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Abstract
The aim of this survey paper is to provide the state of the art of the research on control and
optimal control of Boolean Control Networks (BNCs), under the assumption that all the state
variables are accessible and hence available for feedback. Necessary and sufficient conditions
for stabilizability to a limit cycle or to an equilibrium point are given. Additionally, it is shown
that when such conditions are satisfied, stabilization can always be achieved by means of state-
feedback. Analogous results are obtained for the safe control problem, that is investigated for the
first time in this survey. Finite and infinite horizon optimal control are subsequently considered,
and solution algorithms are provided, based on suitable adaptations of the Riccati difference and
algebraic equations. Finally, an appropriate definition of the cost function allows to restate and to
solve both stabilization and safe control as infinite horizon optimal control problems.
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1 Introduction

Recent times have seen an increasing interest in Boolean control networks (BCNs), witnessed by

the rising number of contributions dealing with either the theoretical or the practical aspects of this

subject. This renewed interest is strongly motivated by the large number of physical processes whose

logical/qualitative behavior can be conveniently described by means of this class of models. Indeed,

in a number of contexts, ranging from biology (Sridharan, Layek, Datta, & Venkatraj, 2012), to game

theory (Cheng, 2014; Thunberg, Ogren, & Hu, 2011), to multi-agent systems and consensus problems

(Green, Leishman, & Sadedin, 2007; Lou & Hong, 2010), to smart homes (Kabir, Hoque, Koo, &

Yang, 2014), the describing variables display only two operation levels (on/off, high/low, 1/0, ...),

and the status of each of them is related to the statuses of the others by means of logical functions

(combinations of “and”, “or” and “negation” operators). The application area where BCNs have

proved to be more successful, however, is gene regulatory networks (Kauffman, 1969; Shmulevich,

Dougherty, Kim, & Zhang, 2002). Indeed, genes may be regarded as binary devices that can be

either active or inactive. Also, genes can be activated or inhibited, and this action can be modeled by

resorting to external Boolean inputs.
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Another research area where BCNs could prove their effectiveness is in the modeling and control

of hybrid systems. Typically, logic relationships among the various subsystems involved in their

description are formalized by means of discrete-event dynamic systems (DEDS), as for instance Petri

nets (Koutsoukos & Antsaklis, 1999; Xu, Li, & Li, 1996). As BCNs represent a powerful tool to

formalize dynamic systems whose describing variables update according to logical functions, they

can surely compete and possible outperform DEDS in this role, thus benefitting various application

areas where hybrid systems are used, e.g. intelligent manufacturing.

The algebraic representation recently introduced by D. Cheng and co-authors has allowed to cast

BCNs into the framework of linear state models (operating on canonical vectors) (Cheng, 2009; Cheng

& Qi, 2010a, 2010b; Cheng, Qi, & Li, 2011). This new set-up has proved to be highly beneficial for the

research in the field, since it has allowed to derive matrix based characterizations for a number of prop-

erties of BCNs, and hence has suggested new approaches to the solution of several control problems

for these networks. To mention a few, stability, stabilizability, controllability (Cheng & Liu, 2009;

Cheng, Qi, Li, & Liu, 2011; Fornasini & Valcher, 2013b; Laschov & Margaliot, 2012; F. Li & Sun,

2012), disturbance decoupling (Cheng, 2011), observability (Fornasini & Valcher, 2013a; Kobayashi

& Imura, 2009), Kalman decomposition (Zou & Zhu, 2015), fault detection (Fornasini & Valcher,

2015), and optimal control (Zhao, Li, & Cheng, 2011; Fornasini & Valcher, 2014b; Laschov & Mar-

galiot, 2011a, 2011b), have been successfully investigated by referring to the algebraic representations

of BCNs.

The aim of this survey paper is to overview some recent results regarding the control and optimal

control of Boolean Control Networks (BNCs), under the assumption that all the state variables are

accessible and hence available for feedback.

In detail, in Section 2 we review the algebraic representation of BCNs and recall the definitions of

reachability and controllability, as well as their algebraic characterizations. This section is based on

(Cheng, Qi, & Li, 2011; Laschov & Margaliot, 2012) and earlier works of D. Cheng and co-authors.

Section 3 addresses the problem of stabilizing a BCN to an equilibrium point and more generally

to a limit cycle. The first problem was investigated in (Cheng & Liu, 2009; Cheng, Qi, & Li, 2010;

Cheng, Qi, Li, & Liu, 2011; F. Li & Sun, 2012), and the latter in (Fornasini & Valcher, 2013b).

State feedback stabilization techniques for BCNs have been successfully applied to some special gene

regulatory networks. For instance, they have been used to control the dynamics of the lac Operon in

the bacterium Escherichia Coli in (R. Li, Yang, & Chu, 2013) (see also (Bof, Fornasini, & Valcher,

2015; H. Li & Wang, 2013), where output feedback techniques have been applied).
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The safe control problem investigated in Section 4 is, at the best of our knowledge, original, and

can be regarded as a sort of stabilization to a given subset of states. In detail, the set of all states is

partitioned into safe and unsafe states, and the target is to control the state evolution so that it always

reaches the safe set, and once entered the safe set it can steadily remain there.

In many situations, a control problem is characterized not only by a target but also by a cost to

achieve the target. When so, the problem can be naturally stated as a (either finite or infinite horizon)

optimal control problem. This issue has been recently addressed in a few contributions. Specifically,

in (Zhao et al., 2011) (see also Chapter 15 in (Cheng, Qi, & Li, 2011)) the problem of finding the input

sequence that maximizes, on the infinite horizon, an average payoff that weights both the state and the

input at every time t ∈ Z+, was investigated. Also, (Laschov & Margaliot, 2011b) and (Laschov

& Margaliot, 2011a) considered the optimal control problem over a finite horizon, but restricted the

analysis to the case when the payoff function only depends on the state of the BCN at the end of the

control interval. The optimal solution is obtained by resorting to the maximum principle, and has the

structure of a time varying state feedback law. In Sections 5 and 6 we report in concise form some of

the results obtained in (Fornasini & Valcher, 2014b). A more comprehensive analysis of the optimal

control problem, including comparisons with the aforementioned results obtained by Cheng and co-

authors or Margaliot and co-authors, can be found in (Fornasini & Valcher, 2014b). Just to mention

an interesting motivating example, the constrained intervention in a mammalian cell-cycle network

(Faryabi, Vahedi, Chamberland, Datta, & Dougherty, 2008; Faure, Naldi, Chaouiya, & Thieffry, 2006;

Hochma, Margaliot, Fornasini, & Valcher, 2013) has been formalized in (Fornasini & Valcher, 2014b)

as an optimal control problem for BCNs.

Finally, in Section 7, we show that an appropriate definition of the cost function allows to restate

and to solve both stabilization and safe control as infinite horizon optimal control problems.

A drawback of the algebraic state representation of BCNs is its computational complexity, as it

converts a BCN with n state-variables andm input variables, into a state model of size 2n, with 2m in-

puts. Consequently, any algorithm based on these representations has an exponential time-complexity.

However, Akutsu et. al. (Akutsu, Hayashida, Ching, & Ng, 2007) have already proved that finding

control strategies for arbitrary BCNs is in general NP-hard. So, the computational complexity of the

algorithms available to solve these problems seems to be intrinsic of the problems, and independent

of the model adopted to describe the BCNs.

Nonetheless, when the graphs associated with the BCNs are sufficiently sparse (as it typically

happens with large gene regulatory networks), the performances of the branch and bound algorithms
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proposed to solve such control problems are extremely good .

Notation. Z+ denotes the set of nonnegative integers. Given two integers k, n ∈ Z+, with k ≤ n,

by the symbol [k, n] we denote the set of integers {k, k+ 1, . . . , n}. We consider Boolean vectors and

matrices, taking values in B := {0, 1}, with the usual Boolean operations.

δik denotes the ith canonical vector of size k, Lk the set of all k-dimensional canonical vectors,

and Lk×n ⊂ Bk×n the set of all k × n matrices whose columns are canonical vectors of size k. Any

matrix L ∈ Lk×n can be represented as a row whose entries are canonical vectors in Lk, namely

L =
[
δi1k δi2k . . . δink

]
, for suitable indices i1, i2, . . . , in ∈ [1, k]. The k-dimensional vector with

all entries equal to 1, is denoted by 1k. The (`, j)th entry of a matrix L is denoted by [L]`,j , while the

`th entry of a vector v is [v]`. The ith column of a matrix L is coli(L).

There is a bijective correspondence between Boolean variables X ∈ B and vectors x ∈ L2,

defined by the relationship

x =

X
X̄

 .
We introduce the (left) semi-tensor product n between matrices (in particular, vectors) as follows

(Cheng, Qi, & Li, 2011; Laschov & Margaliot, 2012; H. Li & Wang, 2012): given L1 ∈ Rr1×c1 and

L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2), we set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-tensor product represents an extension

of the standard matrix product, by this meaning that if c1 = r2, then L1 n L2 = L1L2. Note that

if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈ Lr1r2 . For the various properties of the semi-tensor

product we refer to (Cheng, Qi, & Li, 2011). By resorting to the semi-tensor product, we can extend

the previous correspondence to a bijective correspondence between Bn and L2n . This is possible in

the following way: given X =
[
X1 X2 . . . Xn

]>
∈ Bn, set

x :=

X1

X̄1

n

X2

X̄2

n · · ·n

Xn

X̄n

 =



X1X2 . . . Xn−1Xn

X1X2 . . . Xn−1X̄n

X1X2 . . . X̄n−1Xn

...

X̄1X̄2 . . . X̄n−1X̄n


.
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2 Preliminaries

A Boolean control network is described by the following equation

X(t+ 1) = f(X(t), U(t)), t ∈ Z+, (1)

where X(t) and U(t) denote the n-dimensional state variable and the m-dimensional input at time t,

taking values in Bn and Bm, respectively. f is a (logic) function, i.e. f : Bn×Bm → Bn. By resorting

to the semi-tensor product n, state and input Boolean variables can be represented as canonical vectors

in LN , N := 2n, and LM , M := 2m, respectively, and the BCN (1) satisfies (Cheng, Qi, & Li, 2011)

the following algebraic representation:

x(t+ 1) = Ln u(t) n x(t), t ∈ Z+, (2)

where x(t) ∈ LN and u(t) ∈ LM . L ∈ LN×NM is a matrix whose columns are canonical vectors

of size N . For every choice of the input variable at time t, namely for every u(t) = δkM , k ∈ [1,M ],

Ln u(t) =: Lk is a matrix in LN×N , and we refer to the Boolean network (BN)

x(t+ 1) = Lkx(t), t ∈ Z+, (3)

as to the kth subsystem of the BCN. Note that the matrix L can be expressed in terms of the matrices

Lk as:

L =
[
L1 L2 . . . LM

]
.

Definition 1. (Cheng, Qi, & Li, 2011) Given a BCN (2), we say that xf = δiN is reachable from

x0 = δjN if there exists τ ∈ Z+ and an input u(t), t ∈ [0, τ − 1], that leads the state trajectory from

x(0) = x0 to x(τ) = xf . The BCN is controllable if xf is reachable from x0, for every choice of

x0,xf ∈ LN .

A state xf = δiN is reachable from x0 = δjN if and only if (Cheng, Qi, & Li, 2011) there exists

τ ∈ Z+ such that the Boolean sum of the matrices Lk, k ∈ [1,M ], namely

Ltot :=
M∨
k=1

Lk,

satisfies [Lτtot]ij = 1. Consequently, by the theory of positive matrices (Brualdi & Ryser, 1991), the
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BCN is controllable if and only if Ltot is an irreducible matrix, or, equivalently, the Boolean matrix

L :=
N−1∨
i=0

(Ltot)
i (4)

has all unitary entries. In the sequel, we will denote the set of states reachable from x0 asR(x0).

3 Stabilization

The first natural target of control is stabilization. Since a BCN is not a linear system and there is no

equivalent of the zero state, we first need to understand what is a meaningful definition of stabiliza-

tion in this context. The most intuitive extension of the concept of stabilization to the zero state is

stabilization to some fixed state (an equilibrium point), namely regulation to a constant value. In turn,

this can be seen as a special case of stabilization to a limit cycle, namely tracking of a periodic state

trajectory.

Definition 2. A BCN (2) is stabilizable to the elementary cycle C = (δi1N , δ
i2
N , . . . , δ

ik
N ), where δihN 6=

δikN , for h 6= k, if for every x(0) ∈ LN there exist u(t), t ∈ Z+, and τ ∈ Z+ such that x(t) = δ
ij
N for

every t ≥ τ , where j ∈ [1, k] and j ≡ (t− τ + 1) mod k.

Stabilization to an elementary limit cycle is characterized in the following proposition.

Proposition 1. (Fornasini & Valcher, 2013b) A BCN (2) is stabilizable to the elementary cycle C =

(δi1N , δ
i2
N , . . . , δ

ik
N ), where δihN 6= δikN , for h 6= k, if and only if the following two conditions hold

1) δi1N is reachable from every initial state x(0), which amounts to saying that

δi1N ∈ R
∗ :=

⋂
x(0)∈LN

R(x(0));

2) for every (i`, i`+1), ` ∈ [1, k], (with ik+1 = i1) there exists δj`M such that δi`+1

N = Lnδj`Mnδi`N =

Lj`δ
i`
N .

In the special case of equilibrium points we have the following result.

Corollary 1. (Fornasini & Valcher, 2013b; R. Li et al., 2013) A BCN (2) is stabilizable to the state

xe := δiN ∈ LN if and only if the following two conditions hold
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1) xe is reachable from every initial state x(0), i.e., xe ∈ R∗;

2) xe is an equilibrium point of the kth subsystem (3), for some k ∈ [1,M ], namely there exists

δkM such that δiN = Ln δkM n δiN = Lkδ
i
N .

To understand what are the states to which we may stabilize a BCN (2), we can proceed as follows:

we first determine the set R∗ of all states that are reachable from every initial state. This amounts to

checking which rows of L have all unitary entries. Then, we identify the set Xe of all equilibrium

points of the various subsystems: this amounts to determine all the vectors δiN , i ∈ [1, N ] such that

there exists j ∈ [1,M ] for which coli(Lj) = δiN . Clearly, the BCN will be stabilizable to all vectors

δiN ∈ R∗ ∩ Xe.

A similar characterization can be obtained for the set of all possible limit cycles to which the BCN

can be stabilized. Again, we first consider the setR∗ of all states that can be reached from every initial

state, and then consider all cycles involving only elements ofR∗.

Up to now the stabilization problem to some cyclic trajectory (in particular, to an equilbrium point)

has been addressed by assuming that at every time instant t ∈ Z+ the input variable u(t) can be freely

chosen in LM . A quite interesting fact is that the stabilization problem can be solved by means of a

time-invariant state feedback law, by this meaning that at every time instant t the input u(t) can be

expressed as u(t) = Kx(t), for some matrix K =
[
δk1M δk2M . . . δkNM

]
∈ LM×N . When so, the

BCN is transformed into a BN:

x(t) = L(K)x(t), t ∈ Z+,

L(K) :=
[
col1(Lk1) col2(Lk2) . . . colN (LkN )

]
,

having the cycle C as its unique attractive set.

Proposition 2. (Fornasini & Valcher, 2013b) If a BCN (2) is stabilizable to some elementary cycle

C = (δi1N , δ
i2
N , . . . , δ

ik
N ), then it is stabilizable by means of a state feedback law.

The proof of the previous result is constructive and provides all matrices that implement a feedback

law stabilizing the BCN in minimum time to the given cycle C. Suppose, first, that the BCN is

stabilizable to C, namely conditions 1) and 2) of Proposition 1 hold. By condition 2), we know that, for

every x = δi`N , ` ∈ [1, k], there exists u = δj`M , j` ∈ [1,M ], such that δi`+1

N = Lnδj`Mnδi`N = Lnunx

(where ik+1 = i1). By imposing u = δj`M = Kδi`N = Kx, ∀ ` ∈ [1, k], we actually impose that

coli`(K) := δj`M ,∀ ` ∈ [1, k].
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Let St, t ∈ Z+, denote the set of all states δiN , i ∈ [1, N ], whose minimum distance from the cycle

C is t, by this meaning that the length of the shortest path from the state δiN to any state of C is t.

Clearly, S0 = C, and St+1 6= ∅ implies St 6= ∅. On the other hand, for every t > N − k, St = ∅.

Finally, by assumption 1), S0 ∪ S1 ∪ S2 ∪ · · · ∪ SN−k = LN , and all sets St are disjoint. Since for

every x = δiN ∈ St+1 there exists u = δjM such that L n δjM n δiN ∈ St, it is easy to see that by

assuming coli(K) := δjM , for every δiN ∈ S1 ∪S2 ∪ · · · ∪SN−k, we assign all the remaining columns

of K. Therefore, the feedback law u(t) = Kx(t) allows to converge to C and to remain therein.

An independent proof for the case of an equilibrium point has been given in (R. Li et al., 2013).

Remark 1. The state-feedback laws proposed in (Fornasini & Valcher, 2013b; R. Li et al., 2013)

are minimal time. If we drop this requirement, we can obtain a larger set of state-feedback laws. In

particular, when solving the stabilization problem by means of an output feedback law, the underlying

state-feedback law need not be minimal time (Bof et al., 2015).

On the other hand, a time-varying state feedback law does not represent an interesting option

for this control problem. Indeed, it does not allow to achieve stabilization when a stabilizing time-

invariant law does not exist, and it does not offer any advantage in terms of performances when it

exists.

Example 1. Consider a BCN (2), with n = 3 and m = 1, and suppose that

L1 := Ln δ1
2 =

[
δ2

8 δ3
8 δ4

8 δ5
8 δ2

8 δ7
8 δ8

8 δ3
8

]
,

L2 := Ln δ2
2 =

[
δ5

8 δ1
8 δ6

8 δ2
8 δ4

8 δ7
8 δ8

8 δ8
8

]
.

A possible limit cycle is C = (δ2
8 , δ

3
8 , δ

4
8). The transition from δ2

8 to δ3
8 and from δ3

8 to δ4
8 is

associated with u = δ1
2 (and hence with L1),while the transition from δ4

8 to δ2
8 is associated with

u = δ2
2 (with L2). Accordingly we have that Kδ2

4 = δ1
2 ,Kδ

3
4 = δ1

2 ,Kδ
4
4 = δ2

2 . If we consider now the

states that have distance t from C, we find S1 = {δ1
8 , δ

5
8 , δ

8
8}; S2 = {δ7

8}; S3 = {δ6
8}. Keeping in mind

what are the input values that induce the shortest paths from each of these states to C, we obtain as

possible feedback matrices all matrices

K =
[
δ1

2 δ1
2 δ1

2 δ2
2 ∗ ∗ ∗ δ1

2

]
,

where ∗ denotes columns that can be either δ1
2 or δ2

2 .
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4 Safe control

When dealing with a physical system whose logical functioning can be modeled by means of a BCN,

it may happen that a subset of all possible states of the BCN is regarded as unsafe. We denote the set

of all unsafe states by the symbol Xu and accordingly think of the complementary set as the set of

safe states Xs. In this case, the natural problem arises:

Given a BCN (2), whose set of states LN is partitioned into a set of unsafe states Xu and a set of

safe states Xs, is it possible to control the system so that every state trajectory that stems from a safe

state remains in Xs and every trajectory that originates in an unsafe state leaves Xu in a finite number

of steps and then remains in Xs?

The mathematical translation into the language of the BCNs of the safe control problem is rather

straightforward: we look for conditions ensuring that

• for every x0 ∈ Xs there exists u(t), t ∈ Z+, such that x(t) ∈ Xs for every t ∈ Z+;

• for every x0 ∈ Xu there exist u(t), t ∈ Z+, and T > 0 such that x(t) ∈ Xs for every

t ∈ Z+, t ≥ T .

This easily leads to a characterization of the problem solvability.

Proposition 3. Given a BCN (2) and a set of unsafe states Xu, the safe control problem is solvable if

and only if the following two conditions hold

1) for every x ∈ Xs = LN \Xu there exists u ∈ LM such that Ln un x ∈ Xs;

2) the set Xs is reachable from every x ∈ Xu, which amounts to saying that for every x ∈ Xu

there exists x̄ ∈ Xs such that x̄ is reachable from x.

Proof. It is easily seen that condition 1) is equivalent to saying that every trajectory starting in Xs

can be kept, by resorting to a suitable input, within Xs. On the other hand, it is easily seen that

the possibility of eventually leading any trajectory stemming from Xu into Xs is equivalent to the

reachability of Xs from every state of Xu, and the first condition ensures that once the trajectory

enters Xs it will be able to remain therein.

A mathematical characterization of problem solvability in terms of the matrices Ltot and L we

introduced in Section 2 can be immediately provided.
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Proposition 4. Given a BCN (2) and a set of unsafe states Xu, suppose without loss of generality that

the BCN states are relabelled so that Xu = {δiN : i ∈ [k+ 1, N ]} while Xs = {δiN : i ∈ [1, k]}. Then

the safe control problem is solvable if and only if the following two conditions hold

1) for every j ∈ [1, k] there exists i ∈ [1, k] such that [Ltot]ij = 1;

2) for every j ∈ [k + 1, N ] there exists i ∈ [1, k] such that [L]ij = 1.

To conclude, we prove that also the safe control problem can always be solved by resorting to a

state feedback law.

Proposition 5. If the safe control problem is solvable for a BCN (2), then it is solvable by means of a

state feedback law.

Proof. If the safe control problem is solvable, then conditions 1) and 2) of Proposition 3 hold. We

want to make use of these two conditions to define the columns of K, one by one. We first consider

the indices i ∈ [1, N ] such that δiN ∈ Xs. By condition 1), we know that, for every x = δiN ∈ Xs

there exists u = δjM , j ∈ [1,M ], such that Ln δjM n δiN = Lnunx ∈ Xs, and hence it is sufficient

to impose

u = δjM = KδiN = Kx,

which amounts to imposing coli(K) := δjM .

Let St, t ∈ Z+, denote the set of all states δiN ∈ Xu whose minimum distance from the set Xs is

t, by this meaning that the length of the shortest path from the state δiN to any state of Xs is t. Clearly,

S0 = Xs, and St+1 6= ∅ implies St 6= ∅. On the other hand, for every t > |Xu|, St = ∅. Finally, by

assumption 2),

S0 ∪ S1 ∪ S2 ∪ · · · ∪ S|Xu| = LN ,

and all sets St are disjoint. Since for every x = δiN ∈ St+1 there exists u = δjM such that Ln δjM n

δiN ∈ St, it is easy to see that by assuming coli(K) := δjM , for every δiN ∈ S1∪S2∪· · ·∪S|Xu| = Xu,

we assign all the remaining columns of K. Therefore, the feedback law u(t) = Kx(t) allows to solve

the safe control problem.

5 Finite horizon optimal control of BCNs

The interest in the optimal control problem for BCNs arises primarily, but not exclusively, from two

research areas. On the one hand, interesting applications to game theory have been illustrated in
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(Cheng, Qi, & Li, 2011; Zhao et al., 2011). On the other hand, the results presented in (Ching et al.,

2009; Liu, 2013; Liu, Guo, & Zhou, 2010; Pal, Datta, & Dougherty, 2006; Yang, Wai-Ki, Nam-Kiu, &

Ho-Yin, 2010) provide evidence of the fact that optimal control problems naturally arise when dealing

with biological systems in general, and genetic networks in particular, and BCNs often represent a

very convenient set-up where to investigate these problems. In particular, the constrained intervention

in a mammalian cell-cycle network (Faryabi et al., 2008; Faure et al., 2006; Hochma et al., 2013) can

be naturally stated as an optimal control problem.

We first introduce the finite horizon optimal control problem. If we assume that the initial state is

given and the final state is potentially arbitrary, this problem can be stated in general form as follows:

Given the BCN (2), with initial state x(0) = x0 ∈ LN , determine an input sequence that mini-

mizes the cost function:

JT (x0,u(·)) = Qf (x(T )) +

T−1∑
t=0

Q(u(t),x(t)), (5)

where Qf (·) is any function defined on LN , and Q(·, ·) is any function defined on LM × LN .

The cost function (5) weights the BCN state at every time instant: the final state is weighted by

a special function Qf (·), while the state at every intermediate instant t is weighted, together with the

input value at the same time, by the function Q(·, ·).

In (Fornasini & Valcher, 2014b), we have shown that, by taking advantage of the properties of the

semi-tensor product and of the fact that the state and input vectors are always canonical vectors, every

cost function described as in (5) can be equivalently expressed as a linear cost function of the form

JT (x0,u(·)) = c>f x(T ) +
T−1∑
t=0

c> n u(t) n x(t), (6)

where cf ∈ RN and c ∈ RNM are nonnegative vectors. We assume

c> =
[
c>1 . . . c>M

]
, ci ∈ RN .

In order to solve this problem, we adopt a technique that is similar to the square completion

technique adopted to solve the quadratic optimal control problem for linear, time-invariant, discrete-

time state space models. However, since our cost function is “linear”, the terms we will add are in

turn “linear” functions of the state and input vectors. We observe that for every choice of a family of
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N -dimensional real vectors m(t), t ∈ [0, T ], and every state trajectory x(t), t ∈ [0, T ], of the BCN,

one has

0 =
T−1∑
t=0

[m(t+ 1)>x(t+ 1)−m(t)>x(t)] + m(0)>x(0)−m(T )>x(T ).

Consequently, the cost function (6) can be equivalently written as

JT (x0,u(·)) = m(0)>x(0) + [cf −m(T )]>x(T ) +
T−1∑
t=0

c> n u(t) n x(t)

+
T−1∑
t=0

[m(t+ 1)>x(t+ 1)−m(t)>x(t)].

By making use of the state update equation of the BCN (2) and of the fact that, for every choice of

u(t) ∈ LM , one has

m(t)>x(t) =
[
m(t)> m(t)> . . . m(t)>

]
n u(t) n x(t),

we get

JT (x0,u(·)) = m(0)>x(0) + [cf −m(T )]>x(T )

+
T−1∑
t=0

(
c> + m(t+ 1)>L−

[
m(t)> . . . m(t)>

])
n u(t) n x(t).

Now, since the values of the vectors m(t), t ∈ [0, T ], do not affect the value of the index, we choose

them according to the following algorithm:

• [Initialization] Set m(T ) := cf ;

• [Recursion] For t = T −1, T −2, . . . , 1, 0, the jth entry of the vector m(t) is chosen according

to the recursive rule:

[m(t)]j := min
i∈[1,M ]

(
[ci]j + [m(t+ 1)>Li]j

)
, ∀ j ∈ [1, N ]. (7)
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We notice that, by the previous algorithm, for every t ∈ [0, T − 1] the vector

w(t)> :=
[
w1(t)> w2(t)> . . . wM (t)>

]
=

[
c>1 . . . c>M

]
+ m(t+ 1)>

[
L1 L2 . . . LM

]
−

[
m(t)> m(t)> . . . m(t)>

]
is nonnegative and satisfies the following condition: for every j ∈ [1, N ] there exists i ∈ [1,M ] such

that [wi(t)]j = 0. As a result, the index

JT (x0,u(·)) = m(0)>x(0) +
T−1∑
t=0

[
w1(t)> w2(t)> . . . wM (t)>

]
n u(t) n x(t)

is minimized by the input sequence u(t), t ∈ [0, T − 1], that is obtained according to this rule:

x(t) = δjN ⇒ u(t) = δ
i∗(j,t)
M ,

where1

i∗(j, t) = arg min
i∈[1,M ]

(
[ci]j + [m(t+ 1)>Li]j

)
.

In this way, [
w>1 (t) . . . w>M (t)

]
n u(t) n x(t) = 0, ∀ t ∈ [0, T − 1],

and by the nonnegativity of the vector w(t), this is the minimum possible value that this term can take.

So, we have proved the following result.

Theorem 1. Given the BCN (2), with initial state x(0) = x0 ∈ LN , the minimum value of the cost

function (6) is J∗T (x0) := minu(·) JT (x0,u(·)) = m(0)>x(0), where m(0) is obtained according

to the previous algorithm. Moreover, the optimal control input can be implemented by means of a

time-varying state feedback law. Actually, the optimal input can be expressed as

u(t) = K(t)x(t),

1Note that the index that minimizes the function is not necessarily unique: so there is not necessarily a unique optimal
input.
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where the state feedback matrix is

K(t) =
[
δ
i∗(1,t)
M δ

i∗(2,t)
M . . . δ

i∗(N,t)
M

]
.

Remark 2. Equation (7) can be viewed as the equivalent for BCNs of the difference Riccati equation

for standard discrete-time linear systems with a quadratic cost function. The updating algorithm,

however, is based on a linear functional instead of a quadratic one, due to the structure of the cost

function and of the state updating equation.

Example 2. Consider the BCN (2) and suppose that N = 8, M = 2 and

L1 := Ln δ1
2 =

[
δ4

8 δ5
8 δ4

8 δ5
8 δ6

8 δ7
8 δ8

8 δ7
8

]
,

L2 := Ln δ2
2 =

[
δ2

8 δ4
8 δ1

8 δ7
8 δ6

8 δ5
8 δ6

8 δ6
8

]
.

We consider the problem of minimizing the cost function (6) for T = 4, by assuming

cf =
[
1 1 1 2 1 10 0 0

]>
, c =

[
1>8 0>8

]>
,

and initial condition x(0) = δ1
8 .

It is worth noticing that the input u(t) = δ2
2 has zero cost. So, one would be tempted to just

assume u(t) = δ2
2 for every t ∈ [0, 3]. This way, however, x(4) would be equal to δ6

8 , which is the

“most expensive” final state. So, we proceed according to the algorithm:

• m(4) = cf =
[
1 1 1 2 1 10 0 0

]>
;

• m(3) =
[
1 2 1 0 10 1 1 1

]>
and K(3) =

[
δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ1

2 δ1
2

]
;

• m(2) =
[
1 0 1 1 1 2 1 1

]>
and K(2) =

[
δ1

2 δ2
2 δ2

2 δ2
2 δ2

2 δ1
2 δ2

2 δ2
2

]
;

• m(1) =
[
0 1 1 1 2 1 2 2

]>
and K(1) =

[
δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2

]
;

• m(0) =
[
1 1 0 2 1 2 1 1

]>
and K(0) =

[
δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2 δ2

2 δ2
2

]
.

As a consequence, J∗4 (δ1
8) = minu(·) J4(δ1

8 ,u(·)) = m(0)>δ1
8 = 1. An optimal input sequence is

u∗(0) = u∗(1) = u∗(2) = δ2
2 ,u

∗(3) = δ1
2 , and it corresponds to the state-trajectory x∗(0) =

δ1
8 , x

∗(1) = δ2
8 , x

∗(2) = δ4
8 , x

∗(3) = δ7
8 , x

∗(4) = δ8
8 . ♠
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6 Infinite horizon optimal control problem

The natural extension of the previous optimal control problem to the infinite horizon case can be stated

as follows:

Given the BCN (2), with initial state x(0) = x0 ∈ LN , determine an input sequence that mini-

mizes the quadratic cost function:

J(x0,u(·)) =
+∞∑
t=0

c> n u(t) n x(t), (8)

where c ∈ RNM . As in the finite horizon case, we assume that the vector c is nonnegative.

We first remark that the only possibility of obtaining a finite value for the optimum index

J∗(x0) := min
u(·)

J(x0,u(·)),

is represented by the existence of a periodic state-input trajectory (x(t),u(t))t∈Z+ of zero cost, that

can be “reached” from x0. This amounts to saying that there must be T > 0, τ ≥ 0 and u(t), t ∈ Z+,

such that

(x(t),u(t)) = (x(t+ T ),u(t+ T )), ∀ t ∈ Z+, t ≥ τ, (9)

and

c> n u(t) n x(t) = 0, ∀ t ∈ Z+, t ≥ τ. (10)

Condition (10) implies, in particular, that the optimal control problem has a finite solution only if the

vector c has some zero entry.

Proposition 6. (Fornasini & Valcher, 2014b) The minimum value J∗(x0) of the infinite horizon cost

function (8) is finite for every choice of the initial state x0 ∈ LN if and only if for every x0 there exists

an input sequence that makes the resulting state-input trajectory both periodic and zero-cost starting

from some time instant τ ≥ 0.

The previous characterization essentially requires to perform two checks on the BCN: (1) to verify

the existence of zero-cost periodic state-input trajectories, and (2) to check that every initial state x0

can reach (at least) one of the states belonging to any such periodic trajectory2. So, we now look into
2In the following, we will informally talk about zero-cost periodic state trajectory by this meaning the projection of a

zero-cost periodic state-input trajectory over the state component.
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these two issues. (1) How can we check whether zero-cost periodic state-input trajectories exist? A

simple test can be performed in the following way. Let C(0)
i be the N ×N matrix, whose columns are

obtained from the cost vector c>i according to the following rule

colj(C
(0)
i ) :=


δjN , if [ci]j = 0;

0N , otherwise;

j ∈ [1, N ].

It is easily seen that LiC
(0)
i is obtained from Li by simply replacing with zero columns the columns

corresponding to state transitions (driven by the input value u = δiM ) of positive cost. Consequently,

L(0) := (L1C
(0)
1 ) ∨ (L2C

(0)
2 ) ∨ . . . ∨ (LMC

(0)
M )

is the Boolean matrix representing all the state transitions that can be achieved at zero cost, provided

that a suitable input is selected. In other words, [L(0)]h,j = 1 if and only if there exists i ∈ [1,M ]

such that

δhN = Ln δiM n δjN and c> n δiM n δjN = 0.

So, it is clear that a zero-cost periodic state (and hence state-input) trajectory exists if and only if the

digraph D(L(0)) has at least one cycle or, equivalently, L(0) is not nilpotent.

(2) Is it possible from every initial state to reach at least one of the (states belonging to) periodic

zero-cost state trajectories? If L(0) is not nilpotent, then (L(0))N 6= 0. Consequently, we may intro-

duce the set

H := {h ∈ [1, N ] : (δhN )>(L(0))N 6= 0} (11)

of the indices of the nonzero rows in (L(0))N . Elementary graph theory allows us to say that h ∈ H if

and only if the state δhN belongs to one of these periodic zero-cost state trajectories. From every initial

state x0 = δjN ∈ LN it is possible to reach some state δhN , h ∈ H, if and only if for every j ∈ [1, N ]

the jth column of LNtot has at least one nonzero entry indexed by H .

The previous comments immediately suggest a way to obtain the minimum cost J∗(x0) for every

x0 = δjN ∈ LN . Clearly, J∗(δhN ) = 0 for every h ∈ H . On the other hand, for every state δjN , j 6∈ H,

it is sufficient to determine the minimum cost state-input trajectory (x(t),u(t))t∈Z+ starting from

x(0) and reaching some state δhN , h ∈ H , in a finite number (at most N − 1) of steps.
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Remark 3. It is worthwhile noticing that

H ⊆ H∗ := {h ∈ [1, N ] : J∗(δhN ) = 0},

but the two sets do not necessarily coincide, as there may be states δjN that access at zero cost some

states δhN , h ∈ H, but j 6∈ H .

Under the previous assumptions, and by making use of the results regarding the finite horizon opti-

mal control problem, we can derive the expression of the optimal cost corresponding to any given ini-

tial condition, and show that the optimal solution can be expressed as a time-invariant state-feedback.

We first note that, when T is sufficiently large, the finite vector sequence {m(t)}t=T,T−1,...,2,1,0,

generated by the algorithm described in Section 5, starting from the initial condition m(T ) = 0,

converges in a finite number of steps to a nonnegative vector m∗.

Lemma 1. The finite vector sequence {m(t)}t=T,T−1,...,2,1,0, generated by the algorithm:

m(T ) = 0;

[m(t)]j = min
i∈[1,M ]

[c>i + m(t+ 1)>Li]j ,

j ∈ [1, N ], t = T − 1, T − 2, . . . , 1, 0,

satisfies

0 = m(T ) ≤m(T − 1) ≤ · · · ≤m(1) ≤m(0). (12)

Moreover, for T sufficiently large, there exists ∆ ≥ 0 such that

m∗ := m(T −∆) = m(T − τ), ∀ τ ∈ [∆, T ]. (13)

As an immediate consequence of the previous lemma, we can claim what follows:

Theorem 2. Assume that the set H defined in (11) is not empty, and for every choice of x0 there exists

at least one state xf = δhN , h ∈ H , reachable from x0. Then

1. there exists T̄ ≥ 0 such that, for every x0,

J∗T (x0) = J∗T̄ (x0) = (m∗)>x0, ∀ T ≥ T̄ ,
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and therefore

J∗(x0) = min
u(·)

+∞∑
t=0

c> n u(t) n x(t) = (m∗)>x0.

2. m∗ is obtained through the algorithm of Section 5, by assuming cf = 0, and is a fixed point of

the algorithm, namely a solution of the family of equations:

[m∗]j = min
i∈[1,M ]

[c>i + (m∗)>Li]j , j ∈ [1, N ], (14)

that represent the equivalent, for BCNs, of the algebraic Riccati equation for linear systems.

3. Upon defining

i∗(j) := arg min
i∈[1,M ]

[c>i + (m∗)>Li]j ,

the optimal control input can be implemented by means of the time-invariant state-feedback

law:

u(t) = Kx(t),

where the (not necessarily unique) feedback matrix is

K =
[
δ
i∗(1)
M δ

i∗(2)
M . . . δ

i∗(N)
M

]
.

For all the computational issues related to the solution of the infinite horizon optimal control

problem we refer the interested reader to the paper (Fornasini & Valcher, 2014b).

7 Stabilization and safe control as optimal control problems

We have seen in Section 3 that if a BCN (2) is stabilizable to an elementary cycle C, and in particular

to an equilibrium point xe, then stabilization is achievable by means of a static state-feedback law.

We want to show that the same result can be obtained by casting this problem into the optimal control

set-up, and by resorting to the results of the previous section.

Assume C = (δi1N , δ
i2
N , . . . , δ

ik
N ), where δihN 6= δikN , for h 6= k, and set

V (δihN ) :=


{j ∈ [1,M ] : δ

ih+1

N = Ln δjM n δihN }, if h ∈ [1, k − 1];

{j ∈ [1,M ] : δi1N = Ln δjM n δikN }, if h = k.
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Introduce the cost vector c> :=
[
c>1 c>2 . . . c>M

]
, with

[cj ]i =


0, if ∃ h ∈ [1, k] s.t. i = ih and j ∈ V (δihN );

1, otherwise.

(15)

We can now provide the following result, whose simpler version for an equilibrium point has been

given in (Fornasini & Valcher, 2014a).

Theorem 3. Given C = (δi1N , δ
i2
N , . . . , δ

ik
N ), the BCN (2) is stabilizable to C if and only if J∗(x0) =

minu(·) J(x0,u(·)) = minu(·)
∑+∞

t=0 c>nu(t)nx(t), with c given in (15), is finite for each x0 ∈ LN .

Proof. If the BCN is stabilizable to C then, by Proposition 1 point 1), for every x0 there exists τ ∈ Z+

and an input sequence ũ(t), t ∈ [0, τ − 1], that drives the BCN state, say x̃(t), to δi1N at time τ . On

the other hand, by Proposition 1 point 2), if such input sequence satisfies for t ≥ τ the following

conditions:

ũ(t) =



δjM , ∃ j ∈ V (δi1N ), if t− τ + 1 ≡ 0 mod k;

δjM , ∃ j ∈ V (δi2N ), if t− τ + 1 ≡ 1 mod k;

. . . . . .

δjM , ∃ j ∈ V (δikN ), if t− τ + 1 ≡ k − 1 mod k

then c> n ũ(t) n x̃(t) = 0 for every t ≥ τ . We therefore have J∗(x0) ≤
∑τ−1

t=0 c> n ũ(t) n x̃(t) <

+∞.

Conversely, if J∗(x0) < +∞ for every x0 ∈ LN , there exists τ ∈ Z+ such that c> n u(t) n x(t) =

0, ∀ t ≥ τ. By the way the vector c has been defined, this implies, in particular, that the state trajectory

from τ onward moves along the cycle C, and hence the stabilization problem is solved.

This result allows to reduce the solution of the stabilization problem to the solution of an infinite-

horizon optimal control problem. This provides an alternative proof of the fact that when the stabiliza-

tion problem is solvable, then it can be solved by means of a time-invariant state-feedback law. Note

that J∗(x0) will always be equal to the length of the shortest path from x0 to C.

Similarly to what we just did for the stabilization problem, we can translate also the safe control

problem into an infinite-horizon optimal control problem. Assume, w.l.o.g., Xs = {δiN , i ∈ [1, k]},
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and Xu = {δiN , i ∈ [k + 1, N ]}. Introduce the cost vector c> :=
[
c>1 c>2 . . . c>M

]
, with

[cj ]i =


0, if δiN ∈ Xs and Ln δjM n δiN ∈ Xs;

1, otherwise.

(16)

We can now provide the following result, whose proof can be derived along the same lines as the

previous proof.

Theorem 4. Given Xs = {δiN , i ∈ [1, k]} and Xu = {δiN , i ∈ [k + 1, N ]}, the safe control problem

is solvable for the BCN (2) if and only if J∗(x0) = minu(·) J(x0,u(·)) = minu(·)
∑+∞

t=0 c> nu(t)n

x(t), with c given in (16), is finite for each x0 ∈ LN .

8 Conclusions

In this paper we have investigated a number of fundamental control issues for BCNs. In detail, after

having introduced the concepts of reachability and controllability, we have addressed the stabilization

to a limit cycle (in particular, to an equilibrium point) and the safe control of a BCN. In both cases,

we have proved that when the problem is solvable it can be solved by means of a time-invariant state-

feedback law.

Finite and infinite horizon control problems have been posed and solved. In both cases, by re-

sorting to a technique that is similar to the square completion typically adopted in linear quadratic

optimal control, we have been able to derive an algorithm that leads to the optimal solution and allows

to determine a state-feedback law implementing the optimal control.

To conclude, we have shown that also stabilization to a limit cycle and safe control can be stated

and solved as optimal control problems.

Future research directions include exploring under what conditions the aforementioned issues may

be solved by resorting to output feedback techniques. Some results about output feedback stabilization

have appeared in (Bof et al., 2015) and (H. Li & Wang, 2013), but a complete solution is still missing

and represents a challenging open problem.
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