients gij , K is a positive diagonal matrix

and r is a constant vector. Notice that A = K(−I + C) is a Metzler

matrix. This is an ideal model, since in practice two problems typically

occur, see Zappavigna et al. [2012]:

• there are delays in the network;

• the network topology can switch.

Therefore, a more realistic model is (see Zappavigna et al. [2012], for

the details)

ẋ(t) = K[−x(t) +
d∑

k=1
Cσ(t)kx(t− τk(t))] + r,

where σ(t) ∈ {1, 2, . . . ,M} represents the network configuration at

time t (among the M possible), Cik are nonnegative matrices for all

i ∈ {1, 2, . . . ,M} and k ∈ {1, 2, . . . , d}, and τk(t), k = 1, 2, . . . , d, are

(possibly time-varying) time delay coefficients. If we take all delays

equal to zero, and set

Bi :=
d∑

k=1
Cik,

then the model becomes a delay-free positive switched system ẋ(t) =
Aσ(t)x(t), with Ai = K(−I +Bi), i = 1, 2, . . . ,M . In Zappavigna et al.

[2012] it has been shown that if this delay-free positive switched system

satisfies some stability condition under arbitrary switching, then delays

do not affect its stability.
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Stability

In this chapter we revise the stability properties of a continuous-time

positive switched system, described by the following equation

ẋ(t) = Aσ(t)x(t), t ∈ R+, (3.1)

where x(t) denotes the value of the n-dimensional state variable at time

t, σ(t) is a (right-continuous and piece-wise constant) switching signal,

mapping from R+ into the finite set {1, ...,M}, and Ai, i ∈ {1, ...,M},
are Metzler matrices.

It is far from the purpose of this chapter entering in too deep math-

ematical details. Yet, it is worth pointing out that a switched system

is discontinuous and defining its solutions require some attention. The

literature on discontinuous systems often resorts to the notion of dif-

ferential inclusion, see Aubin [1991].

If the switching points tk are all isolated, so that σ is constant in

[tk, tk+1), then it is quite clear how to define the solution of (3.1). If we

impose a dwell time, i.e. a minimum value τ > 0 for the length of the

interval [tk, tk+1), then no problem arises in the definition of a solution.

On the contrary, if we wish to consider solutions for which the

switching points are not isolated, then the situation is different. The

41
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best way to define the solutions is to embed the system in the corre-

sponding differential inclusion (see Remark 2.1 in Section 2.3), namely

to consider the bilinear system

ẋ(t) =
(
M∑
i=1

Ai[u(t)]i

)
x(t), (3.2)

where the function u(t) , [[u(t)]1 [u(t)]2 . . . [u(t)]M ]>, t ∈ R+, belongs

to UMli , the class of locally integrable M -dimensional vector functions

taking values in the simplex AM , and claim that any absolutely con-

tinuous function that satisfies the bilinear system almost everywhere is

a solution of the switched system, Aubin [1991]. This fact is consistent

with the property that any solution of the bilinear system can be arbi-

trarily closely approximated by a solution of the switched system if we

take τ small.

For instance the switched system ẋ(t) = Aσ(t)x(t), with Aσ(t) ∈
{−1, 1} for every t ∈ R+, admits the constant solutions x(t) = c,

because at each time t its derivative ẋ = 0 is inside the interval [−c, c],
although neither of the extremal points has zero derivative.

We are not going to discuss this matter further, but we refer the

interested Reader to specialized literature, e.g. Liberzon [2003], Sun

and Ge [2005], Shorten et al. [2007].

This chapter is probably the most articulated of the whole survey,

due to the fact that the majority of the results available in the literature

on switched positive linear systems pertain their stability properties.

We have tried to make this chapter comprehensive of the main available

results, but unavoidably this may have affected its homogeneity, since

several different approaches and specific problems have been addressed.

In detail, we first investigate uniform exponential stability, correspond-

ing to arbitrary switching functions. Necessary conditions are first pre-

sented, then equivalent conditions based on Lyapunov functions are

given. Sufficient conditions based on special classes of copositive Lya-

punov functions are also proposed. The relationship between uniform

exponential stability and convergence to zero of all state trajectories

corresponding to periodic switching signals is investigated. This issue

is closely related to stability under dwell-time, which is the subject of

subsection 3.2. The analysis of stability properties of positive switched
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systems whose matrices are obtained by means of a state feedback is

finally explored.

3.1 Exponential stability of continuous-time positive
switched systems

In this section we focus on the uniform exponential stability of the ori-

gin as an equilibrium point of (3.1). As it is well-known (see Proposition

2.13 of Sun and Ge [2011]), for switched linear systems the concepts of

attractivity, uniform attractivity, asymptotic stability, uniform asymp-

totic stability, exponential stability and uniform exponential stability

are equivalent, and there is no distinction between local and global

properties. For this reason, in the sequel we will concentrate on uni-

form exponential stability, with the understanding that any other form

of stability would lead to the same results.

Definition 3.1. The positive switched system (3.1) is said to be uni-

formly exponentially stable if there exist real constants C > 0 and β > 0
such that all the solutions of (3.1) satisfy

‖x(t; x(0), σ)‖ ≤ Ce−βt‖x(0)‖, (3.3)

for every x(0) ∈ Rn+, t ∈ R+ and every switching signal σ ∈ D0.

It is worth noticing that even if uniform exponential stability of pos-

itive switched systems is defined by restricting the attention to initial

conditions that belong to the positive orthant, it is equivalent to stan-

dard uniform exponential stability of (nonpositive) switched systems.

Indeed, if condition (3.3) holds for every x(0) ∈ Rn then, a fortiori,

it holds true for positive initial conditions. Conversely, if (3.3) holds

for positive initial conditions, then for every x(0) ∈ Rn we can always

adopt the decomposition

x(0) = x+ − x−, x+,x− ∈ RN+ ,

where

[x+]i :=

[x(0)]i, if [x(0)]i > 0;
0, otherwise;



44 Stability

and

[x−]i :=

−[x(0)]i, if [x(0)]i < 0;
0, otherwise.

The linearity and the norm properties allow to say that

‖x(t; x(0), σ)‖ = ‖x(t; x+, σ)− x(t; x−, σ)‖
≤ ‖x(t; x+, σ)‖+ ‖x(t; x−, σ)‖
≤ Ce−βt‖x+‖+ Ce−βt‖x−‖ ≤ 2Ce−βt‖x(0)‖.

Therefore (3.3) holds for every x(0) ∈ Rn, provided that we replace C

with 2C.

This simple remark allows one to inherit all the results already de-

rived for standard switched systems (see, e.g. Liberzon [2003], Shorten

et al. [2007], Sun and Ge [2005, 2011]). First of all, an obvious necessary

condition for uniform exponential stability is that all matrices Ai are

Hurwitz (since among all switching signals σ, we have to consider the

constant ones).

Proposition 3.1. The continuous-time positive switched system (3.1) is

uniformly exponentially stable only if each subsystem ẋ(t) = Aix(t), i ∈
{1, 2, . . . ,M}, is (uniformly) exponentially stable, namely each Ai is

Metzler Hurwitz.

Unfortunately, as in the standard nonpositive case, this condition

is not sufficient. The following example, given in Mason and Shorten

[2006], proves this fact.

Example 3.1. Consider the continuous-time positive switched system

(3.1), with M = 2, n = 3 and

A1 =

−1.1309 0.0087 0.8499
0.0222 −1.0413 0.5865
0.4105 0.4817 −0.8792


A2 =

−2.9923 1.5069 2.9142
4.0681 −3.9685 1.8570
0.1072 0.0618 −0.7999

 .
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Both A1 and A2 are Metzler Hurwitz matrices, however the matrix

product eA10.5eA20.5 has 1.0114 as an eigenvalue and the corresponding

eigenvector, say v, is strictly positive. This means that corresponding

to the periodic switching signal

σ(t) :=


1, for 0 ≤ t < 0.5;
2, for 0.5 ≤ t < 1;
σ(t− 1), for t ≥ 1;

the state trajectory starting from x(0) = v diverges, thus preventing

asymptotic stability.

As a matter of fact, the necessary condition given in Proposition

3.1 can been strengthened, since a necessary condition for uniform

exponential stability is that all convex combinations of the matrices

Ai, i ∈ {1, 2, . . . ,M}, are (Metzler and) Hurwitz. To formalize it, we

resort to the simplex AM (see Chapter 2).

Proposition 3.2. Molchanov and Pyatnitskii [1986], Barabanov [1988,

1993] (see also Liberzon [2003]). The continuous-time positive switched

system (3.1) is uniformly exponentially stable only if A(α) is Metzler

Hurwitz, for every choice of α ∈ AM .

This condition is easily proved to be not sufficient for general (non-

positive) switched systems. On the contrary, it was initially conjectured

by Mason and Shorten, and independently by David Angeli, that for

positive switched systems the Hurwitz property of all convex combina-

tions A(α), α ∈ AM , was also sufficient for uniform exponential stabil-

ity. This conjecture was initially disproved in Gurvits et al. [2007], and

later Fainshil, Margaliot and Chigansky provided (see Fainshil et al.

[2009]) the following three-dimensional counterexample.

Example 3.2. Consider the continuous-time positive switched system

(3.1), with M = 2, n = 3 and

A1 =

−1 0 0
10 −1 0
0 0 −10

 A2 =

−10 0 10
0 −10 0
0 10 −1

 .
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All convex combinations of A1 and A2 are easily proved to be Hurwitz.

However, as shown in Fainshil et al. [2009], the positive switched system

is not uniformly exponentially stable.

Remark 3.1. While in the general case the proposed conjecture turned

out to be false (except for two-dimensional systems, as we will see later

in this chapter), there are classes of systems for which it is true that

uniform exponential stability is equivalent to the Hurwitz property of

all convex combinations A(α), α ∈ AM . For example, certain classes of

positive switched systems whose matrices Ai, i ∈ {1, 2, . . . ,M}, satisfy

rank(Ai−Aj) = 1 for every i 6= j, Fornasini and Valcher [2014], or can

be seen as the state matrices of uncertain feedback interconnections,

Hinrichsen et al. [2003], Son and Hinrichsen [1998, 1996].

Remark 3.2. The positive switched system (3.1) is exponentially stable

if and only if the associated bilinear system (3.2) is exponentially stable,

Molchanov and Pyatnitskii [1986], Barabanov [1988]. �

Remark 3.3. It is important to note, see Molchanov and Pyatnitskii

[1986], Barabanov [1988], Blanchini and Miani [2003], that uniform ex-

ponential stability of (3.2) is equivalent to uniform exponential stability

of its transposed, i.e.

ẋ(t) =
(
M∑
i=1

A>i [u(t)]i

)
x(t). (3.4)

Therefore dual conditions can be derived from those worked out for

system (3.1) by transposition, i.e. considering the matrices A>i , i ∈
{1, 2, . . . ,M}, instead of Ai, i ∈ {1, 2, . . . ,M}. �

3.1.1 Lyapunov functions

A standard tool for investigating the uniform exponential stability of a

switched system is represented by Lyapunov functions. In this context

we are typically interested in global exponential stability and hence we

search for positive definite functions whose derivatives along the system
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trajectories are decreasing, for every choice of the initial condition and

of the switching signal.

Definition 3.2. A differentiable function V (x) : Rn → R is said to be a

Lyapunov function for the continuous-time (positive) switched system

(3.1) if it is positive definite and

∇V (x)Aix < 0, ∀ x ∈ Rn,x 6= 0, ∀ i ∈ {1, 2, . . . ,M}. (3.5)

A well-know result for general switched systems, switching among

a finite number of subsystems (actually the result is even more general,

but this is what we need for the class of systems we are considering),

is the following, Brayton and Tong [1980], Molchanov and Pyatnitskii

[1986], Dayawansa and Martin [1999], Blanchini and Miani [1999]:

Theorem 3.1. The following facts are equivalent:

i) the continuous-time positive switched system (3.1) is uniformly

exponentially stable;

ii) there exists a (differentiable) Lyapunov function V for the

switched system (3.1), homogeneous of order 2 (i.e., V (αx) =
α2V (x) for every α > 0 and every x ∈ Rn);

iii) there exists an infinitely differentiable (smooth) and convex Lya-

punov function for the switched system (3.1).

A polyhedral function is any function that can be written in the

form

V (x) = max
i∈{1,2,...,s}

[Fx]i,

for some s × n full column rank matrix F , see Blanchini and Miani

[2008]. In particular, a symmetric polyhedral function V (x) can be ex-

pressed as V (x) = ‖Wx‖∞, for some full column rank matrix W , or
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in dual form as V (x) = min{‖z‖1 : z > 0 s.t. x = Xz} 1, where X

is a matrix whose columns represent the vertices of the unit ball of

V (x). Any such function is clearly continuous and positive definite. A

necessary and sufficient condition for uniform exponential stability of

system (3.1) can also be stated in terms of polyhedral Lyapunov func-

tions, following the lines traced in Brayton and Tong [1980], Molchanov

and Pyatnitskii [1986] for general switched systems (see also Blanchini

[1999]). Indeed, the following result can be proven.

Proposition 3.3. The following facts are equivalent:

i) the continuous-time positive switched system (3.1) is uniformly

exponentially stable;

ii) there exist s ∈ Z+, a full row rank nonnegative n × s matrix X

and s×s square Metzler matrices Pi, i ∈ {1, 2, . . . ,M}, such that

AiX = XPi, 1>s Pi � 0; (3.6)

iii) there exist s ∈ Z+, a full column rank nonnegative s× n matrix

W and s× s square Metzler matrices Qi, i ∈ {1, 2, . . . ,M}, such

that

WAi = QiW, Qi1s � 0. (3.7)

Proposition 3.3 suggests how to compute a polyhedral Lyapunov

function for system (3.1), by making use of either (3.6) or (3.7). In the

first case we have V (x) = min{‖z‖1 : x = Xz, z > 0} 2. In the second

1For a column vector x ∈ Rn, the 1-norm is defined as ‖x‖1 =
∑n

i=1 |[x]i|
whereas the ∞-norm is ‖x‖∞ = maxi |[x]i|. Of course, for positive vectors, i.e.
x ∈ Rn+, the absolute values can be omitted. The 1-norm and the ∞-norm for
matrices are induced from those of vectors. Given an s × s matrix P , we have
‖P‖1 = maxj

∑s

i=1 |[P ]ij |. Analogously, given an s× s matrix Q, we have ‖Q‖∞ =
maxi

∑s

j=1 |[Q]ij |. When dealing with Metzler matrices P and Q, the absolute values
can be omitted for the off diagonal entries in the above expressions.

2Indeed, the right-upper Dini derivative of V (x), see Garg [1998], com-
puted along the trajectories of the system, satisfies D+V (x) ≤ µ1(Pσ)V (x),
where µ1 denotes the 1-measure of matrix Pσ, i.e. limh→0

‖Pσh+I‖1−1
h

=
maxj

(
[Pσ]jj +

∑s

i=1,i 6=j |[Pσ]ij |
)

. Since Pσ is a Metzler matrix, it turns out that

µ1(Pσ) = maxj [1>s Pσ]j .
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case V (x) = ‖Wx‖∞ 3. Notice, however, that this characterization can

be computationally demanding since s, the number of columns of X in

(3.6) and the number of rows of W in (3.7), is not known a priori, not

even for positive switched systems.

The main advantage of dealing with positive switched systems, how-

ever, is that one may test their asymptotic behavior by restricting the

attention to trajectories originated and hence confined in the nonneg-

ative orthant. This also allows to weaken the constraints on the Lya-

punov functions that one needs to find in order to verify whether the

systems is exponentially stable. Indeed, the (differentiable) function

just needs to be copositive and hence to take positive values on the

positive orthant.

Definition 3.3. A differentiable function4 V (x) : Rn → R is said to be a

copositive Lyapunov function for the continuous-time positive switched

system (3.1) if it is copositive, namely V (x) > 0 for every x > 0,

V (0) = 0, and condition (3.5) holds.

Even if we move our attention to the larger class of copositive func-

tions, however, the general search for a copositive Lyapunov function

without imposing any a priori structure is computationally intractable.

So, easy computational tools for checking stability under arbitrary

switching have been searched for, by focusing on two classes of coposi-

tive Lyapunov functions: the linear ones and the quadratic ones.

In the following we will consider also the case of time-varying linear

or time-varying quadratic Lyapunov functions: these functions are lin-

ear or quadratic at every time t ≥ 0, but the specific expressions they

take depend on the value of the switching signal σ at t.

3Indeed, the right-upper Dini derivative of V (x), computed along the trajectories
of the system, satisfies D+V (x) ≤ µ∞(Qσ)V (x), where µ∞ denotes the ∞-measure

of matrix Qσ, i.e. limh→0
‖Qσh+I‖∞−1

h
= maxi

(
[Qσ]ii +

∑s

j=1,j 6=i |[Qσ]ij |
)

. Since

Qσ is a Metzler matrix it turns out that µ∞(Qσ) = maxi[Qσ1s]i.
4The definition extends to the time-varying case, thus leading to the class of

time-varying copositive Lyapunov functions. Since in this section we will mainly
deal with the time-invariant case, we have chosen to focus on that case.



50 Stability

Definition 3.4. A (differentiable) copositive function V (x) : Rn → R
is

• linear if V (x) = v>x, for some v ∈ Rn,v� 0;

• quadratic copositive if V (x) = x>Px, for some matrix P = P> ∈
Rn×n such that x>Px > 0 for every x > 0;

• quadratic positive definite if V (x) = x>Px, for some matrix P =
P> � 0 ∈ Rn×n (and hence x>Px > 0 for every x 6= 0).

Remark 3.4. A symmetric matrix P ∈ Rn×n such that x>Px > 0
for every x ∈ Rn+,x > 0, is called a (strictly) copositive matrix, and

has been the object of a good number of papers. Unfortunately, it has

been proved that to decide whether a matrix is copositive is NP-hard,

see Bomze [2012], Murty and Kabadi [1987]. When the size n satisfies

n ≤ 4, every weakly copositive matrix, namely every symmetric matrix

P ∈ Rn×n such that x>Px ≥ 0 for every x ∈ Rn+,x > 0, is the sum of

a positive semi-definite matrix and a nonnegative matrix. For n > 4,

it is still true that the sum of a positive semi-definite matrix and a

nonnegative matrix is weakly copositive, but the converse is not true

(see, for instance, Hiriart-Urruty and Seeger [2010]). �

A linear copositive function V (x) = v>x, with v � 0, is a linear

copositive Lyapunov function (LCLF) for the system (3.1) if and only if

v>Aix < 0 for every i ∈ {1, 2, . . . ,M} and every x > 0, which amounts

to saying that

v>Ai � 0, ∀ i ∈ {1, 2, . . . ,M}.

Similarly, a quadratic copositive function V (x) = x>Px, with P = P>,

is a quadratic copositive Lyapunov function (QCLF) for the system (3.1)

if and only if x>[A>i P+PAi]x < 0 for every i ∈ {1, 2, . . . ,M} and every

x > 0, and a quadratic positive definite function V (x) = x>Px, with

P = P>, is a quadratic positive definite Lyapunov function (QPDLF)

for the system (3.1) if and only if x>[A>i P + PAi]x < 0 for every i ∈
{1, 2, . . . ,M} and every x > 0. Equivalent conditions for the existence
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of an LCLF have been provided in Fornasini and Valcher [2009], Knorn

et al. [2009], Mason and Shorten [2007] for continuous-time systems and

in Fornasini and Valcher [2012] for discrete-time systems, see also the

work of Bundfuss and Dür on this subject (Bundfuss and Dur [2009a,b],

Sponsel et al. [2012]). The following proposition summarizes all of them

and provides some new characterization.

Theorem 3.2. Given a continuous-time positive switched system (3.1),

the following facts are equivalent:

1) ∃ v � 0 such that v>A(α) = v>
∑M
i=1 αiAi � 0, ∀ α =

(α1, α2, . . . , αM ) ∈ AM ;

2) ∃ v� 0 such that V (x) = v>x is an LCLF for (3.1);

3) ∃ P = P> of rank 1 such that V (x) = x>Px is a QCLF for (3.1);

4) for each map π : {1, 2, . . . , n} → {1, 2, . . . ,M}, the matrix

Aπ :=
[
col1(Aπ(1)) col2(Aπ(2)) . . . coln(Aπ(n))

]
is Hurwitz;

5) the convex hull of the columns of A :=
[
A1 A2 . . . AM

]
∈

Rn×nM does not intersect5 the positive orthant of Rn.

6) for every choice of M nonnegative diagonal matrices Di, i ∈
{1, 2, . . . ,M}, with

∑M
i=1Di = In, the matrix

∑M
i=1AiDi is Met-

zler Hurwitz.

Proof. 1) ⇔ 2) Condition 2) is obtained from 1) for special values of

the M -tuples α ∈ AM . The reverse implication is obvious.

2) ⇒ 3) Suppose that for some v � 0 condition v>Aix < 0 holds,

∀i ∈ {1, 2, . . . ,M} and ∀x > 0. This implies that x>(vv>)Aix +
x>A>i (vv>)x = 2(v>x)>(v>Aix) < 0 holds, ∀i ∈ {1, 2, . . . ,M} and

∀x > 0. Therefore 3) is satisfied for P := vv>.

5This condition can be equivalently expressed by saying that the positive kernel
of the matrix

[
In −A

]
, i.e., ker

[
In −A

]
∩ Rn+, consists of the zero vector alone.
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3) ⇒ 2) If rank P = 1 and P = P>, then P can be expressed as P =
vv>, for some vector v. Moreover, as x>Px = (v>x)2 > 0, ∀x > 0,

all entries of v are nonzero and of the same sign, and it entails no loss

of generality assuming that they are all positive. On the other hand,

∀x > 0 and ∀i ∈ {1, 2, . . . ,M}, condition

x>[A>i P + PAi]x = x>A>i vv>x + x>vv>Aix < 0,

can be rewritten as 2(v>x)>(v>Aix) < 0, and from the positivity of

v>x, one gets condition 2), namely:

v>Aix < 0, ∀x > 0, ∀i ∈ {1, 2, . . . ,M}.

2)⇔ 5) It is well-known, Aliprantis and Tourky [2007] that, given some

matrix A, one and only one of the following alternatives holds:

either ∃ v > 0 such that v>A� 0 (3.8)

or ∃ z > 0 such that Az ≥ 0, (3.9)

and in (3.9) the vector z can be assumed, without any loss of gen-

erality, to belong to the simplex AnM . If 2) (and hence (3.8)) holds

true, (3.9) cannot be verified, and consequently no convex combination

of the columns of A intersects the positive orthant Rn+. Vice versa, if

no convex combination of the columns of A intersects Rn+, (3.9) does

not hold, and hence (3.8) admits a positive solution v ∈ Rn+. Clearly,

there exists ε > 0 sufficiently small such that v + ε1n � 0 satisfies

(v + ε1n)>Ai � 0 for every i ∈ {1, 2, . . . ,M}.
2) ⇒ 6) If there exists v � 0 such that v>Ai � 0 for every i ∈
{1, 2, . . . ,M}, then for every choice of the M diagonal matrices Di, i ∈
{1, 2, . . . ,M}, with

∑M
i=1Di = In, we have

v>
(
M∑
i=1

AiDi

)
=

M∑
i=1

(v>Ai)Di � 0.

This follows from the fact that each vector v>Ai is strictly negative

and for every j ∈ {1, 2, . . . , n} there exists at least one index i such

that [Di]jj > 0. This proves that every matrix
∑M
i=1AiDi is (Metzler

and) Hurwitz.
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6) ⇒ 4) If 6) holds, then in particular it holds for every choice of the

diagonal matrices Di, i ∈ {1, 2, . . . ,M}, with
∑M
i=1Di = In, satisfying

the constraint that for every k ∈ {1, 2, . . . , n} there is only one index

ik ∈ {1, 2, . . . ,M} such that [Dik ]kk 6= 0 and hence [Dik ]kk = 1. For

any such choice of the matrices Di we get

M∑
i=1

AiDi =
[
col1(Ai1) col2(Ai2) . . . coln(Ain)

]
. (3.10)

This proves 4).

4)⇒ 2) Has been proved in Fornasini and Valcher [2009], Knorn et al.

[2009].

The existence of an LCLF is, not unexpectedly, only a sufficient

condition for the exponential stability of (3.1), as the following example

clearly shows.

Example 3.3. Consider the 2-dimensional positive switched system

(3.1), with M = 2 and matrices

A1 =
[
−1 1
1/2 −1

]
, A2 =

[
−1 1/2
1 −1

]
.

By a result of Akar et al. (Akar et al. [2006]), the system is exponentially

stable. However it is easily seen that no LCLF can be found. Indeed,

if v =
[
v1 v2

]>
� 0, then v>A1 implies v1 < v2, while v>A2 implies

v2 < v1. So, a strictly positive vector v such that v>Ai � 0 for i = 1, 2,
does not exist. Alternatively, we can apply condition 4) of the previous

theorem and simply notice that the matrix

Aπ =
[
col1(A2) col2(A1)

]
=
[
−1 1
1 −1

]
is not Hurwitz.

We now move to the analysis of how linear copositive, quadratic

positive definite and quadratic copositive Lyapunov functions are mu-

tually related, namely we explore how the existence of a Lyapunov
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function of an LCLF implies the existence of QPDLF which, in turn,

implies the existence of a QCLF.

Theorem 3.3. Given a continuous-time positive switched system (3.1),

the following implications hold: if there exists an LCLF for (3.1) then

there exists a QPDLF for (3.1), and this in turn implies the existence

of a QCLF for (3.1).

Proof. 1) ⇒ 2) Let v � 0 be such that V (x) = v>x is an LCLF for

(3.1). Define P := vv> + εIn, where ε is a positive parameter to be

chosen. We want to show that V (x) = x>Px is a QPDLF for (3.1).

First of all, P = P> � 0. Indeed, P is clearly symmetric and is positive

definite since x>Px = (v>x)2 + ε‖x‖2 ≥ 0 and

x>Px = (v>x)2 + ε‖x‖2 = 0 ⇔ x = 0.

Finally, for every x > 0 and every i ∈ {1, 2, . . . ,M},

x>(A>i P+PAi)x = (x>A>i v)(v>x)+(x>v)(v>Aix)+x>[Aiε+εAi]x.

Now, set K := {x ∈ Rn+ : ‖x‖ = 1}. K is a compact set and hence, by

the Weierstrass theorem, there exist

−α := max
x∈K,i∈{1,2,...,M}

(v>x)(v>Aix) < 0

and

β := max
x∈K,i∈{1,2,...,M}

|x>Aix| ≥ 0.

If ε ∈ (0, α/β), then for every x ∈ K

x>(A>i P + PAi)x = 2(v>x)(v>Aix) + 2εx>Aix ≤ −2α+ 2εβ < 0.

On the other hand, for any x ∈ Rn+,x 6= 0, we have x = ‖x‖ · x̄, with

x̄ := x/‖x‖ ∈ K. Therefore

x>(A>i P + PAi)x = ‖x‖2
(
2(v>x̄)(v>Aix̄) + 2εx̄>Aix̄

)
≤ ‖x‖2(−2α+ 2εβ) < 0.

This concludes the proof.

2) ⇒ 3) is obvious.
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The existence of an LCLF is a more restrictive condition with re-

spect to the existence of a QPDLF.

Example 3.4. Consider the 2-dimensional positive switched system

(3.1), with M = 2 and matrices

A1 =
[
−1 1
1 −3

]
, A2 =

[
−3 1
1 −1

]
.

It is easily seen that no LCLF can be found, since the matrix

Aπ =
[
col1(A1) col2(A2)

]
=
[
−1 1
1 −1

]

is not Hurwitz. However, it is also easy to verify that both A>1 +A1 ≺ 0
and A>2 +A2 ≺ 0, which means that V (x) = ‖x‖2 = x>x is a QPDLF.

To the best of our knowledge, it is not clear yet whether the exis-

tence of a QPDLF is a stronger condition than the existence of a QCLF,

or the two of them are equivalent conditions. The fact that, as recalled

in Remark 3.4, a characterization of the matrices that define quadratic

copositive functions is still missing has surely a high impact on this

additional open problem. Some interesting results relating quadratic

copositive matrices, P-matrices, and Z-transformations have been ob-

tained by M.S. Gowda and co-authors (see Gowda [2012], Moldovan

and Gowda [2010] and references therein).

Remark 3.5. The existence of a QCLF for the positive switched sys-

tem (3.1) of size n is also induced by the existence of an LCLF in an

extended space of size n2. To show this, we first introduce the variable

X := x⊗ x, and note that, see 6 Graham [1981],

x>Px = vec[x>Px] = (x> ⊗ x>)vec[P ] = X>vec[P ]

6The vec operator on a matrix, say A ∈ Rn×m, consists in constructing a column
vector by ordinately stacking the columns of the matrix. It goes without saying
that vec[A] is a column vector of size nm. For square symmetric matrices one can
consider a “reduced” vec operator by stacking only the lower triangular part of the
matrix.
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and

x>(A>i P + PAi)x = vec[x>(A>i P + PAi)x] = (x> ⊗ x>)Ã>i vec[P ]
= X>Ã>i vec[P ],

where Ãi = Ai ⊕ Ai
7. Consider, now, the n2-dimensional positive

switched system

Ẋ(t) = Ãσ(t)X(t). (3.11)

If there exists an LCLF for system (3.11), this means that there exists

V ∈ Rn2
+ , with V � 0, such that V>Ãi � 0,∀i ∈ {1, 2, . . . ,M}.

Consequently, for every X ∈ Rn2
+ ,X > 0, and every i ∈ {1, 2, . . . ,M},

we have

X>V > 0 and X>Ã>i V < 0.

So, by making use of the relations we previously derived, we can show

that the symmetric strictly positive matrix P 8

P = 1
2
(
vec−1(V) + (vec−1(V))>

)
satisfies

x>Px > 0, x>(A>i P + PA>i )x < 0, ∀x > 0, ∀i ∈ {1, 2, . . . ,M},

and hence is a QCLF for the positive switched system (3.1).

As a result, stability under arbitrary switching can be checked

via linear programming techniques by searching for LCLFs for system

(3.11). Note that the dimension of such a system can be reduced if the

Kronecker computations are considered by avoiding repetitions in the

state variables and by computing the Metzler matrices Ãi accordingly.

For the theory of polynomial homogeneous Lyapunov functions and

the stability analysis via Gram matrices and SMRs (square matricial

representations), see Chesi [2011] and Chesi et al. [2012]. �

7The notation ⊕ indicates the Kronecker sum, defined, for two matrices A and
B as A⊕B = A⊗ I + I ⊗B.

8vec−1(z), z ∈ Rn
2
, denotes the unique n× n matrix Pz such that vec(Pz) = z.
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Example 3.5. Consider the system of Example 3.4. We already verified

that it does not admit an LCLF. Introduce the extended vector

ξ =

 [x]21
[x]1 [x]2
[x]22


and define the 3rd order positive switched system

ξ̇(t) = Ãσ(t)ξ(t),

where

Ã1 =

−2 2 0
1 −4 1
0 2 −6

 , Ã2 =

−6 2 0
1 −4 1
0 2 −2

 .
An LCLF for such a system can be easily found, for instance Ṽ (ξ) =
V>ξ with V =

[
1 1.5 1

]>
. Correspondingly,

V (x) = [x]21 + 1.5[x]1[x]2 + [x]22 = x>
[

1 0.75
0.75 1

]
x

is a CQLF (in fact, a QPDLF) for the original switched system.

3.1.2 Periodic switching signals

A natural question arises: when testing exponential stability of a posi-

tive switched system, can we restrict our attention to periodic switching

signals in D0? In other words, if all the trajectories generated by the

positive switched system (3.1), corresponding to any periodic σ ∈ D0
and any nonnegative initial condition x0 ∈ Rn+, converge to zero ex-

ponentially, can one claim that the system is uniformly exponentially

stable?

This problem has been extensively investigated for the class of stan-

dard switched systems, both in the discrete-time and in the continuous-

time case (see Pyatnitskiy and Rapoport [1991], Blondel et al. [2003],

Shorten et al. [2007], and references therein). In the discrete-time case

this problem is equivalent to the finiteness conjecture introduced in La-

garias and Wang [1995], and this conjecture was disproved in Bousch
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and Mairesse [2001](see also the papers Blondel et al. [2003], Hare et al.

[2011]). For continuous-time systems, there are several results show-

ing that for low-dimensional systems periodic stability is sufficient for

uniform exponential stability (see Pyatnitskii [1971], Pyatnitskiy and

Rapoport [1996] as well as Barabanov [1993]). We refer the interested

Reader to Shorten et al. [2007] and references therein. In Section 3.2,

dedicated to stability under dwell time constraints, we will provide an

example of a positive switched system that is stable under any switching

signal, for which the length between two consecutive switching instants

is nonzero, but that can be destabilized in a sliding mode. In such cases

one can find an unstable convex combination in the convex hull of the

matrices. Since the set of switching signals with dwell time includes the

set of periodic switching signals, the example also demonstrates that

exponential stability for any periodic switching signal does not imply

exponential stability under arbitrary switching signal, see Remark 3.7.

Even if periodic stability does not ensure uniform exponential sta-

bility, a slightly weaker result holds true. If a switched system is pe-

riodically exponentially stable with some finite “robustness margin” ε,

then it is uniformly exponentially stable. This result was proved in the

discrete-time in Theorem 2.3 of Gurvits [1995], while a continuous-time

version of the result can be found in Wulff et al. [2003].

Theorem 3.4. A switched linear system (1) is uniformly exponentially

stable under arbitrary switching if and only if there exists ε > 0 such

that, for every T > 0 and every periodic switching signal σ ∈ D0 of

period T , the spectral radius of the corresponding transition matrix

Φ(T, 0, σ) is smaller than 1− ε.

In the rest of this subsection we want to show that condition 6) in

Theorem 3.2, namely the property that for every choice of M nonneg-

ative diagonal matrices Di, i ∈ {1, 2, . . . , M}, with
∑M
i=1Di = In, the

matrix
∑M
i=1AiDi is (Metzler) Hurwitz, can be related to the uniform

exponential stability of system (3.1) under periodic switching laws.

To clarify this relationship, we first provide the following lemma,

that refers to the exponential stability of the positive switched system

(3.1) corresponding to a specific switching signal.
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Lemma 3.5. Assume that σ = σ̄ is a specific switching signal, and let

q ∈ Rn+ be a strictly positive vector. The time-varying system obtained

from (3.1) corresponding to σ̄ is uniformly exponentially stable if and

only if the differential inequality

ṙ(t)> + r(t)>Aσ̄(t) � −q> (3.12)

has a solution r(t) ∈ Rn+, differentiable almost everywhere, and such

that

r̄ < r(t) < r̂, t ≥ 0,
for some r̄� 0 and r̂� 0.

Proof. Let r(t) be a solution of (3.12) with the afore mentioned prop-

erties, and let η > 0 be such that r̄� η1n. Introduce the time-varying

copositive function V (x, t) = r(t)>x(t) and notice that it is well de-

fined since V (x, t) ≤ r̂>x(t), ∀t ≥ 0. Standard computations show that

V̇ (x, t) < −εη−1V (x, t), ∀t ≥ 0, ∀x > 0, where ε is any positive number

such that q � ε1n. Due the fact that V (x, t) � r̄>x(t), for x(t) > 0,

uniform exponential stability of the time-varying system follows.

On the contrary, assume that system (3.1), for σ = σ̄, is uniformly

exponentially stable, and define

r(t) :=
∫ +∞

t
Φ(τ, t, σ̄)(q + ε1n)dτ,

where Φ(τ, t, σ̄) is the state transition matrix associated with Aσ̄(t), and

ε > 0. The exponential stability of the time-varying system ensures that

there exist C > 0 and β > 0 such that ‖Φ(τ, t, σ̄)‖∞ < Ce−β(τ−t),

for every τ > t ≥ 0. Taking the infinity norm of r(t), one gets

‖r(t)‖∞ ≤ C
β ‖q + ε1n‖∞ and hence r(t) < r̂ := C/β (q + ε1n), t ≥ 0.

Consequently, r(t) exists and is uniformly bounded. Also, as Aσ̄(t) is

Metzler at every time t ≥ 0, Φ(τ, t, σ̄) is positive at every τ > t ≥ 0
(and devoid of zero rows) and there exists r̄ � 0 such that r(t) > r̄,

t ≥ 0. Finally, a straightforward computation shows that r(t) satisfies

ṙ(t)> + r(t)>Aσ̄(t) = −(q> + ε1>n )� −q>. (3.13)
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Note that a dual result can be stated, by referring again to a specific

switching signal σ̄(t). The proof is analogous to the previous one and

hence is omitted.

Lemma 3.6. Assume that σ = σ̄ is a specific switching signal, and let

b ∈ Rn+ be a strictly positive vector. The time-varying system obtained

from (3.1) corresponding to σ̄ is uniformly exponentially stable if and

only if the differential inequality

−ḋ(t) +Aσ̄(t)d(t) + b� 0 (3.14)

has a solution d(t) ∈ Rn+, differentiable almost everywhere, and such

that

d̄ < d(t) < d̂, t ≥ 0
for some d̄� 0 and d̂� 0.

We are now in a position to clarify the aforementioned relationship

between condition 6) in Theorem 3.2 and the exponential stability of

system (3.1) under periodic switching laws. By following up on the

previous Lemma 3.5, assume that the positive switched system (3.1) is

uniformly exponentially stable, let σ̄ be a periodic switching signal of

period say T > 0, and consider the (continuous) function

r(t) :=
∫ +∞

t
Φ(τ, t, σ̄)1ndτ,

where Φ(τ, t, σ̄) is again the transition matrix associated with Aσ̄(t). In

this case the transition matrix is T -periodic, which means Φ(τ +T, t+
T, σ̄) = Φ(τ, t, σ̄) for all τ and t, and r(t) is T -periodic as well. Notice

that r(t) satisfies (3.12) for q = 1n, and therefore∫ T

0
r(t)>Aσ̄(t)dt� 0.

Let Si denote the union of the time intervals included in [0, T ) where

the ith subsystem is active, and introduce the M positive diagonal

matrices Di, i ∈ {1, 2, . . . ,M}, whose nonnegative diagonal entries are

defined as follows

[Di]kk :=
∫
Si [r(t)]kdt

[r̄]k
, k ∈ {1, 2, . . . , n},
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where

r̄ :=
∫ T

0
r(t)dt� 0.

Clearly,
∑M
i=1Di = In. It can be easily verified that

r̄>
M∑
i=1

AiDi � 0,

and hence
∑M
i=1AiDi is Metzler Hurwitz. This shows that correspond-

ing to every periodic switching signal σ̄ we can define positive diag-

onal matrices Di, i ∈ {1, 2, . . . ,M}, with
∑M
i=1Di = In, such that∑M

i=1AiDi is Metzler Hurwitz. Unfortunately, this result cannot be

reversed, since there are choices of the diagonal matrices Di, satisfy-

ing the previous assumptions, that cannot be related to any periodic

switching signal.

3.1.3 Dual positive switched system

In this subsection we explore the uniform exponential stability of the

positive switched system (3.1), by making use of its dual system, namely

the positive switched system

ż(t) = A>σ(t)z(t), (3.15)

whose ith subsystem is described by the Metzler Hurwitz matrix A>i ,

the transposed version of the one characterizing the ith subsystem of

(3.1). By putting together Remarks 3.2 and 3.3, it immediately follows

that the uniform exponential stability of (3.15) ensures that of (3.1) and

conversely. As a consequence, the existence of an LCLF for the dual

system (3.15) ensures the uniform exponential stability of the original

system (3.1). An alternative proof, based on the polyhedral copositive

Lyapunov function V (x) = maxi=1,2,...,M
[x]i
[ξ]i , will be provided in the

next section, for systems with dwell-time.

Proposition 3.4. Given a continuous-time positive switched system

(3.1), if there exists a strictly positive vector ξ ∈ Rn+ such that

Aiξ � 0, ∀ i ∈ {1, 2, . . . ,M}, (3.16)
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then the positive switched system (3.1) is uniformly exponentially sta-

ble.

In general, the existence of an LCLF for the positive switched sys-

tem (3.1) does not ensure the existence of any such Lyapunov function

for its dual (3.15), nor the converse is obviously true.

Example 3.6. Consider the 2-dimensional positive switched system

(3.1), with M = 2 and the matrices

A1 =
[
−1 1/2
1 −2

]
, A2 =

[
−3 1
1/3 −1

]
.

It is easily seen that no LCLF can be found, but the dual system has

the LCLF Ṽ (z) = [1 1]>z.

An LCLF for system (3.1) corresponds to a polyhedral Lyapunov

function for its dual (3.15), and vice versa. When LCLFs can be found

for both system (3.1) and its dual (3.15), then a diagonal QPDLF can

be found for (3.1). Indeed, we have the following result whose proof is a

direct extension of the one provided by Araki for a single Metzler ma-

trix (see Araki [1975]). For a discussion of how stability and Lyapunov

functions of a switched system are related to stability and Lyapunov

functions of its dual, see Plischke and Wirth [2008].

Proposition 3.5. Given a continuous-time positive switched system

(3.1), if there exist strictly positive vectors v, ξ ∈ Rn+ such that

v>Ai � 0, ∀ i ∈ {1, 2, . . . ,M},
Ai ξ � 0, ∀ i ∈ {1, 2, . . . ,M},

then the positive (and positive definite) diagonal matrix

D = diag
{

[v]1
[ξ]1 . . . [v]n

[ξ]n

}
satisfies

A>i D +DAi ≺ 0, ∀ i ∈ {1, 2 . . . ,M}.
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Example 3.7. Consider the two matrices

A1 =

 −1 0 0
1/16 −1 1
1/100 1/10 −1

 and A2 =

 −1 0 0
1/100 −1 1
1/100 1/100 −1

 .
It is easy to verify that for v =

[
1 1 1

]>
and ξ =

[
1 1 2

]>
we get

both v>Ai � 0 and Aiξ � 0 for i = 1, 2. On the other hand, P =
diag{1, 1, 1/2} is a QPDLF for the positive switched system described

by these two matrices.

Remark 3.6. The existence of a diagonal QPDLF however does not

ensure either the existence of an LCLF or of a vector ξ � 0 satisfying

(3.16). Indeed, one simply needs to consider Example 3.4. Clearly, in

that case P = I2, but there is no LCLF either for the system (3.1) or

for its dual (just apply to A>1 and A>2 the same reasoning adopted for

A1 and A2). �

3.1.4 Two-dimensional continuous-time positive switched systems

When dealing with two-dimensional systems, exponential stability ad-

mits much stronger characterizations. We will first consider the case

of a two-dimensional positive switched system (3.1) switching between

two subsystems (namely both n and M are equal to 2), and then extend

the analysis to the case of two-dimensional positive switched systems,

switching among M ≥ 2 subsystems. Both results are due to Gurvits

and co-authors (see Gurvits et al. [2007]).

Theorem 3.7. Given a two-dimensional continuous-time positive

switched system (3.1), switching between M = 2 subsystems, the fol-

lowing facts are equivalent:

i) the switched system (3.1) is uniformly exponentially stable;

ii) there exists P = P> � 0 such that A>i P + PAi ≺ 0 for i = 1, 2;

iii) there exists a QPDLF for (3.1);
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iv) the matrix product A1A
−1
2 has no negative eigenvalues;

v) for every α ∈ A2, the convex combination of the matrices A1 and

A2, A(α), is Metzler Hurwitz.

Theorem 3.8. Gurvits et al. [2007]. Given a two-dimensional

continuous-time positive switched system (3.1), switching between

M > 2 subsystems, the following facts are equivalent:

i) the switched system (3.1) is uniformly exponentially stable;

ii) for every choice of i, j ∈ {1, 2, . . . ,M}, the switched system

ẋ(t) = Aσ(t)x(t), with σ(t) ∈ {i, j},

is uniformly exponentially stable;

iii) for every α ∈ AM , the convex combination of the matrices

A1, A2, . . . , AM , A(α), is Metzler Hurwitz.

3.1.5 Rate of convergence

In some cases, verifying the exponential stability of the system is not

meaningful. Most of the examples in Chapter 2 are clearly stable. What

is more interesting, instead, is to understand whether the convergence

to zero of the system trajectories is sufficiently fast.

Definition 3.5. Given an exponentially stable positive switched system

(3.1), we say that the system has rate of convergence β > 0 if there

exists some constant C > 0 such that for every switching signal σ ∈ D0
and every initial condition x(0) ∈ Rn+, we have

‖x(t; x(0), σ)‖ ≤ Ce−βt‖x(0)‖.

Determining (or ensuring) a certain convergence speed can be re-

duced to a simple exponential stability analysis for a modified system.
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Proposition 3.6. The positive switched system (3.1) is exponentially

stable with rate of convergence β̄ if and only if the perturbed positive

switched system

ẋ(t) = [βIn +Aσ]x(t)

is exponentially stable for any β < β̄. Also, the solutions of the per-

turbed system and of the unperturbed one, corresponding to the same

initial condition and to the same switching signal σ, say by xβ(t; x0, σ)
and x(t; x0, σ), respectively, are related as follows:

xβ(t; x0, σ) = eβtx(t; x0, σ), ∀ t ≥ 0.

Notice that β̄ coincides with the largest Lyapunov exponent of the

switched system and is connected with the existence of extremal tra-

jectories along which a Barabanov norm is constant. For a thorough

discussion on this topic the interested Reader is referred to Gaye et al.

[2013].

3.2 Stability under dwell-time

Up to now, we have considered the exponential stability of the positive

switched system (3.1) under the assumption that the switching signals

σ take values in D0, namely they are right continuous and have a finite

number of switching instants in every finite interval, but they are other-

wise arbitrary. We now address the exponential stability problem with

(hard) dwell-time, namely we investigate under what conditions expo-

nential stability may be ensured for every switching signal σ belonging

to the class

DT := {σ : R+ → {1, 2, . . . ,M} : for every pair of consecutive

switching times tk and tk+1 one has tk+1 − tk > T},

for some fixed T ∈ R+, T > 0. This leads to the following definition.

Definition 3.6. The positive switched system (3.1) is said to be uni-

formly exponentially stable with dwell-time T if there exist real con-

stants C > 0 and β > 0 such that all the solutions of (3.1) satisfy
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‖x(t; x(0), σ)‖ ≤ Ce−βt‖x(0)‖, (3.17)

for every x(0) ∈ Rn+, t ∈ R+ and every switching signal σ ∈ DT .

First of all, it is well-known already for nonpositive switched sys-

tems (3.1), see e.g. Hespanha and Morse [1999], that if all matrices

Ai, i ∈ {1, 2, . . . ,M}, are Hurwitz, then for large values of T uniform

exponential stability with dwell-time T is always ensured. This is ob-

viously related to the fact that for sufficiently large t > 0, each map

eAit becomes a contraction. For positive switched systems (3.1) this

amounts to saying that for every ε > 0 and every i ∈ {1, 2, . . . ,M}
there exists Ti > 0 such that, for every t ≥ Ti and every x0 > 0,

one has 0 < eAitx0 < εx0. This ensures that stability with dwell-time

T := maxi Ti is surely ensured. On the other hand, for every T > 0,

{σ : ∃ i ∈ {1, 2, . . . ,M} such that σ(t) = i,∀ t ∈ R+} ⊂ DT ,

and hence a necessary condition for stability with some dwell-time

T > 0 is that the Metzler matrices Ai are Hurwitz ∀i ∈ {1, . . . ,M}.
So, the Hurwitz property of the matrices Ai, ∀i ∈ {1, . . . ,M}, is a nec-

essary and sufficient condition for the existence of some T > 0 such

that the switched system (3.1) is exponentially stable with dwell-time

T . Therefore in the following of this section we will assume that all

matrices Ai are Metzler Hurwitz, and the only meaningful problem to

address is that of determining the minimum dwell-time Tmin > 0, i.e.

the infimum value of T for which the system is exponentially stable in

DT . This is a rather challenging problem, and we will try to at least

provide an upper bound on it, by verifying whether for a given T > 0
the positive switched system (3.1) is uniformly exponentially stable

with dwell-time T . Following the same rationale as in Proposition 3.3,

a necessary and sufficient condition for stability in DT can be worked

out in terms of time-varying polyhedral Lyapunov functions. Indeed

(see Blanchini and Colaneri [2010]), the following result can be proven.

Theorem 3.9. The following statements are equivalent.

i) the continuous-time positive switched system (3.1) is uniformly

exponentially stable for every σ ∈ DT ;
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ii) there exist s ∈ Z+, full row rank nonnegative n× s matrices Xi,

s × s square Metzler matrices Pi and s × s square nonnegative

matrices Rij such that

AiXi = XiPi, Pi1s � 0, (3.18)

eAiTXj = XiRij , Rij1s � 1s; (3.19)

iii) there exist s ∈ Z+, full column rank nonnegative s × n matrices

Wi, s×s square Metzler matrices Qi and s×s square nonnegative

matrices Zij such that

WiAi = QiWi, 1>s Qi � 0, (3.20)

Wje
AiT = ZijWi, 1>s Zij � 1>s . (3.21)

The rationale of Proposition 3.9 is to relate the exponential stability

with dwell-time to the existence of a time-varying polyhedral Lyapunov

function that decreases when no switchings occur and exhibits negative

jumps between two consecutive switching instants (Branicky functions,

see Branicky [2007]). It goes without saying that this proposition allows

to compute (at the cost of demanding computational burden, though)

the minimum dwell-time Tmin. Notice that for T → 0+ the conditions

of Proposition 3.9 boil down to those of Proposition 3.3 for stability

in D0. For converse Lyapunov theorems for linear parameter-varying

systems and linear switched systems under dwell time the Reader is

referred to Wirth [2005].

We will now discuss the stability problem using easy linear program-

ming tools that produce upper bounds on the minimum dwell-time. A

first simple way to study the stability properties under dwell time is

to resort to well-known bounds on the norm of the exponential of a

Hurwitz matrix. Indeed, for every i ∈ {1, 2, . . . ,M}, let αi ≥ 0 and

βi > 0 be such that ‖eAit‖ < eαi−βit, for every t ≥ 0. Then system

(3.1) is stable for every σ ∈ DT , provided that T > maxi∈{1,2,...,M} αiβi .

Another, generally less conservative, way to explore the problem

of stability under dwell-time is to investigate for which values of the

dwell-time T > 0 we can find linear or time-varying linear copositive
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Lyapunov functions that prove the exponential stability of the switched

system (3.1) for every σ ∈ DT . In the following theorem, time-varying

linear Lyapunov functions are considered.

Theorem 3.10. Assume that for some T > 0, there exist strictly posi-

tive vectors vi ∈ Rn+, i ∈ {1, 2, . . . ,M}, such that

v>i Ai � 0 ∀i ∈ {1, 2, . . . ,M}, (3.22)

v>j eAiT − v>i � 0 ∀i, j ∈ {1, 2, . . . ,M}, i 6= j. (3.23)

Then the switched system (3.1) is exponentially stable for each σ ∈ DT .

Proof. We first observe that condition (3.22) implies

v>i eAiτ � v>i ∀τ > 0, ∀i ∈ {1, 2, . . . ,M}. (3.24)

Since vi � 0 and (3.22) holds, V (x(t), σ(t)) = v>σ(t)x(t) is a time-

varying linear copositive function. We want to prove that this is a

Lyapunov function for the system (3.1), once we restrict the switching

signals σ to belong to DT . First, we note that the fact that the inequal-

ities (3.22) and (3.23) hold true ensures that a sufficiently small ε > 0
can be found such that

v>i Ai � −εv>i ∀i ∈ {1, 2, . . . ,M}, (3.25)

and

v>j eAiT � e−εTv>i , ∀i, j ∈ {1, 2, . . . ,M}, i 6= j (3.26)

hold true. For any σ ∈ DT and any initial condition, at the switching

times we have

V (x(tk+1), σ(tk+1)) = v>σ(tk+1)x(tk+1)

= v>σ(tk+1)e
Aσ(tk)(tk+1−tk)x(tk)

= v>σ(tk+1)e
Aσ(tk)T eAσ(tk)(tk+1−tk−T )x(tk)

<e−εTv>σ(tk)e
Aσ(tk)(tk+1−tk−T )x(tk)

<e−εTv>σ(tk)x(tk) = e−εTV (x(tk), σ(tk))

(3.27)
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where the first inequality follows from (3.26) and the second inequality

from (3.24). This ensures that

V (x(tk), σ(tk)) < e−εTkV (x(0), σ(0)) ∀k ∈ Z+. (3.28)

On the other hand, by (3.24), for every t ∈ [tk, tk+1) one has

V (x(t), σ(t)) = v>σ(tk)e
Aσ(tk)(t−tk)x(tk) < v>σ(tk)x(tk) = V (x(tk), σ(tk)),

where we used again (3.24). This implies that the switched system (3.1)

is uniformly exponentially stable for each σ ∈ DT .

Notice that if T → 0+, the inequalities (3.23) become v>i ≤ v>j and

they can be satisfied for every pair of indices i and j if and only if all

vectors vi coincide. So, if vi = v for every i ∈ {1, 2, . . . ,M}, conditions

(3.22) become v>Ai � 0 for every i ∈ {1, 2, . . . ,M}, and we obtain

the usual linear copositive Lyapunov function, whose existence repre-

sents a sufficient condition for the exponential stability under arbitrary

switching (σ ∈ D0).

On the other hand, as all the matrices Ai are Hurwitz, it is easily

seen that for sufficiently large T both sets of inequalities are feasible,

as they become vi � 0 and v>i Ai � 0, for each i ∈ {1, 2, . . . ,M}.
This is in agreement with what we previously said about the fact that

exponential stability with dwell-time is always possible provided that

T is large enough.

Finally, notice that feasibility of (3.22) and (3.23) for T = T1 im-

plies their feasibility for T = T2 ≥ T1. So, an upper bound on the

minimum dwell-time9 can be obtained as the solution of the optimiza-

tion problem:

T leftmin := inf {T ≥ 0 : ∃ vi � 0, i ∈ {1, 2, . . . ,M}, such that

(3.22) and (3.23) hold}. (3.29)

To solve this problem one can start with a large value of T (an upper

bound on it can be easily derived in terms of the exponential matrices

9Keep in mind that Theorem 3.10 provides only a sufficient condition, so this
method will not necessarily lead to the minimum dwell-time Tmin. Sufficient condi-
tions based on larger classes of copositive functions may lead to less conservative
upper bounds on Tmin.
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eAit, i ∈ {1, 2, . . . ,M}, as described before Theorem 3.10) and then

check the feasibility of (3.22) and (3.23) when decreasing T via linear

programming. Clearly, T leftmin ≥ Tmin.

In light of Remark 3.3, one can derive sufficient conditions for the

system to be exponentially stable for each σ ∈ DT , by simply trans-

posing the conditions of Theorem 3.10, and hence by ensuring that the

dual system (3.15) is exponentially stable with dwell-time T . Here we

give a proof of this result based on time-varying polyhedral copositive

Lyapunov functions.

Theorem 3.11. Assume that for some T > 0, there exist strictly posi-

tive vectors ξi ∈ Rn+, i ∈ {1, 2, . . . ,M}, such that

Aiξi � 0 ∀i ∈ {1, 2, . . . ,M}, (3.30)

and

eAiT ξj − ξi � 0 ∀i, j ∈ {1, 2, . . . ,M}, i 6= j. (3.31)

Then the switched system (3.1) is exponentially stable for each σ ∈ DT .

Proof. Notice, first, that as in the proof of Theorem 3.10, a sufficiently

small ε > 0 can be found such that the inequalities (3.30) and (3.31)

imply also

Aiξi � −εξi ∀i ∈ {1, 2, . . . ,M}, (3.32)

eAiT ξj � e−εT ξi ∀i, j ∈ {1, 2, . . . ,M}, i 6= j. (3.33)

Note, also that (3.32) implies

eAiτξi � e−ετξi, ∀τ > 0,∀i ∈ {1, 2, . . . ,M}, (3.34)

and putting together (3.34) and (3.33) we can prove that (3.33) holds

true also when T is replaced by any t ≥ T . Consider an arbitrary

σ ∈ DT and an arbitrary initial condition x0. The function

V (x(t), σ(t)) := max
r=1,2,...,n

[x(t)]r
[ξσ(t)]r
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is a candidate time-varying polyhedral copositive Lyapunov function

for system (3.1). Indeed, assume that σ(tk) = i, σ(tk−1) = j and notice

that

x(t) ≤ ξσ(t)V (x(t), σ(t)).
If

r̄ = arg max
r=1,2,...,n

[x(t−k+1)]r
[ξσ(t−

k+1)]r
,

then

V (x(t−k+1), σ(t−k+1)) = 1
[ξi]r̄

e>r̄ eAi(tk+1−tk−T )eAiTx(tk)

≤ 1
[ξi]r̄

e>r̄ eAi(tk+1−tk−T )eAiT ξjV (x, σ, t−k )

<
1

[ξi]r̄
e>r̄ eAi(tk+1−tk−T )ξiV (x, σ, t−k )e−εT

<
1

[ξi]r̄
e>r̄ ξiV (x, σ, t−k )e−εT

=V (x(t−k ), σ(t−k ))e−εT .

(3.35)

On the other hand, for any t ∈ [tk, tk+1), if we set, again,

r̄ = arg max
r=1,2,...,n

[x(t)]r
[ξσ(t)]r

,

then

V (x(t), σ(t)) = 1
[ξi]r̄

e>r̄ eAi(t−tk)x(tk)

≤ 1
[ξi]r̄

e>r̄ eAi(t−tk)ξiV (x(t−k ), σ(t−k ))

<
1

[ξi]r̄
e>r̄ ξiV (x(t−k ), σ(t−k )) = V (x(t−k ), σ(t−k ))e−ε(t−tk).

This ensures the exponential stability of the switched system (3.1), with

dwell-time T .

As for Theorem 3.10, the previous result suggests a way to find

an upper bound on the minimum dwell-time Tmin, that can be ob-

tained by minimizing the value of T for which strictly positive vec-

tors ξi, i ∈ {1, 2, . . . ,M}, can be found satisfying the inequalities
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(3.30) and (3.31). If T rightmin is such a minimum value, then clearly

Tmin ≤ min{T leftmin , T
right
min }.

The next theorem presents a sufficient condition for exponential

stability with dwell-time by making use of time-varying quadratic

Lyapunov functions V (x(t), σ(t)) = x(t)>Pσ(t)x(t), see Geromel and

Colaneri [2006].

Theorem 3.12. Assume that for some T > 0, there exist positive defi-

nite matrices Pi = P>i � 0, i = 1, 2, . . . ,M , such that

A>i Pi + PiAi ≺ 0 ∀i ∈ {1, . . . ,M}, (3.36)

and

eA
>
i TPje

AiT − Pi ≺ 0 ∀i, j ∈ {1, . . . ,M}, i 6= j. (3.37)

Then the switched system (3.1) is exponentially stable for each σ ∈ DT .

Again, the minimum value of T , say T quadmin , for which the inequali-

ties (3.36) and (3.37) are feasible is an upper bound on the minimum

dwell-time. It is worth noticing, however, that one can exploit the re-

sults in Chesi et al. [2012] and find the minimum dwell-time by solving

LMIs involving higher dimensional matrices coming from the descrip-

tion of the switched system (3.1) in an extended space obtained by

using Kronecker products (see the previous Remark 3.5).

Example 3.8. Consider again Example 3.1. We have already seen that

the system is not stable under arbitrary switching. The minimum time

T > 0 for which strictly positive vectors vi can be found such that

conditions (3.22) and (3.23) in Theorem 3.10 hold is T leftmin = 1. The

minimum time T > 0 for which conditions (3.30) and (3.31) of Theo-

rem 3.11 can be fulfilled is the same, i.e. T rightmin = 1. On the other hand,

as far as time-varying quadratic Lyapunov functions are concerned, one

can check that conditions (3.36) and (3.37) of Theorem 3.12 can be sat-

isfied for T ≥ 0.724, that is T quadmin = 0.724. It is easy to check that this

value is also the real minimum dwell-time, since a 2T -periodic switch-

ing signal of the type σ(t) = 1, t ∈ [0, T ], σ(t) = 2, t ∈ [T, 2T ), for
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< 0.724 destabilizes the system.

We can evaluate other upper bounds by considering λ1 = −0.1747
and λ2 = −0.2134, the Frobenius eigenvalues associated with A1 and

A2, respectively. Let v>1 =
[

0.2209 0.2798 0.4994
]

and v>2 =[
0.1236 0.0630 0.8134

]
be two left Frobenius eigenvectors corre-

sponding to such eigenvalues. Therefore v>i Ai = λiv>i , i = 1, 2, imply

v>i eAit = eλitv>i , i = 1, 2, so that

‖eAit‖1 ≤ eλit
maxk[vi]k
mink[vi]k

, t ≥ 0, i = 1, 2.

So, by resorting to a reasoning similar to the one provided in Hespanha

and Morse [1999], we can show that an upper bound on the minimum

dwell-time is

T ∗1 = max
i=1,2

log(maxk[vi]k
mink[vi]k )
−λi

= 11.98.

On the other hand, by making use of the right Frobenius eigenvectors,

i.e. Aiξi = λiξi, i = 1, 2, we obtain

‖eAit‖∞ ≤ eλit
maxk[ξi]k
mink[ξi]k

, t ≥ 0, i = 1, 2

so that

T ∗∞ = max
i=1,2

log(maxk[ξi]k
mini[ξi]k

)
−λi

= 6.44.

Finally, by optimizing the parameters αi ≥ 0 and βi > 0 in the bounds

‖eAit‖2 < eαi−βit, i = 1, 2, we obtain T ∗2 = maxi αiβi ' 5. All these

bounds T ∗1 , T
∗
2 and T ∗∞ are greater than the upper bounds previously

obtained through time-varying linear or quadratic Lyapunov functions.

Remark 3.7. 10 Theorems 3.10, 3.11 and 3.12 provide sufficient condi-

tions (and simple numerical algorithms) to check stability under dwell

time T > 0. It is worth noticing that feasibility of such conditions for

increasingly smaller values of T does not imply stability under arbitrary

10The Authors are indebted with an anonymous Reviewer for the example pre-
sented in this Remark, showing that stability corresponding to any periodic switch-
ing signal does not imply stability under arbitrary switching.
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switching. Take, for instance, the switched system with matrices

A1 =
[
−1 1.5
0.5 −1

]
, A2 = A>1 .

It is easy to see that inequalities (3.36) and (3.37) in Theorem 3.12

are feasible for any T > 0. Therefore for any periodic switching signal

the state trajectory converges to zero, independently of the initial con-

dition. As T → 0 the two positive definite solutions P1 and P2 tend

to coincide with a positive definite matrix P solving A>i P + PAi ≤ 0,

but not solving inequality (3.37). In fact, inequality (3.37) is not sat-

isfied by a single P > 0. Moreover, the system is not uniformly expo-

nentially stable (under arbitrary switching) since the convex combina-

tion 0.5A1 + 0.5A2 is not a Hurwitz matrix, recall Theorem 3.7. We

want to show that the system is destabilized in a sliding mode. To this

purpose let s be an arbitrary positive number, and consider the T/s-

periodic switching signal whose restriction to the time interval [0, T/s)
is σ(t) = 1, for t ∈ [0, T/(2s)) and σ(t) = 2 for t ∈ [T/(2s), T/s). The

state of the system at time T corresponding to this periodic switching

signal is

x(T ) =
(
eA2T/(2s)eA1T/(2s)

)s
x0.

The limit for s→ +∞ can be computed easily, see Cohen [1981], Elliott

[2009], as

lim
s→+∞

x(T ) = e0.5(A1+A2)T ,

and it coincides with the solution at time T of the bilinear system

ẋ(t) = ([u]1A1 + [u]2A2)x(t) with u = [0.5 0.5]>. The sliding mode

corresponds to the previous periodic switching law for s→ +∞.

3.3 Parametrization of state-feedback controllers

In this section we briefly discuss the effect of a memoryless state-

feedback law applied to a positive switched system described as

ẋ(t) = Aσ(t)x(t) +Gσ(t)u(t), (3.38)

where the input signal u ∈ Rmu has been added together with the rele-

vant matrices Gi, assumed to be nonnegative for every i = 1, 2, . . . ,M .
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The state-feedback control takes the form

u(t) = Kσ(t)x(t),

where Ki ∈ Rmu×n for every i. Notice that both the switching signal

σ(t) and the state variable x(t) are supposed to be measurable. For

brevity, we only focus on design problems that aim at preserving posi-

tivity and at ensuring stability under arbitrary switching. The problem

of state-feedback stabilization, under the positivity constraint on the

resulting feedback system, can be described as follows: find matrices

Ki, i = 1, 2, . . . ,M, of size mu×n, such that Ai+GiKi i = 1, 2, . . . ,M,

are Metzler matrices, and the closed loop system

ẋ(t) =
(
Aσ(t) +Gσ(t)Kσ(t)

)
x(t) (3.39)

is uniformly exponentially stable in D0.

A little thought reveals that this problem is ill-posed if one requires

that Ki, i = 1, 2, . . . ,M , are nonnegative matrices. If the matrices Ki

are nonnegative, then Ai + GiKi ≥ Ai for every i ∈ {1, 2, . . . ,M},
and by the monotonicity of positive systems this ensures that for every

choice of x0 ∈ Rn+ and every switching signal σ ∈ D0

xK(t; x0, σ) ≥ x(t; x0, σ), ∀t ≥ 0,

where xK(t; x0, σ) and x(t; x0, σ) denote the state trajectories of the

closed loop and the open loop systems, respectively, corresponding to

x0 and σ. So, system (3.39) is exponentially stable in D0 only if the

open loop system is already exponentially stable in D0, and this implies

that it is not possible to stabilize an unstable positive switched system

through a state-feedback law with nonnegative gains. However, one can

relax the positivity constraint, by allowing matrices Ki, i = 1, 2, . . . ,M ,

(and hence the input u(t)) to have nonpositive entries, but requiring at

the same time that the state trajectory remains in the positive orthant

for any initial state and any σ. This amounts to impose only that

the gains Ki, i = 1, 2, . . . ,M , are such that the closed loop matrices

Ai + GiKi are Metzler for every i. This leads to the following linear

constraints on the entries of Ki:

e>r GiKiep ≥ −[Ai]rp, i = 1, 2, . . . ,M, r 6= p = 1, 2, . . . , n. (3.40)

Therefore, the following result can be stated:
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Theorem 3.13. There exist Ki, i = 1, 2, . . . ,M , such that Ai +GiKi,

i = 1, 2, . . . ,M , are Metzler matrices and the closed loop system (3.39)

is exponentially stable in D0 if there exist a strictly positive vector

ξ ∈ Rn+ and vectors hri ∈ Rmu , i = 1, 2, . . . ,M , r = 1, 2, . . . , n, such

that

Aiξ +Gi

n∑
p=1

hpi � 0, (3.41)

e>r Gih
p
i + [Ai]rpe>p ξ ≥ 0, (3.42)

for every i = 1, 2, . . . ,M , and r 6= p = 1, 2, . . . , n. The matrices Ki,

i = 1, 2, . . . ,M , are then obtained as

Kiep = (e>p ξ)−1hpi , p = 1, 2, . . . , n. (3.43)

Proof. Assume that (3.41) and (3.42) are feasible. Then, construct ma-

trices Ki according to (3.43). Therefore, for r 6= p, it must hold

[Ai +GiKi]rp = e>r (Ai +GiKi) ep
= [Ai]rp + e>r Gi Kiep
= (e>p ξ)−1

(
[Ai]rp(e>p ξ) + e>r Gih

p
i

)
.

So, by (3.42), [Ai + GiKi]rp ≥ 0 for every r 6= p. This means that the

matrices Ai +GiKi are Metzler, for every i. Moreover,

0 � Aiξ +Gi

n∑
p=1

hpi

= Aiξ +Gi

n∑
p=1

Kiepe>p ξ

= (Ai +GiKi) ξ

so that the closed loop system (3.39) is exponentially stable in D0 in

view of Proposition 3.4.

It is worth noticing that Theorem 3.13 does not provide a full

parametrization of all state-feedback control laws ensuring positivity

and stability of the closed loop system, since it relies on the existence of
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a linear copositive Lyapunov function for the dual system (3.15). How-

ever, the advantage of the algorithm is the need for very simple linear

programs, testing feasibility of (3.41) and (3.42). A full parametrization

for positive time-invariant systems, i.e. for the case when Ai = A and

Bi = B, for every i, is immediately obtained from the theorem above by

letting K = Ki, for every i. Indeed, in such a case the theorem provides

a necessary and sufficient condition, in terms of linear programming,

for the existence of K such that A + BK is Hurwitz and Metzler, see

Briat [2013].
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Input-output performances

This chapter is devoted to the characterization of certain input/output

norms of a positive switched system taking the form:

ẋ(t) = Aσ(t)x(t) +Bσ(t)w(t), (4.1)

z(t) = Cσ(t)x(t) +Dσ(t)w(t), (4.2)

where the matrices Ai are Metzler and the matrices Bi, Ci and Di are

nonnegative, for every i ∈ {1, 2, . . . ,M}. We let m denote the size of the

nonnegative disturbance w(t) and p the size of the nonnegative output

z. If not differently specified, the initial condition x(0) is supposed to be

zero and the nature of the disturbance w (the norm of the disturbance

we are interested in) is specified from time to time. In particular, we

consider (i) the L1 norm of the output associated with an impulse

function, (ii) the induced norm in L1, (iii) the induced norm in L∞,

and (iv) the induced norm in L2. Both the sets D0 and DT , introduced

in Chapter 3, will be considered.

In the following we will make use of the transfer functions

Gi(s) = Ci(sI −Ai)−1Bi +Di, i = 1, 2, . . . ,M, (4.3)

of the time invariant systems corresponding to the constant switching

signals σ(t) = i, ∀ t ≥ 0. Since constant signals σ(t) belong to D0

78
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and to DT , for each T ≥ 0, it is clear that the worst performance

associated with constant switching signals σ(t) provides a lower bound

on the worst performance of the switched system (4.1)-(4.2). The theory

of performances of time-invariant positive systems is now well assessed

and can be found in Son and Hinrichsen [1996] for the L2 induced norm

(in that reference the stability radius of uncertain positive systems is

studied), and Rantzer [2011], Briat [2013] for the L1 and L∞ induced

norms. In such papers it is shown that such performances are associated

with appropriate numerical norms of Gi(0) and algorithms are provided

for their computation.

4.1 L1 norm of the impulse response

It is well-known that the state response of a system to an impulse in the

input can be studied by investigating the unforced state response cor-

responding to a specific initial condition. Therefore, in order to investi-

gate the L1 norm of the impulse response of (4.1)-(4.2), it is convenient

to first consider the autonomous positive switched system

ẋ(t) = Aσ(t)x(t), x(0) = x0, (4.4)

with Ai, i ∈ {1, 2, . . . ,M}, Metzler matrices and x0 a positive vector,

and to evaluate the optimal value of certain linear functions associated

with it. Specifically, we introduce the linear index

J(σ,x0) :=
∫ +∞

0
q>σ(t)x(t)dt, (4.5)

where σ(t) is the same switching signal acting on system (4.4) and qi,
i ∈ {1, 2, . . . ,M}, are positive vectors. If the system is exponentially

stable under arbitrary switching, this index is finite for any σ ∈ D0.

Therefore it makes sense to investigate the maximization problem

J0(x0) := sup
σ∈D0

J(σ,x0). (4.6)

Remark 4.1. Similarly to what we did in the previous chapter, we

underline that problem (4.6), with J(σ,x0) defined as in (4.5), can

be investigated for the positive switched system (4.4) by solving the
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corresponding optimal control problem for the bilinear system

ẋ(t) = A(u(t))x(t) =
(
M∑
i=1

Ai[u(t)]i

)
x(t), (4.7)

corresponding to the (suitably adjusted) cost function

Jli(x0) := sup
u∈UM

li

∫ +∞

0

M∑
i=1

q>i [u(t)]i x(t)dt,

where UMli is the class of locally integrable M -dimensional vector func-

tions taking values in the simplex AM . This new problem in general

has a solution that does not correspond to a switching signal, namely it

is not generally true that u(t) = eσ(t), where ei is the ith vector of the

canonical basis. On the contrary, it often generates sliding trajectories

obtained as limits of high frequency switching signals σ ∈ D0. �

If the positive switched system (4.4) admits a linear copositive Lya-

punov function Ṽ (x) = ṽ>x, with ṽ ∈ Rn+, ṽ � 0, then an upper

bound on J0(x0) can be easily determined. Indeed, from ṽ>Ai � 0,

∀i ∈ {1, 2, . . . ,M}, it follows that there exists a sufficiently large posi-

tive scalar α such that

(αṽ)>Ai + q>i � 0, ∀i = 1, 2, . . . ,M.

Clearly, V (x) = αṼ (x) = (αṽ)>x is in turn an LCLF for the system

(4.4). Moreover

J(σ,x0) =
∫ +∞

0
q>σ(t)x(t)dt < −α

∫ +∞

0
ṽ>Aσ(t)x(t)dt

= −αṽ>
∫ +∞

0
ẋ(t)dt = αṽ>x0,

where we made use of the fact that the existence of an LCLF ensures

that x(t) exponentially converges to zero. Therefore we have proved

the following result.

Theorem 4.1. Let qi ∈ Rn+, i ∈ {1, 2, . . . ,M}, be given positive vec-

tors, and assume that there exists a strictly positive vector v ∈ Rn+
such that:

v>Ai + q>i � 0 ∀i = 1, . . . ,M. (4.8)
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Then system (4.4) is exponentially stable for each σ ∈ D0 and

J0(x0) < v>x0. (4.9)

Remark 4.2. Notice that, as qi ∈ Rn+, i ∈ {1, 2, . . . ,M}, are positive

vectors, condition (4.8) is de facto equivalent to the existence of an

LCLF for the matrices Ai, i ∈ {1, 2, . . . ,M}. Moreover, due to the fact

that the vector v does not depend on the running mode i, the inequal-

ities (4.8) lend themselves to be used also for the cost associated with

system (4.7) (see Remark 4.1). Indeed, from (4.8) one immediately gets

v>(
∑M
i=1Ai[u(t)]i) +

∑M
i=1 q>i [u(t)]i � 0, for every t ≥ 0, and hence

the upper bound v>x0 just obtained holds true also for the optimal

control problem previously defined for system (4.7). �

A similar reasoning applies if we restrict the signal σ to the set DT
of switching signals with dwell-time T > 0, in which case the optimal

control problem to be solved becomes

JT (x0) := sup
σ∈DT

J(σ,x0).

We have already seen in the previous section that exponential stability

for all switching signals in DT calls for the use of time-varying linear

copositive Lyapunov functions instead of linear copositive Lyapunov

functions. The following result thus extends Theorem 3.10 to the case

of systems with dwell-time and provides an upper bound on JT (x0).

Theorem 4.2. Let qi ∈ Rn+, i ∈ {1, 2, . . . ,M}, be given positive vec-

tors, and assume that there exist strictly positive vectors vi ∈ Rn+,
i ∈ {1, 2, . . . ,M}, such that:

v>i Ai + q>i � 0 ∀i = 1, . . . ,M, (4.10)

and

v>j eAiT − v>i +
∫ T

0
q>i eAiξdξ � 0 ∀i 6= j = 1, . . . ,M. (4.11)

Then system (4.4) is exponentially stable for each σ ∈ DT and

JT (x0) < max
i∈{1,2,...,M}

v>i x0. (4.12)
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Proof. By the nonnegativity of the vectors qi and of the exponential

matrices eAiξ, if (4.10) and (4.11) hold then (3.22) and (3.23) hold, in

turn. Therefore the system is exponentially stable with dwell-time T .

Also, condition (4.10) implies

v>i eAiτ +
∫ τ

0
q>i eAiξdξ � v>i , ∀τ > 0, ∀i = 1, 2, . . . ,M. (4.13)

Let σ be an arbitrary switching signal in DT , with switching times 0 =
t0 < t1 < t2 < . . . . Assume that σ(tk) = i, σ(tk+1) = j and introduce

V (x(t), σ(t)) = v>σ(t)x(t). By making use of inequalities (4.10), (4.11)

and (4.13), one can show that

V (x(tk+1), σ(tk+1))− V (x(tk), σ(tk)) =
(
v>j eAi(tk+1−tk) − v>i

)
x(tk)

=
(
v>j eAiT eAi(tk+1−tk−T ) − v>i

)
x(tk)

<

(
v>i eAi(tk+1−tk−T ) − v>i −

∫ T

0
q>i eAiξdξeAi(tk+1−tk−T )

)
x(tk)

< −
(∫ tk+1−tk−T

0
q>i eAiξdξ +

∫ T

0
q>i eAiξdξeAi(tk+1−tk−T )

)
x(tk)

< −
∫ tk+1

tk

q>i eAi(ξ−tk)dξx(tk) = −
∫ tk+1

tk

q>σ(ξ)x(ξ)dξ.

Summing up for k ranging from 0 to +∞, one gets

+∞∑
k=0

[V (x(tk+1), σ(tk+1))− V (x(tk), σ(tk))] < −
∫ +∞

0
q>σ(ξ)x(ξ)dξ.

By the exponential stability, this implies that

−v>σ(0)x0 = −V (x(0), σ(0)) < −
∫ +∞

0
q>σ(ξ)x(ξ)dξ = −J(σ,x0),

and hence the conclusion (4.12) follows.

Remark 4.3. Note that if (4.10) and (4.11) are feasible for a certain

T > 0, then they are also feasible for τ > T (and the same vi, i ∈
{1, 2, . . . ,M}). Indeed, (4.10) is independent of time. On the other
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hand, by making use of (4.11) first and of (4.13) then, we get

v>j eAiτ − v>i +
∫ τ

0
q>i eAiξdξ

= v>j eAiT eAi(τ−T ) − v>i +
∫ τ

0
q>i eAiξdξ

� v>i eAi(τ−T ) −
∫ T

0
q>i eAiξdξ eAi(τ−T ) − v>i +

∫ τ

0
q>i eAiξdξ

� −
∫ τ−T

0
q>i eAiξdξ −

∫ T

0
q>i eAiξdξeAi(τ−T ) +

∫ τ

0
q>i eAiξdξ = 0

and hence (4.11) holds also at τ > T . On the other hand, if the ma-

trices Ai, i ∈ {1, 2, . . . ,M}, are Metzler Hurwitz, then for T → +∞
the inequalities are always feasible. Indeed, the fact that the matrices

Ai are Hurwitz ensures that a family of vectors vi satisfying (4.10),

i ∈ {1, 2, . . . ,M}, can be found. Such vectors also satisfy (4.11). The

vector v̄>i :=
∫+∞
0 q>i eAiξdξ solves the equation v̄>i Ai + q>i = 0

and as such v̄>i = −q>i A
−1
i � (v>i Ai)A−1

i = vi. So, to conclude,

v>i �
∫+∞

0 q>i eAiξdξ, ∀i ∈ {1, 2, . . . ,M}, which shows the feasibility of

(4.11) computed at T = +∞. �

By making use of the previous results, we can now move back to our

original problem. Consider the switched system (4.1)-(4.2) and assume

that x(0) = 0 and w(t) = δ(t)eh, where δ(t) is the impulse function

(Dirac distribution) and eh the hth canonical vector. Let x[h](t) and

z[h](t) denote the corresponding state and output (forced) responses,

respectively. We define the L1 norm of the impulse response of the

system, when switching in D0, as

JL1,0 := sup
σ∈D0

m∑
h=1

∫ +∞

0
1>p z[h](t)dt.

If we define

JL1(σ, h) :=
∫ +∞

0
1>p z[h](t)dt,

then

JL1,0 = sup
σ∈D0

m∑
h=1

JL1(σ, h).
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In order to investigate this problem we make use of Theorem 4.1, pre-

sented in the first part of this section, upon noticing that the (forced)

state evolution x[h](t) coincides with the unforced state response asso-

ciated with the initial state x(0) = Bσ(0)eh, and

z[h](t) = Cσ(t)x[h](t) +Dσ(t)δ(t)eh, t ∈ R+.

This implies that for every switching signal σ we have

JL1(σ, h) =
∫ +∞

0
1>p Cσ(t)x[h](t)dt+ 1>p Dσ(0)eh.

Theorem 4.3. Consider system (4.1)-(4.2) and assume that x(0) = 0.

If there exists a strictly positive vector v ∈ Rn+ such that:

v>Ai + 1>p Ci � 0, ∀i = 1, . . . ,M, (4.14)

then system (4.4) is exponentially stable for each σ ∈ D0, and the L1
performance index JL1,0 satisfies

max
i∈{1,2,...,M}

1>p Gi(0)1m ≤ JL1,0 < max
i∈{1,2,...,M}

(
v>Bi + 1>p Di

)
1m,

(4.15)

where Gi(s) is the transfer function of the time invariant system cor-

responding to σ(t) = i,∀ t ≥ 0 (see (4.3)).

Proof. Exponential stability follows from Theorem 4.1, since (4.14) is

a special case of (4.8). The lower bound in (4.15) is the maximum value

of JL1(σ, h) over the constant switching signals (which obviously belong

to D0). Indeed, corresponding to σ(t) = i,∀t ≥ 0, and w(t) = δ(t)eh,

one gets

JL1(σ, h) =
∫ +∞

0
1>p g(i)(t)ehdt = 1>p Gi(0)eh,

where g(i)(t) is the (matrix) impulse response of the ith subsystem, and

Gi(s) its transfer matrix. Therefore

JL1,0 ≥ max
i∈{1,2,...,M}

m∑
h=1

1>p Gi(0)eh = max
i∈{1,2,...,M}

1>p Gi(0)1m.
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Finally, by reasoning as in the proof of Theorem 4.1, we consider any

switching signal σ ∈ D0, any assigned h ∈ {1, 2, . . . ,m}, and introduce

the LCLF V (x) = v>x, thus obtaining

JL1(σ, h) =
∫ +∞

0
1>p Cσ(t)x[h](t)dt+ 1>p Dσ(0)eh

< −
∫ +∞

0
v>Aσ(t)x[h](t)dt+ 1>p Dσ(0)eh

= −v>
∫ +∞

0
ẋ[h](t)dt+ 1>p Dσ(0)eh

= v>Bσ(0)eh + 1>p Dσ(0)eh.

By summing over all the indices h ∈ {1, 2, . . . ,m} and by taking the

supremum over all the signals σ ∈ D0, one gets the second inequality

in (4.15).

Remark 4.4. Similarly to what we did for Theorem 4.1, we notice

that the inequalities (4.8) imply v>(
∑M
i=1Ai[u(t)]i)+

∑M
i=1 q>i [u(t)]i �

0,∀ t ≥ 0, thus leading to an upper bound on the linear index associated

with the system

ẋ(t) =
(
M∑
i=1

Ai[u(t)]i

)
x(t) +

(
M∑
i=1

Bi[u(t)]i

)
w(t), (4.16)

z(t) =
(
M∑
i=1

Ci[u(t)]i

)
x(t) +

(
M∑
i=1

Di[u(t)]i

)
w(t). (4.17)

�

Similar reasonings apply to the L1 performance index inDT , namely

JL1,T := sup
σ∈DT

m∑
k=1

JL1(σ, k) = sup
σ∈DT

m∑
k=1

∫ +∞

0
1>p z[k](t)dt.

Indeed, by making use of Theorem 4.2, similarly to what we just did for

switching signals in D0, we can derive the the following upper bound.
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Theorem 4.4. Consider system (4.1)-(4.2) and assume that x(0) = 0.

If there exist strictly positive vectors vi ∈ Rn+, i ∈ {1, 2, . . . ,M}, such

that:

v>i Ai + 1>p Ci � 0 ∀i = 1, 2, . . . ,M, (4.18)

and

v>j eAiT − v>i +
∫ T

0
1>p CieAiξdξ � 0 ∀i 6= j = 1, . . . ,M, (4.19)

system (4.4) is exponentially stable for each σ ∈ DT , and the L1 per-

formance index JL1,T satisfies

max
i∈{1,2,...,M}

1>p Gi(0)1m ≤ JL1,T < max
i∈{1,2,...,M}

(
v>i Bi + 1>p Di

)
1m.

(4.20)

Proof. Exponential stability follows from Theorem 4.2, since (4.18) is a

special case of (4.10). The lower bound in (4.20) can be motivated as in

the proof of Theorem 4.3 (since constant switching signals also belong

toDT ). Finally, by reasoning as in the proof of Theorem 4.2, we consider

any switching signal σ ∈ DT , with switching times 0 = t0 < t1 < t2.....,

and any assigned h ∈ {1, 2, . . . ,m}. Assume that σ(tk) = i, σ(tk+1) = j

and introduce the time-varying linear copositive Lyapunov function

V (x(t), σ(t)) = v>σ(t)x(t). In this way we show that

V (x[h](tk+1), σ(tk+1))− V (x[h](tk), σ(tk)) =
=
(
v>j eAi(tk+1−tk) − v>i

)
x[h](tk)

=
(
v>j eAiT eAi(tk+1−tk−T ) − v>i

)
x[h](tk)

<

(
v>i eAi(tk+1−tk−T ) − v>i −

∫ T

0
1>p CieAiξdξeAi(tk+1−tk−T )

)
x[h](tk)

< −
(∫ tk+1−tk−T

0
1>p CieAiξdξ +

∫ T

0
1>p CieAiξdξeAi(tk+1−tk−T )

)
x[h](tk)

< −
∫ tk+1

tk

1>p CieAi(ξ−tk)dξx[h](tk) = −
∫ tk+1

tk

1>p Cσ(ξ)x[h](ξ)dξ.
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Summing up for k ranging from 0 to +∞ one gets

+∞∑
k=0

[V (x[h](tk+1), σ(tk+1))− V (x[h](tk), σ(tk))] <

−
∫ +∞

0
1>p Cσ(ξ)x[h](ξ)dξ

By the exponential stability, this implies that

−V (x[h](0), σ(0)) = −v>σ(0)Bσ(0)eh < −
∫ +∞

0
1>p Cσ(ξ)x[h](ξ)dξ

= −JL1(σ, h) + 1>p Dσ(0)eh.

By summing over all the indices h ∈ {1, 2, . . . ,m} and by taking the

supremum over all the signals σ ∈ DT , one gets the second inequality

in (4.20).

4.2 Guaranteed L1 induced norm

In this section we consider the L1 induced norm of the positive switched

system (4.1)-(4.2) either for switching signals belonging to D0 or for

switching signals belonging to DT . To this end, we assume that all the

Metzler matrices Ai, i ∈ {1, 2, . . . ,M}, are Hurwitz and that x(0) = 0.

In detail, we introduce the objective function

J indL1 (σ) := sup
w∈L1,w6=0

w(t)≥0,∀t≥0

∫+∞
0 1>p z(t)dt∫+∞
0 1>mw(t)dt

(4.21)

and search for an upper bound either on D0

J indL1,0 := sup
σ∈D0

J indL1 (σ),

or on DT
J indL1,T := sup

σ∈DT
J indL1 (σ).
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Remark 4.5. It is worth noticing that there is no loss of generality in

assuming that the cost (4.21) is extended to nonpositive input signals

w ∈ L1. For any fixed σ, we can define this cost as

J̄ indL1 (σ) := sup
w∈L1,w 6=0

∫+∞
0 1>p |z(t)|dt∫+∞
0 1>m|w(t)|dt

. (4.22)

It is clear that J̄ indL1
(σ) ≥ J indL1

(σ), for each σ. Now, the forced state

response of the system, corresponding to a given σ(t), is

x(t) =
∫ t

0
Φ(t, τ, σ)Bσ(τ)w(τ)dτ

and hence, being the transition matrix Φ(t, τ, σ) nonnegative for t ≥ τ ,

|x(t)| ≤
∫ t

0
Φ(t, τ, σ)Bσ(τ)|w(τ)|dτ =: x̃(t).

Finally

|z(t)| = |Cσ(t)x(t) +Dσ(t)w(t)| ≤ Cσ(t)|x(t)|+Dσ(t)|w(t)| =: z̃(t),

where x̃(t) and z̃(t) denote the (nonnegative) state and output of the

system

˙̃x(t) = Aσ(t)x̃(t) +Bσ(t)w̃(t)
z̃(t) = Cσ(t)x̃(t) +Dσ(t)w̃(t)

and w̃(t) = |w(t)|. It follows that, for each σ(t):

J̄ indL1 (σ) = sup
w∈L1,w 6=0

∫+∞
0 1>p |z(t)|dt∫+∞
0 1>m|w(t)|dt

≤ sup
w∈L1,w̃ 6=0

w̃(t)≥0,∀t≥0

∫+∞
0 1>p z̃(t)dt∫+∞
0 1>mw̃(t)dt

= J indL1 (σ).

Therefore J̄ indL1
(σ) = J indL1

(σ) for any σ. �

The computation of the induced norm for a switched system is an

extremely challenging problem that, to the best of our knowledge (see

Blanchini and Miani [2008], Liberzon [2003], Sun and Ge [2005]), in

the general case is still unsolved. However, for a given switching signal

σ = σ̄ the following necessary and sufficient condition can be proved.
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Lemma 4.5. Let σ = σ̄ be a fixed switching signal. The following

statements are equivalent:

i) The time-varying system (4.1)-(4.2) obtained corresponding to σ̄

is uniformly exponentially stable and such that J indL1
(σ̄) < γ.

ii) There exist r̄ � 0, r̂ � 0, and a solution r(t), t ∈ R+, of the

differential inequality

ṙ(t)> + r(t)>Aσ̄(t) + 1>p Cσ̄(t) � 0, (4.23)

differentiable almost everywhere, and satisfying for every t ≥ 0
conditions r̄ < r(t) < r̂, and

r(t)>Bσ̄(t) + 1>p Dσ̄(t) � γ1>m. (4.24)

Proof. ii)⇒ i) Let r(t) be a strictly positive bounded solution of (4.23),

with the given uniform bounding properties. Take V (x, t) = r(t)>x
and w(t) = 0, t ≥ 0. Notice that V (x, t) is well defined and positive

for x > 0, because of the bounds on r(t). Standard computation shows

that V̇ (x, t) < −αV (x, t), with α > 0, ∀t ≥ 0, ∀x > 0. This, together

with 0 � r̄ < r(t)), imply uniform exponential stability. Now take

w ∈ L1, w(t) ≥ 0 for every t ≥ 0, and w 6= 0. From (4.23) it results

V̇ (x, t) < −1>p z + r(t)>Bσ̄(t)w + 1>p Dσ̄(t)w. (4.25)

Integrating both members, by the uniform exponential stability and by

the fact that x(0) = 0 implies V (x, 0) = 0, we conclude that∫ +∞

0
1>p z(t)dt <

∫ +∞

0

(
r(t)>Bσ̄(t) + 1>p Dσ̄(t)

)
w(t)dt

for every positive w ∈ L1. Therefore,

J indL1 (σ) ≤ sup
w∈L1,w 6=0

w(t)≥0,∀t≥0

∫+∞
0

(
r(t)>Bσ̄(t) + 1>p Dσ̄(t)

)
w(t)dt∫+∞

0 1>mw(t)dt

=
(
r(t̄)>Bσ̄(t̄) + 1>p Dσ̄(t̄)

)
ek̄ < γ,

where t̄ and k̄ are the time instant and the input index, respectively,

associated with the maximum value of
(
r(t)>Bσ̄(t) + 1>p Dσ̄(t)

)
ek, and
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the supremum value
(
r(t̄)>Bσ̄(t̄) + 1>p Dσ̄(t̄)

)
ek̄ is obtained by assuming

w(t) = δ(t − t̄)ek̄. Notice that the impulse is not in L1, but it can be

approximated with arbitrary precision by a sequence of L1 functions.

i) ⇒ ii) As a consequence of uniform exponential stability, the differ-

ential inequality v̇(t)>+ v(t)>Aσ̄(t) + q> � 0 has a positive uniformly

bounded solution, uniformly strictly positive for any t ≥ 0, for any

q ∈ Rn+,q � 0, see Lemma 3.5. So, in particular, we can always find

a solution v(t) with such properties satisfying v̇(t)> + v(t)>Aσ̄(t) � 0
for every t ≥ 0 and such that v̄ < v(t) < v̂, for some v̄� 0, v̂� 0.

Let Φ(t, τ, σ̄) be the transition matrix associated with Aσ̄(·) and set

r̃(t)> :=
∫ +∞

t
1>p Cσ̄(τ)Φ(τ, t, σ̄)dτ.

The exponential stability assumption ensures that r̃(t) exists, uniformly

upper bounded by a strictly positive vector, say ˆ̃r. Moreover, the fact

that Cσ̄(τ) and Φ(τ, t, σ̄) have nonnegative entries for τ ≥ t ensures that

r̃(t) is nonnegative at every time t ≥ 0. For every ε > 0, the signal

r(t) = εv(t) + r̃(t)

satisfies (4.23) and r̄ < r(t) < r̂, with r̄ = εv̄, r̂ = εv̂ + ˆ̃r. Now,

assume by contradiction that (4.24) is violated, i.e. there exists k ∈
{1, 2, . . . ,m} and t̄ ≥ 0 such that

(
r(t̄)>Bσ̄(t̄) + 1>p Dσ̄(t̄) − γ1>m

)
ek ≥

0. Taking V (x, t) := r̃(t)>x we have, after a computation similar to the

one used for (4.25):

V̇ (x, t) = −1>p z(t) + γ1>mw(t) +

−εv(t)>Bσ̄(t)w(t) +
(
r(t)>Bσ̄(t) + 1>p Dσ̄(t) − γ1>m

)
w(t).

By integrating from 0 to +∞, with x(0) = εx0, and by making use of

the exponential stability and of the fact that w belongs to L1, we get∫ +∞

0

(
1>p z(t)− γ1>mw(t)

)
dt =

− ε

∫ +∞

0
v(t)>Bσ̄(t)w(t)dt+ εr̃(0)>x0 +

+
∫ +∞

0

(
r(t)>Bσ̄(t) + 1>p Dσ̄(t) − γ1>m

)
w(t)dt.
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Taking an approximation in L1 of the impulsive signal w(t) = δ(t−t̄)ek,
we finally have∫ +∞

0

(
1>p z(t)− γ1>mw(t)

)
dt ≥ −εv(t̄)>Bσ̄(t̄)ek + εr̃(0)>x0.

Letting ε→ 0+ we conclude that J indL1
(σ̄) ≥ γ, a contradiction.

Based on the previous result, we can now postulate possible struc-

tures of r(t) that allow to handle all possible switching signals in D0 or

in DT . Of course, only sufficient conditions will be given (based on easy

linear programming tools) to establish whether either J indL1,0 or J indL1,T
is

smaller than a given positive constant γ. Clearly, in order for this prob-

lem to be meaningful, γ should be greater than the L1 induced norm

of the ith subsystem (Ai, Bi, Ci, Di), which is known to be related to

Gi(0), Briat [2013], Rantzer [2011], where Gi(s) is the ith subsystem

transfer function. Indeed, it is a well-known fact that for the positive

subsystem (Ai, Bi, Ci, Di) the following facts are equivalent:

i) J indL1
(i) < γ ;

ii) ‖Gi(0)‖1 < γ, where

‖Gi(0)‖1 := max
r∈{1,2,...,m}

1>p Gi(0)er;

iii) there exists a strictly positive vector vi such that v>i Ai+1>p Ci �
0 and v>i Bi + 1>p Di � γ1>m.

We are now in a position to extend this result to the L1 induced per-

formance of a positive switched system (4.1)-(4.2) with σ ∈ D0.

Theorem 4.6. If there exists a strictly positive vector v ∈ Rn+ such

that

v>Ai + 1>p Ci � 0, (4.26)

v>Bi + 1>p Di � γ1>m, (4.27)

hold for any i = 1, 2, . . . ,M , then the switched system (4.1)-(4.2) is

exponentially stable and

max
i∈{1,2,...,M}

‖Gi(0)‖1 ≤ J indL1,0 < γ.
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Proof. As previously clarified, the inequality maxi∈{1,2,...,M} ‖Gi(0)‖1 ≤
J indL1,0 follows from the fact that the set D0 also includes constant signals

σ(t). Taking now the LCLF V (x) = v>x, one gets

V̇ (x(t)) = v>(Aσ(t)x(t) +Bσ(t)w(t))

< −1>p z(t) +
(
v>Bσ(t) + 1>p Dσ(t)

)
w(t).

From x(0) = 0 and exponential stability, we have that 0 =∫+∞
0 V̇ (x(t))dt, and hence∫ +∞

0
1>p z(t)dt <

∫ +∞

0

(
v>Bσ(t) + 1>p Dσ(t)

)
w(t)dt.

Therefore, for each σ ∈ D0 we have

J indL1,0(σ) ≤ sup
w∈L1,w 6=0

w(t)≥0,∀t≥0

∫+∞
0

(
v>Bσ(t) + 1>p Dσ(t)

)
w(t)dt∫+∞

0 1>mw(t)dt

=
(
v>Bσ(t̄) + 1>p Dσ(t̄)

)
ek̄ < γ

where t̄ and k̄ are the time instant and the input channel index, respec-

tively, associated with the supremum value of
(
v>Bσ(t) + 1>p Dσ(t)

)
ek

and the worst disturbance is the limit of L1 functions, namely the im-

pulse w(t) = δ(t− t̄)ek̄. The proof is concluded.

Remark 4.6. The relation between Theorem 4.6 and Lemma 4.5 is

immediate. As a matter of fact, the existence of v satisfying (4.26),

(4.27) implies the existence of r(t) = v, ∀t ≥ 0, satisfying (4.23)-(4.24)

for every switching signal in D0. �

The case when σ ∈ DT , for some T > 0, namely the investigation

of condition J indL1,T
< γ, where

J indL1,T = sup
σ∈DT

J indL1 (σ),

is more complicated. Indeed, the derivation of Theorem 4.7, below,

hinges on the solution of the differential equation

˙̄r(t)> + r̄(t)>Aσ(t) + 1>p Cσ(t) = 0, (4.28)
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corresponding to some final condition r̄(tf ) � 0 and some σ ∈ DT .

Such a solution can be explicitly written as follows

r̄(t)> = r̄(tf )>Φ(tf , t, σ) +
∫ tf

t
1>p Cσ(ξ)Φ(ξ, t, σ)dξ, ∀ t ≤ tf ,

(4.29)

where Φ(ξ, t, σ) is the transition matrix associated with Aσ(·).

Notice that we have already encountered the differential equation

(4.28) with solution r̄(t) in Lemma 4.5, where a single switching signal

was considered and the symbol = was replaced by �. We are now

allowing discontinuities not only in the switching signal but also in

solutions, namely in the functions r̄(t) satisfying (4.28), at the switching

instants tk, k = 0, 1, ..., of σ ∈ DT . Upon noticing that

− d

dt

(
r̄(t)>x(t)

)
= −

(
r̄(t)>Bσ(t) + 1>p Dσ(t)

)
w(t) + 1>p z(t),

one gets, for every t ∈ [tk, tk+1)∫ tk+1

tk

1>p z(t)dt = r̄(tk)>x(tk)− r̄(tk+1)>x(tk+1) (4.30)

+
∫ tk+1

tk

(
r̄(t)>Bσ(tk) + 1>p Dσ(tk)

)
w(t)dt.

We are in a position to prove the following result.

Theorem 4.7. If there exist strictly positive vectors vi ∈ Rn+, i ∈
{1, 2, . . . ,M}, and T > 0 such that

v>i Ai + 1>p Ci � 0, i = 1, . . . ,M, (4.31)

v>j eAiT +
∫ T

0
1>p CieAiτdτ � v>i , i 6= j = 1, . . . ,M, (4.32)

and

v>i Bi + (v>j − v>i )eAiτBi + 1>p Di � γ1>m, i, j = 1, . . . ,M, (4.33)

hold for any τ ∈ [0, T ), then the switched system (4.1)-(4.2) is expo-

nentially stable with dwell-time T and

max
i∈{1,2,...,M}

‖Gi(0)‖1 ≤ J indL1,T < γ.
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Proof. The inequality maxi∈{1,2,...,M} ‖Gi(0)‖1 ≤ J indL1,T
follows by the

same reasoning adopted in the proof of Theorem 4.6 (note that DT ⊆
D0 for all T ≥ 0). The fact that the system is exponentially stable

follows from Theorem 3.10. Now, consider a signal σ ∈ DT , with

0 = t0 < t1 < · · · < tk < tk+1 < ... as switching instants. Assume

that σ(tk) = i and σ(tk+1) = j, and consider the solution of (4.28)

in the interval [tk tk+1) with final condition r̄(tk+1) = vσ(tk+1) = vj .
Comparing (4.28) with (4.31), one finds for every t ∈ [tk, tk+1):

d

dt
(r̄(t)− vi)> = −r̄(t)>Ai − 1>p Ci � −(r̄(t)− vi)>Ai,

and hence

r̄(t)> � v>i + (vj − vi)>eAi(tk+1−t), t ∈ [tk, tk+1). (4.34)

Consider now (4.31): multiply both members on the right by eAiτ ,

τ > 0, and integrate for τ ranging from 0 to ξ > 0. It results

v>i eAiξ +
∫ ξ

0
1>p CieAiτdτ � v>i , ∀i = 1, 2, . . . ,M, ∀ξ > 0.

Using this fact and the position r̄(tk+1) = vj we have

r̄(tk)> = v>j eAi(tk+1−tk) +
∫ tk+1

tk

1>p CieAi(ξ−tk)dξ

= v>j eAiT eAi(tk+1−tk−T ) +
∫ tk+1

tk

1>p CieAi(ξ−tk)dξ

� v>i eAi(tk+1−tk−T ) −
∫ T

0
1>p CieAi(tk+1−tk−T+τ)dτ

+
∫ tk+1

tk

1>p CieAi(ξ−tk)dξ

� v>i −
∫ tk+1−tk−T

0
1>p CieAiτdτ −

∫ T

0
1>p CieAi(tk+1−tk−T+τ)

+
∫ tk+1

tk

1>p CieAi(ξ−tk)dξ

= v>i .

Finally, from (4.30), (4.33), (4.34), and r̄(tk)� vi , we get
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∫ tk+1

tk

1>p z(t)dt− γ
∫ tk+1

tk

1>mw(t)dt = r̄(tk)>x(tk)− v>j x(tk+1)

+
∫ tk+1

tk

(
r(t)>Bi + 1>p Di − γ1m

>
)

w(t)dt

< v>i x(tk)− v>j x(tk+1)

+
∫ tk+1

tk

[(
v>i + (vj − vi)>eAi(tk+1−t)

)
Bi + 1>p Di − γ1m

>
]
w(t)dt

< v>i x(tk)− v>j x(tk+1) = v>σ(tk)x(tk)− v>σ(tk+1)x(tk+1)

The above inequality holds for any w(t), t ∈ [tk, tk+1], including the

worst one (by regarding, again, the impulse as the limit of L1 functions).

Taking the sum for k = 0 to k = +∞ and recalling that x(0) = 0, we

have, for any σ ∈ DT

sup
w>0,w∈L1

∫ +∞

0

(
1>p z(t)− γ1>mw(t)

)
dt < 0

and the proof is concluded.

Notice that the feasibility of (4.31), (4.32) and (4.33) for T → 0+

leads to vi = vj and hence to the feasibility of (4.26) and (4.27) in

Theorem 4.6.

Example 4.1. Let us consider system (4.1)-(4.2) with M = 2, n = 2,

and the matrices

A1 =
[
−3 1
2 −8

]
, A2 =

[
−2 1
2 −3

]
,

that are both Metzler and Hurwitz. Moreover, assume B1 = B2 =
[1 1]>, C1 = C2 = [1 1], D1 = D2 = 1. Notice that A1 and A2 share

a common linear copositive Lyapunov function (e.g. V (x) = [2 1]x).

The system is therefore exponentially stable under arbitrary switching.

It is also possible to find v such that inequalities (4.26) are satisfied.

For instance, take v = (1 + ε)[1.2512 0.7507]>, with ε > 0 and small,

and verify that (4.26) and (4.27) are satisfied for γ ≥ 3. On the other

hand, max{G1(0), G2(0)} = 3, so that one can conclude that J indL1,0 =
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3. In this case the worst signal w(t) can be approximated, again, by

an impulse and the worst switching signal is σ(t) = 2, t ≥ 0, since∫+∞
0 z(t)dt =

∫+∞
0 (C2e

A2tB2 + D2δ(t))dt = G2(0) = 3. The fact that

the worst case switching signal is constant is a phenomenon that we

have already encountered in Section 2.5.

Example 4.2. Consider the 3× 3 matrices A1 and A2 of Example 3.1,

and assume B1 = B2 = C>1 = C>2 = 13, D1 = D2 = 1. Notice

that max{G1(0), G2(0)} = 25.514. We know that the system is not

exponentially stable under arbitrary switching. Feasibility of (4.31) and

(4.32) can be checked as a function of T , whereas (4.33) gives for each

T a bound on the available attenuation value. Let us call γ∗(T ) this

value. Therefore it is possible to plot in the plane (T, γ∗) the feasible

points, see Figure 4.1. For T → +∞ the value γ = 376.5249 > 25.514
is obtained. The reason is that the possibility of slow switching signals

enforces the feasibility of v>j Bi+1>p Di � γ1m obtained from (4.33) by

assuming τ = 0. A lower bound on the attenuation level can be obtained

by taking a periodic switching signal of period 2T , with σ(t) = 2 for

t ∈ [kT, kT + T )] and σ(t) = 1 for t ∈ [kT + T, kT + 2T )], k = 0, 1, . . . .
In this case an easy necessary condition for J indL1,T

< γ is

g(T ) = C

∫ 2T

0
Φ(τ, 0, σ)dτ(I − eA1T eA2T )−1B +D < γ,

where Φ(τ, 0, σ) = eA2τ for τ ∈ [0, T ) and Φ(τ, 0, σ) = eA1(τ−T )eA2T ,

for τ ∈ [T, 2T ). In Figure 4.1 the curve (T, g(T )) is plotted (dashed

line).

The sufficient condition given in Theorem 4.6 for J indL1,0 < γ becomes

also necessary in the particular case where matrices Ai and Ci are not

affected by the switching signal, i.e. Ai = A, Ci = C, i = 1, 2, . . . ,M .

This case corresponds to the possibility of switching among different

actuators, i.e. actuator switching, and one wants to have a certain per-

formance level even in the worst case. Based on the separation of the

two inequalities in Theorem 4.6, the following necessary and sufficient

condition can be stated.
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Figure 4.1: Curves for feasibility of the conditions of Theorem 4.7. Upper bound
on J̄∗1 as a function of T is drawn as a continuous line, while a lower bound obtained
with periodic switching is drawn as a dashed line.

Theorem 4.8. Assume that Ai = A, Ci = C, i = 1, 2, . . . ,M . Then

J indL1,0 < γ if and only if there exists a strictly positive vector v ∈ Rn+
such that

v>A+ 1>p C � 0, (4.35)

v>Bi + 1>p Di � γ1>m, (4.36)

hold for any i = 1, 2, . . . ,M . In this case, the switched system (4.1)-

(4.2) is exponentially stable,

J indL1,0 = max
i∈{1,2,...,M}

‖Gi(0)‖1

and σ(t) = arg maxi∈{1,2,...,M} ‖Gi(0)‖1, t ≥ 0, is the worst switching

signal.

Proof. Exponential stability and J indL1,0 < γ follow from Theorem 4.6

upon noticing that conditions (4.35) and (4.36) coincide with (4.26)

and (4.27) in Theorem 4.6, when Ai = A, and Ci = C, for every

i = 1, 2, . . . ,M . Vice versa, assume that A is Hurwitz and J indL1,0 < γ.

Then, ‖Gi(0)‖1 < γ as well, which means that 1>p Gi(0) < γ1>m, i =
1, 2, . . . ,M . Take v> := −1>p CA−1 + ε1>n , with ε > 0, and notice that
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v is strictly positive and satisfies (4.35). Moreover,

v>Bi + 1>p Di = 1>p
(
Di − CA−1Bi

)
+ ε1>nBi

= 1>p Gi(0) + ε1>nBi
< γ1>m + ε1>nBi

so that (4.36) is satisfied for every i, provided that ε is small enough.

The exact computation of J indL1,0 proceeds as follows. Assume that A

is Hurwitz, take again v> = −1>p CA−1 + ε1>n , with ε > 0, and the

function V (x) = v>x. Computing the derivative along the trajectories

of the system, one gets

V̇ (x) = v>(Ax +Bσw) = −1>p Cx + ε1>nAx + v>Bσw

= −1>p z + ε1>nAx +
(
v>Bσ + 1>p Dσ

)
w.

As a consequence of stability∫ +∞

0
1>p z(t)dt = ε1>nA

∫ +∞

0
x(t)dt+

∫ +∞

0

(
v>Bσ(t) + 1>p Dσ(t)

)
w(t)dt

≤ ε1>nA
∫ +∞

0
x(t)dt+ max

j,s
(v>Bj + 1>p Dj)es

and equality is attained with arbitrary precision by taking

an approximation in L1 of w(t) = δ(t)ek, where (i, k) =
arg maxj,s(v>Bj + 1>p Dj)es. Letting ε → 0+, it follows that J indL1,0 =
maxi∈{1,2,...,M} ‖Gi(0)‖1.

4.3 Guaranteed induced L∞ norm

In this section we investigate the L∞ induced norm of the switched

system (4.1)-(4.2). Again, we assume that all matrices Ai, i ∈
{1, 2, . . . ,M}, are Metzler and Hurwitz, and that x(0) = 0. For a given

switching signal σ, the objective function is

J indL∞(σ) = sup
w∈L∞,w 6=0
w(t)≥0,∀t≥0

max{[z(t)]k : k ∈ {1, 2, . . . , p}, t ≥ 0}
max{[w(t)]k : k ∈ {1, 2, . . . ,m}, t ≥ 0} . (4.37)

Our scope is to determine sufficient conditions that allow us to evaluate

whether

J indL∞,0 := sup
σ∈D0

J indL∞(σ)
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is smaller than a given positive constant γ.

In this case we recall from Briat [2013] and Rantzer [2011] that for

each positive subsystem (Ai, Bi, Ci, Di) the L∞ induced norm is equal

to ‖Gi(0)‖∞ = maxr∈{1,2,...,p} e>r Gi(0)1m, and the following facts are

equivalent:

i) J indL∞(i) < γ ;

ii) ‖Gi(0)‖∞ < γ ;

iii) there exists a positive vector ξi such that Aiξi +Bi1m � 0 and

Ciξi +Di1m � γ1p.

Before proceeding, a necessary and sufficient condition for J indL∞(σ) < γ

to hold can be given, by referring to a specific switching signal σ̄, along

the lines traced in Lemma 4.5.

Lemma 4.9. Let σ = σ̄ be a given switching signal. The following

statements are equivalent:

i) The time-varying system (4.1)-(4.2) obtained corresponding to

σ = σ̄ is uniformly exponentially stable and J indL∞(σ̄) < γ.

ii) There exist d̄� 0, d̂� 0 and a solution d(t) ∈ Rn+, t ≥ 0, of the

differential inequality

−ḋ(t) +Aσ̄(t)d(t) +Bσ̄(t)1m � 0 (4.38)

differentiable almost everywhere, and satisfying for every t ≥ 0
conditions d̄ < d(t) < d̂, and

Cσ̄(t)d(t) +Dσ̄(t)1m � γ1p. (4.39)

Proof. ii)⇒ i) Let d(t) be a strictly positive, bounded solution of (4.38)

satisfying all the additional requirements, and introduce the function

V (x(t), t) = maxi [x(t)]i
[d(t)]i . This function is well defined and strictly pos-

itive for each x > 0, due to the bounds on d(t). At any time t, let i

be any index such that [x(t)]i
[d(t)]i = V (x(t), t) and let j be any analogous

index for t = t+. Since V (x, t) is continuous we have [x(t)]i
[d(t)]i = [x(t)]j

[d(t)]j . On
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the other hand, by the nonnegativity of Bσ̄(t)1m, condition (4.38) also

implies the inequality −ḋ(t) + Aσ̄(t)d(t) � 0. So, for w(t) identically

zero, we get

V̇ (x, t+) =
n∑
k=1

[Aσ̄(t)]jk
[x(t)]k
[d(t)]j

− [x(t)]j
([d(t)]j)2 [ḋ(t)]j

<
n∑
k=1

[Aσ̄(t)]jk
[x(t)]k
[d(t)]k

[d(t)]k
[d(t)]j

−
n∑
k=1

[Aσ̄(t)]jk[d(t)]k
[x(t)]j

([d(t)]j)2

= 1
[d(t)]j

n∑
k 6=j

[Aσ̄(t)]jk[d(t)]k

(
[x(t)]k
[d(t)]k

− [x(t)]j
[d(t)]j

)

<
1

[d(t)]j

n∑
k 6=j

[Aσ̄(t)]jk[d(t)]k

(
[x(t)]i
[d(t)]i

− [x(t)]j
[d(t)]j

)
= 0.

Therefore uniform asymptotic stability is proved. Such a stability is

exponential since the system is piecewise linear. To prove the bound,

note that for every k ∈ {1, 2, . . . , p}

[z(t)]k = e>k [Cσ̄(t)x(t) +Dσ̄(t)w(t)]
= e>k [Cσ̄(t)d(t) +Dσ̄(t)1m]
+ e>k [Cσ̄(t) (x(t)− d(t)) +Dσ̄(t) (w(t)− 1m)]
< γ + e>k [Cσ̄(t) (x(t)− d(t)) +Dσ̄(t) (w(t)− 1m)]

Now, notice that

ḋ(t)− ẋ(t)� Aσ̄(t)(d(t)− x(t)) +Bσ̄(t)(1m −w(t))

and that d(0)−x(0) = d(0)� 0. Therefore, with the worst disturbance

w(t) = 1m we have [z(t)]k < γ = γ[w(t)]k, and this completes the proof

of the implication.

i) ⇒ ii) By Lemma 3.6, due to uniform exponential stability, we

can claim that there exists a solution ξ(t), differentiable almost ev-

erywhere, of −ξ̇(t) + Aσ̄(t)ξ(t) + b � 0 for any given 0 � b ∈ Rn+,

and such that ξ̄ < ξ(t) < ξ̂ with ξ̄ � 0, ξ̂ � 0. Then d(t) =
εξ(t) +

∫ t
−∞Φ(t, τ, σ̄)Bσ̄(t)1mdτ , with ε > 0. Φ(t, τ, σ), the transition

matrix associated with Aσ̄(·), satisfies (4.38) and is uniformly bounded

from above and below by suitable strictly positive vectors. Consider
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any signal w ∈ L∞. Set w̄ := max{[w(t)]s : s ∈ {1, 2, . . . ,m}, t ≥ 0},
so that w(t) ≤ 1mw̄, ∀t ≥ 0. Take again the Lyapunov function

V (x(t), t) = maxi [x(t)]i
[d(t)]i , and assume that i is the index such that

[x(t)]i
[d(t)]i = V (x(t), t) while j is the analogous index for t = t+, so that
[x(t)]i
[d(t)]i = [x(t)]j

[d(t)]j . By resorting to a computation similar to the previous

one (where, however, w 6= 0), we get

V̇ (x, t+) < 1
[d(t)]j

n∑
k=1

[Bσ̄(t)]jk
(
w̄ − V (x, t+)

)
so that V (x, t) < w̄, ∀t ≥ 0. Moreover, by (4.39) we have, for any

s ∈ {1, 2, . . . , p}

[z(t)]s − γw̄ <
n∑
k=1

(
[Dσ̄(t)]sk − γ

)
(w̄ − V (x(t), t))

Therefore, since [Dσ̄(t)]sk−γ < 0, t ≥ 0, it turns out that, for each t ≥ 0
and each bounded, nonnegative and not identically zero disturbance

w(t):
maxs=1,2,...,p[z(t)]s

maxs=1,2,...,m[w(t)]s
< γ

and this concludes the proof.

We are now ready to state a sufficient condition for a positive

switched system (4.1)-(4.2)

to have Linf
∞ (σ) < γ for any σ ∈ D0. This is achieved by making use

of Lemma 4.9 in the special case when there exists a constant solution

d(t) = ξ satisfying (4.38) and (4.39) for any σ̄ ∈ D0.

Theorem 4.10. If there exists a strictly positive vector ξ ∈ Rn+ such

that

Aiξ +Bi1m � 0, (4.40)

Ciξ +Di1m � γ1p, (4.41)

hold for any i = 1, 2, . . . ,M , then the switched system (4.1)-(4.2) is

exponentially stable and

max
i∈{1,2,...,M}

‖Gi(0)‖∞ ≤ J indL∞,0 < γ.
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Proof. The proofs of exponential stability and of the first inequality

follow the same lines as in previous proofs. Assume now

V (x) = max
i∈{1,2,...,n}

[x]i
[ξ]i

,

and α := maxk,t≥0[w(t)]k. At any time t, let j be the index such that

V (x(t)) = [x(t)]j
[ξ]j . If we set g(x(t)) := V (x(t))− α, then

ġ(x(t)) =
n∑
k=1

[Aσ(t)]jk
[x(t)]k

[ξ]j
+

m∑
k=1

[Bσ(t)]jk
[w(t)]k

[ξ]j

≤
n∑
k=1

[Aσ(t)]jk
[ξ]k
[ξ]j

V (x(t)) +
m∑
k=1

[Bσ(t)]jk
[w(t)]k

[ξ]j

< −
m∑
k=1

[Bσ(t)]jk
1

[ξ]j
V (x(t)) +

m∑
k=1

[Bσ(t)]jk
α

[ξ]j

= −
m∑
k=1

[Bσ(t)]jk
1

[ξ]j
g(x(t)),

where we made use of (4.40). Consequently, since g(x(0)) = g(0) = −α
and ġ(x(t)) < 0 at every time t ≥ 0, we have g(x(t)) < 0, for every

t ≥ 0. On the other hand, for every s ∈ {1, 2, . . . , p}, t ≥ 0 and w(t),
we have

[z(t)]s =
n∑
k=1

[Cσ(t)]sk[x(t)]k +
m∑
k=1

[Dσ(t)]sk[w(t)]k

≤
n∑
k=1

[Cσ(t)]sk[ξ]kV (x(t)) +
m∑
k=1

[Dσ(t)]skα

<
n∑
k=1

[Cσ(t)]sk[ξ]kg(x(t)) + γα

< γα,

where we made use of (4.41). This is equivalent to saying that

sup
t≥0

max
s∈{1,2,...,p}

[z(t)]s < γ · sup
t≥0

max
s∈{1,2,...,m}

[w(t)]s,

and this proves the second inequality.



4.3. Guaranteed induced L∞ norm 103

The case when σ ∈ DT , with T > 0, can be derived along dual

lines, following the same rationale as in Theorem 4.7. In this case we

are interested in the index

J indL∞,T := sup
σ∈DT

J indL∞(σ).

The following result holds.

Theorem 4.11. If there exist strictly positive vectors ξi, i ∈
{1, 2, . . . ,M}, and T > 0 such that

Aiξi +Bi1m � 0, i = 1, . . . ,M, (4.42)

eAiT ξj +
∫ T

0
eAiτBi1mdτ � ξi, i 6= j = 1, . . . ,M, (4.43)

and

Ci[ξi + eAiτ (ξj − ξi)] +Di1m � γ1p, i, j = 1, . . . ,M, (4.44)

hold for any τ ∈ [0, T ), then the switched system (4.1)-(4.2) is expo-

nentially stable and

max
i∈{1,2,...,M}

‖Gi(0)‖∞ ≤ J indL∞,T < γ.

Proof. The proofs of exponential stability and of the first inequality

follow the same lines as in previous proofs. Now, consider a signal σ ∈
DT , with 0 = t0 < t1 < · · · < tk < tk+1 < ... as switching instants.

Assume that σ(tk) = i and σ(tk+1) = j. Note, also, that (4.42) implies

eAitξi +
∫ t

0
eAiτBi1mdτ � ξi, i = 1, . . . ,M, ∀t > 0. (4.45)

Consider the differential equation

˙̄d(t) = Aσ(t)d̄(t) +Bσ(t)1m, (4.46)

with d̄(tk) = ξσ(tk+1) = ξj . For every t ∈ [tk, tk+1) one finds:

d

dt
(d̄(t)− ξi) = Aid̄(t) +Bi1m � Ai(d̄(t)− ξi).
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By integrating the previous equation and by making use of d̄(tk) = ξj ,

one gets for every t ∈ [tk, tk+1)

d̄(t)� ξi + eAi(t−tk)(ξj − ξi). (4.47)

Moreover, from (4.43) and (4.45), it follows

d̄(t−k+1) = eAi(tk+1−tk)d̄(tk) +
∫ tk+1

tk

eAi(tk+1−τ)Bi1mdτ

= eAi(tk+1−tk−T )eAiT ξj +
∫ tk+1

tk

eAi(tk+1−τ)Bi1mdτ

� eAi(tk+1−tk−T )ξi −
∫ T

0
eAi(tk+1−tk−T+τ)Bi1mdτ

+
∫ tk+1

tk

eAi(tk+1−τ)Bi1mdτ

� ξi −
∫ tk+1−tk−T

0
eAiτBi1mdτ −

∫ T

0
eAi(tk+1−tk−T+τ)Bi1mdτ

+
∫ tk+1

tk

eAi(tk+1−τ)Bi1mdτ

= ξi. (4.48)

Now, set V (x(t), t) := maxr [x(t)]r
[d̄(t)]r

, and w̄ := supt≥0 maxr[w(t)]r. If t

is a specific time in [tk, tk+1), and we let s ∈ {1, 2, . . . , n} be such that

V (x(t), t) = [x(t)]s
[d̄(t)]s

. From the equation of the system dynamics, (4.46)

and (4.48), it follows that

d

dt
(w̄ − V (x(t), t)) > −

n∑
k=1

[Bi]sk (w̄ − V (x(t), t)) ,

w̄ − V (x(tk+1, tk+1) > w̄ − V (x(tk+1, t
−
k+1).

Therefore, w̄ > V (x(t), t), ∀t ≥ 0. Finally, from (4.44) and (4.47), for
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any i ∈ {1, 2, . . . , p}, we have

[z(t)]i =
n∑
j=1

[Cσ(t)]ij [x(t)]j +
n∑
j=1

[Dσ(t)]ij [w(t)]j

≤
n∑
j=1

[Cσ(t)]ij [d̄(t)]jV (x(t), t) +
n∑
j=1

[Dσ(t)]ijw̄

<
n∑
j=1

([Dσ(t)]ij − γ)(w̄ − V (x(t), t)) + γw̄

< γw̄.

In conclusion, for any positive w ∈ L∞ we have that

supt≥0 maxi[z(t)]i < γw̄ and the proof is concluded.

A necessary and sufficient condition for J indL∞,0 < γ to hold can be

stated in the particular case where matrices Ai and Bi are not affected

by the switching signal, i.e. Ai = A, Bi = B, i = 1, 2, . . . ,M . In this

case, when only sensor switching occurs, one may want to have a certain

performance level even in the worst case. Again, as for the L1 induced

norm, the following result can be proven. The proof follows immediately

from Theorem 4.10 (suffciency) and Lemma 4.9 (necessity), and it is

therefore omitted.

Theorem 4.12. Assume that Ai = A, Bi = B, i = 1, 2, . . . ,M . Then

J indL1,0 < γ if and only if there exists a strictly positive vector ξ ∈ Rn+
such that

Aξ +B1m � 0, (4.49)

Ciξ +Di1m � γ1m, (4.50)

hold for any i = 1, 2, . . . ,M . In this case, the switched system (4.1)-

(4.2) is exponentially stable,

J indL∞,0 = max
i∈{1,2,...,M}

‖Gi(0)‖∞

and σ(t) = arg maxi∈{1,2,...,M} ‖Gi(0)‖∞, t ≥ 0 is the worst switching

signal.
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4.4 Guaranteed induced L2 norm

In this section we consider the worst L2 induced norm of the posi-

tive switched system (4.1)-(4.2) for switching signals belonging to D0,

defined as

J indL2 := sup
σ∈D0

sup
w∈L2,w 6=0

w(t)≥0,∀t≥0

∫+∞
0 z(t)>z(t)dt∫+∞

0 w(t)>w(t)dt
. (4.51)

Theorem 4.13. If there exist strictly positive vectors v ∈ Rn+, ξ ∈ Rn+,

h ∈ Rp+ and g ∈ Rm+ such that

A>i v + C>i h � 0 (4.52)

B>i v +D>i h � γg (4.53)

Aiξ +Big � 0 (4.54)

Ciξ +Dig � γh (4.55)

hold for any i = 1, 2, . . . ,M , then the switched system (4.1)-(4.2) is

exponentially stable and

max
i∈{1,2,...,M}

‖Gi(0)‖22 ≤ J indL2,0 < γ2.

Proof. Exponential stability follows upon noticing that (4.52) implies

v>Ai � 0 , ∀i, so that V (x) = v>x is a linear copositive Lyapunov

function for the system. In order to prove the first inequality, notice

that J indL2,0 ≥ ‖Gi(s)‖
2
∞, where ‖Gi(s)‖∞ is the H∞ norm of the time-

invariant system with transfer function Gi(s) obtained letting σ(t) = i,

t ≥ 0. Moreover, take σ(t) = i, t ≥ 0, and observe that the H∞ norm

of the time invariant system associated with the ith mode is

‖Gi(s)‖2∞ := sup
ω
‖Gi(jω)‖22 = sup

w∈L2,w6=0
w(t)≥0,∀t≥0

∫+∞
0 z(t)>z(t)dt∫+∞

0 w(t)>w(t)dt
.

From the definition it follows immediately that ‖Gi(s)‖∞ ≥ ‖Gi(0)‖2.

Moreover, for any m-dimensional complex vector y

|G(jω)y| = |
∫ +∞

0
gi(t)ejωtydt| ≤

∫ +∞

0
gi(t)dt|y| = Gi(0)|y|
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where gi(t) is the impulse response of the system associated with the

ith mode and, for any vector v, |v| is the vector whose ith entry is

|[v]i|. Therefore

y∼G(−jω)>G(jω)y ≤ |y|>Gi(0)>Gi(0)|y|,

where y∼ is the complex conjugate transpose of y. Since y is a generic

vector it results that ‖Gi(jω)‖ ≤ ‖Gi(0)‖2, for any ω, thus concluding

‖Gi(s)‖∞ = ‖Gi(0)‖2.

The first inequality in the statement is then proven. Now, take the

positive diagonal matrix P , with [P ]ii = γ [v]i
[ξ]i , i = 1, 2, . . . , n, so that

Pξ = γv. After summing (4.52) with (4.54) pre-multiplied by P/γ, and

using (4.55) in order to eliminate h, we get

(A>i P + PAi + C>i Ci)ξ + (PBi + C>i Di)g� 0.

Again, if we pre-multiply (4.55) by D>i and eliminate h making use of

(4.53) pre-multiplied by γ, we get

(B>i P +D>i Ci)ξ + (D>i Di − γ2Im)g� 0,
and therefore the matrices

Si =
[
A>i P + PAi + C>i Ci PBi + C>i Di

B>i P +D>i Ci D>i Di − γ2Im

]
,

i = 1, 2, . . . ,M , satisfy the inequalities

Si

[
ξ

g

]
� 0.

Notice that matrices Si, i = 1, 2, . . . ,M , are Metzler and symmetric.

As such, they are all Hurwitz and negative definite, i.e. Si ≺ 0, i =
1, 2, . . . ,M . Now, compute the derivative of V (x) = x>Px along the

trajectories of system (4.1). It follows

V̇ (x) =
[

x> w>
] [ A>σ P + PAσ PBσ

B>σ P 0

] [
x
w

]

=
[

x> w>
]
Sσ

[
x
w

]
− z>z + γ2w>w.
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Since Si ≺ 0 for every i, the thesis follows after integration from 0 to

+∞.

It is important to stress that (4.52)-(4.55) are linear inequalities

whose feasibility can be easily checked by standard linear programs. In

the time-invariant case, they provide a necessary and sufficient condi-

tion for ‖Gi(s)‖∞ < γ to hold.



5

Stabilization

In this section we consider, again, the continuous-time positive switched

system

ẋ(t) = Aσ(t)x(t), (5.1)

where σ(t) ∈ {1, 2, . . . ,M},∀t ≥ 0, and for every value i taken by the

switching signal σ the matrix Ai is Metzler. Differently from the previ-

ous sections, however, we assume that σ is not a completely arbitrary

switching signal, but it represents a control input that we can suitably

choose. In particular, our interest is in choosing σ in such a way that,

for any positive initial condition x(0), the state x(t) converges to zero

(standard stabilization problem) or it converges to zero with a guaran-

teed convergence speed (a problem that can be reduced to the standard

stabilization one for a modified system, as pointed out in Proposition

3.6). In Sections 2.2, 2.3, 2.5 and 2.6, we provided several examples

where these problems naturally arise.

In order to achieve this goal, namely to stabilize system (5.1), we

can either resort to open loop stabilization, where σ is a function of

the time variable t, or we can look for feedback (equivalently, closed-

loop) stabilization, i.e., the switching signal is a (possibly time-varying)

109
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function of the state variable, and hence takes the form

σ(t) = Ψ(x(t), t). (5.2)

An interesting property of positive switched systems, that make them

differ from standard switched systems (see Sun and Ge [2005]), is that

open loop stabilization and feedback stabilization are equivalent prob-

lems, according to the following result (see Fornasini and Valcher [2012]

and Blanchini et al. [2012] for details).

Theorem 5.1. For a positive switched system (5.1) the following con-

ditions are equivalent:

i) There exists x̄0 � 0 and a switching signal σ̄(t), t ∈ R+, such that

the trajectory x̄(t), t ∈ R+, generated corresponding to x̄(0) = x̄0
and σ̄(t), t ∈ R+, exponentially converges to zero.

ii) The switched system is feedback stabilizable, i.e., there exists a

feedback law σ(t) = Ψ(x(t), t) such that the trajectory starting

from any x(0) > 0 exponentially converges to zero.

iii) The switched system is consistently stabilizable, i.e., there exists

a switching signal σ(t), t ∈ R+, that drives x(t) to zero exponen-

tially, independently of the positive 1 initial condition x(0) > 0.

Proof. It is quite obvious that iii) ⇒ ii) ⇒ i). We want to show that i)

⇒ iii) (see Fornasini and Valcher [2012]).

Let x(0) be any positive initial condition. Then there exists α >

0 such that x(0) < αx̄0. Let x(t) be the state trajectory generated

corresponding to the initial condition x(0) and to the switching signal

σ̄(t). Set z(t) := αx̄(t)−x(t). Then z(t) is a solution of the time-varying

system

ż(t) = Aσ̄(t)z(t).
Since Aσ̄(t) is Metzler at every time t ≥ 0, and z(0) = αx̄0 − x(0) is

positive, then z(t) > 0 for every t ≥ 0, which means that αx̄(t) >
x(t) ≥ 0 for every t ≥ 0. As the system is linear, the trajectory αx̄(t)
asymptotically converges to zero, and so does x(t).

1As a matter of fact, such a switching signal would work with any x(0) ∈ Rn,
not necessarily positive.
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Remark 5.1. It is worth noticing that condition i) in Theorem 5.1

can be restated by simply saying that there exists a switching signal

σ̄(t), t ∈ R+, that drives to zero the trajectory x̄(t), t ∈ R+, generated

corresponding to x̄(0) = 1n. Even more, it is easy to see (see, also,

Corollary 3.12 in Sun and Ge [2011]) that if a system is consistently

stabilizable then it can be stabilized by resorting to a periodic switching

signal σ̄(t), t ≥ 0. This is interesting because, differently from stability

under arbitrary switching (recall Remark 3.7), it is quite easy to verify

that open loop stabilization, if achievable, can always be obtained by

resorting to a periodic switching signal. �

In the following we will refer to a positive switched system satisfying

any of the equivalent conditions of Theorem 5.1 simply as stabilizable.

5.1 Feedback stabilization based on Lyapunov functions

Even if, as we have just seen, stabilization can be equivalently obtained

by means of open loop or feedback switching strategies, nonetheless a

feedback solution is in general preferable for various reasons, first of

all its robustness. To explore this problem we introduce the concept of

copositive control Lyapunov function.

Definition 5.1. We say that a copositive function V (x) is a control

Lyapunov function for the system (5.1), if it is decreasing along the

system trajectories, provided that a certain feedback switching strategy

is applied. If we let DwV (x) denote the derivative of the function V (x)
along the direction w, this amounts to requiring that for every x ∈ Rn+
and for the feedback switching law σ(t) = Ψ(x(t), t), we have

DAσxV (x) := lim
h→0+

V (x + hAσx)− V (x)
h

< 0.

We underline that our definition of control Lyapunov function is

different, yet equivalent, to the classical one used in the literature for

systems of the form ẋ(t) = f(x(t),u(t)), see Freeman and Kokotović

[1996]. In the classical case it is required, under differentiability assump-

tions, that for every x 6= 0, there exists u such that ∇V (x)f(x,u) < 0,
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and the feedback is proved to exists under suitable assumptions (Ar-

stein’s theorem, Artstein [1983]). Here we explicitly assume the exis-

tence of a feedback law Ψ such that u = Ψ(x(t), t).
In general, for standard switched systems, convex control Lyapunov

functions may not exist (see Blanchini and Savorgnan [2008]), even if

the system is stabilizable. A natural question is whether there exists

a class of Lyapunov functions that is universal for the stabilization

problem in the case of positive switched systems. The following theorem

provides an answer, see Hernandez-Vargas et al. [2011], and tells us

that, surprisingly, for stabilizable positive switched systems, as long as

we remain in the positive orthant, we can always find concave copositive

control Lyapunov functions.

Theorem 5.2. If the positive switched system (5.1) is stabilizable, then

it admits a concave copositive control Lyapunov function V (x), posi-

tively homogeneous of order one (i.e. V (αx) = αV (x) for every x ∈ Rn

and every α > 0).

Proof. Let β be an arbitrarily small positive number and consider the

positive switched system obtained by perturbing (5.1):

ẋ(t) = [βIn +Aσ(t)]x(t) =: Aβ,σ(t)x(t).

Denote by xβ(t; x0, σ) and x(t; x0, σ) the solutions of the perturbed and

of the unperturbed system, respectively, corresponding to the initial

condition x0 and to the switching signal σ. We recall (see Proposition

3.6) that they are related as follows:

xβ(t; x0, σ) = eβtx(t; x0, σ), ∀ t ≥ 0.

Also, if the original system is stabilizable, then for β > 0 sufficiently

small the system remains stabilizable.

Introduce now, for the perturbed system, the following function:

Vβ(x0) := inf
σ∈D0

∫ +∞

0
1>nxβ(t; x0, σ)dt,

that is well defined since we assumed stabilizability. Clearly, Vβ(x0)
is copositive and positively homogeneous of order one. To prove its
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concavity, assume x0 = α1x1 +α2x2, with α1, α2 ≥ 0 and α1 +α2 = 1.

By the system linearity, for any switching signal σ we have∫ +∞

0
1>nxβ(t; x0, σ)dt = α1

∫ +∞

0
1>nxβ(t; x1, σ)dt

+α2

∫ +∞

0
1>nxβ(t; x2, σ)dt,

and hence

Vβ(x0) = inf
σ∈D0

∫ +∞

0
1>nxβ(t; x0, σ)

= inf
σ∈D0

[
α1

∫ +∞

0
1>nxβ(t; x1, σ)dt+ α2

∫ +∞

0
1>nxβ(t; x2σ)dt

]
≥ α1

[
inf
σ∈D0

∫ +∞

0
1>nxβ(t; x1, σ)dt

]
+ α2

[
inf
σ∈D0

∫ +∞

0
1>nxβ(t; x2, σ)dt

]
= α1Vβ(x1) + α2Vβ(x2).

This proves that Vβ(x0) is concave. The derivative of Vβ in x0 ∈ Rn+,

along the direction of the perturbed system, is

D[βIn+Aσ ]xVβ(x0) := lim
h→0+

Vβ(x0 + h[βIn +Aσ]x0)− Vβ(x0)
h

.

Consider any interval [0, τ ], τ > 0. By applying dynamic programming

considerations (see for instance Luenberger [1979], Chapter 11.7) we

deduce the identity

Vβ(x0) = inf
σ∈D0

[∫ τ

0
1>nxβ(t; x0, σ)dt+ Vβ(xβ(τ ; x0, σ))

]
,

and hence for ever τ > 0

Vβ(x0) > Vβ(xβ(τ ; x0, σ)).

As a consequence we have that

D[βIn+Aσ ]x0Vβ(x0) ≤ 0.

Set η := h/(1 − βh) (so that h → 0 implies η → 0), and now, bearing

in mind that Vβ(λx) = λVβ(x) for any real positive λ, consider the
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derivative of the function for the nominal system (and hence along the

direction Aσx0)

DAσx0Vβ(x0) = lim
h→0+

Vβ(x0 + hAσx0)− Vβ(x0)
h

= lim
h→0+

Vβ(x0 − βhx0)− Vβ(x0)
h

+ lim
h→0+

Vβ(x0 + hAσx0 + βhx0 − βhx0)− Vβ(x0 − hβx0)
h/(1− βh)

1
(1− βh)

= lim
h→0+

(1− βh)− 1
h

Vβ(x0)

+ lim
h→0+

Vβ((1− βh)x0 + h[Aσ + βIn]x0)− (1− βh)Vβ(x0)
h/(1− βh)

1
(1− βh)

= −βVβ(x0) + lim
η→0+

Vβ(x0 + η[βIn +Aσ]x0)− Vβ(x0)
η

= −βVβ(x0) +D[βIn+Aσ ]xVβ(x0) ≤ −βVβ(x0).

This ensures that Vβ is a control Lyapunov function for the positive

switched system (5.1), and the proof is completed.

Remark 5.2. Note that the function Vβ used within the proof of the

previous theorem has a meaning. Consider again the fluid example and

the integral cost function (2.10). By proceeding as in the proof, it can

be shown that the cost-to-go function associated with (2.10), namely

the function that associates with any x0 > 0 the optimal value of the

cost function corresponding to the initial condition x(0) = x0, is a con-

cave function. An algorithm for computing this type of functions that

makes use of discretization has been proposed in Hernandez-Vargas

et al. [2011]. We will reconsider this fact in the next section. �

As we have seen before (Theorem 3.1) a linear system (not neces-

sarily positive) that is stable under arbitrary switching always admits a

smooth convex Lyapunov function. So, one would be tempted to make

the following:

Conjecture: for a positive switched system, stabilizability implies

the existence of a smooth concave copositive (positively homogeneous

of order 1) control Lyapunov function. �
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Unfortunately, the above conjecture is false, except for the second

order case, i.e. n = 2. To be precise, we can claim the following.

Theorem 5.3. Given the positive switched system (5.1), the following

statements are equivalent.

i) The system is stabilizable and it admits a copositive, positively

homogeneous of order 1, smooth control Lyapunov function such

that

min
i
∇V (x)Aix ≤ −β∗V (x), ∀x ≥ 0, (5.3)

for some β∗ > 0 2.

ii) There exists α ∈ AM such that A(α) is Hurwitz.

iii) The system admits a linear copositive control Lyapunov function

VL(x) = v>x, with v� 0.

Proof. The proof is carried on in the case where the Metzler matrices

Ai i = 1, 2, . . . ,M, are irreducible. The standard case may be obtained

from the irreducible one, by first considering the irreducible matrices

Ai + ε1n1>n , ε > 0, and then considering the limit for ε→ 0+.

ii) ⇒ iii) Assume that there exists a Hurwitz convex combination

A(α) =
M∑
i=1

αiAi, αi ≥ 0,
M∑
i=1

αi = 1,

and let v� 0 be the strictly positive left eigenvector of A(α) associated

with the Frobenius eigenvalue λF < 0. Note that, by the irreducibility

assumption on the matrices Ai, all the matrices A(α) are irreducible,

in turn. Consider the linear copositive function VL(x) = v>x. Then,

by linearity, as we have seen in the simple example in Section 2.5, for

every x > 0 we have

min
i=1,2,...,M

v>Aix ≤ v>A(α)x = λFv>x = λFVL(x) < 0.

2This condition ensures that V (x(t)) is decreasing along the system trajectories,
if we apply the switching strategy σ(x(t)) ∈ arg mini∇V (x)Aix.
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Therefore, the strategy σ(t) ∈ arg mini v>Aix(t) is stabilizing. This

shows that VL(x) = v>x is a linear copositive control Lyapunov func-

tion.

iii) ⇒ i) Obvious, since a linear copositive function is smooth and

positively homogeneous of order 1, and it satisfies (5.3).

i) ⇒ ii) We give only a sketch of the proof here. For the com-

plete proof see Blanchini et al. [2012, 2013]. Assume that there exists

a copositive, positively homogeneous of order 1, smooth control Lya-

punov function for which

min
i
∇V (x)Aix ≤ −β∗V (x),

for some positive β∗ > 0. For any β < β∗, consider the following “re-

laxed condition”:

min
α∈AM

∇V (x)A(α)x ≤ −βV (x). (5.4)

For each x > 0 define the convex set-valued map, see Aubin [1991]:

Ω(x) = {α ∈ A : ∇V (x)A(α)x ≤ −βV (x)}.

The set valued map Ω has a non-empty relative interior in AM for

any x > 0, because we chose β < β∗, and by the continuity of the

gradient, it is a convex continuous set-valued map. Therefore there

exists a continuous function ᾱ(x), Freeman and Kokotović [1996], such

that ᾱ(x) ∈ Ω(x), for all x� 0, Aubin [1991]. 3

Now take the following two functions, the former from An to AM
and the latter from AM to An:

x→ ᾱ(x)

and

α→ vF (α),

where vF (α) is the strictly positive Frobenius eigenvector associated

with A(α), normalized in such a way that 1>nvF (α) = 1. Note also that

3For instance the choice of α with the smallest Euclidean norm (which is unique):
ᾱ(x) .= arg minα∈Ω(x) ‖α‖.
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vF (α) is a positive and continuous function of α. The composed map

from An to An
x→ ᾱ(x)→ vF (ᾱ(x))

is continuous and admits a fixed point x̂, because An is convex and

compact. For such x̂ we have

∇V (x̂)A(α̂)x̄ = λ̂F∇V (x̂)x̄ ≤ −βV (x̂),

where α̂ := ᾱ(x̂) and λ̂F is the Frobenius eigenvalue associated with

A(α̂). On the other hand, any positively homogeneous smooth function

is such that

V (x) = ∇V (x)x.

This implies that the last inequality can be rewritten as

λFV (x̂) ≤ −βV (x̂)

and hence λF < 0. This ensures that A(α̂) is Hurwitz.

Remark 5.3. Condition ii) in the previous theorem is easily shown to

be equivalent to the existence of a diagonal matrix D, with positive

diagonal entries, and nonnegative parameters αi, i = 1, 2, . . . ,M, with∑M
i=1 αi = 1, such that

M∑
i=1

αix>[A>i D +DAi]x < 0, ∀x > 0.

�

As previously mentioned, stabilizability does not ensure the exis-

tence of a smooth copositive control Lyapunov functions, positively

homogeneous of order 1. The proof of the following result can be found

in Blanchini et al. [2012, 2013].

Proposition 5.1. There exist stabilizable positive switched systems

(5.1), for which no copositive control Lyapunov function, positively

homogeneous of order 1, which is continuously differentiable can be

found.



118 Stabilization

Interestingly enough a counterexample is just the traffic system pro-

posed in Section 2.6. Since positive switched systems are a special case

of linear switched systems, the existence of a positively homogeneous

smooth Lyapunov function would ensure the existence of a copositive

one if we restrict our attention to the positive orthant. Hence, in gen-

eral, the stabilizability of a positive switched system does not imply

the existence of a smooth positively homogeneous control Lyapunov

function. More details can be found in Blanchini et al. [2012, 2013].

Second order systems, however, represent an exception, as stated in

the result below, whose proof can be found in Blanchini et al. [2012].

Proposition 5.2. A second order continuous-time positive switched sys-

tem (5.1) is stabilizable if and only if there exists α ∈ AM such that

A(α) is Hurwitz. �

We stress that the existence of a Hurwitz convex combination is

a sufficient condition for stabilizability even for nonpositive switched

linear systems (see Wicks et al. [1998]). In the case of positive systems,

the existence of such a Hurwitz combination leads to the important

technique based on the left Frobenius eigenvector as explained by means

of the fluid example reported in Section 2.5.

The previous discussion suggests that we have essentially two al-

ternatives (for brevity, we consider the case when all matrices Ai,

i = 1, 2, . . . ,M , are irreducible).

Lucky case. Find, if possible, a Hurwitz convex combination of the

system matrices Ai, i = 1, 2, . . . ,M . This is not a simple problem

in general, but if M is small, then gridding solutions are possible.

If such a Hurwitz convex combination is found, then a control

Lyapunov function can be inferred from its left Frobenius eigen-

vector.

Unlucky case. If there are no Hurwitz convex combinations, such as

in the case of the traffic example in Section 2.6, then any attempt

at finding a smooth, positively homogeneous of order 1, control

Lyapunov function is hopeless. Necessarily, one has to find more

general classes of functions such as the minimum of copositive
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linear functions, or approach the problem by seeking open loop

switching signals, for instance of periodic type.

It is worth noticing that the existence of a linear copositive control

Lyapunov function can be checked with linear programming techniques.

Indeed, if VL(x) = v>x is a linear copositive function, with v a strictly

positive vector, such a function is a control Lyapunov function for the

system if (and only if) for any vector x in the closed positive simplex

An there is at least one choice of the matrix Ai such that the derivative

of VL along the ith subsystem is negative, or, equivalently,

min
i=1,2,...,M

v>Aix < 0, ∀x ∈ An.

The previous condition is not verified if and only if the sets

Pi := {x ∈ An : v>Aix ≥ 0}, i = 1, 2, . . . ,M,

have a non-empty intersection in the positive orthant. Since these sets

are polytopes, determining if they have a non-empty intersection is a

linear programming problem.

Example 5.1. Let us reconsider the traffic problem presented in Section

2.6, with the following data:

A1 =

 −1 0 0
0 0 0
0 1 0

 , A2 =

 0 0 1
0 −1 0
0 0 0

 , A3 =

 0 0 0
1 0 0
0 0 −1

 .
We have seen that there are no Hurwitz matrices in the convex hull

{A(α) = α1A1 + α2A2 + α3A3 : α ∈ A3}. Therefore for this positive

switched system there cannot be smooth, positively homogeneous of

order 1, copositive control Lyapunov functions.

For the sake of completeness, we show directly that no linear copos-

itive control Lyapunov function can be found, since the three sets

Pi, i = 1, 2, 3, defined above have a nonempty intersection, no mat-

ter how v� 0 is chosen. Set v> := [ v1 v2 v3 ], with vi > 0. The three

sets Pi, i = 1, 2, 3, are characterized by the following inequalities

P1 = {x ∈ A3 : −v1x1 + v2x3 ≥ 0}
P2 = {x ∈ A3 : −v2x2 + v3x1 ≥ 0}
P1 = {x ∈ A3 : −v3x3 + v1x2 ≥ 0}.
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The above inequalities are indeed simultaneously satisfied as equalities

by

x1 = v2
v1 + v2 + v3

, x2 = v3
v1 + v2 + v3

, x3 = v1
v1 + v2 + v3

The conclusion is that no linear control Lyapunov functions exists.

We approach the stabilization of this system by considering an open

loop periodic switching signal. As we have stated in Section 2.6, there

exists a product of exponential matrices that is Schur, i.e. all its eigen-

values belong to the open unit disc. We want to analytically prove this

statement.

The exponential matrices eA1T , eA2T and eA3T , corresponding to

A1, A2 and A3 are: e−T 0 0
0 1 0
0 T 1

 ,
 1 0 T

0 e−T 0
0 0 1

 ,
 1 0 0
T 1 0
0 0 e−T

 .
Consider the product

Φ123(T ) = eA1T eA2T eA3T = e−T

 1 0 Te−T

T 1 0
T 2 T 1

 .
For T → +∞, matrix Φ123(T ) converges to 0. Hence, for T sufficiently

large the product is Schur. This means that every periodic switching

signal with T “sufficiently large” is stabilizing. We will propose a peri-

odic strategy later (see (5.19)).

To illustrate why large periods are not necessarily the best solu-

tion, we investigate this traffic problem with an external scalar input,

representing an incoming flow in the system:

ẋ(t) = A(α)x(t) + 13u,

with u = const (for simplicity we assume that the input-to-state matrix

has all identical components, set to 1 for simplicity). This model can

be “augmented” in order to “become linear” by adding the equation

u̇(t) = 0.
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The resulting augmented matrix is

Aaug(α) =


−α1 0 α2 1
α3 −α2 0 1
0 α1 −α3 1
0 0 0 0

 .
First note that, for any fixed α ∈ A3 and u > 0, the state variables di-

verge. Consider the function V (x) = v>xaug, with xaug := [x1 x2 x3 u],
where

v> =
[

α3
α1 + α2 + α3

α1
α1 + α2 + α3

α2
α1 + α2 + α3

1
]
.

Then

V̇ (x) = v>Aaug(α)xaug = u > 0,

(since u is constant and positive). So

V (x(t)) = V (x(0)) + ut,

which means that the buffers diverges. This facts reveals an interesting

property of the traffic system. In practice, a constant value of α can

be realized by a fast switching, keeping the period of the red-green

light sequence small. This is not efficient at all. On the other hand, a

large period can create a mismatch among queues at different times.

For instance, if we activate σ = 1 for a too long time, the buffers 2 and

3 can become very large, while we are focusing on emptying buffer 1.

So, in practice, a trade-off should be adopted. The simulations pro-

posed in Section 2.6 are performed after such a trade-off has been con-

sidered (see Blanchini et al. [2012] for details).

A completely different case is illustrated in the next example, where

fast switching is an efficient strategy.

Example 5.2. Reconsider the well-emptying problem described in Sec-

tion 2.5. We applied the strategy of considering the convex combination

of the system matrices for which the Frobenius eigenvalue is minimal

and we denoted this value by λ̄F . We proved that in this way we can

ensure a convergence speed equal to −λ̄F > 0, by considering the linear
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copositive control Lyapunov function associated with the left eigenvec-

tor corresponding to λ̄F . We can now prove that we cannot do any

better. Indeed, the convergence speed β can be ensured for this second

order system if and only if (see Proposition 3.6)

ẋ = [βI2 +Aσ]x(t)

is stabilizable. But for any β > −λ̄F the matrix [βI2 + A(α)] is not

Hurwitz for any choice of α ∈ A2

As we have seen, a stabilizable positive switched system does not

necessarily admit a smooth copositive control Lyapunov function. As

clarified in Theorem 5.3, this is the case if and only if a linear coposi-

tive control Lyapunov function can be found. In this context, it is worth

exploring, as we did for stability, what is the relation between the ex-

istence of linear copositive, positive definite and quadratic copositive

Lyapunov functions. All these functions are smooth, and the condition

that the functions are decreasing along the system trajectories can be

simply checked by verifying that for every x > 0

min
i=1,2...,M

∇V (x)Aix < 0.

We have the following result.

Theorem 5.4. If there exists a linear copositive control Lyapunov func-

tion for (5.1) then there exists a quadratic positive definite control

Lyapunov function for (5.1) and this, in turn, implies the existence of

a quadratic copositive control Lyapunov function for (5.1).

Proof. The proof is similar to the proof of Theorem 3.3 for stability.

Assume that there exists a linear copositive control Lyapunov function

VL(x) = v>x, with v� 0, such that

min
i=1,2...,M

v>Aix < 0, ∀x ≥ 0.

For every ε > 0, the function V (x) = x>Px, where P := vv> + εIn, is

positive definite. We want to show that, for a suitable choice of ε, it is

a control Lyapunov function for the system, namely

min
i=1,2...,M

x>[A>i P + PAi]x < 0, ∀x ≥ 0.



5.2. Other feedback stabilization techniques 123

Introduce the compact set K := {x ∈ Rn+ : ‖x‖ = 1}, and note that

min
i=1,2,...,M

x>(A>i P + PAi)x = min
i=12,...,M

2[(v>x)(v>Aix) + ε(x>Aix)].

K is a compact set and hence, by Weierstrass’s theorem, there exist

−α := max
x∈K

min
i=1,2,...,M

(v>x)(v>Aix) < 0

and

β := max
x∈K

max
i=1,2,...,M

|x>Aix| ≥ 0.

If ε ∈ (0, α/β), then for every x ∈ K

min
i=1,2,...,M

x>(A>i P + PAi)x ≤ min
i=1,2,...,M

2[(v>x)(v>Aix) + ε|x>Aix|]

≤ max
x∈K

min
i=1,2,...,M

2[(v>x)(v>Aix) + ε|x>Aix|]

≤ 2 max
x∈K

min
i=12,...,M

(v>x)(v>Aix)

+ 2εmax
x∈K

max
i=12,...,M

|x>Aix|]

≤ −2α+ 2εβ < 0.

The extension to any x ∈ Rn+ follows again the same lines as the proof

of Theorem 3.3.

The fact that the existence of a quadratic positive definite control

Lyapunov function implies the existence of a quadratic copositive con-

trol Lyapunov function is obvious.

5.2 Other feedback stabilization techniques

The aim of this section is to provide additional stabilization techniques

for positive switched systems with respect to the ones we investigated

in the previous section, in order to drive the state to zero starting from

any positive initial condition. We first consider the feedback stabiliza-

tion problem in Rn+, and propose a stabilizing strategy solution, based

on the so-called Lyapunov Metzler inequalities. Feasibility of such in-

equalities offers a sufficient condition for stabilization, that is shown

to be not necessary through the counterexample provided in Example
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5.1. Another sufficient condition based on a mixed open-closed loop

strategy with dwell time is also provided in the same example. A third

strategy is proposed next, based on a piecewise linear copositive con-

trol Lyapunov function. Finally, by referring again to the traffic model

investigated in Example 5.1, we propose feedback techniques that drive

the state trajectory from any initial condition to the positive orthant

(or, equivalently, to the negative orthant), so that the previous tech-

niques may be applied.

5.2.1 Lyapunov Metzler inequalities

In the previous section, we have focused our attention on linear and

quadratic control Lyapunov functions. Clearly, the existence of any

such function is extremely restrictive. A different approach to the sta-

bilization problem consists in searching for sufficient conditions for the

existence of control Lyapunov functions taking the form

V (x) = min
i=1,2,...,M

Vi(x), (5.5)

where Vi(x), i ∈ {1, 2, . . . ,M}, are suitable smooth functions, such that

for every x ∈ Rn+ there exists i ∈ {1, 2, . . . ,M} such that V̇i(x) < 0.

The use of Lyapunov inequalities parametrized by the entries of a

Metzler matrix was first proposed in Geromel and Colaneri [2006], and

the associated quadratic matrix inequalities were henceforth referred

to as Lyapunov Metzler inequalities. For positive switched systems, one

can resort to piecewise linear copositive Lyapunov functions, which

amounts to saying that the Vi take the form Vi(x) = v>i x, for suitable

strictly positive vectors vi, i ∈ {1, 2, . . . ,M}. A sufficient condition can

be worked out by considering particular Metzler matrices arising in

the study of stochastic stability, namely M ×M Metzler matrices Λ
satisfying Λ1M = 0. We denote such a set by the symbol PM . We have

the following result (see also Blanchini et al. [2013]).

Theorem 5.5. If there exist strictly positive vectors vi ∈ Rn+,

i = 1, 2, . . . ,M , and M(M − 1) nonnegative parameters λij , i, j =
1, 2, . . . ,M , i 6= j, such that the following Lyapunov Metzler inequali-
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ties are satisfied:

A>i vi +
M∑
j=1
j 6=i

λij (vj − vi)� 0, i = 1, 2, . . . ,M, (5.6)

then the positive switched system (5.1) is stabilizable. If this is the

case, a stabilizing state feedback law is given by

σ(t) = arg min
k=1,2,...,M

v>k x(t).

Proof. Consider the candidate piecewise linear copositive control Lya-

punov function V (x) := mini=1,2,...,M v>i x. Let I(x) be the set of all

indices k such that v>k x ≤ v>r x (equivalently, (vk − vr)> x ≤ 0) for

every r 6= k. If i is the active mode at time t, i.e. σ(t) = i, computing

the Dini derivative of V (x) leads to

D+V (x) = min
r∈I(x)

v>r Aix ≤ v>i Aix,

and hence

D+V (x) <
M∑
j=1
j 6=i

λij (vi − vj)> x ≤ 0.

The previous result deserves a few comments.

(i) Once the index i ∈ {1, 2, . . . ,M} is fixed, the coefficients λij ,

j = 1, 2, . . . ,M and j 6= i, can be complemented with λii =
−
∑
j 6=i λij , so that the matrix Λ with entries [Λ]ij = λij , i, j =

1, 2, . . . ,M , belongs to PM . As such, Λ corresponds to the in-

finitesimal transition matrix of a Markov chain, with associated

Kolmogorov equation π̇ = Λ>π. Vector π(t) represents the prob-

ability vector at time t, and the stationary probability π̄ is the

positive left Frobenius eigenvector of Λ corresponding to the zero

eigenvalue, whose entries sum up to 1. System (5.1) where σ(t)
is a form process taking values from a Markov chain is known in

the literature as a positive Markov jump linear system (PMJLS).

Such systems are stable in the mean sense if the expectation of
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x(t) tends to zero asymptotically for any initial state and any

initial probability vector, see Bolzern et al. [2014]. It turns out

that a PMJLS, with Λ as infinitesimal transition matrix of the

Markov chain, is mean stable if and only if there exist strictly

positive vectors vi, i = 1, 2, . . . ,M, satisfying (5.6), and this is in

turn equivalent to the Hurwitz stability of the Metzler matrix

Ã =


A1 + λ11In λ21In . . . λM1In
λ21In A2 + λ22In . . . λM2In

...
...

. . .
...

λ1MIn λ2MIn . . . AM + λMMIn

 . (5.7)

Indeed, it is easy to verify that the inequalities (5.6) can be equiv-

alently rewritten in compact form as v>Ã � 0, where v is an

nM -dimensional vector whose ith block is vi, i = 1, 2, . . . ,M .

(ii) The inequalities (5.6) are linear once the Metzler matrix Λ is

fixed. The search for Λ ∈ PM such that the inequalities are satis-

fied, or equivalently, the associated augmented matrix Ã in (5.7)

is Hurwitz, can be simplified, at the cost of increased conser-

vatism, if we assume for Λ a special structure, with just a few

free parameters. For instance, if λij = α > 0, for i 6= j, checking

the feasibility of the inequalities reduces to a linear problem along

with a line search over α.

(iii) The inequalities (5.6) encompass the possibility of stabilization

via chattering. As a matter of fact, assume that such inequalities

are feasible for every matrix Λ(α) = αΛ̄, where Λ̄ ∈ PM is a given

matrix and α satisfies α > ᾱ > 0. Denote by π the left Frobenius

eigenvector of Λ̄ (and hence of Λ(α)), whose entries sum up to

1. Finally, denote by vi(α), i = 1, 2, . . . ,M , the solutions of the

inequalities for Λ = Λ(α). By dividing the inequalities by α and

letting α→ +∞, one obtains that

lim
α→+∞

∑
j 6=i

λ̄ij (vj(α)− vi(α)) = 0, ∀i = 1, 2, . . . ,M.

If Λ̄ is irreducible it is clear that the only possibility for the above

inequalities to be verified is that all vectors vi(α) tend to the same
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vector, say v̄, i.e.

lim
α→+∞

vi(α) = v̄.

By multiplying by [π]i the ith inequality of (5.6) and summing

up, we get
M∑
i=1

[π]ivi(α)>Ai � 0,

so that, when α→ +∞, it turns out that

v̄>
(
M∑
i=1

[π]iAi

)
� 0.

This means that the matrices A1, A2, . . . , AM of the system (5.1)

admit a Hurwitz convex combination and hence the system is

stabilizable, see Theorem 5.3.

It can be shown that the inequalities (5.6) are not satisfied for any

choice of vi � 0 and Λ ∈ PM , for the Example 5.1. However we know

that the system is stabilizable via a periodic switching strategy. There-

fore, it is clear that system (5.1) in Example 5.1 can be stabilized,

by means of a feedback switching law based on some piecewise linear

copositive Lyapunov function described as in (5.5), only by imposing

a nonzero dwell-time between two consecutive switching instants. Sta-

bilization of switched systems under dwell-time constraints is an im-

portant problem, justified by practical/technological reasons. Inspired

by Theorem 1 in Allherand and Shaked [2011], we state the following

result, whose proof is omitted as it is follows the same lines as the one

of the aforementioned Theorem 1.

Proposition 5.3. The positive switched linear system (5.1) is stabiliz-

able if there exist Λ ∈ PM , vectors vi � 0, i = 1, 2, . . . ,M, and a scalar

T > 0, such that

v>i Ai +
M∑
j 6=i

λij(v>j eAjT − v>i )� 0, i = 1, 2, . . . ,M. (5.8)

The switching law obtained from the previous result is a mixed

open-loop/closed loop law. Let tk, k = 0, 1, . . . , denote the switching
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instants with t0 = 0. Then one can easily prove that the system is

stabilizable by choosing

σ(t) =


σ(t−),

if either t− tk ≤ T
or v>i x ≤ vjeAjTx, ∀j 6= i;

arg mini v>i eAiTx, otherwise.

By referring to Example 5.1, with T = 1 and ε = 0.1, one can choose,

for instance,

Λ = 100

 −1 0 1
1 −1 0
0 1 −1


v>1 =

[
0.8448 0.4126 0.3404

]
(5.9)

v>2 =
[

0.3404 0.8448 0.4126
]

(5.10)

v>3 =
[

0.4126 0.3404 0.8448
]
. (5.11)

It is important to find the minimum T that ensures the feasibility of

(5.8). This can be done by gridding the space of the unknown param-

eters and by checking the feasibility of a sequence of LMIs. In our

counterexample (with T = 1 and ε = 0.1) it turns out that Tmin = 0.23
s, whereas the minimum T for which eA1T eA2T eA3T is Schur is 0.21. Of

course the gap can also be justified by the impossibility of checking all

the free parameters of Λ ∈ PM . This conclusion leads us to conjecture

that Proposition 5.3 states also a necessary condition for stabilizability.

This issue is however left to future investigations.

We end this section on Lyapunov Metzler inequalities to present a

result on stabilization based on dual Lyapunov Metzler inequalities.

Theorem 5.6. If there exist strictly positive vectors ξi ∈ Rn+,

i = 1, 2, . . . ,M , and M(M − 1) nonnegative parameters λi,j , i, j =
1, 2, . . . ,M, i 6= j, such that the following inequalities are satisfied:

Aiξi +
M∑
j 6=i

λji(ξj − ξi)� 0, i = 1, 2, . . . ,M, (5.12)
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then system (5.1) is exponentially stabilizable. When so, a stabilizing

switching law is given by

σ(t) = arg max
i=1,2,...,M

(
max
r

[x]r
[ξi]r

)
.

Proof. Let V (x) = maxi maxr [x]r
[ξi]r

and notice that this function can be

also written as

V (x) = max
k

[x]k
[η]k

, [η]k = min
i

[ξi]k

Therefore the Dini derivative at time t+ is

D+V (x(t+)) = max
r∈I(x)

1
[η]r

n∑
s=1

[Aσ]rs[x(t)]s

where I(x) = {r : [x]r
[η]r ≥

[x]k,∀k
[η]k }. Therefore, assuming that σ(t) = i,

k = arg maxr [x(t)]r
[ξi]r

and that at time t+ there is a jump i → j and

k → r, namely σ(t+) = j, arg maxr [x(t+)]r
[ξi]r

= r, we can write

D+V (x(t+)) = 1
[ξj ]r

n∑
s=1

[Ai]rs[x(t)]s

= 1
[ξj ]r

 n∑
s 6=r

[Ai]rs[x(t)]s + [Ai]rr[x(t)]r

 .
Since at time t we have

[x(t)]s ≤
[x(t)]k[ξi]s

[ξi]k
and [Ai]rs ≥ 0, r 6= s, we have

D+V (x(t+)) ≤ 1
[ξj ]r

 [x(t)]k
[ξi]k

n∑
s 6=r

[Ai]rs[ξi]s + [Ai]rr[x(t)]r

 .
Notice, from (5.12), that

n∑
s 6=r

[Ai]rs[ξi]s < −[Ai]rr[ξi]r −
M∑
p6=i

λpi
(
[ξp]r − [ξi]r

)
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and therefore

D+V (x(t+)) <
1

[ξj ]r
[Ai]rr

( [x(t)]r
[ξi]r

− [x(t)]k
[ξi]k

)

− [x(t)]k
[ξj ]r[ξi]k

M∑
p 6=i

λpi
(
[ξp]r − [ξi]r

)
Notice now that at time t, [x(t)]r

[ξi]r
= [x(t)]k

[ξi]k
. Therefore

D+V (x(t+)) < − [x(t)]k
[ξj ]r[ξi]k

M∑
p 6=i

λpi
(
[ξp]r − [ξi]r

)
.

Finally [x(t)]r
[ξi]r

≥ [x(t)]r
[ξp]r so that [ξp]r ≥ [ξi]r. Therefore D+V (x(t+)) < 0

and the proof is concluded.

Remark 5.4. It is clear that the existence of strictly positive vectors

ξi ∈ Rn+ satisfying the inequalities (5.12) is a sufficient condition for

the stabilization of the dual system (3.15), and hence, by Theorem

3.4, also a sufficient condition for the stabilization of system (5.1).

Therefore an alternative proof could have been derived by providing

a control Lyapunov function for the dual system: W (z) = mini ξ>i z,

where z is the state of the dual system. As we have seen in Theorem

5.6, the control Lyapunov function for system (5.1) is

V (x) = max
k

[x]k
[η]k

, [η]k = min
i

[ξi]k

or also

V (x) = min
i

[ξi]k(x,i), k(x, i) = max
k

[x]k
[ξi]k

Interestingly, the inequalities (5.12) are strictly related to the propaga-

tion of the mean of the state variable x(t) when σ(t) is supposed to be

generated by a Markov process with infinitesimal transition matrix Λ,

the matrix whose entries are the scalars λij , i 6= j, appearing in (5.12)

and λii = [Λ]ii = −
∑n
j=1 λij . �

Example 5.3. Consider system with

A1 =
[
−1 2
2 −3

]
, A2 =

[
−4 2.3
2.3 −1

]
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Figure 5.1: Phase portrait obtained by the switching law associated to the Lya-
punov function V (x) = maxi=1,2 maxk=1,2

[x]k
[ξi]k

.

and take

Λ =
[
−10 10
10 −10

]
It follows that inequalities (5.12) in Theorem 5.6 are feasible with

ξ1 =
[

0.4483
0.5001

]
, ξ2 =

[
0.447
0.5493

]

Then, the switching law σ(t) = arg maxi=1,2
(
maxr=1,2

[x]r
[ξi]r

)
is sta-

bilizing. It has been applied for 100 initial conditions. The corre-

sponding phase portrait is reported in Figure 5.1. It is apparent that

the state variables reaches the sliding line [η]2[x]1 = [η]1[x]2, where

[η]k = mini=1,2[ξi]k, k = 1, 2, and then go along the sliding line.

5.2.2 Feedback techniques based on piecewise linear copositive
functions

We now provide a necessary and sufficient condition for positive expo-

nential stabilizability, whose proof hinges on the theory of periodic sys-

tems (the interested Reader is referred to Bittanti and Colaneri [2009]

for details).
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Proposition 5.4. A positive switched system (5.1) is exponentially sta-

bilizable if and only if it there exist a positive integer N and strictly

positive vectors vi, i ∈ {1, 2, . . . , N}, such that

V (x) = min
i∈{1,2,...,N}

v>i x, (5.13)

is a control Lyapunov function.

Proof. We need to prove the necessity part only. Assume that the sys-

tem is exponentially stabilizable, and hence consistently stabilizable.

Without loss of generality (see Remark 5.1), the stabilizing switching

law σ(t), t ∈ R+, can be chosen to be periodic. Denote by T > 0 the

period of σ(·), and let tk, k = 1, 2, . . . , N − 1, be the switching instants

within the period [0, T ), with t0 = 0. Clearly, tN = T . It entails no

loss of generality assuming that the instants tk, k = 1, 2, . . . , N − 1,
are rational numbers (if not, this can be achieved by means of a slight

perturbation that does not affect the time-varying system stability).

Therefore the T -periodic positive system

ẋ(t) = A(t)x(t) = Aσ(t)x(t),

with A(·) a piecewise constant (right continuous) matrix function, is

exponentially stable. The associated monodromy matrix

ΦA(T, 0) = e
Aσ(tN−1)(T−tN−1)

. . . eAσ(t1)(t2−t1)eAσ(t0)t1

is a Schur positive matrix. As such, there exists a strictly positive vector

v such that v>ΦA(T, 0)� v>, and hence v>ΦA(T, 0)� γv>, for some

0 < γ < 1. Set, now, δ := ln γ/T , note that δ < 0 and define for

k = 0, 1, . . . , N − 1, the vector function

v(t)> := v(tk)>e(Aσ(tk)−δI)(tk+1−t), t ∈ [tk, tk+1),

with v(t0) = v. It turns out that v(·) satisfies

v̇(t)> + v(t)>Aσ(t) = δv(t)> � 0. (5.14)

v(t), t ∈ R, is a strictly positive T -periodic vector function, everywhere

differentiable over the period, except at the points t 6= tk. However

at these points the vector function v(t) is right differentiable. Note
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that V (x, t) = v(t)>x(t) is a (time-varying) linear copositive Lyapunov

function for the T -periodic system. By the rationality assumption on

the points tk, we can always select an arbitrarily small positive rational

number h such that tk+1−tk = Nkh, withNk integer, k = 0, 1, . . . , N−1
(with tN = T ). Hence, we can approximate arbitrarily well the right

derivative v̇(t) in t = kh with [v((k + 1)h) − v(kh)]/h. So, upon set-

ting N :=
∑N−1
k=0 Nk, vi := v((i − 1)h), and Bi := Aσ((i−1)h), for

i = 1, 2, . . . , N, (and assuming, by the periodicity, that vN+1 = v1), we

have

h−1v>i+1 − h−1v>i + v>i Bi � 0, i = 1, 2, . . . , N.
These inequalities can be written as those in Theorem 5.5, i.e.

v>i Bi +
N∑
j 6=i

λi,j(vj − vi)> � 0, i = 1, 2, . . . , N,

with λi,i+1 = h−1, i = 1, 2, . . . , N − 1, λN,1 = h−1 and λi,j = 0 other-

wise. Therefore V (x) := mini∈{1,2,...,N} v>i x is a control Lyapunov func-

tion for the switched system ẋ(t) = Bη(t)x(t), with η(t) ∈ {1, 2, . . . , N}.
The associated switching rule comes from the Dini derivative

D+V (x) of V (x). To be precise, if I(x) = {i : V (x) = v>i x},
then D+V (x) = minj∈I(x) v>j Bix, with i ∈ I(x), and hence η(t) =
arg minj∈I(x(t)) v>j Bix(t). Notice that as {Bi, i ∈ {1, 2, . . . , N}} ⊆
{Ai, i ∈ {1, 2, . . . ,M}}, V (x) is a control Lyapunov function also for the

original switched system. Indeed, at every time instant it is sufficient

to impose that σ(t) takes values in the set of indices that correspond

to the matrices Ai that appear in {Bi, i ∈ {1, 2, . . . , N}}. Specifically,

once we define the map

ψ : {1, 2, . . . , N} → {1, 2, . . . ,M}
: i 7→ σ((i− 1)h),

the stabilizing switching law for the original switched system ẋ(t) =
Aσ(t)x(t) is

σ(t) = u(x(t)) = ψ

(
arg min

j∈I(x(t))
v>j Bix(t)

)
, (5.15)

with i ∈ I(x(t)).
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Remark 5.5. The switching law (5.15) used within the proof works

nicely to prove that the given function V (x) is a control Lyapunov

function for the positive switched system, but it requires the evaluation

of the periodic switching signal σ(·) as well as of the map ψ(·) in (5.15).

In practice, however, the previous switching law can be equivalently

rewritten as

u(x) = arg min
j=1,2,...,M

v>i(x)Ajx, (5.16)

where

i(x) := arg min
i=1,2,...,N

v>i x.

Moreover, we can define the set T (x) := {t(x) : v(t(x))>x ≤
v(τ)>x,∀τ ∈ [0, T )}, and introduce the new control Lyapunov function

V̄ (x) = c(t(x))>x. As a consequence of (5.14), for each t(x) ∈ T (x)
there exists i ∈ {1, 2, . . . ,M} such that v(t(x))>Aix < 0, so that, when

N → +∞, (5.16) tends to the stabilizing switching law σ(t) = u(x(t))
with

u(x) = arg min
j=1,2,...,M

c(t(x))>Ajx. (5.17)

�

We now discuss the above stabilizing strategy by referring to Ex-

ample 5.1. Let T > 0 be such that eA1T eA2T eA3T is Schur stable. Define

the periodic system

ẋ(t) = A(t)x(t), (5.18)

where A(t) = Aσ(t) and

σ(t) =


3, t ∈ [3Tk, 3Tk + T ), k ∈ Z+;
2, t ∈ [3Tk + T, 3Tk + 2T ), k ∈ Z+;
1, t ∈ [3Tk + 2T, 3Tk + 3T ), k ∈ Z+.

(5.19)

System (5.18) is a positive periodic system with period T̄ = 3T . Now let

v� 0 be the left Frobenius eigenvector of the irreducible monodromy

matrix eA1T eA2T eA3T associated with A(·), i.e.:

v>eA1T eA2T eA3T = λFv>,
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with 0 ≤ λF < 1. Upon introducing the characteristic exponent µF :=
1

3T ln(λF ) < 0, one can find the unique 3T -periodic solution v(t) of the

differential equation

v̇(t)> + v(t)>A(t) = µFv(t)> � 0 (5.20)

with initial condition v(0) = v. For T = 1, one finds µF = −0.0917,

v(0)> =
[

0.8448 0.4126 3404
]

v(1)> =
[

0.4126 0.3406 0.8448
]

v(2)> =
[

0.3406 0.8448 4126
]
.

Notice that the above vectors v(0), v(1), and v(2) coincide with v1,

v3 and v2 in (5.9)-(5.11), respectively. The solution of (5.20) is strictly

positive for each t ∈ R+, and V (x, t) = v(t)>x(t) is a (time-varying)

linear copositive Lyapunov function for the periodic system (5.18), since

V̇ (x, t) = µFV (x, t) < 0. As shown in the proof of Proposition 5.4,

V (x, t) directly induces a control Lyapunov function for the switched

system and the stabilizing feedback control law (5.17). In Figure 5.2

the time evolutions of the three state variables under the switching law

(5.17) are plotted for x(0) = [1 5 10]>. In Figure 5.3 the trajectories

in the positive orthant are plotted by taking 20 randomly generated

initial conditions with entries in the range [0, 5].

We now show how it is possible to find a feedback switching law

capable of driving any state trajectory to the positive orthant (or to

the negative orthant), so that, by combining this law with any of the

laws we previously discussed, it is possible to construct a feedback law

driving any initial state to zero (global stabilization).

Consider the Lyapunov-like function “distance from the bisector of

the positive (negative) orthant”, whose direction is identified by the

vector r = 13/
√

3. Elementary geometric reasonings lead to deduce

that such a function is defined as

Vdist(x) := ‖x‖2 − (r>x)2 = 1
3x>[3I3 − 131>3 ]x. (5.21)

This function is positive semi-definite, and it is zero if and only x = ρr,

for some ρ ∈ R, namely x has all identical entries.
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We prove that the Lyapunov derivative of this function is negative

except on the line x = ρr, ρ ∈ R. Consider the average system

ẋ(t) = Acx(t),

where

Ac = 1
3

−1 0 1
1 −1 0
0 1 −1

+ 1
3εI3.

After some tedious computations one gets

V̇dist(x) = −
(

1− 2
3ε
)
Vdist(x).

The switching law

σ(t) = u(x(t)) ∈ arg min
α∈A
∇VdistA(α)x(t)

drives x(t) to the bisector, generated by r, and hence x(t) asymptoti-

cally reaches either the positive or the negative orthant.



6

Performances optimization

6.1 Optimal control

Optimal control of switched and hybrid systems has been widely stud-

ied, see Cassandras et al. [2001] and Dmitruk and Kaganovich [2008,

2011]. The problem is closely related to the variational approach to the

stability of switched systems previous developed by Rapoport [1996],

Boscain [2002] and Margaliot [2006]. The simplest optimal control prob-

lem for a positive switched system

ẋ(t) = Aσ(t)x(t), (6.1)

can be defined by introducing the linear cost functional

J(x0, σ) := c>x(tf ), (6.2)

where c ∈ Rn+, c� 0, is the cost vector, tf > 0 is a given terminal time

instant, σ ∈ D0 is a switching signal, and x0 ∈ Rn+ is a given initial

state in the positive orthant. The cost (6.2) has to be minimized with

respect to σ ∈ D0. This is a so-called Mayer problem, i.e. a problem

where the cost is a function of the final state only.

Despite the simplicity of its definition, this optimal control problem

does not admit, in general, a solution σ ∈ D0. Indeed, when dealing

138
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with switched systems it is possible to encounter sliding trajectories,

i.e. σ exhibits infinite frequency switching. In order to include sliding

trajectories, we embed again the switched system in the bilinear system

described by

ẋ(t) = A(u(t))x(t), (6.3)

where the matrix A(u) is defined as

A(u) :=
M∑
i=1

Ai[u]i, (6.4)

and u(t) ∈ AM , for every t ∈ [0, tf ], is the control vector. The cost

functional, with a little abuse of notation, can be written as

J(x0,u) := c>x(tf ) (6.5)

and has to be minimized with respect to u.

This approach was used in recent papers dealing with optimal con-

trol, including Bengea and DeCarlo [2005], Bai and Yang [2007]. By

extending the concept of valid switching signals to sliding modes based

on the appropriate differential inclusions, we consider the optimal con-

trol of the system (6.3) with cost functional (6.5). For further details

on the so-called viscosity solutions of non-smooth differential equations

and their relation with the optimal control of differential inclusions, see

Bardi and Capuzzo-Dolcetta [2008] and Brandi and Salvadori [1998],

respectively. The role of sliding modes (singular control) in optimiza-

tion problems in terms of finite time convergence to the sliding surface

is emphasized in McDonald [2008].

Remark 6.1. Note that the optimal control of system (6.3)-(6.4) with

cost functional (6.5) always exists. Indeed, a sufficient condition for its

existence is that the sets of velocities F (x,u) := {A(u)x; u ∈ AM} are

convex and that the vector field is bounded by an affine function of the

norm of the state variable, i.e. there exists some positive scalar α such

that ‖A(u)x‖ ≤ α(1 + ‖x‖), for all x ∈ Rn+ and u(t) ∈ AM , t ≥ 0, see

e.g. Theorem 5.1.1 in Bressan and Piccoli [2007]. These conditions are

satisfied for our problem and therefore the optimal control exists. �

In the literature on optimal control, great relevance has been given

to the analysis of necessary conditions for optimality. In most cases
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these necessary conditions are the starting point to find the optimal

solutions, since direct sufficient conditions (for instance associated with

Hamilton-Jacobi-Bellman equations) are often unpractical. For our con-

trol problem, necessary conditions can be easily found by writing the

Hamiltonian function H(x,u,π) =: π>A(u)x, where π is the so-called

co-state, and using a minor extension of the Pontryagin principle to

cope with the input-affine form of the Hamiltonian function. As a re-

sult we now introduce the definition of a Pontragyin solution, namely

a candidate optimal solution satisfying the necessary conditions. For

further details see, e.g., Bressan and Piccoli [2007].

Definition 6.1. A triple (uo(t),xo(t),πo(t)) that satisfies (for almost

every t ≥ 0) the system of equations:

ẋo(t) =
(
M∑
i=1

[uo(t)]iAi

)
xo(t), (6.6)

−π̇o(t) =
(

m∑
i=1

[uo(t)]iA>i

)
πo(t), (6.7)

uo(t) ∈ arg min
u(t)∈AM

{π>(t)
(
M∑
i=1

[u(t)]iAi

)
xo(t)}, (6.8)

with the boundary conditions xo(0) = x0 and πo(tf ) = c, is called a

Pontryagin solution for the optimal control problem:

min
u
J(x0,u). (6.9)

As noted earlier, in general a Pontryagin solution need not be op-

timal, since the conditions expressed by Definition 6.1 are only neces-

sary for optimality. We know that for linear systems and (for instance)

quadratic cost, the Pontryagin solution is also optimal and can be found

through backward integration of a Riccati differential equation. Two

classes of optimal control problems for which any Pontryagin solution

is necessarily optimal are discussed in the following remark.

Remark 6.2. In some cases, the necessary conditions satisfied by the

Pontryagin solutions are also sufficient to guarantee optimality. One is

trivially the case when the Pontryagin solution is unique. The second
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case is when the cost functional is convex with respect to the control

variable. The following result can be stated, see Theorem 7.2.1 in Bres-

san and Piccoli [2007]. Let UMli be the set of measurable and locally in-

tegrable functions taking values in AM . If the functional u→ c>x(tf )
from UMli into R+ is convex, then any Pontryagin solution gives an

optimal input trajectory and state trajectory pair (uo,xo). �

In general, even for positive switched systems and linear costs, the

functional J(x0,u) : UMli −→ R+ is not convex. There is however a

special class of such systems that enjoys this important property, as

specified in the assumption below and formalized in Theorem 6.1.

Assumption 1. The off-diagonal entries of each matrix Ai, i =
1, 2, . . . ,M , do not depend on i, i.e.

Ai = Di + Π>, i = 1, 2, . . . ,M,

where Π is a Metzler matrix andDi, i = 1, 2, . . . ,M, are (not necessarily

positive) diagonal matrices. When so, without any loss of generality,

matrix Π can be selected so that Π1n = 0.

Remark 6.3. The class of positive switched systems satisfying Assump-

tion 1 is relevant to several applications. One arises when trying to

approximate the dynamics of HIV mitigation under therapy switching.

It is assumed that each therapy only affects the diagonal entries of the

matrices, and this simplifying assumption seems to be good enough to

represent the behaviour in a particular transient phase of the disease

growth, see Hernandez-Vargas et al. [2013]. This class also encompasses

some epidemiology models (see for example Ait Rami et al. [2014],

Moreno et al. [2002], Blanchini et al. [2014]). Under some additional

assumptions on the interactions, and considering the initial phase of

the infection, when trying to slow down the spread of a disease, the

model above is appropriate. �

Positive switched systems, described in their embedded form (6.3),

whose matrices Ai, i = 1, 2, . . . ,M, enjoy Assumption 1, are character-

ized by an important convexity result that helps in the derivation of an

optimal control u(t) minimizing a convex cost. We now state our main
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result. For the proof the Reader is referred to Colaneri et al. [2014] (see

also Blanchini et al. [2014] and Rantzer and Bernhardsson [2014]).

Theorem 6.1. Consider the system (6.3), the cost (6.5), and let As-

sumption 1 be verified. Then the cost functional is convex with respect

to u ∈ UMli , the optimal control problem admits at least one Pontrya-

gin solution (uo,xo,πo) and uo(t) is a global optimal control input

corresponding to x0. Moreover, the value of the optimal cost functional

Jo(x0) = min
u∈UM

li

J(x0,u) (6.10)

is Jo(x0) = πo(0)>x0.

6.1.1 Extensions

The proof of convexity in the previous theorem is carried out by consid-

ering the Mayer problem for positive switched systems. The same result

can be proved, under the same assumptions on the positive switched

system, for the more general cost function

J(x0,u) = c>x(tf ) +
∫ tf

0
d>x(t)dt, (6.11)

where d ∈ Rn+,d � 0. Indeed, the optimal control problem for sys-

tem (6.3) and cost (6.11) can be transformed into the optimal control

problem for system (6.3) and cost (6.5) by introducing the augmented

system

ξ̇ = Ā(u)ξ, Ā(u) :=
[
A(u) 0
d> 0

]
, ξ(0) =

[
x0
0

]
and the corresponding augmented cost

J(x0,u) = c̄>ξ(tf ), c̄> :=
[

c> 1
]
.

Notice that the assumption of diagonal switching on A(u), i.e. Assump-

tion 1, is inherited by Ā(u) as well, since d is independent of u.

Following a similar rationale, we can also establish an extension of

the present theory to systems affected by a constant input, i.e.

ẋ = A(u)x + b,
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where b > 0. This system can be rewritten as

ξ̇ = Ā(u)ξ, Ā(u) :=
[
A(u) b

0 0

]
, ξ(0) =

[
x0
0

]

and the related cost as

J(x0,u) = c̄>ξ(tf ), c̄> :=
[

c> 0
]
.

Again the new Ā(u) satisfies Assumption 1 if A(u) does.

An important result concerns the concavity of the optimal cost

Jo(x0) = min
u∈UM

li

J(x0,u)

with respect to the initial state (see also Theorem 5.2).

Lemma 6.2. For any tf > 0, the function Jo(x0) is concave and posi-

tively homogeneous of order 1, as a function of x0.

Proof. The fact that J(x0) is positively homogeneous of order 1 is ob-

vious from the fact that Jo(x0) = πo(0)>x0. To prove concavity, con-

sider two initial states xA and xB and take any convex combination

x0 = αxA + βxB, α, β ≥ 0 with α + β = 1. Let uo(t) be the opti-

mal control input associated with the initial condition x0, achieving

the optimal cost Jo(x0). Let xA(t) and xB(t) be the state trajecto-

ries corresponding to uo(t) and to the initial states xA(0) = xA and

xB(0) = xB, respectively. By the system linearity, we have

x(tf ) = αxA(tf ) + βxB(tf ).

Therefore

Jo(x0) = αJ(xA,uo) + βJ(xB,uo) ≥ αJo(xA) + βJo(xB)

This proves the concavity of Jo(x0).

The previous lemma has several implications including the fact that

given any convex combination (in a general polytope) of initial con-

ditions, the optimal cost function Jo(x0) reaches its minimum on a

vertex.
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6.1.2 Algorithm

By Theorem 6.1, under Assumpion 1, the cost functional is convex with

respect to u, and this allows to use different types of algorithms to find

the solution of

min
u∈UM

li

J(x0,u), J(x0,u) = c>x(tf ). (6.12)

Computations can be cast in discrete-time, by taking a subdivision of

the interval [0, tf ] into N intervals ol lengths T1, T2, . . . , TN , and by

approximating the control function with a piecewise constant function,

i.e. by assuming

u(t) =


ū1, t ∈ [0, T1);
ū2, t ∈ [T1, T1 + T2);
...

...

ūN , t ∈ [
∑N−1
i=1 Ti, tf ).

The discretized control, denoted by ū =
[

ū>1 ū>2 . . . ūN
]>

, takes

values in the Cartesian products of AM , denoted by ANM . Hence the

problem becomes to find

Jo(x0) = min
ū∈ANM

J(x0, ū), J(x0, ū) := c>
1∏

i=N
e(Π>+Diūi)Tix0.

Notice that ANM is a convex set and that, by Assumption 1, J(x0, ū) is

a convex function of ū. Therefore the constrained optimization problem

can be solved using the standard Matlab function fmincon.m or an ad

hoc algorithm based on a projected (sub)gradient method, e.g.

ū[k+1] = ProjANM
(
ū[k] − αg[k]

)
, (6.13)

where α is a speed factor (possibly varying with k), ProjANM is the

projection onANM , g[k] is the gradient of J(x0, ū) evaluated at ū = ū[k]

and k indicates the iteration index. The gradient of J(x0, ū) is an NM -

dimensional row vector and can be computed in a simple way from the

expression of J(x0, ū). Notice also that numerical algorithms might be

further enhanced by explicit computation of the Hessian matrix using

similar techniques.
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As already pointed out in Lemma 6.2, the optimal cost is a concave

function of x0. Then taking x0 ∈ An, it may also be of interest to find

a saddle point solution of the min-max problem

min
u∈UM

li

max
x0∈An

J(x0,u),

i.e. a solution pair (u∗,x∗0) such that J(x0,u∗) ≤ J(x∗0,u∗) ≤ J(x∗0,u)
for any x0 ∈ An and any u ∈ UMli . In this respect, by assuming again

the above discretization of u, we are able to write the computational

scheme:

ū[k+1] = ProjANM
(
ū[k] − αg[k]

)
, (6.14)

x̄[k+1]
0 = ProjANM

(
x̄[k]

0 + αh[k]
)
, (6.15)

where h[k] is the gradient of J(x0,u) with respect to x0 at the kth

iteration. The vector h[k] can be easily computed by the linearity of

J(x0,u) with respect to x0.

6.2 Suboptimal control via linear programming

In general, finding the optimal control in the form of a state-feedback

law is a rather complicated problem, due to the inherent nonlinearity

of the problem itself and the difficulty in finding a closed-form formula

for the cost-to-go function Jo(x), that, as it is well-known, satisfies

a non-smooth version of the classical Hamilton-Jacobi equation. This

problem also arises for the class of systems satisfying Assumption 1

(that ensures the convexity of the cost functional). Therefore, easy-to-

compute subotimal state-feedback strategies can be devised instead,

for instance based on appropriate piecewise linear control Lyapunov

functions. As a first step, let us associate with system (6.1) the integral

cost with final state penalty

J(x0, σ) = c>x(tf ) +
∫ tf

0
d>σ(τ)x(τ)dτ, (6.16)

with di > 0, i = 1, 2, . . . ,M, and c > 0. The following result can be

proven.
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Theorem 6.3. Consider system (6.1), cost (6.16), with c > 0, di > 0,

i = 1, 2, . . . ,M , and the solution vi(t) of the coupled linear differential

equations

−v̇i(t) = A>i vi(t)+
M∑

j=1,j 6=i
λij (vj(t)− vi(t))+di, vi(tf ) = c, (6.17)

where λij , i 6= j, i = 1, 2, . . . ,M , j = 1, 2, . . . ,M , are given nonnegative

scalars. Then, the switching law

σ(t) = arg min
i

vi(t)>x(t) (6.18)

is such that Jo(x0) ≤ mini vi(0)>x0.

Proof. Define the Lyapunov function

V (x, t) := min
i

vi(t)>x,

where vi(t) satisfies (6.17), for every i = 1, 2, . . . ,M , and denote by

I(x, t) the set of all indices i such that vi(t)>x ≤ vj(t)>x, for j 6= i,

at the given time instant t. V (x, t) is not differentiable with respect

to x and hence we have to compute the right-upper Dini derivative

D+(V (x, t)). Letting i be the minimizing index at time t, it follows

that, see Ladson [1970]

D+(V (x, t)) = min
j∈I(x,t)

[
vj(t)>Aix

]
+ v̇i(t)>x

≤
(
vi(t)>Ai + v̇i(t)>

)
x

= −
M∑

j=1,j 6=i
λij
(
vj(t)>x− vi(t)>x

)
− d>i x.

Therefore, since λij ≥ 0 for i 6= j and vj(t)>x ≥ vi(t)>x since i is the

minimizing index at time t, we conclude that D+(V (x, t)) < −d>i x for

t ≥ 0. By recalling the terminal condition V (x, tf ) = c>x(tf ) and by

integrating from 0 to tf , it results that

c>x(tf ) +
∫ t

0
d>σ(t)x(t)dt < min

i
vi(0)>x0

and the thesis is proved.



6.2. Suboptimal control via linear programming 147

Remark 6.4. The differential equations (6.17) can be written in a com-

pact form by stacking the vectors vi(t) and di, i = 1, 2, . . . ,M , in

vectors vec{vi(t)} and vec{di}, respectively. Indeed, one finds

−vec{v̇i(t)} =
(
diag{A>i }+ Λ⊗ In

)
vec{vi(t)}+ vec{di}, (6.19)

vec{vi(tf )} = 1m ⊗ c, (6.20)

where [Λ]i,j , the (i, j)th entry of the matrix Λ is, λij , for i 6= j, and

[Λ]ij = λii = −
∑
j 6=i λij . Notice that the matrix Λ, thus constructed, is

Metzler and such that Λ1M = 0. We previously denoted the set of all

such Metzler matrices of dimensions M ×M by PM . If Λ is irreducible,

then 0 is its Frobenius eigenvalue. As such, (recall comment (i) after

Theorem 5.5), Λ can be regarded as the infinitesimal transition matrix

of a Markov chain, governing the switching σ(t), and equations (6.17)

induce the stochastic Lyapunov function V (x, σ, t) = vσ(t)>x for the

cost E
[
c>x(tf ) +

∫ tf
0 d>σ(τ)x(τ)dτ

]
, where expectation is operated with

respect to the probability measure induced by Λ ∈ PM . �

The solutions vi(t), i = 1, 2, . . . ,M , of equations (6.17) always exist

for t ∈ [0, tf ] and for any Λ ∈ PM , and are bounded nonnegative vector

functions. Letting Λ = αΛ̄, for some Λ̄ ∈ PM and α > 0, and denoting

by vi(α, t), i = 1, 2, . . . ,M , the solutions of (6.17), we can study the

limit of such solutions as α → +∞. It follows that (the easy check is

left to the Reader):

lim
α→+∞

Λ̄ · vec{vi(α, t)} = 0,

so that, if Λ̄ is irreducible (and henceforth its right Frobenius eigenvec-

tor is 1M ),

lim
α→+∞

(vi(α, t)− vj(α, t)) = 0, ∀i, j.

Therefore it is possible to define:

v(t) = lim
α→+∞

vi(α, t), ∀i.

On the other hand, let π̄ be the left Frobenius eigenvector of Λ̄ as-

sociated with the zero eigenvalue, i.e. π̄>Λ̄ = 0, and consider again
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the solutions of (6.17) associated with Λ = αΛ̄. By multiplying each

equation by [π̄]i, letting α go to +∞, and summing up, we have

−v̇(t) =
(
M∑
i=1

A>i [π̄]i

)
v(t) +

M∑
i=1

di[π̄]i, v(tf ) = c, (6.21)

so that Jo(x0) ≤ v(0)>x0 under the action of u = π̄ for the associated

bilinear system ẋ =
(∑M

i=1Ai[u]i
)

x.

To conclude, for a certain choice of Λ ∈ PM , a switching law guar-

anteeing an upper bound on the cost can be easily defined as in (6.18)

and optimized with respect to Λ ∈ PM . Constant controls u are recov-

ered taking Λ = αΛ̄ with α → +∞ and Λ̄u = 0. This corresponds to

a sliding control law in which σ(t) switches at infinite frequency, with

a frequency pattern of the modes (the values of σ) in accordance with

the entries of u.

Now, we consider the infinite horizon version of the cost (6.16),

namely

J(x0, σ) = lim
tf→+∞

c>x(tf ) +
∫ tf

0
d>σ(τ)x(τ)dτ. (6.22)

It is clear that an optimal control exists if and only if the system is

stabilizable, see Chapter 5, and in this case

inf
σ∈D0

J(x0, σ) = min
u∈UM

li

J(x0,u), (6.23)

where, with the usual abuse of notation, we have set

J(x0,u) =
∫ +∞

0

M∑
i=1

[u(t)]id>i x(τ)dτ (6.24)

to be minimized for u ∈ UMli under the dynamic constraint given by

the system

ẋ(t) =
(
M∑
i=1

Ai[u(t)]i

)
x(t), x(0) = x0. (6.25)

It is of course true that the set of input functions can be restricted to the

ones driving the state vector to zero, so that the term c>x(tf ) does not
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play any role in the cost function J(x0,u). Looking at the differential

equations in Theorem 6.3, see also (6.19) and (6.20), we can state the

following result, whose proof can be straightforwardly derived from the

one given for Theorem 6.3, for tf → +∞, and therefore is omitted.

Theorem 6.4. Consider system (6.1), cost (6.22), with c > 0 and di >
0, i = 1, 2, . . . ,M , and assume that there exist the solutions v̄i > 0 ,

i = 1, 2, . . . ,M , of the coupled linear equations

A>i v̄i +
M∑

j=1,j 6=i
λij (v̄j − v̄i) + di = 0, (6.26)

where λij , i 6= j, i = 1, 2, . . . ,M , j = 1, 2, . . . ,M , are given nonnegative

scalars. Then, the switching law

σ(t) = arg min
i

v̄>i x(t) (6.27)

is such that

Jo(x0) = inf
u∈UM

li

J(x0,u) ≤ min
i

v̄>i x0. (6.28)

Following what was said in Remark 6.4, the coupled linear equations

(6.26) can be written in compact form as(
diag{A>i }+ Λ⊗ In

)
vec{v̄i}+ vec{di} = 0. (6.29)

Therefore vec{vi} > 0 exists if and only if Λ ∈ PM is such that

Ã =


A1 + λ11In λ21In . . . λM1In
λ12In A2 + λ22In . . . λM2In

...
...

. . .
...

λ1MIn . . . . . . AM + λMMIn


is Hurwitz.

Finally, if ū ∈ AM is such that A(ū) =
∑M
i=1Ai[ū]i is Hurwitz, then

Jo(x0) ≤ v̄>x0, where v̄ > 0 satisfies(
M∑
i=1

Ai[ū]i

)
v̄ +

M∑
i=1

di[ū]i = 0, (6.30)

and the upper bound is achieved by the constant control u = ū.
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Remark 6.5. It is worth noticing that equations (6.26) can be replaced

by the linear inequalities

A>i vi +
M∑

j=1,j 6=i
λij (vj − vi) + di � 0.

If vi � 0, i = 1, 2, . . . ,M , exist, and Λ ∈ PM , then the switching

control σ(t) := arg mini v>i x(t) guarantees Jo(x0) < mini v>i x0. Con-

sequently, also (6.29) and (6.30) can be replaced by the corresponding

inequalities. �

It is well-known that the initial state x0 can be set to zero and

its effect replaced by that of an impulsive input affecting the state

derivative. In Section 4.2 we have studied the worst L1 performances

for systems that are exponentially stable under arbitrary switching.

Here we consider the minimization of the L1 performances. By making

use of the same notations as in Section 4.2, consider the cost

JL1(σ, h) :=
∫ +∞

0
1>p z[h](t)dt,

and the minimization problem

ĴL1,0 := inf
σ∈D0

m∑
h=1

∫ +∞

0
1>p z[h](t)dt.

In order to investigate this problem we can resort to Theorem 6.4, recall

also Remark 6.5, upon noticing that the (forced) state evolution x[h](t)
coincides with the free state response associated with the initial state

x(0) = Bσ(0)eh, and hence

z[h](t) = Cσ(t)x[h](t) +Dσ(t)δ(t)eh, t ∈ R+.

This implies that for every switching signal σ we have

JL1(σ, h) =
∫ +∞

0
1>p Cσ(t)x[h](t)dt+ 1>p Dσ(0)eh.
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Theorem 6.5. Consider system (4.1)-(4.2) with x(0) = 0. Assume that

there exist strictly positive vectors vi ∈ Rn+, i = 1, 2, . . . ,M , such that:

A>i vi +
M∑

j=1,j 6=i
λij (vj − vi) + C>i 1p � 0. (6.31)

Then, the switching control law

σ(t) =
{

arg mini v>i x(t), t > 0,
arg minj mini

(
v>i Bj + 1>p Dj

)
1m, t = 0 (6.32)

is such that

ĴL1,0 < min
j∈{1,2,...,M}

min
i∈{1,2,...,M}

(
v>i Bj + 1>p Dj

)
1m. (6.33)

Remark 6.6. Consider again inequalities (6.31) for Λ = αΛ̄, with Λ̄ ∈
PM , α > 0, and assume that such inequalities are feasible for α > 0
arbitrarily large. This is equivalent to the existence of a vector v � 0
satisfying

v>(
M∑
i=1

Ai[π̄]i) +
M∑
i=1

1>p Ci[π̄]i � 0,

where π̄ is the Frobenius left eigenvector associated with Λ̄. The con-

trol law reduces to the constant control law u(t) = π̄, t > 0, for the

embedded system (4.16)-(4.17). �

Remark 6.7. Notice that in (6.33) the upper bound is given by the min-

imum over j of the right hand expression. The value of the minimizing

j corresponds to the value of the minimizing σ(0), or the minimizing

vertex of u(0) ∈ AM , respectively. �

6.2.1 Application to optimal therapy scheduling

Here we reconsider the model of optimal therapy scheduling for viral

mitigation in HIV disease, briefly discussed in Section 2.2, and provide

a few simulation results. For more details see Hernandez-Vargas et al.

[2011], Hernandez-Vargas et al. [2013], Colaneri et al. [2014].
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The viral dynamics is represented by equation (2.2). Under As-

sumption 1, the associated embedded system can be written as follows:

ẋ(t) = (D1[u(t)]1 +D2[u(t)]2 + Π>)x(t), (6.34)

where [u(t)]1 + [u(t)]2 = 1, at every time t ≥ 0, and

Dσ = diag{2µ− δ + ρiσ, i = 1, 2, 3, 4}, Π = µ


−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2


with virus clearance rate δ = 0.24, days−1, mutation rate µ = 10−4,

and replication rates ρij , i = 1, 2, 3, 4, j = 1, 2, as in Table 2.1. No-

tice that other authors (Huang et al. [2010], Luo et al. [2012], Putter

et al. [2002]) suggest a faster clearance rate δ, approximately 1 per day.

These numbers are of course idealized, however the general principles

are realistic, see Hernandez-Vargas et al. [2011], Hernandez-Vargas and

Middleton [2014].

Remark 6.8. Note that the final time penalty is motivated by the ob-

servation that frequently the final viral escape is at an exponential

rate that is largely independent of the treatment selection. Thus, the

terminal cost (6.5) is a surrogate for delaying the time to escape. �

The optimal control problem for system (6.34) and cost (6.12)

with µ 6= 0 and data as in Table 2.1 has been completely solved in

Hernandez-Vargas et al. [2013], where a Pontryagin solution has been

found as a function of c and x0. Optimality of the Pontragyn solution

has been proved showing its uniqueness. All this was possible because

of the symmetric constraints satisfied by the data in Table 2.1, namely

ρ21 > δ, ρ22 < δ, ρ31 < δ, ρ32 > δ, ρ21 − ρ22 + ρ31 − ρ32 = 0. (6.35)

In Colaneri et al. [2014] we have compared the interior point method in

the Matlab routine fmincon.m, an ad hoc algorithm based on the pro-

jected gradient method, with optimally varying speed, and the closed-

form solutions given by the necessary conditions. As expected, the
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results using both algorithms and the Pontryagin solutions are iden-

tical apart from minor differences due to numerical issues. In the

three simulations the final time is tf = 50 days, the initial state

is x0 = [103 5 0 10−5]>, whereas the cost vector is c = 14,

c = [1 5 1 1]>, and c = [1 1 5 1]>, respectively. In Figure 6.1

the optimal control u is shown for the three different choices of termi-

nal cost vector.

Finally, we have slightly perturbed one parameter of the system in

order to violate (6.35). In particular, we have set ρ21 = 0.31. In this case

the closed form solution worked out in Hernandez-Vargas et al. [2013]

is no longer valid and the optimal solution, even in the long horizon

case, cannot be easily computed. Figure 6.2 shows the results using

the numerical algorithms of Section 6.1.2. In this figure there seem to

be intervals of time in which the optimal control is constant (sliding

mode optimal solution), however a numerical analysis reveals that the

input is not really constant in those intervals. Therefore, differently

from the symmetric case, the existence of sliding mode solutions in the

asymmetric case remains an open problem.

As far as the min-max optimal control problem is concerned, algo-

rithm (6.14)-(6.15) has been applied for several different choices of c.

As a result, the saddle point solution is found to be (x∗0,u∗), where

x∗0 = [0 0 0 1]> and u∗ coincides with the optimal control function as-

sociated with x∗0, which means [u(t)]1 = [u(t)]2 = 0.5 for t ∈ [0, 42.69]
and [u(t)]1 = 2 − k, [u(t)]2 = |1 − k| for t ∈ [42.69, 50], where

k = arg min{[c]2, [c]3}.

Remark 6.9. Optimal trajectories are associated with chattering

switching laws, that are of course not realistically applicable for HIV

treatment. However, this theoretical result provides an important in-

sight since it clarifies when the therapies have to be alternated more

frequently in order to better control the viral load. Indeed, using a

switch on virological failure strategy, see D’Amato et al. [1998], the

therapy is changed after 9 months (when viral load ≥ 1000 copies/ml)

and therefore the population of the resistant genotype is so large that

can not be contained by the second therapy. On the contrary, proactive

switching may reduce viral load to very low levels during the whole
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Figure 6.1: Optimal control variable - symmetric case.
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Figure 6.2: Optimal control variable - asymmetric case.
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treatment (100 copies/ml), thus promoting a larger delay in the viral

escape. This means that a periodic oscillating strategy may be effec-

tive in postponing viral escape without requiring a detailed model, high

computational time and full state measurements. �

Remark 6.10. When µ = 0, the system matrices commute, and existing

results (e.g. see Agrachev and Liberzon [2001] and Margaliot [2007])

can be applied. In particular, it is possible to prove that if we let Ti,

i = 1, 2, denote the total time in the interval [0, tf ] in which the ith

mode is active (clearly T1 + T2 = tf ), then all optimal controls are

characterized by

T1 = tf
2 + 1

0.44 ln
[c]3[x0]3
[c]2[x0]2

, T2 = tf
2 −

1
0.44 ln

[c]3[x0]3
[c]2[x0]2

.

Moreover, the optimal cost is

Jo(x0) = 2e−0.08tf
√

[x0]2[x0]3[c]2[c]3+[x0]1[c]1e−0.19tf+[x0]4[c]4e0.03tf .

The optimal solution is not unique and for initial/final conditions sat-

isfying [c]2 = [c]3, [x0]2 = [x0]3, the sliding mode control, u(t) =
[α 1− α]>, t ≥ 0, with α = 0.5, is also optimal. �

6.2.2 Optimal therapy scheduling: Epidemiological models

In this section, we follow up on the epidemiological model presented in

Section 2.3, and refer to Blanchini et al. [2014] for the simulations. The

linearized system (2.6) can be also written as in Assumption 1, for

D1 = diag{−1.6811,−0.9587,−3.0005,−0.1098}
D2 = diag{−0.0199,−1.4265,−2.1732,−2.2430}

Π> =


−1.9462 0.6324 0.9575 0.9572
0.9058 −1.4578 0.9649 0.4854
0.1270 0.2785 −2.8930 0.8003
0.9134 0.5469 0.9706 −2.2429

 .
The goal is to find the optimal control that minimizes the cost function

J(x0,u) =
∫ ∞

0

4∑
i=1

[x]i(t)dt,
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with the initial state given by x0 = [0.05 0.15 0.25 0.35]>. Similarly

to what we did in Section 6.1.1, we set c̄ = [0 0 0 0 1]>,

Ā(u) =
[

Π> +D(u) 0
c̄> 0

]
,

with D(u) = D1[u]1 + D2[u]2, so that we can tackle the problem of

minimizing J(x0,u) = limtf→+∞ c>ξ(tf ), by assuming that the system

dynamics is given by ξ̇ = A(u)ξ.

Notice that both A1 = D1 + Π> and A2 = D2 + Π> are Hurwitz,

so that the minimal value of the cost function one can obtain with u
equal to either e1 or e2 can be easily found to be mini q>i x0 = 0.622,

where qi = −c>(Di+Π>)−1, i = 1, 2. Notice that by taking a constant

u strictly inside the polytope, the best constant control is [u]1 = 0.26,

[u]2 = 0.74, that corresponds to a sliding mode for the switched system.

Corresponding to this control the cost function takes the value J(x0) =
0.601.

As a consequence of the cost convexity, following from Assumption

1, it is possible to numerically compute the optimal control. By assum-

ing a time horizon of 20 time units, and 0.1 time units as discretization

step, we obtain the optimal control shown in Figure 6.3.
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Figure 6.3: Optimal control variable.
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For this example, the optimisation was computed with an analyti-

cal gradient, using the interior point algorithm in the Matlab function

fmincon.

The optimal cost for the linearized system is J(x0) = 0.582. One

can also optimize the values of the parameters λij in order to minimize

the upper bound on the cost given by the copositive Lyapunov Metzler

inequalities (6.31). By taking λ12 = 0.74, λ21 = 0.26 one obtains p1 =
[0.876 0.933 0.652 1.083], p2 = [1.229 0.833 0.723 0.725] and

by applying the associated sub-optimal switching strategy one obtains

a cost equal to 0.582. Therefore, in this particular case, the optimal

cost for the linearized system is equal to the cost obtained by the sub-

optimal switching strategy. The (state-feedback) control law generates

a sort of periodic behaviour in that the control periodically switches

from [u]1 = 0 to [u]1 = 1.

As for the concave-convex mixed strategy, see (6.14),

(6.15), the results show that the worst initial state is

x0 = α[0.206 0.1631, 0.0043 0.126]>, where α is any positive scalar.

Notice that since the system is linear the cost is also linear with respect

to x0 and hence only the direction is important. The associated cost

is J(x0) = 0.4321α.

When applied to the nonlinear system (2.5), the best constant con-

trol constrained to belong to the vertices of the polytope corresponds

to [u]1 = 0 and the associated cost is 0.411. The best constant control

within the polytope is [u]1 = 0.26, [u]2 = 0.74 and the associated cost

is 0.403. The switching strategy based on (6.31) provides a cost equal

to 0.3922. For the nonlinear system, the cost associated with this op-

timal control is again equal (up to numerical errors) to the cost due

to the switching strategy based on the copositive Lyapunov Metzler

inequalities.

The associated transients of the state variables are depicted in

Figure 6.4. If we compute the optimal control for the linearized sys-

tem and then apply it to the nonlinear system we obtain the re-

sults shown in Figure 6.5, where the state-variables are plotted. Fi-

nally, the min-max optimal strategy corresponding to the initial state

x0 = [0.206 0.1631, 0.0043 0.126]> has been applied to the nonlinear sys-
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tem, giving a cost equal to 0.407. The transient of the state-variables

and the optimal input function are illustrated in Figs. 6.6 and 6.7,

respectively.
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Figure 6.4: State variables of the nonlinear system under the action of the subop-
timal control for the linearized system.

6.3 Input-output norms minimization

In Chapter 4 we studied the input-output norms of a linear positive

switched system, for which the switching signal σ was considered as a

(uncontrolled) disturbance. In particular we were interested in finding

an upper bound on the worst induced norm between the input w and

the output z, upon assuming a zero initial condition for the state vari-

able. In the present section the switching signal σ is considered as a

control variable and the aim is to find an upper bound on the minimum

achievable induced norm. Therefore, consider the L1 induced norm, i.e.

Ĵ indL1,0 := inf
σ∈D0

sup
w∈L1,w 6=0

w(t)≥0,∀t≥0

∫+∞
0 1>p z(t)dt∫+∞
0 1>mw(t)dt

. (6.36)

The next result provides an upper bound on this norm, by exploiting

a Lyapunov function constructed as the minimum of piecewise linear

Lyapunov functions.
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Figure 6.5: State variables of the nonlinear system under the action of the optimal
control for the linearized system.
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Figure 6.7: Optimal control variable associated with the worst initial state.

Theorem 6.6. Consider the positive switched system (4.1)-(4.2) and

assume that there exist strictly positive vectors vi ∈ Rn+, i =
1, 2, . . . ,M , and a Metzler matrix Λ ∈ PM , such that for every

i, j ∈ {1, 2, . . . ,M}, i 6= j,

v>i Ai +
M∑

j=1,j 6=i
λij(v>j − v>i ) + 1>p Ci � 0. (6.37)

Let γ be any positive number satisfying

γ > min
i=1,2,...M

max
j=1,2,...,m

(
v>i Bi + 1>p Di

)
ej . (6.38)

Then, under the switching law

σ̂(t) = arg min
i=1,2,...,M

{
v>i x(t), x(t) > 0;
maxj

(
v>i Bi + 1>p Di

)
ej , x(t) = 0. (6.39)

the closed loop system is exponentially stable and such that Ĵ indL1,0 < γ.

Proof. The feasibility of the inequalities (6.37) implies the feasibility of

inequalities (5.6), so that the system is stabilizable under the switching

law (6.39). Set

V (x) := arg min
i

v>i x,
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and let I(x) be the set of all indices i such that v>i x ≤ v>j x for every

j 6= i. If i is the active mode at time t, i.e. σ̂(t) = i, computing the

Dini derivative of V (x) leads to

D+V (x) = min
j∈I(x)

v>i (Ajx +Bjw) ≤ v>i (Aix +Biw)

< v>i Biw− 1>p Cix−
M∑

j=1,j 6=i
λij(v>j x− v>i x)

≤ v>i Biw− 1>p Cix

=
(
v>i Bi + 1>p Di

)
w− 1>p z.

By the exponential stability and the zero initial condition, integration

from 0 to +∞ for any w ∈ L1, w(t) ≥ 0,∀t ≥ 0, leads to∫ +∞

0
1>p z(t)dt <

∫ +∞

0

(
v>σ̂(t)Bσ̂(t) + 1>p Dσ̂(t)

)
w(t)dt

and hence

Ĵ indL1,0 < sup
w∈L1,w 6=0

w(t)≥0,∀t≥0

∫+∞
0

(
v>σ̂(t)Bσ̂(t) + 1>p Dσ̂(t)

)
w(t)dt∫+∞

0 1>mw(t)dt

≤ sup
t≥0

max
j

(
v>σ̂(t)Bσ̂(t) + 1>p Dσ̂(t)

)
ej

=
(
v>σ̂(t̄)Bσ̂(̄t) + 1>p Dσ̂(t̄)

)
ej̄ ,

where t̄ and j̄ are the time instant and the index maximizing(
v>σ̂(t)Bσ̂(t) + 1>p Dσ̂(t)

)
ej . The worst case of the bound is obtained

for (the L1 approximation of) w(t) = δ(t − t̄)ej̄ , Hence, in t = t̄−,

the state variable is identically zero, so that, according to (6.39),

σ̂(t̄) = arg mini
(
v>i Bi + 1>p Di

)
ej̄ , and therefore Ĵ indL1

< γ, with γ

satisfying (6.38).

It is worth noticing that the inequalities (6.37) do not depend

on γ and their feasibility (namely the existence of Λ ∈ PM such

that the inequalities are verified for some strictly positive vectors vi,
i = 1, 2, . . . ,M, and Λ ∈ PM ) is not guaranteed, not even for stabiliz-

able systems. As a matter of fact, as shown in Chapter 5, this condition
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is only sufficient for stabilizability. Moreover, inequalities (6.37) are not

linear inequalities for the presence of a product between unknowns (the

coefficients of Λ and the coefficients of vectors vi). This latter problem

can be circumvented by gridding the space of the M(M − 1) free pa-

rameters in Λ or by imposing (at the price of increased conservatism) a

special structure to Λ with less free parameters. Of course, one can set

up a minimization problem for the upper bound in the following way.

Once the solutions vi, i = 1, 2, . . . ,M, satisfying (6.37), for a certain

Λ ∈ PM , have been found, inequalities (6.38) are always feasible for

γ ≥ maxi maxj
(
v>i Bi + 1>p Di

)
ej . Therefore, one can minimize γ by

optimizing this bound with respect to Λ ∈ PM .

Remark 6.11. Observe that in the case when only the actuators switch,

and hence Ai = A, Ci = C, for each i = 1, 2, . . . ,M , the switched

system must be exponentially stable, i.e. A must be Hurwitz (since

it is not possible to stabilize it by switching), and the best switching

signal σ(t) for the minimization of the induced L1 norm is σ(t) = i,

t ≥ 0, where i = arg minj ‖Gj(0)‖1, and Gj(s) is the transfer matrix of

the time-invariant system associated with the jth mode. �
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Berlin, 2008.



Bibliography 165

F. Blanchini and C. Savorgnan. Stabilizability of switched linear systems does
not imply the existence of convex Lyapunov functions. Automatica, 44(4):
1166–1170, 2008.

F. Blanchini, P. Colaneri, and M. E. Valcher. Co-positive Lyapunov functions
for the stabilization of positive switched systems. IEEE Transactions on
Automatic Control, AC-57:3038–3050, 2012.

F. Blanchini, P. Colaneri, and M.E. Valcher. Co-positive Lyapunov functions
for the stabilization of positive switched systems. In Proceedings of the 45th
Conference on Decision and Control. IEEE, 2013.

F. Blanchini, P. Colaneri, and R. H. Middleton. A convexity result for the
optimal control of a class of positive nonlinear systems. In Proceedings of
the IFAC World Congress, Cape Town, South Africa, 2014.

V.D. Blondel, J. JTheys, and A.A. Vladimirov. An elementary counterex-
ample to the finiteness conjecture. SIAM Journal on Matrix Analysis and
Applications, 24:963–970, 2003.

P. Bolzern, P. Colaneri, and G. De Nicolao. Stochastic stability of positive
Markov jump linear systems. Automatica, 50(4):1181–1187, 2014.

I. M. Bomze. Copositive optimization- recent developments and applications.
European Journal of Operational Research, 216 (3):509–520, 2012.

U. Boscain. Stability of planar switched systems: the linear single input case.
SIAM Journal on Control and Optimization, 41(1):89–112, 2002.

T. Bousch and J. Mairesse. Asymptotic height optimization for topical IFS,
Tetris heaps, and the finiteness conjecture. Journal of the American Math-
ematical Society, 15:77–111, 2001.

P. Brandi and A. Salvadori. On measure differential inclusions in optimal
control theory. Rendiconto Seminario Matematico Università Pol. Torino,
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