Chapter 2

Sound modeling:
signal based approaches

Lecture notes 2005

2.1 Introduction

The sound produced by acoustic musical instruments is caused by the physical vibration of a certain
resonating structure. This vibration can be described by signals that correspond to the time-evolution
of the acoustic pressure associated to it. The fact that the sound can be characterized by a set of
signals suggests quite naturally that some computing equipment could be successfully employed for
generating sounds, for either the imitation of acoustic instruments or the creation of new sounds with
novel timbral properties.

A wide variety of sound synthesis algorithms is currently available either commercially or in the
literature. Each one of them exhibits some peculiar characteristics that could make it preferable to
others, depending on goals and needs. Technological progress has made enormous steps forward
in the past few years as far as the computational power that can be made available at low cost is
concerned. At the same time, sound synthesis methods have become more and more computationally
efficient and the user interface has become friendlier and friendlier. As a consequence, musicians
can nowadays access a wide collection of synthesis techniques (all available at low cost in their full
functionality), and concentrate on their timbral properties.

Each sound synthesis algorithm can be thought of as a digital model for the sound itself. Though
this observation may seem quite obvious, its meaning for sound synthesis is not so straightforward.
As a matter of fact, modeling sounds is much more than just generating them, as a digital model
can be used for representing and generating a whole class of sounds, depending on the choice of
control parameters. The idea of associating a class of sounds to a digital sound model is in complete
accordance with the way we tend to classify natural musical instruments according to their sound
generation mechanism. For example, strings and woodwinds are normally seen as timbral classes of
acoustic instruments characterized by their sound generation mechanism. It should be quite clear that
the degree of compactness of a class of sounds is determined, on one hand, by the sensitivity of the
digital model to parameter variations and, on the other hand, on the amount of control that is necessary
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for obtaining a certain desired sound. As an extreme example we may think of a situation in which a
musician is required to generate sounds sample by sample, while the task of the computing equipment
is just that of playing the samples. In this case the control signal is represented by the sound itself,
therefore the class of sounds that can be produced is unlimited but the instrument is impossible for a
musician to control and play. An opposite extremal situation is that in which the synthesis technique
is actually the model of an acoustic musical instrument. In this case the class of sounds that can be
produced is much more limited (it is characteristic of the mechanism that is being modeled by the
algorithm), but the degree of difficulty involved in generating the control parameters is quite modest,
as it corresponds to physical parameters that have an intuitive counterpart in the experience of the
musician.

An interested conclusion that could be already drawn in the light of what stated above is that the
compactness of the class of sounds associated to a sound synthesis algorithm is somehow in contrast
with the “playability” of the algorithm itself. One should remember that the “playability” is of crucial
importance for the success of a specific sound synthesis algorithm as, in order for a sound synthesis
algorithm to be suitable for musical purposes, the musician needs an intuitive and easy access to its
control parameters during both the sound design process and the performance. Such requirements
often represents the reason why a certain synthesis technique is preferred to others.

Some considerations on control parameters are now in order. Varying the control parameters of
a sound synthesis algorithm can serve several purposes, the first one of which is certainly that of
exploring a sound space, i.e. producing all the different sounds that belong to the class characterized
by the algorithm itself. This very traditional way of using control parameters would nowadays be
largely insufficient by itself. As a matter of fact, with the progress in the computational devices
that are currently being employed for musical purposes, the musician’s needs have turned more and
more toward problems of timbral dynamics. For example, timbral differences between soft (dark) and
loud (brilliant) tones are usually obtained through appropriate parameter control. Timbral expression
parameters tend to operate at a note-level time-scale. As such, they can be suitably treated as signals
characterized by a rather slow rate.

Another reason for the importance of time-variations in the algorithm parameters is that the musi-
cian needs to control the musical expression while playing. For example, staccato, legato, vibrato etc.
need to be obtained through parameter control. Such parameter variations operate at a phrase-level
time-scale. Because of that, they can be suitably treated as sequences of symbols events characterized
by a very slow rate.

In conclusion, control parameters are signals characterized by their own time-scales. Controls
signals for timbral dynamics are best described as discrete-time signals with a slow sampling rate,
while controls for musical expression are best described by streams of asynchronous symbols events.
As a consequence, the generation of control signals can once again be seen as a problem of signal
synthesis.

2.2 Signal generators

In this category we find methods that directly generate the signal. We will see periodic waveform
generators and noise generators.
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2.2.1 Waveform generators
2.2.1.1 Digital oscillators

In many musical sounds, pitch is a characteristic to which we are quite sensitive. In examining the
temporal waveform of pitched sounds, we see a periodic repetition of the waveform without great vari-
ations. The simplest synthesis method attempts to reproduce this characteristic, generating a periodic
signal through a continuous repetition of a waveform. An algorithm that implements this method is
called oscillator. A first method consists in computing the appropriate value of the function for every
sample. Often function, as sinusoids are approximated by polynomial or rational truncated series. For
example a sinusoid of frequency f can be computed by

s[n] = sin(wn) = p(w(n mod Fy))

where w = 27 f / Fs. More efficient algorithms will be presented in the next sections.

2.2.1.2 Table lookup oscillator

A very efficient approach is to precompute the samples of the waveform, store them in a table which
is usually implemented as a circular buffer, and access them from the table whenever needed. If we
store in the table a copy of one period of the desired waveform, when we cycle over the wavetable
with the aid of a circular pointer, we generate a periodic waveform. When the pointer reach the end
of the table, it wraps around and points again at the beginning of the table. Given a table of length
L, the period of the generated waveform is given by 17, = LT, and its fundamental frequency by
fo = Fs/L. If we want to change the frequency, we would need the same waveform stored in tables
of different lengths. A better solution is to store many equidistant points of the (continuous) waveform
in the table, and then read the value in correspondence of the desired abscissa. Obviously, the more
numerous are the points in the table, the better the approximation will be. The oscillator cyclically
searches the table to get the point nearest to the required one. In this way, the oscillator resample the
table to generate a waveform with different frequency. The distance in the table between two samples
at subsequent instants is called SI (sampling increment) and is proportional to the frequency f of the
generated sound:

_ SI-F;

==z

If the sampling increment ST is greater than 1, it can happen that the highest frequencies of the
waveform overcome the Nyquist frequency Fiy = F/2 giving rise to foldover.

2.1)

M-2.1

‘ Implement in Matlab a circular look-up from a table of length L and with sampling increment S1.

[M-2.1] Solution

phi=mod (phi +SI,L);
s=tab[phil];

where phi is a state variable indicating the reading point in the table, 2 is a scaling pa-
rameter, s is the output signal sample. The function mod (x, y) computes the remainder
of the division z/y and is used here to implement circular reading of the table. Notice
that phi can be a non integer value. In order to use it as array index, it can be truncated,
or rounded to the nearest integer. A more accurate output can be obtained by linear
interpolation between adjacent table values.
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2.2.1.3 Recurrent sinusoidal signal generators

Sinusoidal signal can be generated also by recurrent methods. A first method is base don the second
order resonator filter (sect. 2.4.6.1.7) with the poles lying on the unit circle . The equation is

y[n + 1] = 2cos(w)y[n] — y[n — 1] (2.2)
where w = 27 f / F;. With initial values y[0] = 1 and y[—1] = cos w the generator produces
y[n] = cosnw = cos(2m fTn)

With y[0] = 0 and y[—1] = — sinw the generator produces y[n] = sin nw. In general if y[0] = cos ¢
and y[—1] = cos(¢ — w) the generator produces y[n| = cos(nw + ¢). This property can be justified
remembering the trigonometric relation cosw - cos ¢ = 0.5[cos(¢p + w) + cos(¢d — w)].

Another method that combine both the sinusoidal and cosinusoidal generators is the so called
coupled form described by the equations

zln+1] = cosw-z[n] —sinw - y[n| (2.3)

yln+1] = sinw-x[n]+ cosw - y[n] (2.4)

With z[0] = 1 and y[0] = 0 we have z[n] = cos(nw) and y[n] = sin(nw). This property can be
verified considering that if we define a complex variable a[n] = z[n] + jy[n] = exp(jnw), it results
aln + 1] = exp(jw) - a[n]. The real and imaginary parts of this relation give equations 2.4] and
respectively.

Both methods have the drawback that coefficient quantization can give rise to numerical instability,
i.e. poles outside the unitary circle. The waveform will then tend to grow exponentially or to decay
rapidly into silence. To avoid this problem, a periodic re-initialization is advisable. It is possible to
use a slightly different set of coefficients to produce absolutley stable sinusoidal waveforms

zn+1] = =z[n]—c-y[n] (2.5)
yln+1 = c-zn+1]+yln| (2.6)
where ¢ = 2sin(w/2). With z[0] = 1 and y[0] = ¢/2 we have z[n] = cos(nw).

2.2.1.4 Amplitude/frequency controlled oscillators

The amplitude and frequency of a sound are usually required to be time-varying parameters. Am-
plitude control is needed in order to define suitable sound envelopes, or to create tremolo effects
(quasi-periodic amplitude variations around an average value). Frequency control is needed to simu-
late portamento between two tones, or subtle pitch variations in the sound attack/release, or vibrato
effects (quasi-periodic pitch variations around an average value), and so on.

We then want to have at our disposal a digital oscillator of the form

s[n] = A[n] - tab[g[n]], 2.7

where A[n| scales the amplitude of the signal, and the phase ¢[n] does not in general increase linearly
in time and is computed as a function of the instantaneous frequency. Figure 2] shows the symbol
usually adopted to depict an oscillator with fixed waveform and varying amplitude and frequency

Many sound synthesis languages (e.g., the well known Csound) define control signals at frame
rate: a frame is a time window with pre-defined length (typically 5 to 50 ms), in which the control
signals can be reasonably assumed to be approximately constant. This approximation clearly helps to
reduce computational loads significantly.
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Figure 2.1: Symbol of the fixed waveform oscillator, with varying amplitude and frequency.

M-2.2

Assume that a function sinosc (t0, a, £, ph0) realizes a sinusoidal oscillator (£ 0 is the initial
time, a, £ are the frame-rate amplitude and frequency vectors, and pho is the initial phase). Then
generate a sinusoid of length 2 s, with constant amplitude and frequency.

Solution

%$%% headers %%%

global Fs; $sample rate

global SpF; $samples per Frame

Fs=22050;

ControlW=0.01; $control window (in sec): 10 ms
SpF=round (Fs*ControlW) ;

Fc=Fs/SpF; %$control rate

%$%% define controls %%%

slength=2; %$soundlength in seconds
nframes=slength*Fc; $total number of frames
a=ones (l,nframes); $constant amplitude

f=50*ones (1, nframes); %constant frequency

%%% compute sound %%%
s=sinosc(0,a,f,0); $sound signal

Note the structure of this simple example: in the “headers” section some global param-
eters are defined, that need to be known also to auxiliary functions; a second section
defines the control parameters, and finally the audio signal is computed.

M-2.3
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When the oscillator frequency is constant the phase is a linear function of time, ¢(t) = 27 ft,
therefore in the digital domain ¢ can be computed as ¢[n+ 1] = ¢[n] + 27 f /F. In the more general
case in which the frequency varies at frame rate, we have to understand how to compute the phase
of the oscillator. The starting point is the equation

1 do

f(t):%E

(t), (2.8)
which simply says that the radian frequency w(t) = 27 f(t) is the instantaneous angular velocity of
the time-varying phase ¢(t). If f(t) is varying slowly enough (i.e. it is varying at frame rate), we can
say that in the K-th frame the first-order approximation

1 do

o dt () =f@t)~ f(Tk) + Fe [f(Tky1) — f(Tk)] - (t — Tk) (2.9)

holds, where T, Tk 1 are the initial instants of frames K and K + 1, respectively. The term
F.[f(Tk+1) — f(Tk)] approximates the derivative df /dt inside the Kth frame. We can then find the
phase by integrating equation (2.9):

o(t) = ¢(Ti) + 2 f(Ti)(t — Ti) + 27 Fe[f(Tr41) — f(TK)]%7
_ fE)n  fE+1)— f(K) ,
O = 1) SpF+n) = oK) + 2m == 4 m—a e —— 1 (2.10)

where n = 0...(SpF — 1) spans the frame. In summary, equation I0) computes ¢ at sample
rate, given the frame rate frequencies. The key ingredient of this derivation is the linear interpola-
tion 239).

Realize the sinosc (t0, a, £, ph0) function that we have used in Use equation Z10) to
compute the phase given the frequency vector £.

Solution

function s = sinosc(t0,a, f,ph0);

global SpF; %$samples per frame
global Fs; %$sampling rate
nframes=length(a); 3total number of frames
if (length(f)==1) f=f*ones(l,nframes); end

if (length(f) "=nframes) %check
error ("f and a must have the same length!’);
end

s=zeros (l,nframes*SpF) ; $signal vector (initialized to 0)
lastampl=a(l);
lastfreg=£f(1);
lastphase=ph0;
for i=l:nframes %cycle on the frames
naux=1:SpF; $counts samples within frame
ampl=lastampl +... Scompute amplitudes within frame
(a(i)-lastampl) /SpF.*naux;
phase=lastphase+pi/Fs.*naux.* ... %$compute phases within frame
(2*lastfreq +(1/SpF)* (f(i)-lastfreq) .*naux);
s(((i-1)*SpF+1) :i*SpF)=ampl. *cos (phase); %read from table



2.2. SIGNAL GENERATORS 2.7

‘ 'D{ s | R
E i Decay Rate
g o |
é’- : : Release i
° { Rate
E Sustain Level ! /
w !

\ Attack Rate
T Time
Note Pressed Note Released

Figure 2.2: ADSR envelope described by four phases: Attack, Decay, Sustain e Release.

lastampl=a (i) ; %¥save last wvalues
lastfreg=f (i) ; $of amplitude,
lastphase=phase (SpF) ; $frequency, phase
end
s=[zeros (1, round (t0*Fs+1)) s]; %add initial silence of t0 sec.

Both the amplitude a and frequency £ envelopes are defined at frame rate and are inter-
polated at sample rate inside the function body. Note in particular the computation of the
phase vector within each frame.

2.2.1.5 Envelope generators

It is possible to use the same algorithm of table look-up oscillator to produce time envelopes. In
this case, to generate a time envelope of d sec and scan only once the table, a sampling increment
SI = L/(Fsd) should be used. Often in sound synthesis, the amplitude envelope is described by
a linearly varying function. A typical schema is the ADSR envelope (Fig. Z2). The time envelope
is described by four phases of Attack, Decay, Sustain e Release. When we want to change the tone
duration, it is advisable to only slightly modify the attack and release, that marks the identity of the
sound, while the sustain can be lengthened more freely. So the oscillator table will be read once with
different sampling increments for the different parts of the generated envelope.

The use of waveform and envelope generators allows to generate quasi periodic sounds with very
limited hardware and constitutes the building block of many more sophisticated algorithms.

M-2.4
Write a function that realizes a line-segment envelope generator. The input to the function are a
vector of time instants and a corresponding vector of envelope values.

[M-2.4 Solution

function env = envgen (t,a,method); %t vector of time instants
%a vector of envelope values
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global SpF; $samples per frame
global Fs; $sampling rate

if (nargin<3)
method=’linear’;

end
frt=floor (t*Fs/SpF+1); $times instants as frame numbers
nframes=frt (length (frt)); $total number of frames

env=interpl (frt,a, [1l:nframes],method); %$linear interpolation

The envelope shape is specified by break-points, described as couples (time instant
(sec) and amplitude). The function generates the envelope at frame rate. Notice that the
interpolation function interpl allows to easily use cubic of spline interpolations.

M-2.5
‘ Synthesize a modulated sinusoid using the functions sinosc and envgen.

Solution

o\

%% headers %%%
[

e

o

%$%% define controls %%%
a=envgen ([0, .2,1,1.5,2],1[0,1,.8,.5,0],’1linear’); %ADSR amp. envelope
f=envgen([0,.2,1,2],[200,250,250,200],"linear’); %pitch envelope
f=f+max (£) *0.05*... $pitch envelope with vibrato added
sin(2*pi*5* (SpF/Fs) *[0:1length(f)-1]) .*hanning (length(f))’;

%$%% compute sound %%%
s=sinosc(0,a,f,0);

In fig. EX3 amplitude a and frequency £ control signals are shown.

2.2.2 Noise generators

Up to now, we have considered signals whose behavior at any instant is supposed to be perfectly
knowable. These signals are called deterministic signals. Besides these signals, random signals of
unknown or only partly known behavior may be considered. For random signals, only some general
characteristics, called statistical properties, are known or are of interest. The statistical properties
are characteristic of an entire signal class rather than of a single signal. A set of random signals
is represented by a random process. Particular numerical procedures simulate random processes,
producing sequences of random (or more precisely, pseudorandom) numbers.

Random sequences can be used both as signals (i.e., to produce white or colored noise used as in-
put to a filter) and a control functions to provide a variety in the synthesis parameters most perceptible
by the listener. In the analysis of natural sounds, some characteristics vary in an unpredictable way;
their mean statistical properties are perceptibly more significant than their exact behavior. Hence, the
addition of a random component to the deterministic functions controlling the synthesis parameters



2.2. SIGNAL GENERATORS 29

n

®

=]
T

N

N

o
:

o
o
n
o
=]

250

amplitude (adim)
S
frequency (Hz)
n n
8 &

I
IS
T
N
o
=]
T

0.2 1 200

Figure 2.3: Amplitude (a) and frequency (b) control signals

is often desirable. In general, a combination of random processes is used because the temporal orga-
nization of the musical parameters often has a hierarchical aspect. It cannot be well described by a
single random process, but rather by a combination of random processes evolving at different rates.
For example this technique is employed to generate 1/ f noise.

2.2.2.1 Random noise models

2.2.2.1.1 White noise generators The spread part of the spectrum is perceived as random noise.
In order to generate a random sequence, we need a random number generator. There are many algo-
rithms that generate random numbers, typically uniformly distributed over the standardized interval
[0,1). However it is hard to find good random number generators, i.e. that pass all or most criteria
of randomness. The most common is the so called linear congruential generator. It can produce
fairly long sequences of independent random numbers, typically of the order of two billion numbers
before repeating periodically. Given an initial number (seed) /[0] inn the interval 0 < I[0] < M, the
algorithm is described by the recursive equations

In] = (alln—1]+ c¢)modM (2.11)
uln] = I[n]/M

where a and c are two constants that should be chosen very carefully in order to have a maximal
length sequence, i.e. long M samples before repetition. The actual generated sequence depends on
the initial value I[0]; that is way the sequence is called pseudorandom. The numbers are uniformly
distributed over the interval 0 < u[n] < 1. The mean is F[u] = 1/2 and the variance is 02 = 1/12.
The transformation s[n] = 2u[n] — 1 generates a zero-mean uniformly distributed random sequence
over the interval [—1,1). This sequence corresponds to a white noise signal because the generated
numbers are mutually independent. The power spectral density is given by S(f) = o 2. Thus the
sequence contains all the frequencies in equal proportion and exhibits equally slow and rapid variation
in time.
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Figure 2.4: Spectral envelope |H (f)| of low frequency noise generators where a new random number
is generated every d = 10 samples: (a) hold generator; (b) linear interpolator.

With a suitable choice of the coefficients a and b, it produces pseudorandom sequences with flat
spectral density magnitude (white noise). Different spectral shapes ca be obtained using white noise
as input to a filter.

M-2.6

A method of generating a Gaussian distributed random sequence is based on the central limit theo-
rem, which states that the sum of a large number of independent random variables is Gaussian. As
exercise, implement a very good approximation of a Gaussian noise, by summing 12 independent
uniform noise generators.

2.2.2.1.2 Pink noise generators If we desire that the numbers vary at a slower rate, we can gen-
erate a new random number every d sampling instants and hold the previous value in the interval
(holder) or interpolate between two successive random numbers (interpolator). In this case the power
spectrum is given by

2

S = H(F)PZ
with
_|sin(n fd/F)
SR ey
for the holder (fig. Z24(a)) and
1 [sin(rfd/Fy) 2
50~ 3 g/

for linear interpolation (fig. Z4(b)).
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2.2.2.1.3 1/f noise generators A 1/f noise, also called pink noise, is characterized by a power
spectrum that fall in frequency like 1/ f

S == 2.12)

To avoid the infinity at f = 0, this behaviour is assumed valid for f > f,,;n, where fp.:, is a desired
minimum frequency. The spectrum is characterized by a 3 db per octave drop, i.e. S(2f) = S(f)/2.
The amount of power contained within a frequency interval [f1, f2] is

f2
mﬁW:Am<%>

1 2

This implies that the amount of power in any octave is the same. 1/f noise is ubiquitous in nature
and is related to fractal phenomena. In audio domain it is known as pink noise. It represents the
psychoacoustic equivalent of the white noise because he approximately excites uniformly the critical
bands. The physical interpretation is a phenomenon that depends on many processes that evolve on
different time scales. So a 1/f signal can be generated by the sum of several white noise generators
that are filtered through firstjorder filters having the time constants that are successively larger and
larger, forming a geometric progression.

M-2.7

In the Voss 1/f noise generation algorithm, the role of the low pass filters is played by the hold
filter seen in the previous paragraph. The 1/f noise is generated by taking the average of several
periodically held generators y;[n], with periods forming a geometric progression d; = 2, i.e.

1 M
yln] = 57 > _wiln] 2.13)
=1

The power spectrum does not have an exact 1/f shape, but it is close to it for frequencies f >
F,/2M . As exercise, implement a 1/f noise generator and use it to assign the pitches to a melody.

M-2.8

The music derived from the 1/f noise is closed to the human music: it does not have the un-
predictability and randomness of white noise nor the predictability of brown noise. 1/ f processes
correlate logarithmically with the past. Thus the averaged activity of the last ten events has as much
influence on the current value as the last hundred events, and the last thousand. Thus they have a
relatively long-term memory.

1/f noise is a fractal one; it exhibits self-similarity, one property of the fractal objects. In a self-
similar sequence, the pattern of the small details matches the pattern of the larger forms, but on a
different scale. In this case, is used to say that 1/f fractional noise exhibits statistical self-similarity.
The pink noise algorithm for generating pitches has become a standard in algorithmic music. Use
the 1/ f generator developed in [M=27] to produce a fractal melody.

2.3 Time-segment based models

2.3.1 Wavetable synthesis
2.3.1.1 Definitions and applications

Finding a mathematical model that faithfully imitates a real sound is an extremely difficult task. If an
existing reference sound is available, however, it is always possible to reproduce it through recording.
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Such a method, though simple in its principle, is widely adopted by digital sampling instruments or
samplers and is called wavetable synthesis or sampling. Samplers store a large quantity of examples
of complete sounds, usually produced by other musical instruments. When we wish to synthesize a
sound we just need to directly play one sound of the stored repertoire.

The possibility of modification is rather limited, as it would be for the sound recorded by a tape
deck. The most common modification is that of somewhat varying the sampling rate (speed) when
reproducing the sound, which results in a pitch deviation. On the other hand, what makes the method
interesting the most is certainly the variety of sounds available.

From the implementation viewpoint, computational simplicity and limited amount of information
to be stored are two contrasting needs for samplers. In fact, in order to reduce the data to be stored, it
is possible to adopt looping techniques with almost any stationary portion of sounds. One method of
improving the expressive possibilities of samplers is store multiple of the sounds at different pitches,
and switching or interpolating between these upon synthesis. This method, called multisampling, also
might include the storage of separate samples for loud and soft sounds. During synthesis a linear
interpolation between these sampled is performed as function of the desired loudness. Infact most
instruments exibit richer spectra for louder sounds. Sometime a filter are used to control the spectral
variation llowing to obtain softer sounds from a stored loud sound.

In most cases sampling techniques are presented as a method for reproducing natural sounds and is
evaluated in comparison with the original instruments. This is the main reason why the most popular
commercial digital keyboards, such as electronic pianos and organs, adopt this synthesis technique.
Of course, sampling cannot feature all the expressive possibilities of the original instrument. Notice
that sampled sounds can also be obtained synthetically or through the modification of other sounds,
which is a way of widening the range of possibilities of application of samplers. From the composer’s
viewpoint, the use of samplers represents a practical approach to the so-called musique concreéte. This
kind of music, begun in Paris in late Forties by the main effort of Pierre Schaeffer, started to use, as
basic sonic material of its musical compositions, any kind of sound, recorded by a microphone and
eventually processed.

2.3.1.2 Tranformations: pitch shift, looping

The most common modification is that of varying the sampling rate (speed) when reproducing the
sound, which results in a pitch deviation. In digital domain this effect is obtained by resampling the
stored waveform scanning the table with a sampling increment different than 1. The algorithm is
similar to the digital oscillator by table look-up (see Sect. Z2Z.T.Tl In this case if we want to change the
frequency fsioreq Of the stored sound to a new frequency f.,, we will read the table with a sampling
increment

_ fnew

SI =
fstored

However, substantial pitch variations are generally not very satisfactory as a temporal waveform
compression or expansion results in unnatural timbral modifications, which is exactly what happens
with an accelerated tape recorder. It is thus necessary to allow only pitch variations of few semitones
to take place for the synthetic sound to be similar to the original one. This is expecially true for
sounds characterized by formants in the spectrum. For a good sampling synthesis of the whole pitch
extension, many samples should be stored (e.g. three for each octave). Moreover special care should
be payed to assure that adjacent sounds be similar.

M-2.9
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Import a .wav file of a single instrument tone. Scale it (compress and expand) to different extents
and listen to the new sounds. Up to what scaling ratio are the results acceptable?

Often it is desired to vary the sound also in function of other parameters, the most important being
the intensity. To this purpose it not sufficient to change the sound amplitude by a multiplication, by it
is necessary to modify the timbre of the sound. In general louder sounds are characterized by a sharper
attack and by a brighter spectrum. In this case a technique could be to use a unique sound prototype
(e.g. a tone played fortissimo) and then obtaining the other intensity by simple spectral processing, as
low pass filtering. A different and more effective solution, is to use a set of different sound prototype,
recorder with different intensity (e.g. tones played fortissimo, mezzo forte, pianissimo) and then
obtaining the other dynamic values by interpolations and further processing.

This technique is thus characterized by high computational efficiency and high imitation quality,
but by low flexibility for sounds not initially included in the repertoire or not easily obtainable with
simple transformations. There is a trade-off of memory size with sound fidelity.

In order to employ efficiently the memory, often the sustain part of the tone is not entirely stored
but only a part (or few significant parts) and in the synthesis this part is repeated (looping). Naturally
the repeated part should not be to short, to avoid a static character of the resulting sound. For example
to lengthen the duration of a note, first the attack is reproduced without modification, then the sustain
part is cyclically repeated, with possible cross interpolation among the different selected parts, and
finally the sound release stored part is reproduced. Notice that if we want to avoid artefacts in cycling,
particular care should be devoted to choosing the points of the beginning and ending of the loop. Nor-
mally an integer number of periods is used for looping starting with a null value, to avoid amplitude
or phase discontinuities. In fact these discontinuities are very annoying. To this purpose it may be
necessary to process the recorded samples by slightly changing the phases of the partials.

M-2.10

Import a .wav file of a single instrument tone. Find the stationary (sustain) part, isolate a section,
and perform the looping operation. Listen to the results, and listen to the artifacts when the looped
section does not start/end at zero-crossings.

If we want a less static sustain, it is possible to individuate some different and significant sound
segments, and during the synthesis interpolate (cross-fade) among subsequent segments. In this case
the temporal evolution of the tone can be more faithfully reproduced.

2.3.2 Granular synthesis

Granular synthesis, together with additive synthesis, shares the idea of building complex sounds from
simpler ones. Granular synthesis assumes that a sound can be considered as a sequence, possibly with
overlaps, of elementary acoustic elements called grains. Granular synthesis constructs complex and
dynamic acoustic events starting from a large quantity of grains. The features of the grains and their
temporal location determine the sounds timbre. We can see it as being similar to the cinema, where a
rapid sequence of static images gives the impression of objects in movement.

The initial idea of granular synthesis dates back to Gabor’s work aimed at pinpointing the physical
and mathematical ideas needed to understand what a time-frequency spectrum is. He considered
sound as a sum of elementary Gaussian functions that have been shifted in time and frequency. Gabor
considered these elementary functions as acoustic quanta, the basic constituents of a sound. In the
scientific field these works have been rich in implications and have been the starting point for studying
time-frequency representations. The usual Gabor expansion on a rectangular time-frequency lattice
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of a signal x(¢) can be expressed as a linear combination of properly shifted and modulated versions
9gmk (t) of a synthesis window ¢(t)

.’E(t) == Z Z Amk 9mk (t)
m k

with

Imk = g(t — mozT)ejkﬁQt

The time step 1" and the frequency step 3¢ satisfy the relationship 27" = 27 and a8 < 1.

In music, granular synthesis arises from the experiences of taped electronic music. In the begin-
ning musicians had tools that did not allow a great variation of timbre, for example fixed waveform
oscillators and filters. They obtained dynamic sounds by cutting tapes into short sections and the
putting together again. The rapid alternation of acoustic elements give a certain variety to the sound.
The source of the sound could be electronic or live recorded sounds that were sometimes electroni-
cally processed. lannis Xenakis developed this method in the field of analog electronic music. Starting
from Gabors theory, Xenakis considers the grains as being music quanta and suggested a method of
composition that is based on the organization of the grains by means of screen sequences, which
specify the frequency and amplitude parameters of the grains at discrete points in time. In this way a
common conceptual approach is used both for micro and macro musical structure.

2.3.2.1 Sound granulation

Two main approaches to granular synthesis can be identified: the former based on sampled sounds
and the latter based on abstract synthesis. In the first case, sound granulation, complex waveforms,
extracted from real sounds or described by spectra, occurs in succession with partial overlap with the
method called Overlap And Add (OLA). In this way, it is possible both to reproduce accurately real
sounds and modify then in their dynamic characteristics.

Let z[n| and y[n| be the input and output signals. The grains g[i| are extracted from the input
signal with the help of a window function wy[i] of length Ly by

gk[i] = x[i + ix) wi]

withi = 0... Li_1. The time instant ¢, indicates the point where the segment is extracted; the length
Ly, determines the amount of signal extracted; the window waveform wy[i] should ensure fade-in and
fade-out at the border of the grain and affects the frequency content of the grain. Long grains tend to
maintain the timbre identity of the portion of the input signal, while short ones acquire a pulse-like
quality. When the grain is long, the window has a flat top and it used only to fade-in and fade-out the
borders of the segment.

As in additive synthesis the organization of the choice of the frequencies is very important, so in
granular synthesis the proper timing organization of the grain is essential to avoid artifacts produced
by discontinuities. This problem makes often the control quite difficult. An example of use is the
synthesis of a time varying stochastic component of a signal. In this case it is only necessary to control
the spectral envelope. To this purpose, it is convenient to employ the inverse Fourier transform of a
spectrum, whose magnitude is defined by the spectral envelope and the phase are generated randomly.
Every frame is multiplied by a suitable window before the overlap-and-add, i.e. the sum of the various
frames partially overlapped. It is possible also to use this approach for transforming sampled sounds
(sound granulation). In this case grains are built selecting short segments of a sound, previously
or directly recorded, and then are shaped by an amplitude envelope. These grains are used by the
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Figure 2.5: Representation of granular synthesis where grains derived from different sources are ran-
domly mixed.

composer with a different order and time location or a different velocity. Notice that it is possible to
extract grains from different sound files to create hybrid textures, e.g. evolving from one texture to
another (fig. 2.35).

2.3.2.2 Synthetic grains

In abstract granular synthesis (second case), grains consist of arbitrary waveforms whose amplitude
envelope is a short Gaussian function. Often frequency modulated Gaussian functions are used in
order to localize the energy both in frequency and time domain. Grains are scattered on the frequency-
time plane in the form of clouds. Notice that it is possible to recognize a certain similarity between this
type of granular synthesis and the technique of mosaics, where the grains are single monochromatic
tesseras and their juxtaposition produces a complex image.

In this case the waveform of the i-th grain (fig. 22) is given by

gi[n] = w;[n] - cos <27r%n + ¢i>

S

where w;[n] is a window of duration N; samples. The synthesis expression is given by
sln] = a; - giln — ny] (2.14)
i

where a; is the amplitude coefficient of the ¢-th grain and n; is its time instant. Every grain contributes
to the total energy around the point (n;, f;) of the time frequency plane.

The most important and classic type of granular synthesis, (asynchronous granular synthesis),
is when simple grains are irregularly distributed in the time-frequency plane, e.g. they are scattered
onto a mask that delimitate a particular area of the time-frequency-amplitude space. It results a cloud
of micro-sounds or a sonic texture that is time-varying. Moreover the grain density inside the mask
can be controlled. In this way many sound textures and natural noisy sounds can be modelled where
general statistical properties are more important than the exact sound evolution. These kind of sounds
can be defined as the accumulation of more or less complex sonic grains, with their proper temporal
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Figure 2.6: Example of a synthetic grain waveform.

and spectral variability. For example, the sound of rice falling onto a metal plate is composed of
thousands of elementary ticks; the rain produces, in the same way, the accumulation of a large amount
of water droplet micro-sounds. Scratching or cracking sounds made by the accumulation of thousands
of complex micro-sounds not necessarily deterministic. In fact, in the real world, when multiple
realizations of a same event, of a same phenomenon occur, we can expect these types of sounds.

Grain duration affects the sonic texture: short duration (few samples) produces a noisy, particulate
disintegration effect; medium duration (tents of ms) produces fluttering, warbling, gurgling; longer
durations (hundreds of ms) produce aperiodic tremolo, jittering spatial position. When the grains
are distributed on a large frequency region, the texture has a massive character, while when the band
is quite narrow, it result a pitched sound. Sparse densities (e.g. 5 grains per second) give rise to a
pointillistic texture.

2.3.2.3 Concatenative speech synthesis

Connecting prerecorded natural utterances is probably the easiest way to produce intelligible and
natural sounding synthetic speech. However, concatenative synthesizers are usually limited to one
speaker and one voice and usually require more memory capacity than other methods.

One of the most important aspects in concatenative synthesis is to find correct unit length. The
selection is usually a trade-off between longer and shorter units. With longer units high naturalness,
less concatenation points and good control of coarticulation are achieved, but the amount of required
units and memory is increased. With shorter units, less memory is needed, but the sample collecting
and labeling procedures become more difficult and complex. In present systems units used are usually
words, syllables, demisyllables, phonemes, diphones, and sometimes even triphones.

e Word is perhaps the most natural unit for written text and some messaging systems with very
limited vocabulary. Concatenation of words is relative easy to perform and coarticulation effects
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within a word are captured in the stored units. However, there is a great difference with words
spoken in isolation and in continuos sentence which makes the continuous speech to sound very
unnatural. Because there are hundreds of thousands of different words and proper names in each
language, word is not a suitable unit for any kind of unrestricted Text To Speech system.

e Demisyllables represents the initial and final parts of syllables. One advantage of demisyllables
is that only about 1,000 of them is needed to construct the 10,000 syllables of English. Us-
ing demisyllables, instead of for example phonemes and diphones, requires considerably less
concatenation points. Demisyllables also take account of most transitions and then also a large
number of coarticulation effects and also covers a large number of allophonic variations due to
separation of initial and final consonant clusters.

e Phonemes are probably the most commonly used units in speech synthesis because they are the
normal linguistic presentation of speech. The inventory of basic units is usually between 40
and 50, which is clearly the smallest compared to other units. Using phonemes gives maximum
flexibility with the rule-based systems. However, some phones that do not have a steady-state
target position, such as plosives, are difficult to synthesize. The articulation must also be for-
mulated as rules. Phonemes are sometimes used as an input for speech synthesizer to drive for
example diphone-based synthesizer.

e Diphones (or dyads) are defined to extend the central point of the steady state part of the
phone to the central point of the following one, so they contain the transitions between ad-
jacent phones. That means that the concatenation point will be in the most steady state region
of the signal, which reduces the distortion from concatenation points. The number of units
is usually from 1500 to 2000, which increases the memory requirements and makes the data
collection more difficult compared to phonemes. However, diphone is a very suitable unit for
sample-based text-to-speech synthesis.

A problem in concatenative synthesis compared to other methods is that data collecting and labeling
of speech samples is usually time-consuming. In theory, all possible allophones should be included in
the material, but trade-offs between the quality and the number of samples must be made. Moreover
memory requirements are usually very high, especially when long concatenation units are used, such
as syllables or words

2.3.3 Overlap And Add (OLA) method

A time-frequency representation can be seen as a series of overlapping FFTs with or without win-
dowing. Based on the normal Fourier Transform of a short-time spectrum, we have that a frame
X, (e/“* of the STFT is the DFT of the signal windowed segment y,,(m) = z(m)w(n —m). We can
reconstruct zz(m) by computing the inverse DFT (IDFT) of X,,(e/“*) and dividing out the window
(assuming non-zero for all samples). This process gives L signal values for each window, where L is
the window length. Then the window can be moved by L samples and the process repeated. However,
since X,,(e/“* is undersampled in time, it is highly susceptible to aliasing errors. Thus a more robust
synthesis procedure is needed.

The idea of Overlap And Add (OLA) method is to overlap the segments reconstructed by the IDFT
and multiply them by a synthesis window v[n] before the summation of the overlapping sections. The
synthesis algorithm is given by

yln] = Zv[n — sRs) yiln — sRy] (2.15)

s
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Figure 2.7: Overlap And Add (OLA) method

where s is the frame index, R is the synthesis hop size and ¢ = sR; is reference instant of the
segment y;. The finite length signals y; are computed from the inverse Fourier transform of the short-
time spectra Y'[s Ry, k] eventually modified in amplitude and phase. A perfect reconstruction can be
achieved, if the sum of the overlapping windows is unity. Normally an L- point Hamming window is
used with Ry = L/4 (see Fig. 2.

Some digital sound effects can be obtained emplying this syntesis technique. A robotization effect
can be obtained by putting zero phase values on every FFT before reconstruction. The ffect applies
a fixed pitch onto a sound. Moreover, as it forces the sound to be periodic, many erratic and random
variations are converted into robotic sounds.

If we deliberately impose a random phase on a time-frequency representation, we can have a
different behavior depending on the length of the window: if the window is quite large (for example,
2048 for a sampling rate of 44100 Hz), the magnitude will represent the behavior of the partials quite
well and changes in phase will produce an uncertainty over the frequency. But if the window is small
(e.g. 64 points), the spectral envelope will be enhanced and this will lead to a whispering effect.

2.3.4 SOLA algorithm for time stretching

The basic idea of time stretching by time-segment processing is to divide the input sound into seg-
ments. Then if the sound should be lengthened, some segments are repeated, while if the sound should
be shortened, some segments are discarded. A possible problem is amplitude and phase discontinuity
at the boundaries of the segments. Amplitude discontinuities are avoided by partially overlapping the
blocks, while phase discontinuities are avoided by a proper time alignment of the blocks.

For the most part, commercial time-stretching software packets used by PC users adopt the SOLA
(Synchronous OverLap and Add) algorithm, which bases the synthesis phase on the sum of windowed
segments of the given signal. The SOLA method, (fig. 28]), considers the input signal x[n] divided in
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Figure 2.8: The generic SOLA algorithmic step

fixed-length frames of N samples each, taken every .S, samples (a quantity called analysis hop size);
the output signal y[n], on the contrary, is logically divided in frames of the same length (N samples),
but synthesized with a different step (S, synthesis hop size): in this way the stretching factor is given
by the ratio between the synthesis process speed (Ss samples per step) and the analysis process speed
(S, samples per step), o = Sg/S,.

After an initialization phase, where SOLA copies the first N samples from z[n] to y[n], to obtain
a minimum set of samples to work on, y[j] = z[j] forj = 0...N — 1. Let NS, = N + S, and
NS, = N + S5, during the generic step the algorithm tries to find the best overlap between the
synthesis frame (fixed) and the analysis one (repositionable in a given range). When this optimal
overlap if found, it copies the last S samples from the input frame to the end of the current output
frame and mixes the (/N — S) preceding from each frame with a linear crossfade to obtain a gradual
transition to the new packet of samples:

Yy[NSs —Ss+j] = x[NSq—Ss+km + ]
with0<j < S, —1
yINSs — N +j] = (1—v[j))y[NSs — N +j]l +v[jla[NSq — N + j + ky,]

with0<j< N —S,—1

where v[j] is a linear function, called (smoothing function), for crossfading the two segments. The
final effect of this method is a local replication of the waveform periods (more or less evident de-
pending from the value of parameter «), located by a synchronization function, which finds during
each step, as stated, the optimal overlap between frames. This local replication of waveform periods
permits us to obtain a synthesized waveform with the same spectral properties, but with an altered
temporal evolution.
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To find the optimal value for the discrete time lag k,,,, assuring the best match between the two
N-sample frames, we can use one of the three most diffused techniques:

1. Computation of the minimum vectorial inter-frame distance in L; sense (cross-AMDF)
2. Computation of the maximum cross-correlation 7, (k)

L

rey(k) = Zaz[N%—k—i—i} ~y[NSs — N + i
=0

_kmam S k § kmaxa Lm = N - Ss

3. Computation of the maximum normalized cross-correlation r x[k|, where every value taken
from r, ,[k] is normalized dividing it by the product of the frame energies (one of which is
varying with k).

Even if the last technique is conceptually preferable, the second one is often used for computational
efficiency.

2.4 Spectrum based models

Since the human ear acts as a particular spectrum analyser, a first class of synthesis models aims at
modeling and generating sound spectra. The Short Time Fourier Transform and other time-frequency
representations provide powerful sound analysis tools for computing the time-varying spectrum of a
given sound. In this section models that can be interpreted in the frequency domain will be presented.

2.4.1 Sinusoidal model

When we analyze a pitched sound, we find that its spectral energy is mainly concentrated at a few dis-
crete (slowly time-varying) frequencies fj. These frequency lines correspond to different sinusoidal
components called partials. If the sound is almost periodic, the frequencies of partials are approx-
imately multiple of the fundamental frequency fo, ie. fi(t) ~ k fo(t). The amplitude aj, of each
partial is not constant and its time-variation is critical for timbre characterization. If there is a good
degree of correlation among the frequency and amplitude variations of different partials, these are
perceived as fused to give a unique sound with its timbre identity.

The sinusoidal model assumes that the sound can be modeled as a sum of sinusoidal oscillators
whose amplitude ay () and frequency fx(t) are slowly time-varying

Zak ) cos(op(t)) (2.16)
o) = 20 [ fulr)ir 4 0u(0), @17
0
or, digitally,
ss[n] = Zak cos(¢r[n]) , (2.18)

Pk[n] = 27Tfk[ |Ts + ¢rln — 1], (2.19)
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where Ty is the sampling period. Notice that eq. can also be written as

$r(n) = dox + 27T > fu(n)

j=1

. Equations (Z.T6)) and @ZI7)) are a generalization of the Fourier theorem, that states that a periodic
sound of frequency fy can be decomposed as a sum of harmonically related sinusoids of frequency
fi=ifo
ss(t) = Z ay cos(2mk fot + o) -
k

This model is also capable of representing aperiodic and inharmonic sounds, as long as their spectral
energy is concentrated near discrete frequencies (spectral lines).

In computer music this model is called additive synthesis and is widely used in music composi-
tion. Notice that the idea behind this method is not new. As a matter of fact, additive synthesis has
been used for centuries in some traditional instruments such as organs. Organ pipes, in fact, produce
relatively simple sounds that, combined together, contribute to the richer spectrum of some registers.
Particularly rich registers are created by using many pipes of different pitch at the same time. More-
over this method, developed for simulating natural sounds, has become the “metaphorical” foundation
of a compositional methodology based on the expansion of the time scale and the reinterpretation of
the spectrum in harmonic structures.

2.4.2 Spectral modeling

Spectral analysis of the sounds produced by musical instruments, or by any physical system, shows
that the spectral energy of the sound signals can be interpreted as the sum of two main components:
a deterministic component that is concentrated on a discrete set of frequencies, and a stochastic com-
ponent that has a broadband characteristics. The deterministic —or sinusoidal- component normally
corresponds to the main modes of vibration of the system. The stochastic residual accounts for the
energy produced by the excitation mechanism which is not turned into stationary vibrations by the
system, and for any other energy component that is not sinusoidal.

As an example, consider the sound of a wind instrument: the deterministic signal results from self-
sustained oscillations inside the bore, while the residual noisy signal is generated by the turbulent flow
components due to air passing through narrow apertures inside the instrument. Similar considerations
apply to other classes of instruments, as well as to voice sounds, and even to non-musical sounds.

In the remainder of this section we discuss the modeling of the deterministic sound signal and
introduce the main concepts of additive synthesis. Later on, in section P.44] we will address the
problem of including the stochastic component into the additive model.

2.4.2.1 Deterministic signal component

The term deterministic signal means in general any signal that is not noise. The class of deterministic
signals that we consider here is restricted to sums of sinusoidal components with varying amplitude
and frequency. Amplitude and frequency variations can be noticed e.g. in sound attacks: some partials
that are relevant in the attack can disappear in the stationary part. In general, the frequencies can
have arbitrary distributions: for quasi-periodic sounds the frequencies are approximately harmonic
components (integer multiples of a common fundamental frequency), while for non-harmonic sounds
(such as that of a bell) they have non-integer ratios.
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Figure 2.9: Sum of sinusoidal oscillators with time-varying amplitudes and frequencies.

The deterministic part of a discrete-time sound signal can be represented by the sinusoidal model
of sect. 4Tl The equation is

ss[n] = Zak[n] cos(px[n]) or[n] = 27 fr[n]Ts + dr[n — 1] . (2.20)
k

This equation has a great generality and can be used to faithfully reproduce many types of sound,
especially in a “synthesis-by-analysis” framework (that we discuss in section 243 below). However,
as already noted, it discards completely the noisy components that are always present in real signals.
Another drawback of equation (Z20) is that it needs an extremely large number of control parameters:
for each note that we want to reproduce, we need to provide the amplitude and frequency envelopes
for all the partials. Moreover, the envelopes for a single note are not fixed, but depend in general on
the intensity.

On the other hand, additive synthesis provides a very intuitive sound representation, and this is one
of the reasons why it has been one of the earliest popular synthesis techniques in computer music[]
Moreover, sound transformations performed on the parameters of the additive representation (e.g.,
time-scale modifications) are perceptually very robust.

2.4.2.2 Time- and frequency-domain implementations

Additive synthesis with equation (Z20) can be implemented either in the time domain or in the fre-
quency domain. The more traditional time-domain implementation uses the digital sinusoidal oscil-
lator in wavetable or recursive form, as discussed in section ZZZTJl The instantaneous amplitude
and the instantaneous radian frequency of a particular partial are obtained by linear interpolation, as
discussed previously. Figure 2.9 provides a block diagram of such a time-domain implementation.

M-2.11
‘ Use the sinusoidal oscillator realized in [M=2.3 to synthesize a sum of two sinusoids.

[M=2.11] Solution

'Some composers have even used additive synthesis as a compositional metaphor, in which sound spectra are reinter-
preted as harmonic structures.
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Figure 2.10: Beating effect: (a) frequency envelopes (£1 dashed line, £2 solid line) and (b) envelope
of the resulting signal.

%$%% define controls %%%

a=envgen ([0, .5,5,10,15,19.5,20],[0,1,1,1,1,1,0]1); %fade in/out

fl=envgen([0,20], [200,200]); $constant freqg. envelope

f2=envgen([0,1,5,10,15,20]1, ... %$increasing freqg. envelope
[200,200,205,220,270,300]) ;

%$%% compute sound %%%
=sinosc(0,a,fl,0)+sinosc(0,a,£f2,0);

The sinusoidal oscillator controlled in frequency and amplitude is the fundamental build-
ing block for time-domain implementations of additive synthesis. Here we employ it to
look at the beating phenomenon. We use two oscillators, of which one has constant
frequency while the second is given a slowly increasing frequency envelope. Figure
shows the £1, f2 control signals and the amplitude envelope of the resulting sound
signal: note the beating effect.

In alternative to the time-domain approach, a very efficient implementation of additive synthesis
can be developed in the frequency domain, using the inverse FFT. Consider a sinusoid in the time-
domain: its STFT is obtained by first multiplying it for a time window w[n| and then performing the
Fourier transform. Therefore the transform of the windowed sinusoid is the transform of the window,
centered on the frequency of the sinusoid, and multiplied by a complex number whose magnitude and
phase are the magnitude and phase of the sine wave:

sln] = Acos(2r fon/Fs +¢) =  Flw-s|(f) = AewW(f — fo)- 2.21)

If the window W (f) has a sufficiently high sidelobe attenuation, the sinusoid can be generated in
the spectral domain by calculating the samples in the main lobe of the window transform, with the
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Figure 2.11: Fourier analysis of a saxophone tone: (a) frequency envelopes and (b) amplitude en-
velopes of the sinusoidal partials, as functions of time.

appropriate magnitude, frequency and phase values. One can then synthesize as many sinusoids as
desired, by adding a corresponding number of main lobes in the Fourier domain and performing an
IFFT to obtain the resulting time-domain signal in a frame.

By an overlap-and-add process one then obtains the time-varying characteristics of the sound.
Note however that, in order for the signal reconstruction to be free of artifacts, the overlap-and-add
procedure must be carried out using a window with the property that its shifted copies overlap and
add to give a constant. A particularly simple and effective window that satisfies this property is the
triangular window.

The FFT-based approach can be convenient with respect to time-domain techniques when a very
high number of sinusoidal components must be reproduced: the reason is that the computational costs
of this implementation are largely dominated by the cost of the FFT, which does not depend on the
number of components. On the other hand, this approach is less flexible than the traditional oscillator
bank implementation, especially for the instantaneous control of frequency and magnitude. Note also
that the instantaneous phases are not preserved using this method. A final remark concerns the FFT
size: in general one wants to have a high frame rate, so that frequencies and magnitudes need not to
be interpolated inside a frame. At the same time, large FFT sizes are desirable in order to achieve
good frequency resolution and separation of the sinusoidal components. As in every short-time based
processes, one has to find a trade-off between time and frequency resolution.

2.4.3 Synthesis by analysis

As already remarked, additive synthesis allows high quality sound reproduction if the amplitude and
frequency control envelopes are extracted from Fourier analysis of real sounds. Figure ZZTT]shows the
result of this kind of analysis, in the case of a saxophone tone. Using these data, additive resynthesis
is straightforward.
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M-2.12
Assume that the script sinan imports two matrices sinan_fregs and sinan_amps with the partial

frequency and amplitude envelopes of an analyzed sound. Resynthesize the sound.

[M-2.12 Solution

o\

%% headers %%%
[.

o]

o

[eRgeTe)

%%% define controls %%%
readsan; %$import analysis matrices sinan_fregs and sinan_amps
npart=size(sinan_amps,1l); %number of analyzed partials

%$%% compute sound %%%
s=sinosc(... %generate first partial
0.5,sinan_amps(l,:),sinan_fregs(l,:),0);
for (i=2:npart) %generate higher partials and sum
s=s+sinosc (0.5, sinan_amps (i, :),sinan_fregs (i, :),0);
end

2.4.3.1 Magnitude and Phase Spectra Computation

The first step of any analysis procedure that tracks frequencies and amplitudes of the sinusoidal com-
ponents is the frame-by-frame computation of the sound magnitude and phase spectra. This is carried
out through short-time Fourier transform. The subsequent tracking procedure will be performed in this
spectral domain. The control parameters for the STFT are the window-type and size, the FFT-size,
and the frame-rate. These must be set depending on the sound to be processed.

Note that the analysis step is completely independent from the synthesis, therefore the observa-
tions made in section about FFT-based implementations (the window must overlap and add to
a constant) do not apply here. Good resolution of the spectrum is needed in order to correctly resolve,
identify, and track the peaks which correspond to the deterministic component.

If the analyzed sound is almost stationary, long windows (i.e. windows that cover several periods)
that have good side-lobe rejection can be used, with a consequent good frequency resolution. Unfortu-
nately most interesting sounds are not stationary and a compromise is required. For harmonic sounds
one can scale the actual window size as a function of pitch, thus achieving a constant time-frequency
trade-off. For inharmonic sounds the size should be set according to the minimum frequency differ-
ence that exists between partials.

The question is now how to perform automatic detection and tracking of the spectral peaks that
correspond to sinusoidal components. In section below we present the main guidelines of a
general analysis framework, which is summarized in figure First, the FFT of a sound frame
is computed according to the above discussion. Next, the prominent spectral peaks are detected and
incorporated into partial trajectories. If the sound is pseudo-harmonic, a pitch detection step can
improve the analysis by providing information about the fundamental frequency information, and can
also be used to choose the size of the analysis window.

Such a scheme is only one of the possible approaches that can be used to attack the problem.
Hidden Markov Models (HMMs) are another one: a HMM can optimize groups of peaks trajectories
according to given criteria, such as frequency continuity. This type of approach might be very valuable
for tracking partials in polyphonic sounds and complex inharmonic tones.
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Figure 2.12: Block diagram of the sinusoid tracking process, where s[n] is the analyzed sound signal
and Ay, fi are the estimated amplitude and frequency of the kth partial in the current analysis frame.

2.4.3.2 A sinusoid tracking procedure

We now discuss in more detail the analysis steps depicted in figure

Peak detection. The first one is detection of the most prominent frequency peaks (i.e., local maxima

in the magnitude spectrum) in the current analysis frame. Real sounds are not periodic, do
not have clearly spaced and defined spectral peaks, exhibit interactions between components.
Therefore, the best one can do at this point is to detect as many peaks as possible and postpone
to later analysis steps the decision of which ones actually correspond to sinusoidal components.
The peaks are then searched by only imposing two minimal constraints: they have to lie within
a given frequency range, and above a given magnitude threshold. The detection of very soft
peaks is hard: they have little resolution, and measurements are very sensitive to transformations
because as soon as modifications are applied to the analysis data, parts of the sound that could
not be heard in the original can become audible. Having a very clean sound with the maximum
dynamic range, the magnitude threshold can be set to the amplitude of the background noise
floor. In order to gain better resolution in the high frequency range, the sound may be pre-
processed to introduce preemphasis, which has then to be compensated later on before the
resynthesis.

Pitch detection. After peak detection, many procedures can be used to decide whether a peak belongs

to a sinusoidal partial or not. One possible strategy is to measure how close the peak shape is
to the ideal sinusoidal peak (recall what we said about the transform of a windowed sinusoid
and in particular equation (Z22T). A second valuable source of additional information is pitch.
If a fundamental frequency is actually present, it can be exploited in two ways. First, it helps
the tracking of partials. Second, the size of the analysis window can be set according to the
estimated pitch in order to keep the number of periods-per-frame constant, therefore achieving
the best possible time-frequency trade-off (this is an example of a pitch-synchronous analysis).
There are many possible pitch detection strategies, which will be presented in the next chapter.

Peak continuation. A third and fundamental strategy for peak selection is to implement some sort

of peak continuation algorithm. The basic idea is that a set of “guides” advance in time and
follow appropriate frequency peaks (according to specified constraints that we discuss in the
next paragraph) forming trajectories out of them. A guide is therefore an abstract entity which
is used by the algorithm to create the trajectories, and the trajectories are the actual result of the
peak continuation process. The guides are turned on, advanced, and finally turned off during the
continuation algorithm, and their instantaneous state (frequency and magnitude) is continuously
updated during the process. If the analyzed sound is harmonic and a fundamental has been
estimated, then the guides are created at the beginning of the analysis, with frequencies set
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according to the estimated harmonic series. When no harmonic structure can be estimated,
each guide is created when the first available peak is found. In the successive analysis frames,
the guides modify their status depending on the last peak values. This past information is
particularly relevant when the sound is not harmonic, or when the harmonics are not locked to
each other and we cannot rely on the fundamental as a strong reference for all the harmonics.

The main constraints used to assign guides to spectral peaks are as follows. A peak is assigned
to the guide that is closest to it and that is within an assigned frequency deviation. If a guide
does not find a match, the corresponding trajectory can be turned off, and if a continuation peak
is not found for a given amount of time the guide is killed. New guides and trajectories can be
created starting from peaks of the current frame that have high magnitude and are not “claimed”
by any of the existing trajectories. After a certain number of analysis frames, the algorithm can
look at the trajectories created so far and adopt corrections: in particular, short trajectories can
be deleted, and small gaps in longer trajectories can be filled by interpolating between the values
of the gap edges.

One final refinement to this process can be added by noting that the sound attack is usually highly
non-stationary and noisy, and the peak search is consequently difficult in this part. Therefore it is
customary to perform the whole procedure backwards in time, starting from the end of the sound
(which is usually a more stable part). When the attack is reached, a lot of relevant information has
already been gained and non-relevant peaks can be evaluated and/or rejected.

2.4.4 ‘‘Sines-plus-noise’’ models

At the beginning of our discussion on additive modeling, we remarked that the spectral energy of the
sound signals has a deterministic component that is concentrated on a discrete set of frequencies, and
a stochastic component that has a broadband characteritics. So far we have discussed the problem
of modeling the deterministic —or sinusoidal- component. Now we have to include the stochastic
component into the model.

A sinusoidal representation may in principle be used also to simulate noise, since noise consists
of sinusoids at every frequency within the band limits. It is clear however that such a representation
would be computationally very demanding. Moreover it would not be a flexible sound representation.
Therefore the most convenient sound model is of the form

s[n] = ssn] + e[n] (2.22)

where s;[n] represent the deterministic part (eq. 220 and e[n] represents the stochastic component
and is modeled separately from the deterministic part.

2.4.4.1 Stochastic analysis

The most straightforward approach to estimation of the stochastic component is through subtraction
of the deterministic component from the original signal. Subtraction can be performed either in the
time domain or in the frequency domain. Time domain subtraction must be done while preserving
the phases of the original sound, and instantaneous phase preservation can be computationally very
expensive. One the other hand, frequency-domain subtraction does not require phase preservation.
However, time-domain subtraction provides much better results, and is usually favored despite the
higher computational costs. For this reason we choose to examine time-domain subtraction in the
remainder of this section. Figure Z13] provides a block diagram.
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Figure 2.13: Block diagram of the stochastic analysis and modeling process, where s[n]| is the ana-
lyzed sound signal and Ay, fr, ¢ are the estimated amplitude, frequency, and phase of the kth partial
in the current analysis frame.

Suppose that the deterministic component has been estimated in a given analysis frame, using for
instance the general scheme described in section (note however that in this case the analysis
should be improved in order to provide estimates of the instantaneous phases as well). Then the first
step in the subtraction process is the time-domain resynthesis of the deterministic component with the
estimated parameters. This should be done by properly interpolating amplitude, frequency, and phase
values in order to avoid artifacts in the resynthesized signal. The actual subtraction can be performed
as

e[n] = wn] - [s[n] — d[n]], n=0,1,...,N —1, (2.23)

where s[n] is the original sound signal and d[n] is the re-synthesized deterministic part. The difference
(s — d) is multiplied by an analysis window w of size N, which deserves some discussion.

We have seen in 4.3 that high frequency resolution is needed for the deterministic part, and for
this reason long analysis windows are used for its estimation. On the other hand, good time resolution
is more important for the stochastic part of the signal, especially in sound attacks, while frequency
resolution is not a major issue for noise analysis. A way to obtain good resolutions for both the
components is to use two different analysis windows. Therefore w in equation (223)) is not in general
the same window used to estimate d[n], and the size NV is in general small.

Once the subtraction has been performed, there is one more step than can be used to improve
the analysis, namely, test can be performed on the estimated residual in order to assess how good
the analysis was. If the spectrum of the residual still contains some partials, then the analysis of the
deterministic component has not been performed accurately and the sound should be re-analyzed until
the residual is free of deterministic components. Ideally the residual should be as close as possible to
a stochastic signal, therefore one possible test is a measure of correlation of the residual samples.

2.4.4.2 Stochastic modeling

The assumption that the residual is a stochastic signal implies that it is fully described by its ampli-
tude and its spectral envelope characteristics. Information on the instantaneous phase is not necessary.
Based on these considerations, a frame of the stochastic residual can be completely characterized by

2 Note that if the analyzed sound has not been recorded in silent and anechoic settings the residual will contain not only
the stochastic part of the sound, but also reverberation and/or background noise.
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Figure 2.14: Example of residual magnitude spectrum (solid line) and its line-segment approximation
(dashed line), in an analysis frame. The analyzed sound signal is the same saxophone tone used in

figure Z2TT1

a filter that models the amplitude and general frequency characteristics of the residual. The represen-
tation of the residual for the overall sound will then be a time-varying filter.
Within a given frame we therefore assume that e(t) can be modeled as

E(f)=H(t)-U(f), (2.24)

where U is white noise and H is the frequency response of filter whose coefficients vary on a frame-
by-frame basis. The stochastic modeling step is summarized in the last block of figure 2213

The filter design problem can be solved using different strategies. One approach that is often
adopted uses some sort of curve fitting (line-segment approximation, spline interpolation, least squares
approximation, and so on) of the magnitude spectrum of e in an analysis frame. As an example, line-
segment approximation can be obtained by stepping through the magnitude spectrum, finding local
maxima at each step, and connecting the maxima with straight lines. This procedure can approximate
the spectral envelope with reasonable accuracy, depending on the number of points, which in turn can
be set depending on the sound complexity. See figure T4 for an example.

Another possible approach to the filter design problem is Linear Predictive Coding (LPC), which is
a popular technique in speech processing. However in this context curve fitting procedure on the noise
spectrum (e.g., line-segment approximation) are usually considered to be more flexible approaches
and are preferred to LPC. We will return on LPC in section

The next question is how to implement the estimated time-varying filter in the resynthesis step.

2.4.4.3 Resynthesis and modifications

Figure shows the block diagram of the synthesis process. The deterministic signal, i.e., the
sinusoidal component, results from the magnitude and frequency trajectories, or their transformation,
by generating a sine wave for each trajectory (additive synthesis). As we have seen, this can either
be implemented in the time domain with the traditional oscillator bank method or in the frequency
domain using the inverse-FFT approach.
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Figure 2.15: Block diagram of the sines-plus-noise synthesis process.

Concerning the stochastic component, a frequency-domain implementation is usually preferred to
a direct implementation of the time-domain convolution (2224)), due to its computational efficienc
and flexibility. In each frame, the stochastic signal is generated by an inverse-FFT of the spectral
envelopes. Similarly to what we have seen for the deterministic synthesis in section the time-
varying characteristics of the stochastic signal is then obtained using an overlap-and-add process.

In order to perform the IFFT, a magnitude and a phase responses have to be generated starting
from the estimated frequency envelope. Generation of the magnitude spectrum is straightforwadly
obtained by first linearly interpolating the spectral envelope to a curve with half the length of the
FFT-size, and then multiplying it by a gain that corresponds to the average magnitude extracted in
the analysis. The estimated spectral envelope gives no information on the phase response. However,
since the phase response of noise is noise, a phase response can be created from scratch using a
random signal generator. In order to avoid periodicities at the frame rate, new random values should
be generated at every frame.

The sines-plus-noise representation is well suited for modification purposes.

e By only working on the deterministic representation and modifying the amplitude-frequency
pairs or the original sound partials, many kinds of frequency and magnitude transformations
can be obtained. As an example, partials can be transposed in frequency. It is also possible
to decouple the sinusoidal frequencies from their amplitude, obtaining pitch-shift effects that
preserve the formant structure.

e Time-stretching transformations can obtained by resampling the analysis points in time, thus
slowing down or speeding up the sound while maintaining pitch and formant structure. Given
the stochastic model that we are using, the noise remains noise and faithful signal resynthesis is
possible even with extreme stretching parameters.

e By acting on the relative amplitude of the two components, interesting effects can be obtained
in which either the deterministic or the stochastic parts are emphasized. As an example, the
amount of “breathiness” of a voiced sound or a wind instrument tone can be adjusted in this
way. One must keep in mind however that, when different transformations are applied to the

3 In fact, by using a frequency-domain implementation for both the deterministic and the stochastic synthesis one can
add the two spectra and resynthesize both the components at the cost of a sigle IFFT per frame.
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two representations, the deterministic and stochastic components in the resulting signal may not
be perceived as a single sound event anymore.

e Sound morphing (or cross-synthesis transformations can be obtained by interpolating data from
two or more analysis files. This transformations are particularly effective in the case of quasi-
harmonic sounds with smooth parameter curves.

2.4.5 Sinusoidal description of transients

So far we have seen how to extend the sinusoidal model by using a “sines-plus-noise” approach that
explicitly describes the residual as slowly varying filtered white noise. Although this technique is very
powerful, transients do not fit well into a filtered noise description, because they lose sharpness and
are smeared. This consideration motivates us to handle transients separately.

One straightforward approach, that is sometimes used, is removing transient regions from the
residual, performing the sines-plus-noise analysis, and adding the transients back into the signal.
This approach obviously requires memory where the sampled transients must be stored, but since the
transient residuals remain largely invariant throughout most of the range of an instrument, only a few
residuals are needed in order to cover all the sounds of a single instrument. Although this approach
works well, it is not flexible because there is no model for the transients. In addition, identifying
transients as everything that is neither sinusoidal nor transient is not entirely correct. Therefore we
look for a suitable transient model, that can be embedded in the additive description to obtain a “sines-
plus-transients-plus-noise” representation.

2.4.5.1 The DCT domain

In the following we adopt a further modified version of the additive sound representation (2.20)), in
which the sound transients are explicitly modeled by an additional signal:

s[n] = ss[n] + e[n] + er[n], (2.25)

where s;[n] is the sinusoidal component, e;[n] is the signal associated to transients and e, [n] is the
noisy residual. The transient model is based on a main undelying idea: we have seen that a slowly
varying sinusoidal signal is impulsive in the frequency domain, and sinusoidal models perform short-
time Fourier analysis in order to track slowly varying spectral peaks (the tips of the impulsive signals)
over time. Transients are very much dual to sinusoidal components: they are impulsive in the time
domain, and consequently they must be oscillatory in the frequency domain. Therefore, although
transient cannot be tracked by a short-time analysis (because their STFT will not contain meaningful
peaks), we can track them by performing sinusoidal modeling in a properly chosen frequency domain.
The mapping that we choose to use is the one provided by the discrete cosine transform (DCT):

= (2n — Dk
Slk] = B[k] ;::0 s[n] cos [T] , for n,k=0,1,...,N —1, (2.26)

where §[1] = /1/N and B[k] = \/2/N otherwise. From equation (Z26) one can see that an
ideal impulse d[n — ng| (i.e., a Kronecker delta function centered in n) is transformed into a cosine

whose frequency increases with ng. Figure ZZT6(a) shows a more realistic transient signal, a one-
sided exponentially decaying sine wave. Figure E.T6(b) shows the DCT of the transient signal: a
slowly varying sinusoid. This considerations suggest that the time-frequency duality can be exploited
to develop a transient model: the same kind of parameters that characterize the sinusoidal components
of a signal can also characterize the transient components of a signal, although in a different domain.
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Figure 2.16: Example of DCT mapping: (a) an impulsive transient (an exponentially decaying sinu-
soid) and (b) its DCT as a slowly varying sinusoid.

2.4.5.2 Transient analysis and modeling

Having transformed the transient into the DCT domain, the most natural way to proceed is performing
sinusoidal modeling in this domain: STFT analysis of the DCT-domain signal can be used to find
meaningful peaks, and then the signal can be resynthesized in the DCT domain and back-transformed
to the time domain with an inverse DCT transform (IDCT). This process is shown in figure ZZT71 We
now discuss the main steps involved in this block diagram.

First the input signal s[n] is divided into non-overlapping blocks in which DCT analysis will
be performed. The block length should be chosen so that a transient appears as “short”, therefore
large block sizes (e.g., 1 s) are usually chosen. The block DCT is followed by a sinusoidal analy-
sis/modeling process which is identical to what we have seen is section 243l The analysis can op-
tionally embed some information about transient location withing the block: there are many possible
transient detection strategies, which we do not want to discuss here. Also, the analysis can perform
better if the sinusoid tracking procedure starts from the end of the DCT-domain signal and moves
backwards toward the beginning, because the beginning of a DCT frame is usually spectrally rich and
this can deteriorate the performance of the analysis (similar considerations were done in section 22473
when discussing sinusoid tracking in the time domain).

The analysis yields parameters that correspond to slowly varying sinusoids in the DCT domain:
each transient is associated to a triplet { A, fx, ¢}, amplitude, frequency, and phase of the kth “par-
tial” in each STFT analysis frame within a DCT block. By recalling the properties of the DCT one
can see that f}, correspond to onset locations, Ay, is the amplitude of the time-domain signal also, and
¢y 1s related to the time direction (positive or negative) in which the transient evolves. Resynthesis
of the transients is then performed using these parameters to reconstruct the sinusoids in the DCT
domain. Finally an inverse discrete cosine transform (IDCT) on each of the reconstructed signals is
used to obtain the transients in each time-domain block, and the blocks are concatenated to obtain the
transients for the entire signal.

It is relatively straightforward to implement a “fast transient reconstruction” algorithm. Without
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Figure 2.17: Block diagram of the transient analysis and modeling process, where s[n] is the analyzed
sound signal and A, fr, ¢ are the estimated amplitude, frequency, and phase of the kth DCT-
transformed transient in the current analysis frame.
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Figure 2.18: Source filter model.

entering the details, we just note that the whole procedure can be reformulated using FFT transforma-
tions only: in fact one could verify that the DCT can be implemented using an FFT block plus some
post-processing (multiplication of the real and imaginary parts of the FFT by appropriate cosinu-
soidal and sinusoidal signals followed by a sum of the two parts). Furthermore, this kind of approach
naturally leads to a FFT-based implementation of the additive synthesis step (see section ZZ42.7)).
One nice property of this transient modeling approach is that it fits well within the sines-plus-
noise analysis that we have examined in the previous sections. The processing block depicted in
figure 217 returns an output signal $[n] in which the transient components e; have been removed by
subtraction: this signal can be used as the input to the sines-plus-noise analysis, in which the remaining
components (deterministic and stochastic) will be analyzed and modeled. From the implementation
viewpoint, one advantage is that the core components of the transient-modeling algorithm (sinusoid
tracking and additive resynthesis) are identical to those used for the deterministic model. Therefore
the same processing blocks can be used in the two stages, although working on different domains.

2.4.6 Source-filter models

Some sources can be modeled as an exciter, characterized by a spectrally rich signal, and a resonator,
described by a linear system, connected in a feed-forward relationship (fig. EI8). An example is the
voice, where the periodic pulses or random fluctuations produced by the vocal folds are filtered by the
vocal tract, that shapes the spectral envelope. The vowel quality and the voice color greatly depends
on the resonance regions of the filter, called formants.
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If the system is linear and time-invariant (at least on a short time scale), it can be described by the
filter with transfer function given by

H(z) = ig = Ezkski__k 2.27)

that can be computed by a difference equation
sfn] = Z biuln —i] — Z agsfn —kJ . (2.28)
i k

where ay, e b; are the filter coefficients and u[n] e s¢[n] are input and output signals. The model is
also represented by the convolution of the source u[n] with the impulse response of the filter

spln] = (ws )] 2 3" hin - kyu(k) . (2.29)
k

Digital signal processing theory gives us the tools to design the filter structure and to estimate the filter
coefficients in order to obtain a desired frequency response. This model combines the spectral fine
structure (spectral lines, broadband or narrowband noise, etc.) of the input with the spectral envelope
shaping properties of the filter:

Se(f) =U(f) H(f) - (2.30)

Therefore, it is possible to control and modify separately the pitch from the formant structure of a
speech sound. In computer music this model is called subtractive synthesis. If the filter is static, the
temporal features of the input signal are maintained. If, conversely, the filter coefficients are varied,
the frequency response changes. As a consequence, the output will be a combination of temporal
variations of the input and of the filter (cross-synthesis).

If we make some simplifying hypothesis about the input, it is possible to estimate both the param-
eters of the source and the filter of a given sound. The most common procedure is linear predictive
coding (LPC) which assumes that the source is either a periodic impulse train or white noise, and that
the filter is all pole (i.e., no zeros). LPC is widely used for speech synthesis and modification.

2.4.6.1 Basic elements

Every spectrally rich signal can be used as input to a subtractive synthesis algorithm. The simplest one
for periodic sounds is the impulse train generator which produces a sequence of unit impulses, spaced
by the desired fundamental perion. Another simple generator for stochastic sources is the random
noise generator, which produces a flat spectrum noise.

M-2.13

Write a function noisegen (t0, amp) that realizes the noise generator, and a function
buzz (t0, amp, £) that realizes the impulse generator. The parameters (t0, amp, £) are initial
time, amplitude envelope, and frequency envelope, respectively.

M-2.13 Solution
Hint for the noise generator: simply use the function rand ().

Hint for the impulse generator: use additive synthesis, and sum up all the harmonic
components cos(2k7 fot) (k € N) of the fundamental frequency fo, up to the Nyquist fre-
quency F, /2. Figure 219 shows the resulting signal, in the time and frequency domains
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Figure 2.19: Impulse generator.

2.4.6.1.1 Simple low pass filter: first order IIR filter A simple single low pass filter is described
by the equations

yln] = bzn|+ayn—1] 0<a<1,b>0 (2.31)
b
H = — 2.32
(2) 1—az"! (2.32)
The filter has a pole at z = r and and a maximum gain of b(1 — a). When a < 1, we have a low pass
filter and its selectivity increase when a tends to 1. The 3db bandwidth f34p is given by

1—a
27 F

f3dB = (2.33)

The impulse response is a decreasing exponential with time constant 7 = —1/(In(a) F’s) seconds. The
time taken to decrease the amplitude below 1% (i.e. 40 dB) of the initial value is given by

1 log(0.01) 2

1
= — > = —log(— 2.34
TA0dB F, log(a) T Og(a) ( )

and is referred to as the 40-dB time constant.

2.4.6.1.2 Digital resonator: second order IIR filter An important filter is the second order IIR
filter that is very often used for modeling resonances. It is described by:
14 a1z 4 agz2

H(z) (2.35)

where B is the bandwidth and f. is the center frequency of the resonance.The filter coefficient can be
derived by these (approximate) equations:

ay = —2rcos(we), ag =12, by = (1—r)\/1—2rcos(2w.) + 12, (2.36)

where the auxiliary parameters r and w, are defined as r = e% e we = 2w f./Fs and correspond
to the magnitude and phase of the complex conjugate poles of the transfer function. The parameter
bg, gain normalization factor, is computed normalizing the magnitude at the resonance frequency, i.e.
|H (w.)| = 1. The impulse response is a sinusoidal function with exponentially decreasing amplitude

W) = =2

sin we

Ty sin(wen + we)
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The 40-dB time constant is given by (see eq. Z34)

1 log(0.01)

2
- z 2.37
T40dB F, log(r) T og( r) ( )

M-2.14

Write a function baIIR2 (fc, B) that computes the coefficients of the 2nd order resonant filter
given the center frequency f. and the bandwidth B.

[M-2.74] Solution

function [b,al=balIIR2 (fc,B); %computes coeff. a,b of II order cells
(the no. of cells to be computed depends
%$on the length of the vectors fc,B)

o\

global Fs; global Fc;
nfilters=length (fc); %no. of cells to be computed

r=exp (- (pi.*B) /Fs) al=-(2*r.*cos (2*pi*fc/Fs))’ a2=r’."2
al0=ones (nfilters, 1)

b0=(1l-r) .*sgrt (1-2.*r.*cos (2*2*pi.*fc/Fs)+r.*r); b0=b0’;
a=[a0 al a2]; b=[b0 zeros(nfilters,l) zeros(nfilters,1l)];

Note that we have followed the Octave/Matlab convention in defining the coefficients b, a.
See the help for the function filter (b, a, in)

By using the sources and filter above described, it is possible to experiment the effect of subtractive
synthesis with constant parameters.

M-2.15

Using the functions buzz and baIIR2, realize a parallel formant synthesizer. Use 3 2nd order IIR
cells, corresponding to the first 3 vowel formant frequencies.

M-2.75] Solution

%$%% define controls %%%

amp=envgen ([0, .2,1,1.8,21,10,1,.8,1,0],"1linear’); amp. envelope

f=envgen([0,.2,1.8,2],[200,250,250,200],"1linear’); % pitch envelope

f=f4+max (£) *0.05*... add vibrato
Ssin(2*pi*5* (SpF/Fs)*[0:1length(f)-1]) .*hanning(length (f))’;

o

o\

[b_i,a_i]=baIIR2([300 2400 3000], [200 200 500]); %spec. envelope /i/
[b_a,a_al=baIIR2([700 1200 2500], [200 300 500]); %spec. envelope /a/
[b_e,a_el=baIIR2([570 1950 3000], [100 100 800]); %spec. envelope /e/

%%% compute sound %%%
s=buzz (0, amp, f) ; $impulse source
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Figure 2.20: Spectrum of the original source signal, the spectral envelope defined by the filtering
elements, and the spectrum of the final signal for two different pitches when a paralled synthesis

structure is used.

si=filter(b_i(1,:),a_i(1,:),s)+. $synthesize /i/
filter(b_i(2,:),a_1(2,: ),s)+fllter(b_i(3,:),a_i(3,:),s);
sa=filter(b_a(l,:),a_a(l,:),s)+. $synthesize /a/
filter(b_a(2,:),a_a(2,: ),s)+fllter(b_a(3,:),a_a(3,:),s);
se=filter_e(b(1l,:),a_e(1l,:),s)+. $synthesize /e/
filter(b_e(2,:),a_e(2,: ),s)+fllter(b_e(3,:),a_e(3,:),s);

Note the use of the filter function. Figure shows the spectrum of the original
source signal, the spectral envelope defined by the filtering elements, and the spectrum
of the final signal for two different pitches

2.4.6.1.3 Parametric filters

Parametric filters are used quite widely in the audio industry because

of their ability to amplify or dampen specific frequency components of a signal. Traditionally, these
filters have been designed using analog components, however, their digital counterparts are very sim-
ple and efficient to implement. The filters bandwidth, center frequency and gain can be calculated
using a few basic formulas to calculate the four required coefficients.

Parametric filters are really just second order IIR filters and have a frequency response containing
a single peak or notch at a given frequency f.. The gain at all other frequencies is roughly unity.
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Figure 2.21: Models for speech production: (a) general model and (b) simplified

These filters require less computational power than higher order FIR and IIR filters and the amount
of computational power required to calculate coefficients is minimal compared to higher order filters.
Heres how the filter works : a conjugate pair of poles and a conjugate pair of zeros are arranged along
a straight line from the origin of the Z-plane as shown in figure Z.21a), where wy = 27 f./Fg is the
pole argument. If the poles are closer to the origin than the zeros (i.e. R < r), the resulting filter will
be a notch filter. On the other hand (i.e. R > r), the zeros are closer to the origin, the resulting filter
will be a peak filter. Figure Z2ZI(b) contains the frequency responses of both cases. The strength of
the boost or cut of the respective peak and notch is determined by the closeness of r and R. Also, the
width of the peak or cut is determined by the closeness or r and R to the unit circle.
The transfer function is given by

B bo + blz_l + bgz_2

H(z) = 2.38
(2) 1+ a127! + agz™2 (2.38)
where
apo=1 a; = —2Rcos(w.) ay = R? (2.39)
bp=1 by =—-2rcos(we) by = r? (2.40)

2.4.6.1.4 Filters for producing periodic signals A special case is when the filter features a long
delay as in
sfln] = Puln] — as¢ln — Np) . (2.41)

This is a comb type filter featuring frequency resonances multiple of a fundamental f, = Fs/N,,. The
impulse response is a periodic repetition of impulses every N — p sample.

If initial values are set for the whole delay line, for example random values, all the frequency
components that do not coincide with resonance frequencies are progressively filtered out until a
harmonic sound is left. If there is attenuation (o < 1) the sound will have a decreasing envelope.
Substituting o and/or § with filters, the sound decay time will depend on frequency. For example if
« is smaller at higher frequencies, the upper harmonics will decay faster than the lower ones. We can
thus obtain simple sound simulations of the plucked strings, where the delay line serves to establish
oscillations. This method is suitable to model sounds produced by a brief excitation of a resonator,
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Figure 2.22: Parallel structure of digital resonators Ri for strike simulation. The parameters are striker
characteristics and resonator constants.

where the latter establishes the periodicity, and the interaction between exciter and resonator can be
assumed to be feedforward. This method is called long-term prediction or Karplus-Strong synthesis.
More general musical oscillators will be discussed in sect.

In speech synthesis a long term predictor allows to capture the long-term correlation in the speech
signal and to represent the periodicity in speech. It is used in speech coding to synthesize the pitch
periodicity. It is given by

1 1

= = 2.42
1-57 boe(0Fh  P() (242)

H(z)

The parameters of the predictor can be estimated using methods similar to LPC analysis (sect. 2.4.7.2)).

2.4.6.1.5 Filter structures Digital signal processing theory explains how to design a linear filter
according desired specifications, and many program are available to this purpose. We will not discuss
here these methods.

In the first structure, the filters are grouped as a filterbank, where the input signal is fed to many
simple band-pass filters. Normally the center frequencies f.; are regularly spaced on the frequency
axis. The bandwidth can be equal for every filter as in the channel vocoder or with a constant-Q
behavior , i.e. ) = B;/f.; is constant, as in the third-octave filterbank. For example to simulate
struck bars, bells, drums, plucked strings

The parallel structure is quite intuitive to understand. It is similar to filterbank structure, but with
center frequncies that depends on the desired signal and which can be time varying. For example to
simulate struck bars, bells, drums, plucked strings the structure of fig, 222 can be used where a striker
filter simulates the interaction of the stick with the resonating structure and teh resonaces are created
by a parallel of digital resonaters tuned to the frequencies of the main modes.

The cascade structure use some specialized simpler filter connected din cascade. For example a
cascade speech synthesizer can be designed using a cascade of digital resonator, one for every formant.

2.4.7 Speech modeling

This section contains the basics of speech production and speech signal processing.
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Figure 2.23: A schematic view of the phonatory system. Solid arrows indicates the direction of the
airflow generated by lung pressure.

2.4.7.1 Speech production mechanism and models

Speech is an acoustic sound pressure wave created when air is expelled from the lungs through the
trachea and vocal tract (fig. fig. Z23)). This tract is composed of vocal fold opening (glottis), throat,
nose, mouth and lips. As the acoustic wave passes through the vocal tract, its frequency content
(spectrum) is altered by the resonances of the vocal tract; vocal tract resonances are called formants.
Two types of sounds characterize speech, namely voiced and unvoiced). Voiced sounds result from a
periodic excitation of the vocal tract causing oscillation of the vocal chords in a quasi-periodic manner.
Technically, it is useful to think voiced speech as the response of an acoustic filter, modeling the vocal
tract, to a passing pressure wave. The vocal chords oscillate in a very non-sinusoidal manner at a
rate that is approximately 100Hz for adult males and 120Hz for adult females (the frequency varies
from speaker to speaker as well). The periodic nature of the oscillations gives rise to harmonics and
the period associated with the fundamental frequency is commonly termed its pitchl. The range of
potential pitch frequencies varies from 50Hz to 250Hz for men, and from 120 to 500Hz for women.
Everyone has a “habitual pitch level”, which is a sort of ’preferred” pitch that will be used naturally
on the average. Pitch is shifted up and down in speaking in response to factors relating to stress,
intonation, and emotion. Intonation is associated with the pitch contour over time and performs several
functions in a language, the most important being to signal grammatical structure.

In a discrete-time model, the z-domain transfer function for voiced speech s[n) may be expressed
by the following cascaded spectral factors:

S(2) = 90X (2) - [F(2) - V(2) - R(2)] (243)

where g is a constant gain term, X (z) is, in this case, a periodic pulse train, F'(z) is a filter component
due to the response of the vocal folds to pitch pulses, V'(z) is the vocal tract filter component, R(z)
is the output radiation component due to lips. The filter F'(z) that shapes the glottal pulses can be
modeled as

1

[1 —exp(—c/Fs)z1]?

F(z) =
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Figure 2.24: Models for speech production: (a) general model and (b) simplified

and the radiation filter can be approximated by a differentiator
R(z)=1-27"

The filter V;(z) of i-th formant of center frequency f; and bandwidth B; has transfer function of the
type of eq. (@33). The cascade model of the vocal tract is given by

K
V() = [[v)
=1

Unvoiced sounds are due to the passage of turbulent air through a narrow constriction such as the
teeth. The turbulence is traditionally modeled as white noise. Theoretically, air is forced through the
constriction without vocal fold vibration. In the unvoiced case, the z-domain transfer function is

S(z) = X (2) - [V(2) - R(2)] (2.44)

where the input X (z) can be considered to be a driving noise sequence in this case. Both voiced and
unvoiced sounds have the characteristic or response of the vocal tract imposed upon them. All sounds
may be characterized by eq. or 244t the complete transfer function characterizing the speech
apparatus is defined as

H(z) = (2.45)
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which may or may not include vocal fold response to pitch depending on whether the sound is voiced
or unvoiced. Such general discrete-time model for speech is shown in figure Z.224(a). For later pur-
poses, the above general model of speech production can be slightly simplified, dividing the operation
of the speech production system as a whole into two functions, excitation and modulation, as shown
in figure 2.2 where the combined spectral contributions of the glottal flow, the vocal tract and the ra-
diation of the lips are represented by a time-varying linear digital filter (represented in figure Z244b))
with a system transfer function given by eq. which can be written as

S(z) _ 1= bmz "

H(z) = X() % TSN

(2.46)

Both parametric and non-parametric techniques are used to establish a model for speech signal. A
parametric technique attempts to model a speech production system by estimating the parameters of
the transfer function relating the input (usually unknown, but hypothesized) to the output (the speech
signal). Linear parametric techniques assume an ARMA (autoregressive, moving-average) model.
Linear prediction is a subtype of these autoregressive models.

2.4.7.2 Linear prediction (LPC) analysis

An ARMA (p, q) model is expressed as a linear sum of p past samples and ¢ + 1 input values z[n];
however, in speech processing the input values (excitation) x[n] are unknown, therefore much devel-
opment has focused on AR(p) models. We can note that in eq. both pole and zeros exist in the
transfer function. An approximation of H(z) is constituted by an all-pole model, as given by

90
H(z) = (2.47)
) 1= 3 arz™®
where gg is a gain scaling factor (magnitude of the glottal pulse or white noise), the coefficients a, are
time-varying (but assumed constant during the speech analysis frame) and determined from windowed
sections of speech (later referred to as frames).
Transforming eq. EX47into the sampled time domain, we obtain the linear predictor

P
sln] = +goxin] + Z ars(n — k) (2.48)
k=1

which has order p and model parameters (coefficients) aj. Equation Z248lis the well known linear
predictive coding (LPC) difference equation, which states that the value of the present output of the
filter, s[n], may be determined by summing the weighted present input, goz[n], and a weighted sum
of the past p output samples.

If we assume that the input u[n] is totally unknown, then the signal s[n] can be predicted approx-
imately only from a linear weighted summation of past samples

8] = ars[n — k| (2.49)

k=1

The system function of a p-th order linear predictor is the polinomial

p
P(z) =) apz" (2.50)
k=1
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The error between the actual value s[n] and the approximation 5[n] is given by

eln] = s[n| — §[n] = s[n] — des(n — k) (2.51)
k=1

which is called the prediction error or residual error. From eq. 23111t can be seen that the prediction
error sequence is the output of a system whose transfer function is

p
A) =1-) apz" (2.52)
k=1

It can be seen by comparing equations and 23] that if teh speech signal obeys the model of eq.
2 48kxactly, and if a, = ay, then e[n] = gou[n]. Thus, the prediction filter a(z) will be an inverse
filter for the system H (z) of eq. 47 i.e.

H(z) = -2 (2.53)

In LPC analysis the problem can then be stated as follows: given measurements of the signal,
s[n], determine the parameters ay, k = 1, ..., p such that the next sample can be predicted by a linear
combination of the past p samples (this principle makes the corresponding predictor to be a short-term
predictor, as it user the neighboring samples). The resulting parameters a, are then assumed to be the
parameters ay, of the model system transfer function H(z). The least-square approach is commonly
used to determine the parameters ay, by minimizing the total squared error with respect to each of the
parameters, i.e., by minimizing the residual error energy, E = >, e?[m], where the sum is extended
to all the frame samples. There are efficient methods to compute the filter coefficients, namely the
autocorrelation method, the covariance method, and the Burg algorithm. The gain gg is computed
assuming that the energy in the error signal is equal to the energy in the excitation signal, i.e.

2 _ Zm 62(m)
D ST

The order p of the linear predictive analysis can effectively control the degree of smoothness of the
resulting spectral envelope (see fig Z23)).

A significant feature (spectrum valley) of the LPC spectral modeling is the fact that the LPC
spectrum matches the signal spectrum much more closely in the region of large signal energy (i.e.
near the spectrum peaks) than near the regions of low energy An example is shown in fig.

(2.54)

M-2.16
Write an example of an Ipc analyis/synthesis procedure that analyzes a portion of speech and
resynthesizes it using the model described above.

M-2.16] Solution

%%% headers %%%

svoce=wavread (' voce.wav’) ; %$read audio sample

$ [ . ] $define Fs accordingly

o)

%$%% analysis %$%%
=svoce (8000:10000) ; %$select signal portion
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Figure 2.25: LPC spectrum with order p = 28 compared with the spectrum obtained by FFT analysis.
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Figure 2.26: LPC analysis and synthesis.

Nc=10; gno. of lpc coeff. to be computed
[a,g]l=1lpc(s,Nc); $compute lpc coeff.
freqgz([g 0 0], [al); $plot lpc filter response

%$%% synthesis %%%

u=filter([a],[g 0 0],s); %$generate glottal excitation
$through inverse filtering

snew=filter([g,0,0], [a]l,u); %$resynthesize signal portion

Note that we have used the native function 1pc (s, N) , where s is the input signal and
N is the order of the prediction filter. Figure shows the frequency response of the
formant filter, the glottal excitation, and the resynthesized waveform.
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2.4.7.3 Formant tracking

The roots of A(z) (i.e., the poles of the vocal tract filter) are representative of the formant peak
frequencies. In other words, the angles of the roots, expressed in terms of analog frequencies can be
used as an estimate of the formant frequencies. The frequencies f; and bandwidths B; of the poles are
extracted from complex conjugate roots r; of the corresponding polynomial as:

;o= gl (2.55)
21
B, — F@ (2.56)

When we extract the format parameters for each frame, we find a lot of discontinuities and local
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Figure 2.27: LPC analysis and synthesis.

estimation observation errors (Fig. Z27)). In order to find smooth formant trajectories, All poles are
then searched through with the Viterbi algorithm (see Chapter on algorithms) in order to find the
path (i.e. the formant trajectory) with the lowest cost. The cost is defined as the weighted sum of a
number of partial costs: the bandwidth cost, the frequency deviation cost, and the frequency change
cost. The bandwidth cost is equal to the bandwidth in Hertz. The frequency deviation cost is defined
as the square of the distance to a given norm frequency, which is formant, speaker, and phoneme
dependent. This requires labeling of the input before the formant tracking is carried out. Finally,
the frequency change cost penalizes rapid changes in formant frequencies, and makes sure that the
extracted trajectories are smooth.

M-2.17

Plot the formant frequencies as a function of the frame number, i.e., of time, in order to observe
the time-evolution of the vocal tract filter. To this purpose: a) Compute the LPC coefficients for a
Hamming windowed speech segment. b) Find the frequencies corresponding to the angles of the
zeros of the predictor filter. c)Discard roots whose magnitude is less than 0.8, because it is quite
likely that roots whose magnitude is less than 0.8 are not formants. d) Repeat the operation 100
times at lags of half the window length. e) Plot the matrix of the results.

2.4.7.4 Speech synthesis

Synthesized speech can be produced by several different methods. All of these have some benefits
and deficiencies. The methods are usually classified into three groups:
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o Articulatory synthesis, which attempts to model the human speech production system directly.
Articulatory synthesis typically involves models of the human articulators and vocal cords.
The articulators are usually modeled with a set of area functions between glottis and mouth.
The articulatory control parameters may be for example lip aperture, lip protrusion, tongue tip
height, tongue tip position, tongue height, tongue position and velic aperture. Phonatory or
excitation parameters may be glottal aperture, cord tension, and lung pressure. The models are
developed with the methods which will be seen in the Source modeling Chapter 3. Advantages
of articulatory synthesis are that the vocal tract models allow accurate modeling of transients
due to abrupt area changes, whereas formant synthesis models only spectral behavior.

e Formant synthesis, which models the pole frequencies of speech signal or transfer function of
vocal tract based on source-filter-model.

e Concatenative synthesis, which uses different length prerecorded samples derived from natural
speech. This techique is based on the methods seen in sect. E31 Connecting prerecorded natural
utterances is probably the easiest way to produce intelligible and natural sounding synthetic
speech. However, concatenative synthesizers are usually limited to one speaker and one voice
and usually require more memory capacity than other methods.

The formant and concatenative methods are the most commonly used in present synthesis systems.
The formant synthesis was dominant for long time, but today the concatenative method is becoming
more and more popular. The articulatory method is still too complicated for high quality implemen-
tations, but may arise as a potential method in the future.

2.4.7.4.1 Formant synthesis Probably the most widely used synthesis method during last decades
has been formant synthesis which is based on the source-filter-model of speech described in sect.
246 There are two basic structures in general, parallel and cascade, but for better performance some
kind of combination of these is usually used. Formant synthesis also provides infinite number of
sounds which makes it more flexible than for example concatenation methods.

At least three formants are generally required to produce intelligible speech and up to five formants
to produce high quality speech. Each formant is usually modeled with a two-pole resonator (see sect.
which enables both the formant frequency (pole-pair frequency) and its bandwidth to be
specified. Rule-based formant synthesis is based on a set of rules used to determine the parameters
necessary to synthesize a desired utterance using a formant synthesizer. The filter V;(z) for the i-th
formant of frequency f; and bandwidth B; is given by eq. (Z33).

A cascade formant synthesizer consists of band-pass resonators connected in series and the output
of each formant resonator is applied to the input of the following one. The cascade structure needs
only formant frequencies as control information. The main advantage of the cascade structure is that
the relative formant amplitudes for vowels do not need individual controls. The cascade model is
given by

K

A parallel formant synthesizer consists of resonators connected in parallel. The resulting filter is given
by

K
V()= a;-Vi(2)
i=1
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Figure 2.28: Analysis by synthesis LP coding: (a) encoder (b) decoder

Sometimes extra resonators for nasals are used. The excitation signal is applied to all formants si-
multaneously and their outputs are summed. The parallel structure enables controlling of bandwidth
and gain for each formant individually and thus needs also more control information. The parallel
structure has been found to be better for nasals, fricatives, and stop-consonants, but some vowels can
not be modeled with parallel formant synthesizer as well as with the cascade one.

2.4.7.4.2 LPC synthesis and coding The LPC model is very used for speech coding and synthesis.
In fact it allows to extract effective parameters and it is robust to modification. For example it is used
in mobile phone communication. In fig. it is reported the block diagram of the analysis by
synthesis coding system. The encoder estimate the short term Lp coefficients (describing the spectral
envelope, the pitch , gain and long term parameters, for generation of the quasi periodic excitation,
plus some useful information for the residual (e.g. a code into an appropriate codebook). The GSM
mobile phone encoder is shown in fig.
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Figure 2.29: Block diagram of GSM mobile phone: (a) encoder (b) decoder
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2.5 Non linear processing models

The transformations seen in sect. 246 since they are linear, cannot change the frequency of the
components that are present. Instead, when non linear transformations are used, frequencies can be
even drastically changed and new components are created. Thus, it is possible to vary substantially
the nature of the input sounds.

There are two main effects related to nonlinear transformations: spectrum enrichment and spec-
trum shift. The first effect is due to non linear distortion of the signal and allows for controlling the
brightness of a sound, while the second is due to its multiplication by a sinusoid and moves the spec-
trum to the vicinity of the carrier signal, altering the harmonic relationship between the modulating
signal lines. The possibility of shifting the spectrum is very intriguing in when applied to music.
From simple components, harmonic and inharmonic sounds can be created, and various harmonic
relations among the partials can be established. The first effect try to reproduce the nonlinearities and
saturations found on real systems e.g. analog amplifiers, electronic valves. The second one instead
derives from abstract mathematical properties of trigonometric functions as used in modulation theory
applied to music signal. Therefore, it inherits, in part, the analogic interpretation as used in electronic
music and is a new metaphor for computer musicians.

2.5.1 Memoryless non linear modelling

When a sinusoidal input sound z[n] = cos(27f1Tn) passes through a linear system (filter) with
transfer function H(f), the output signal y[n] is still a sinusoid with the same frequency f; and
amplitude and phase depending on the transfer function, i.e. y[n]| = |H(f1)|cos(2n f1Tn+ ZH(f1)).
Instead if it passes though a non linear amplifier, the waveform is modified and various harmonics are
created. Normally we want to avoid distortions in amplifiers, but sometimes, as in amplifiers for
electric guitars, we may be interested in emulating the warm sound of valves. In general the output
value if a non linear system, depends on present and past values of the input and can be described by
the Volterra series expansion. This kind of system are used to compensate the non linear behaviour
found in real system, e.g. to linearize the loudspeakers. But is quite to complicate to use and to
control. Thus is not suitable for musicians. For this reason in music signal processing often non
linearities without memory, i.e. that depends only on the present input value and not on the past
values, are used. In this case the system is described by a non linear curve F'(z), called distortion
function, and the output is given by

y[n] = F(z[n]) (2.57)

In analog domain it is difficult to have an amplifier with a precise and variable distortion characteristic.
In digital domain the distortion function can be previously computed and stored in a table. During
the processing, all that is necessary is to look up the desired value in the table, with an eventual
interpolation between adjacent points, as for the table lok up oscillator. In general the distortion
function produces infinite partials giving rise to annoying foldover. If F'(x) is a polinomial or its
Taylor series expansion can be truncated, the bandwidth remains limitated. However, non linear
distortions in digital signals can easily surpass Fs/2. In this case or z[n] is suitably low pass filtered
before the non linear processing, or the non linear computation is done on a oversampled version of
the signal.
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Figure 2.30: Sintesi per distorsione non lineare

For example in order to simulate the overdrive effect of guitar amplifiers, we can use the function

2z for0 <z <1/3
F(x) = w for1/3 <ax<2/3
1 for2/3 <2 <1

that produces a symmetrical soft clipping of the input and realizes a smooth transition of the linear
behaviour for low level signal to a high saturation for high level sounds. Overdrive has a warm and
smooth sound. Asymmetric functions are used for tube simulations. More nonlinear functions are
employed for distortion simulation producing tones starting beyond tube warmth to buzz saw effects.

The same technique was used for sound synthesis. In this case we have a sinusoidal input and rich
harmonic sound is produced using a distortion function

F(x)=p(a-z+Db)

where p(x) is a polinomial (or a rational) function, a and b are parameters that are used to scale and
shift the distortion function.

2.5.2 Synthesis by frequency modulation

This technique does not derive from models of sound signals or sound production; instead it is based
on an abstract mathematical description. The definition of “FM synthesis” denotes an entire family
of techniques in which the instantaneous frequency of a periodic signal (carrier) is itself a signal that
varies at sample rate (modulating).

M-2.18
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We have already seen in section B22ZT.4] how to compute the signal phase when the frequency is
varying at frame rate. We now face the problem of computing ¢[n] when the frequency varies at
audio rate. A way of approximating ¢[n] is through a first-order expansion:

d¢ 1

Bln] = gln — 1]+ Zo(n = 1) - (2.58)

Recalling equation @.8)), that relates phase and instantaneous frequency, we can approximate it as

dg M] , (2.59)

0 [ 11

where the frequency f(¢) has been approximated as the average of f[n] at two consecutive instants.
Using the two equations above, ¢[n] is finally written as

¢[n] = ¢ln — 1]+ =(f[n] + fln = 1]). (2.60)

s
Fs

Write a function FMosc (t0, a, £, ph0) that realizes a FM sinusoidal oscillator (the parameters
(t0,a,ph0) are defined as in[M-2.3 while £ is now the sample-rate frequency vector).

[M-2.18 Solution

function s=FMosc (t0,a, £, ph0)

global SpF; %$samples per frame
global Fs; %$sampling rate
nframes=length(a); stotal number of frames

s=zeros (l,nframes*SpF); %signal vector (initialized to 0)

lastfreg=£f(1);
lastphase=ph0;

for (i=l:nframes) %cycle on the frames
phase=zeros (1, SpF) ; %$phase vector in a frame
for (k=1:SpF) %$cycle through samples in a frame
phase (k) =lastphase+... %compute phase at sample rate

pi/Fs* (f((i-1)*SpF+k)+lastfreq);
lastphase=phase (k) ;
lastfreg=f ((i-1) *SpF+k);

end
S(((1i-1)*SpF+1) :1i*SpF)=a (i) .*cos (phase);
end
s=[zeros (1, round (t0*Fs+1)) s]; %add initial silence of t0 sec.

Compare this function with the sinosc function in The only difference is that
in this case the frequency is given at audio rate. Consequently the phase computation
differs.

Although early realizations of FM synthesis were implemented in this fashion, in the next sections
we will follow an equivalent “phase-modulation” formulation. According to such formulation, the FM
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"(% Jf{.m J o(t)

FM

|

Figure 2.31: FM basic computing module

oscillator is written as:
s(t) = sin[27 fot + ¢(¢)], (2.61)

where ¢(t) is the input modulating signal and f. is the carrier frequency.
For sound synthesis, an amplitude envelope a(t) should be applied. Thus we define a basic FM
module that computes

y(t) = FMmodule [a(t), £(t), 6(t)]) = a(t) - sinf2m fo(t)t + 6(0)] 2.62)

and is often represented as in fig. 311 The algorithm is given by

oln] = w[n—11+§{fc[n]+¢[n] (2.63)
yln] = aln] - sin(pln)) (2.64)

where [n] is a state variable representing the instantaneous phase of the oscillator. Notice that when
the oscillator is implemented by a wavetable, the phases ¢ and ¢ vary in the interval 0. .. (L — 1) and
the algorithm becomes

prln] = erln -1+ éfc[n] +¢rn] (2.65)
y[n] = a[n] - tabsin(¢r[n] mod L) (2.66)

2.5.2.1 Simple modulation

When the modulating signal ¢(¢) is a sinusoid with amplitude I (modulation index) and frequency
fm, 1.e.
o(t) = I'sin(27 fint)

the simple modulation gives

s(t) = sin[2mf.t + Isin(2m fpt)] (2.67)
= > Je(D)sin[27(fe+ kfm)i] (2.68)
k=—o00

where J(I) is the Bessel function of first kind and k-th order computed in I. From equation 268 we
can see that the resulting spectrum is composed of partials at frequencies |f. & k f,,| with amplitude
given by Ji(I). Notice that negative frequencies, being sine waves, are folded changing the sign.
Apparently there are infinite partials, so theorically the signal bandwidth is not limited. However it
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is practically limited. In the Bessel function behaviour, only few low-order functions are significant
for small index values. When the index increases, the number and the order of significant function
increase too. Usually in the bandwidth definition of the FM signal, The number M of lateral spectral
lines (sidebands) greater than 1/100 of the nonmodulated signal is given by M (I) = I + 2.4 - 1°-%7,
that can be approximates as M (I) = 1.5« I. In this way, varying I it is possible to directly control the
bandwidth around f.. The resulting effect is similar to a low pass filter with varying cut-off frequency.
Moreover the amplitude of the partials varies in a smooth way, maintaining constant the overall signal
energy.
For the synthesis we can use two basic FM modules in cascade

y(t) = FMmodule [a(t), f.(t), FMmodule [I(t), f,,(t),0]] (2.69)

2.5.2.2 Spectra |f. & kf,,|

Equation shows a spectrum with lines at frequencies |f. &+ kf,,|, with & = 0,1, .... This kind
of spectra are characterized by the ratio f./f,,, sometimes also called ¢/m ratio. When this ratio is
rational, it can be expressed as an irreducible fraction f./f,, = Ni/N2 with N; and N» as integers
that are prime between themselves. In this case the resulting sound is periodic, since all the partials
are a multiple of a fundamental frequency fy according to integer factors

fe Im
— —Jm 2.
fo Ny Ny’ (2.70)
and f., f, coincides with the N1-th and N»-th harmonic:
fc = leo, fm = Ngfo. (2.71)

If No = 1, all the harmonics are present and the sideband components with k& < —Nj, i.e. with
negative frequency, overlap some components with positive k. If No = 2, only odd harmonics are
present, and sidebands superimpose, after foldunder. coincide. If No = 3, the harmonics that are
multiple of 3 are missing. In general the N /N5 ratio can be considered as an index of the harmonicity
of the spectrum. The sound is more harmonious intuitively, when the N7/Ns ratio is simple anf
formally when the N7 - N» is smaller.

The ratios can be grouped in families. All ratios of the type |f. & & fi|/ fm can produce the same
components that f./ f,, produces. Only the partial coinciding with the carrier f. changes. Remember
that f. = N; fo. For example the ratios 2/3, 5/3, 1/3, 4/3, 7/3 and so on belong to the same family.
Only the harmonics that are multiple of 3 are missing (see N2 = 3) and the carrier is respectively the
second, fifth, first, fourth, seventh harmonic. The ratio that distinguish a family is defined in normal
form when it is < 1/2. In the previous example, it is 1/3. Each family is characterized by a ratio in
normal form. Similar spectra can be produced using ratios from the same family. We can notice that
the denominator Ny characterizes the spectrum.

When the f./f, quotient is irrational, the resulting sound is aperiodic and hence inharmonic.
This possibility is used to easily create inharmonic sounds as bells. For example if f./f, = 1/v/2,
the sound contains partials with frequency f. + kv/2. No implied fundamental pitch is audible. A
similar behaviour can be obtained with complex ratios as f./fn,, = 5/7.

Of particular interest is the case of an f./ f, ratio approximating a simple rational value, that is,

£ _ M +e. (2.72)

fm_N2
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fc=700 Hz, fm=100 Hz, I=1 fc=700 Hz, fm=100 Hz, I=2 fc=700 Hz, fm=100 Hz, I=3
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Figure 2.32: Spectrum of a simple modulation with f. = 700 Hz, f,,, = 100 Hz modulation index [/
varying from 1 to 3

Here the sound is no longer rigorously periodic. The fundamental frequency is still fo = f,,,/N2 and
the harmonics are shifted from their exact value by 4 f,,,. Thus a small shift of the carrier frequency,
does not change the pitch, even if it slightly spread the partials and makes the sound more lively.
Notice that the same shift of f,,, changes the pitch.

M-2.19
Synthesize a frequency modulated sinusoid, in the case of sinusoidal modulation. Plot the signal

spectrum for increasing values of the modulation index.

M-2.79 Solution

%%% headers %%%
Fs=22050; % sampling frequency

%$%% define controls %%%

fc=700; $carrier freq.
fm=100; $modulating freq.
$modulation index

$time vector

%$%% compute sound %%
=sin (2*pi*fc*t+I*sin (2*pi*fm*t));

o\

(in s)

Figure E5.22 shows the signal spectrum for 3 values of the modulation index. Note that
as the index increases the energy of the carrier frequency is progressively transferred to
the lateral bands, according to the predicted behaviour.

2.5.2.3 Compound modulation

There are many variation of the basic scheme. If the modulating signal is composed of N sinusoids,

the following relation hold:

N

sin |27 fot + Y Ijsin(2m f;t) (2.73)

=1
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= > @) sin |20 (fe+ ) Kifit (2.74)
k,

7

The generated sound will have componets of frequency |f. &+ k1 f1 & ... + kn fn| with amplitudes
given by the product of N Bessel functions. A very complex spectrum results. If the relations among
the frequencies f; are simple, that is, if the sum of the modulating waves is periodic with frequency
fm, then the spectrum is of the type |f. = kf,|. The frequency f,,, can be computed as the greatest
common divisor among the modulating frequencies f; (¢ = 1,...,N). Otherwise the sonorities are
definitely inharmonic and particularly noisy for high indexes.

For example Schottstaedt uses two modulators to simulate the piano tones, setting f; ~ f. and
fo >~ 4f.. It results that we can compute f,, >~ f. and it results a picht fo = f,,, =~ f.. In this way
the small inharmonicity of the piano strings is simulated. Moreover modulation indexes decrease for
higher f; values In this way the lower tones are richer in harmonics that higher ones.

M-2.20
Synthesize a frequency modulated sinusoid in the case of composite modulation. Plot the signal
spectrum.

M-2.20 Solution

%$%% define controls %%%

fcl=700; %$carrier freq.

fm=700; $modulating freqg. 1
fm=2800; $modulating freqg. 2
I1=1; gmodulation index 1
I12=1; $modulation index 2

t=0:(1/Fs) :3;%time vector (in s)

%%% compute sound %%%
s=sin (2*pi*fc*t+... $sound signal
Il*sin(2*pi*fml*t) +I2*sin (2*pi*fm2*t));

Figure 2233 shows the spectrum of an FM oscillator with sinusoidal carrier and a composite mod-
ulation made of two sinusoids. Note that in the first case the simple ratio between f,,1 and f,o
produces a spectrum of the form |f. £ k f,,,| (in which f,,, = 100 Hz, max. common divisor between
fm1 and f,,0, is the fundamental). In the second case, the values f,,;1 = f. and f,,2 = 4f. are cho-
sen in such a way that the fundamental coincides with f. and that upper partials are harmonic (since
fm1 = fe coincides with the max. common divisor between f,,1 and f,,2).

Figure 234] shows a double modulator with f; ~ f. and fo ~ 4f., with increasing deviations
from the exact values multiple of f..

2.5.2.4 Nested and feedback modulation
When a sinusoidal modulator is phase modulated by another sinusoids we have

o(t) = I1sin(27 f1t + o sin(27 fot))
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fc1=700 Hz, fm1=300 Hz, fMm2=200 Hz, I1=1, 12=1 fc1=700 Hz, fm1=800 Hz, fm2=3200 Hz, 11=1, 12=1
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Figure 2.33: Two examples of compound modulation made of two sinusoids.
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Figure 2.34: Quasi harmonic sounds produced by double modulators with f; ~ f. and fo ~ 4f..

and the resulating signal is thus defined by:
s(t) = sin[2nfet + I sin(2w f1t + I sin(27 fot))]
= Y Jk(L)sinf2r(f. + ki)t + kIysin(2m fot)]

k
= Y > Uk(h) - Ju(kD)sin[2n(fe + kfi + nfo)]
k n

The result can be interpreted as if each partial produced by the modulator f; were modulated in his
turn by fs with modulation index kIo. The spectral structure is similar to that produced by two
sinusoidal modulators, but with larger bandwidth.

As final variation of the basic technique let us consider the case that the past output value is used
as modulating signal. This is the so called feedback modulation. This method is described by

¢ln] = Bsln—1]
s[n] = sin [QW%n—Fqﬁ[n]]

S
where (3 is the feedback factor and acts as scale factor or feedback modulation index. For increasing
values of (3 the resulting signal is periodic of frequency f. and chages, in a continuous way, from a
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sinusoid to a saw-tooth waveform. The resulting spectrum has a increasing number of harmonics and
it results

s =3 %Jk(l-@ﬁ) sin(2rk f.t)
k

2.5.2.5 Discussion

Basically FM synthesis is a versatile method for producing many types of sounds. As of yet, however,
no algorithm has been found for deriving the parameters of an FM model from the analysis of a
given sound, and no intuitive interpretation can be given to the parameter choice as this synthesis
technique does not evoke any previous musical experience of the performer. Its main qualities, i.e.
great timbral dynamics with just a few parameters to control and to low computational costs, are
progressively losing popularity when compared with other synthesis techniques which, though more
expensive, can be controlled in a more natural and intuitive fashion. The FM synthesis, however, still
preserves the attractiveness of its own peculiar timbral space and, though it is not particularly suitable
for the simulation of natural sounds, it offers a wide range of original synthetic sounds that are of
considerable interest for computer musicians.

2.5.3 Multiplicative synthesis

The simplest nonlinear transformation consists of the multiplication of two signals. In analog domain
it is often called ring modulation (RM) and it is quite difficult to produce in a precise way. Let 21 (t)
e xo(t) be two input signals, the resulting signal is

s(t) = x1(t) - z2(t) (2.75)

and its spectrum S f) is obtained from the convolution of the two input signal spectra, i.e. Y (f) =

Xi(f) * Xa(f)-

Usually one of the two input signals is sinusoidal with frequency f. and is called carrier
c(t) = cos(2mfet + dc) (2.76)

and the other input is the transformed signal and is called modulating signal m(¢) (or modulator).
Equation can be rewritten as

s(t) =m(t) - c(t) = m(t) - cos(2m fot + Pe) (2.77)

and the resulting spectrum is

S(f) = % M(f = fe)e? + M(f + fe)e 7 2.78)

The spectrum of s(t) is composed of two copies of the spectrum of m(t): a lower sideband (LSB),
reversed in frequency and an upper sideband(USB). The two sidebands are symmetric around f..
When the bandwidth of m(t) is greater that f., part of the LSB extends to the negative region of the
frequency axis, and this part is folded around the origin (foldunder). Notice that the phase has to be
taken into account while summing components of identical frequencies.

Let consider a sinusoidal carrier (Z776) and a periodic modulating signal of frequency f,,, with N
harmonics

N
m(t) = Z by, cos(2mk fnt + @)

k=1
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We obtain

S

N
=3 5’“ o8 [270(fo + kfm)t + ¢) — cos 27 (fo — kfm)t + 1] (2.79)
k=1

The multiplicative synthesis causes every harmonic spectral line k f,,, to be replaced by two spectral
lines, one in the LSB and the other in the USB, with frequency f. — kf,, e f. + kfn,. Notice that
the spectral lines of LSB with frequency kf,, > f., i.e. with f./f,, < k < N, are folded around
zero. The resulting spectrum has components of frequency |f. + kf,| with & = 1,..., N, where
the absolute value is used to take into account the possible foldunder. The acoustic and perceptual
properties of this kind of spectra will be discussed in sect. If the carrier has many sinusoidal
components, we will obtain two sidebands around each component and the resulting audio effect is
less intuitive.
A variant of this method is amplitude modulation

s(t) =[1+dm(t)] - c(t) (2.80)

where ¢ is the amplitude modulation index, that control the amplitude of the sidebands. The spectrum
is as in eq. Z78] plus the carrier spectral line

d

S(H=c)+5

S [M(F = fe + M(f + f)e 7]
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