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9.1 Models for musical analysis

A simplistic but typical flow diagram of musical information processing in the brain as used by
music cognitionists is given in figure 9.1. Here an acoustic signal is processed by the inner ear
(cochlea/filterbank) and perceptually grouped via the Gestalt principles (see sect. 9.1.3). From there,
low-level music perception detects basic musical features which are passed to high-level cognition
mechanisms analyze the structure of the song, which in turn creates the highly personal meaning and
emotion.

Figure 9.1: A music cognitionist signal flow diagram [from Scheirer 1996].

9.1.1 Cognitive processing of music information

Mc Adams. Audition: Cognitive Psychology of Music 1996

9.1
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When we consider the perception of large scale structures like music, we need to call into play
all kinds of relationships over very large time scales on the order of tens of minutes or even hours.
It is thus of great interest to try to understand how larger scale temporal structures, such as music,
are represented and processed by human listeners. These psychological mechanisms are necessary
for the sense of global form that gives rise to expectancies that in turn may be the basis for affective
and emotional responses to musical works. One of the main goals of auditory cognitive psychology
is to understand how humans can ”think in sound” outside the verbal domain. The cognitive point of
view postulates internal (or mental) representations of abstract and specific properties of the musical
sound environment, as well as processes that operate on these representations. For example, sensory
information related to frequency is transformed into pitch, is then categorized into a note value in a
musical scale and then ultimately is transformed into a musical function within a given context.

Figure 9.2: Schema illustrating the various aspects of musical information processing [from McAdams
1996].

The processing of musical information may be conceived globally as involving a number of differ-
ent ”stages” (Fig. 9.2). Following the spectral analysis and transduction of acoustic vibrations in the
auditory nerve, the auditory system appears to employ a number of mechanisms (primitive auditory
grouping processes) that organize the acoustic mixture arriving at the ears into mental ”descriptions”.
These descriptions represent events produced by sound sources and their behaviour through time.
Research has shown that the building of these descriptions is based on a limited number of acoustic
cues that may reinforce one another or give conflicting evidence. This state of affairs suggests the
existence of some kind of process (grouping decisions) that sorts out all of the available information
and arrives at a representation of the events and sound sources that are present in the environment
that is as unambiguous as possible. According to theory of auditory scene analysis, the computation
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of perceptual attributes of events and event sequences depends on how the acoustic information has
been organized at an earlier stage. Attributes of individual musical events include pitch, loudness, and
timbre, while those of musical event sequences include melodic contour, pitch intervals, and rhythmic
pattern. Thus a composer’s control of auditory organization by a judicious arrangement of notes can
affect the perceptual result.

Once the information is organized into events and event streams, complete with their derived
perceptual attributes, what is conventionally considered to be music perception begins.

• The auditory attributes activate abstract knowledge structures that represent in long-term mem-
ory the relations between events that have been encountered repeatedly through experience in
a given cultural environment. That is, they encode various kinds of regularities experienced in
the world. Bregman (1993) has described regularities in the physical world and believes that
their processing at the level of primitive auditory organization is probably to a large extent in-
nate. There are, however, different kinds of relations that can be perceived among events: at the
level of pitches, durations, timbres, and so on. These structures would therefore include knowl-
edge of systems of pitch relations (such as scales and harmonies), temporal relations (such as
rhythm and meter), and perhaps even timbre relations (derived from the kinds of instruments
usually encountered, as well as their combinations). The sound structures to be found in various
occidental cultures are not the same as those found in Korea, Central Africa or Indonesia, for
example. Many of the relational systems have been shown to be hierarchical in nature.

• A further stage of processing (event structure processing) assembles the events into a struc-
tured mental representation of the musical form as understood up to that point by the listener.
Particularly in Western tonal/metric music, hierarchical organization plays a strong role in the
accumulation of a mental representation of musical form. At this point there is a strong conver-
gence of rhythmic-metric and pitch structures in the elaboration of an event hierarchy in which
certain events are perceived to be stronger, more important structurally, and more stable. The
functional values that events and groups of events acquire within an event hierarchy generate
perceptions of musical tension and relaxation or, in other words, musical movement. They also
generate expectancies about where the music should be going in the near future based both on
what has already happened and on abstract knowledge of habitual musical forms of the culture–
even for pieces that one has never heard before. In a sense, we are oriented–by what has been
heard and by what we ”know” about the musical style–to expect a certain type of event to follow
at certain pitches and at certain points in time.

• The expectancies drive and influence the activation of knowledge structures that affect the way
we interpret subsequent sensory information. For example, we start to hear a certain number of
pitches, a system of relations is evoked and we infer a certain key; we then expect that future
information that comes in is going to conform to that key. A kind of loop of activity is set up,
slowly building a mental representation that is limited in its detail by how much knowledge one
actually has of the music being heard. It is also limited by one’s ability to represent things over
the long term, which itself depends on the kind of acculturation and training one has had. It
does not seem too extreme to imagine that a Western musician could build up a mental structure
of much larger scale and greater detail when listening to a Mahler symphony that lasts one
and half hours, than could a person who just walked out of the bush in Central Africa. The
reverse would be true for the perception of complex Pygmy polyphonic forms. However, on
the one hand we are capable of hearing and enjoying something new, suggesting that there may
be inborn precursors to musical comprehension in all human beings that makes this possible.
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On the other hand, what we do hear and understand the first time we encounter a new musical
culture is most likely not what a native of that culture experiences.

The expectancies generated by this accumulating representation can also affect the grouping
decisions at the basic level of auditory information processing. This is very important because
in music composition, by playing around with some of these processes, one can set up per-
ceptual contexts that affect the way the listener will tend to organize new sensory information.
This process involves what Bregman (1990) has called schema-driven processes of auditory
organization.

While the nature and organization of these stages are probably similar across cultures in terms of
the underlying perceptual and cognitive processing mechanisms involved, the ”higher level” processes
beyond computation of perceptual attributes depend quite strongly on experience and accumulated
knowledge that is necessarily culture-specific.

9.1.2 Auditory grouping

Sounds and sound changes representing information must be capable of being detected by the listener.
A particular configuration of sound parameters should convey consistent percept to the user. Auditory
grouping studies the perceptual process by which the listener separates out the information from an
acoustic signal into individual meaningful sounds (fig. 9.3).

Figure 9.3: Auditory organization

The sounds entering our ears may come from a variety of sources. The auditory system is faced
with the complex tasks of:

• Segregating those components of the combined sound that come from different sources.

• Grouping those components of the combined sound that come from the same source.

In hearing, we tend to organise sounds into auditory objects or streams. Bregman (1990) has termed
this process Auditory Scene Analysis (fig. 9.4). It includes all the sequential and cross-spectral pro-
cess which operate to assign relevant components of the signal to perceptual objects denoted auditory
streams.

The brain needs to group simultaneously (separating out which frequency components that are
present at a particular time have come from the same sound source) and also successively(deciding
which group of components at one time is a continuation of a previous group). Some processes
exclude part of the signal from a particular stream. Others help to bind each stream together.

A stream is
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Figure 9.4: Auditory scene analysis

• a psychological organization with perceptual attributes that are not just the sum of the percept
of its component but are dependent upon the configuration of the stream.

• a sequence of auditory events whose elements are related perceptually to one another, the stream
being segregated from other co-occurring auditory events.

• A psychological organization whose function is to mentally represent the acoustic activity of a
single source.

Auditory streaming is the formation of perceptually distinct apparent sound sources. Temporal order
judgment is good within a stream but bad between steams. Examples include:

• implied polyphony,

• noise burst replacing a consonant in a sentence,

• click superimposed on a sentence or melody.

An auditory scene is the acoustic pressure wave carrying the combined evidence from all the
sound sources present. Auditory scene analysis is the process of decoding the auditory scene, which
occurs in auditory perception.

We may distinguish analytic vs. synthetic listening. In synthetic perception the information is
interpreted as generally as possible, e.g. hearing a room full of voices. In analytic perception, the
information is used to to identify the components of the scene to finer levels, e.g. listening to a
particular utterance in the crowded room. Interpretation of environmental sounds involves combining
analytic and synthetic listening, e.g. hearing the message of a particular speaker.

Gestalt psychology theory offers an useful perspective for interpreting the auditory scene analysis
beaviour.

9.1.3 Gestalt perception

Gestalt (pronounced G - e - sh - talt) psychology is a movement in experimental psychology that
began just prior to World War I. It made important contributions to the study of visual perception and
problem solving. The approach of Gestalt psychology has been extended to research in areas such as
thinking, memory, and the nature of aesthetics. The word ’Gestalt’ means ’form’ or ’shape’.

The Gestalt approach emphasizes that we perceive objects as well-organized patterns rather than
separate component parts. According to this approach, when we open our eyes we do not see fractional
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particles in disorder. Instead, we notice larger areas with defined shapes and patterns. The ”whole”
that we see is something that is more structured and cohesive than a group of separate particles. Gestalt
theory states that perceptual elements are (in the process of perception) grouped together to form a
single perceived whole (a gestalt).

The focal point of Gestalt theory is the idea of grouping, or how we tend to interpret a visual field
or problem in a certain way. According to the Gestalt psychologists, the way that we perceive objects,
both visual and auditory, is determined by certain principles (gestalt principles). These principles
function so that our perceptual world is organised into the simplest pattern consistent with the sensory
information and with our experience. The things that we see are organised into patterns or figures. In
hearing, we tend to organise sounds into auditory objects or streams. Bregman (1990) has termed this
process Auditory Scene Analysis.

Figure 9.5: Experiments of Proximity and Good Continuation

The most important principles are

Proximity: components that are perceptually close to each other are more likely to be grouped to-
gether. For example temporal proximity or frequency proximity. The principle of proximity
refers to distances between auditory features with respect to their onsets, pitch, and loudness.
Features that are grouped together have a small distance between each other, and a long distance
to elements of another group. Tones close in frequency will group together, so as to minimize
the extent of frequency jumps and the number of streams. Tones with similar timbre will tend
to group together. Speech sounds of similar pitch will tend to be heard from the same speaker.
Sounds from different locations are harder to group together across time than those from the
same location.

The importance of pitch proximity in audition is reflected in the fact that melodies all over the
world use small pitch intervals from note to note. Violations of proximity have been used in
various periods and genres of both Western and non-Western music for a variety of effects.
For example, fission based on pitch proximity was used to enrich the texture so that out of a
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Figure 9.6: Experiments of Closure and Common Fate

single succession of notes, two melodic lines could be heard. Temporal and pitch proximity
are competitive criteria, e.g. the slow sequence of notes A B A B . . . (figure 9.5, A1), which
contains large pitch jumps, is perceived as one stream. The same sequence of notes played very
fast (figure 9.5, A2) produces one perceptual stream consisting of As and another one consisting
of Bs. A visual example is given in figure 9.7: the arrangement of points is not seen as a set of
rows but rather a set of columns. We tend to perceive items that are near each other as groups.

Figure 9.7: Example of proximity gestalt rule

Similarity: components which share the same attributes are perceived as related or as a whole. E.g.
colour or form, in visual perception or common onset, common offset, common frequency,
common frequency modulation, common amplitude modulation in auditory perception. For
example one can follow the piano part in a group of instruments by following the sounds that
have the timbre consistent with that of a piano. One can perceptually segregate one speaker’s
voice from those of others by following the pitch of the voice. Similarity is very similar to
proximity, but refers to properties of a sound, which cannot be easily identified with a single
physical dimension, like timbre.

A visual example is given in figure 9.8: things which share visual characteristics such as shape,
size, color, texture, value or orientation will be seen as belonging together. In the example of
9.8(a), the two filled lines gives our eyes the impression of two horizontal lines, even though all
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(a) (b)

Figure 9.8: Example of similarity gestalt grouping principle.

the circles are equidistant from each other. In the example of 9.8(b), the larger circles appear to
belong together because of the similiarity in size.

Figure 9.9: Example of similarity gestalt grouping principle.

Another visual example is given in figure 9.9: So in the graphic on the left you probably see
an X of fir trees against a background of the others; in the graphic on the right you may see a
square of the other trees, partly surrounded by fir trees. The fact that in one we see an X and in
the other a square is, incidentally, an example of good form or pragnanz principle, stating that
psychological organization will always be as ’good’ as prevailing conditions allow. For Gestalt
psychologists form is the primitive unit of perception. When we perceive, we will always pick
out form.

Good continuation: Components that display smooth transitions from one state to another are per-
ceived as related. Examples of smooth transitions are: proximity in time of offset of one com-
ponent with onset of another; frequency proximity of consecutive components; constant glide
trajectory of consecutive components; smooth transition from one state to another state for the
same parameter. For example an abrupt change in the pitch of a voice produces the illusion that
a different speaker has interrupted the original. The perception appears to depend on whether
or not the intonation contour changes in a natural way. Sound that is interrupted by a noise that
masks it, can appear to be continuous. Alternations of sound and mask can give the illusion of
continuity with the auditory system interpolating across the mask.

In figure 9.5, B), high (H) and low (L) tones alternate. If the notes are connected by glissandi
(figure 9.5, B1), both tones are grouped to a single stream. If high and low notes remain uncon-
nected (figure 1, B2), Hs and Ls each group to a separate stream.
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(a) (b)

Figure 9.10: Examples of good continuation gestalt grouping principle.

A visual example is given in figure 9.10. The law of good continuation states that objects
arranged in either a straight line or a smooth curve tend to be seen as a unit. In figure 9.10(a)
we distinguish two lines, one from a to b and another from c to d, even though this graphic
could represent another set of lines, one from a to d and the other from c to b. Nevertheless, we
are more likely to identify line a to b, which has better continuation than the line from a to d,
which has an obvious turn. In figure 9.10(b) we perceive the figure as two crossed lines instead
of 4 lines meeting at the centre.

Common Fate Sounds will tend to be grouped together if they vary together over time. Differences
in onset and offset in particular are very strong grouping cues. Also, sounds that are modulated
together (amplitude or frequency modulation) tend to be grouped together. The principle ’com-
mon fate’ groups frequency components together, when similar changes occur synchronously,
e.g. synchronous onsets, glides, or vibrato.

Chowning (Fig. 9.6, D) made the following experiment: First three pure tones are played. A
chord is heard, containing the three pitches. Then the full set of harmonics for three vowels
(/oh/, /ah/, and /eh/) is added, with the given frequencies as fundamental frequencies, but with-
out frequency fluctuations. This is not heard as a mixture of voices but as a complex sound in
which the three pitches are not clear. Finally, the three sets of harmonics are differentiated from
one another by their patterns of fluctuation. We then hear three vocal sounds being sung at three
different pitches.

Closure This principle is the tendency to perceive things as continuous even though they may be
discontinuous. If the gaps in a sound are filled in with another more intense sound, the original
sound may be perceived as being continuous. For example, if part of a sentence is replaced by
the sound of a door slam, the speaker’s voice may be perceived as being continuous (continuing
through the door slam). The principle of closure completes fragmentary features, which already
have a ’good Gestalt’. E.g. ascending and descending glissandi are interrupted by rests (Fig.
9.6, C2). Three temporally separated lines are heard one after the other. Then noise is added
during the rests (Fig. 9.6 C1). This noise is so loud, that it would mask the glissando, unless
it would be interrupted by rests. Amazingly the interrupted glissandi are perceived as being
continuous. They have ’good Gestalt’: They are proximate in frequency before and after the
rests. So they can easily be completed by a perceived good continuation. This completion can
be understood as an auditory compensation for masking.
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(a) (b)

Figure 9.11: Example of closure.

Figure / Ground It is usual to perceive one sound source as the principal sound source to which one
is attending, and relegate all other sounds to be background. We may switch our attention from
one sound source to another quite easily. What was once figure (the sound to which we were
attending) may now become ground (the background sound). An important topics in auditory
perception are attention and learning. In a cocktail party environment, we can focus on one
speaker. Our attention selects this stream. Also, whenever some aspect of a sound changes,
while the rest remains relatively unchanging, then that aspect is drawn to the listener’s attention
(’figure ground phenomenon’). Let us give an example for learning: The perceived illusory
continuity (see Fig. 9.6, C) of a tune through an interrupting noise is even stronger, when the
tune is more familiar.

Figure 9.12: Rubin vase: example of figure/ground principle.

The Rubin vase shown in Fig. 9.12 is an example of this tendency to pick out form. We don’t
simply see black and white shapes - we see two faces and a vase. The problem here is that we
see the two forms of equal importance. If the source of this message wants us to perceive a
vase, then the vase is the intended figure and the black background is the ground. The problem
here is a confusion of figure and ground. A similar everyday example is:

• an attractive presenter appears with a product; she is wearing a ’conservative’ dress; eye-
tracking studies show substantial attention to the product; three days later, brand-name
recall is high;

• an attractive presenter appears with a product; she is wearing a ’revealing’ dress; eye-
tracking shows most attention on the presenter; brand-name recall is low.
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Figure 9.13: Horses by M. Escher. An artistic example of figure and ground interchange.

Escher often designed art which played around with figure and ground in interesting ways. Look
at how figure and ground interchange in fig. 9.13. Do you see the white horses and riders? Now
look for the black horses and riders.

Gestalt grouping laws do not seem to act independently. Instead, they appear to influence each
other, so that the final perception is a combination of all of the Gestalt grouping laws acting together.
Gestalt theory applies to all aspects of human learning, although it applies most directly to perception
and problem-solving.

9.1.3.1 Musical examples of auditory organization

1

Let us consider the notional experience of part of a specific and simple piece of Western tonal
music, the first eight bars of El Noy de la Mare, a Catalan folk song arranged by Miguel Llobet (fig.
9.14). How do we understand what we hear? How do we make sense of what we hear as music? One
of the most evident features of the piece is that it has a melody - in some respects it is a melody. It
seems to exist as a succession of discrete pitches in time, yet it is likely to be heard as one thing, one
integrated entity, as pitch moving in time. The fact that a melody can be heard as pitch moving in
time when all that a listener is confronted with is a sequence of separate pitches is something that has
perplexed philosophers for centuries.

Auditory scene analysis suggests that gestalt laws are heuristics or best guesses that we employ in
parsing or making sense of our auditory environment. Bregman refers to the processes whereby we
make sense of the world of sound as Auditory Scene Analysis, a non-conscious process of guessing
about ”what’s making the noise out there”, but guessing in a way that fits consistently with the facts
of the world. Auditory Scene Analysis processes operate on sound signals, employing principles that
enable the making of valid inferences about the existence and the character of the sources of sounds
in the real world, principles that are rarely if ever breached in nature and are highly generalisable.

For example if a sound has a particular pitch, a listener will probably infer that any other sounds
made by that sound source will be similar in pitch to the first sound, as well as similar in intensity,
waveform, etc., and further infer that any sounds similar to the first are likely to come from the same

1adapted from J. Cross, AISB Quarterly, 1999, 102, pp12-25
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Figure 9.14: The first eight bars of El Noy de la Mare, a Catalan folk song arranged by Miguel Llobet.

location as the first sound. This fact can explain why we experience the sequence of pitches in El Noy
de la Mare as a melody, pitch moving in time. Consecutive pitches in this melody are very close to
each other in pitch-space, so on hearing the second pitch a listener will activate our Auditory Scene
Analysis inference mechanisms, and assign it to the same source as the first pitch.

(a) (b)

Figure 9.15: (a) Pattern where successive notes are separated by large pitch jumps but alternate notes
are close together in pitch, is probably heard as two separate and simultaneous melodies. (b) Excerpt
from the Courante of Bach’s First ’Cello Suite: two concurrent pitch patterns are heard.

If the distance in pitch space had been large, they might have inferred that a second sound source
existed, even although they knew that it’s the same instrument that’s making the sound - this inferred
sound source would be a virtual rather than a real source. Hence a pattern such as shown in Figure
9.15(a), where successive notes are separated by large pitch jumps but alternate notes are close to-
gether in pitch, is probably heard as two separate and simultaneous melodies rather than one melody
leaping around. This tendency to group together, to linearise, pitches that are close together in pitch-
space and in time provides us with the basis for hearing a melody as a shape, as pitch moving in time,
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emanating from a single - real or virtual - source.
J. S. Bach used them frequently to conjure up the impression of compound, seemingly simulta-

neous, melodies even though only one single stream of notes is presented. For example, the pattern
given in Figure 9.15(b) (from the Courante of Bach’s First ’Cello Suite) can be performed on guitar
on one string, yet at least two concurrent pitch patterns or streams will be heard - two auditory streams
will be segregated (to use Bregman’s terminology).

9.1.4 Narmour’s implication realization model

2

An intuition shared by many people is that appreciating music has to do with expectation. That
is, what we have already heard builds expectations on what is to come. These expectations can be
fulfilled or not by what is to come. If fulfilled, the listener feels satisfied. If not, the listener is
surprised or even disappointed. Based on this observation, Narmour proposed a theory of perception
and cognition of melodies based on a set of basic grouping structures, the Implication/Realization
model, or I/R model.

Figure 9.16: Top: Eight of the basic structures of the I/R model. Bottom: First measures of All of Me,
annotated with I/R structures.

According to this theory, the perception of a melody continuously causes listeners to generate
expectations of how the melody will continue. The sources of those expectations are two-fold: both
innate and learned. The innate sources are hard-wired into our brain and peripheral nervous system,
according to Narmour, whereas learned factors are due to exposure to music as a cultural phenomenon,
and familiarity with musical styles and pieces in particular.

The innate expectation mechanism is closely related to the gestalt theory for visual perception.
Narmour claims that similar principles hold for the perception of melodic sequences. In his theory,
these principles take the form of implications: Any two consecutively perceived notes constitute a
melodic interval, and if this interval is not conceived as complete, or closed, it is an implicative
interval, an interval that implies a subsequent interval with certain characteristics. In other words,
some notes are more likely to follow the two heard notes than others. Two main principles concern
registral direction and intervallic difference.

• The principle of registral direction states that small intervals imply an interval in the same
registral direction (a small upward interval implies another upward interval, and analogous for

2adapted from Mantaras AI Magazine 2001
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downward intervals), and large intervals imply a change in registral direction (a large upward
interval implies another upward interval and analogous for downward intervals).

• The principle of intervallic difference states that a small (five semitones or less) interval implies
a similarly-sized interval (plus or minus 2 semitones), and a large intervals (seven semitones or
more) implies a smaller interval.

Based on these two principles, melodic patterns can be identified that either satisfy or violate the
implication as predicted by the principles. Such patterns are called structures and labelled to denote
characteristics in terms of registral direction and intervallic difference. Eight such structures are shown
in figure 9.16(top). For example, the P structure (Process) is a small interval followed by another
small interval (of similar size), thus satisfying both the registral direction principle and the intervallic
difference principle. Similarly the IP (Intervallic Process) structure satisfies intervallic difference, but
violates registral direction.

Additional principles are assumed to hold, one of which concerns closure, which states that the
implication of an interval is inhibited when a melody changes in direction, or when a small interval
is followed by a large interval. Other factors also determine closure, like metrical position (strong
metrical positions contribute to closure, rhythm (notes with a long duration contribute to closure), and
harmony (resolution of dissonance into consonance contributes to closure).

These structures characterize patterns of melodic implications (or expectation) that constitute the
basic units of the listener perception. Other resources such as duration and rhythmic patterns empha-
size or inhibit the perception of these melodic implications. The use of the implication-realization
model provides a musical analysis of the melodic surface of the piece.

The basic grouping structure are shown in fig. 9.16:

P (process) structure a pattern composed of a sequence of at least three notes with similar intervallic
distances and the same registral direction;

ID (intervallic duplication) structure a pattern composed of a sequence of three notes with the same
intervallic distances and different registral direction;

D (duplication) structure a repetition of at least three notes;

IP (intervallic process) structure a pattern composed of a sequence of three notes with similar in-
tervallic distances and different registral direction;

R (reversal) structure a pattern composed of a sequence of three notes with different registral direc-
tion; the first interval is a leap, and the second is a step;

IR (intervallic reversal) structure a pattern composed of a sequence of three notes with the same
registral direction; the first interval is a leap, and the second is a step;

VR (registral reversal) structure a pattern composed of a sequence of three notes with different
registral direction; both intervals are leaps.

In fig. 9.16 (bottom) the first three notes form a P structure, the next three notes an ID, and the
last three notes another P. The two P structures in the figure have a descending registral direction, and
in both cases, there is a duration cumulation (the last note is significantly longer).

Looking at melodic grouping in this way, we can see how each pith interval implies the next.
Thus, an interval can be continued with a similar one (such as P or ID or IP or VR) or reversed with a
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dissimilar one. That is, a step (small interval) is followed by a leap (large interval) between notes in
the same direction would be a reversal of the implied interval (another step was expected, but instead,
a leap is heard) but not a reversal of direction. Pitch motion can also be continued by moving in the
same direction (up or down) or reversed by moving in the opposite direction. The strongest kind of
reversal involves both a reversal of intervals and of direction. When several small intervals (steps)
move consistently in the same direction, they strongly imply continuation in the same direction with
similar intervals. If a leap occurs instead of a step, it creates a continuity gap, which triggers the
expectation that the gap should be filled in. To fill it, the next step intervals should move in the
opposite direction from the leap, which also tends to limit pitch range and keeps melodies moving
back toward a centre.

Basically, continuity (satisfying the expectation) is nonclosural and progressive, whereas reversal
of implication (not satisfying the expectation) is closural and segmentative. A long note duration after
reversal of implication usually confirm phrase closure.

Figure 9.17: Example of Narmour analysis of the first four bars of the second movement of Mozart’s
K.311 [from Cross 1998].

Any given melody can be described by a sequence of Narmour structures. Fig. 9.17 Narmour’s
analysis of the first four bars of the second movement of K.311 is shows. Letters (IP, P, etc.) within
the ”grouping” brackets identify the patterns involved, while the b’s and d’s in parentheses above
the top system indicate the influence of, respectively, metre and duration. The three systems show
the progressive ”transformation” of pitches to higher hierarchical levels, and it should be noted that
the steps involved do not produce a neatly nested hierarchy of the sort that Lerdahl and Jackendoff’s
theory provides.



9.16 CHAPTER 9. MUSIC INFORMATION PROCESSING

9.1.5 Local Boundary Detection Model (LBDM)

Expressive performance of a musical work relies to a large extent on the underlying musical struc-
ture. From traditional music performance theories to contemporary computational models of musical
expression a strong link between musical structure and expression is assumed. It is commonly hy-
pothesised that the ending of a musical group, such as a melodic phrase, is marked by a slowing down
of tempo, i.e. relative lengthening of the last notes (see sect. 3.7). For musical groups at the lowest
level, i.e. small melodic gestures of just a few notes, it is commonly assumed that the final note IOI is
lengthened and a small micropause inserted (see sect. 3.8).

In this section, a computational model (developed by Emilios Cambouropoulos 2001), that enables
the detection of local melodic boundaries will be described. This model is simpler and more general
than other models based on a limited set of rules (e.g. implication realization model seen in sect. 9.1.4
) and can be applied both to quantised score and non-quantised performance data.

The Local Boundary Detection Model (LBDM) calculates boundary strength values for each in-
terval of a melodic surface according to the strength of local discontinuities; peaks in the resulting
sequence of boundary strengths are taken to be potential local boundaries.

The model is based on two rules: the Change rule and the Proximity rule. The Change rule is
more elementary than any of the Gestalt principles as it can be applied to a minimum of two entities
(i.e. two entities can be judged to be different by a certain degree) whereas the Proximity rule requires
at least three entities (i.e. two entities are closer or more similar than two other entities).

• Change Rule (CR): Boundary strengths proportional to the degree of change between two con-
secutive intervals are introduced on either of the two intervals (if both intervals are identical no
boundary is suggested).

• Proximity Rule (PR): If two consecutive intervals are different, the boundary introduced on the
larger interval is proportionally stronger.

The Change Rule assigns boundaries to intervals with strength proportional to a degree of change
function Si (described below) between neighbouring consecutive interval pairs. Then a Proximity
Rule scales the previous boundaries proportionally to the size of the interval and can be implemented
simply by multiplying the degree-of-change value with the absolute value of each pitch/time/dynamic
interval. This way, not only relatively greater neighbouring intervals get proportionally higher values
but also greater intervals get higher values in absolute terms - i.e. if in two cases the degree of change
is equal, such as sixteenth/eighth and quarter/half note durations, the boundary value on the (longer)
half note will be overall greater than the corresponding eighth note.

The aim is to develop a formal theory that may suggest all the possible points for local grouping
boundaries on a musical surface with various degrees of prominence attached to them rather than
a theory that suggests some prominent boundaries based on a restricted set of heuristic rules. The
discovered boundaries are only seen as potential boundaries as one has to bear in mind that musically
interesting groups can be defined only in conjunction with higher-level grouping analysis (parallelism,
symmetry, etc.). Low-level grouping boundaries may be coupled with higher-level theories so as to
produce optimal segmentations (see fig. 9.18).

In the description of the algorithm only the pitch, IOI and rest parametric profiles of a melody
are mentioned. It is possible, however, to construct profiles for dynamic intervals (e.g. velocity
differences) or for harmonic intervals (distances between successive chords) and any other parameter
relevant for the description of melodies. Such distances can also be asymmetric; for instance the
dynamic interval between p and f should be greater that between f and p.
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Figure 9.18: Beginning of Frère Jacques. Higher-level grouping principles override some of the
local detail grouping boundaries (note that LBDM gives local values at the boundaries suggested by
parallelism - without taking in account articulation.

9.1.5.1 Local Boundary Detection algorithm description

A melodic sequence is converted into a number of independent parametric interval profiles Pk for the
parameters: pitch (pitch intervals), ioi (interonset intervals) and rest (rests - calculated as the interval
between current onset with previous offset). Pitch intervals can be measured in semitones, and time
intervals (for IOIs and rests) in milliseconds or quantised numerical duration values. Upper thresholds
for the maximum allowed intervals should be set, such as the whole note duration for IOIs and rests
and the octave for pitch intervals; intervals that exceed the threshold are truncated to the maximum
value.

A parametric profile Pk is represented as a sequence of n intervals of size xi: Pk = [x1, x2, . . . xn]
where: k is pitch, ioi, rest, xi ≥ 0 and i = 1, 2, ..., n. The degree of change r between two successive
interval values xi and xi+1 is given by:

ri,i+1 =
|xi − xi+1|

xi + xi+1

if xi − xi+1 6= 0 and xi, xi+1 ≥ 0; otherwise ri,i+1 = 0.
The strength of the boundary si for interval xi is affected by both the degree of change to the

preceding and following intervals, and is given by the function:

si = xi · (ri−1,i + ri,i+1)

For each parameter k, a sequence Sk = [s1, s2, . . . , sn] is calculated, and normalised in the range
[0, 1]. The overall local boundary strength profile for a given melody is a weighted average of
the individual strength sequences Sk. The suggested weights for the three different parameters are
wpitch = wrest = 0.25 and wioi = 0.50. Local peaks in this overall strength sequence indicate local
boundaries.
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Figure 9.19: Local Boundaries by LBDM: Opening Melody from Waltz Op.18 by Chopin

Figure 9.20: Local Boundaries by LBDM: Opening Melody from Etude Op10, No3 by Chopin.
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Figure 9.21: Examples of boundary strengths (last row) determined by the LBDM.

Figure 9.22: Examples of boundary strengths (last row) determined by the LBDM. These are ambigu-
ous boundaries which may be resolved if higher-level organisational principles are taken into account.
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Figure 9.23: Examples of phenomenal accent strengths derived from the LBDM boundary strengths
by merely adding every two adjacent boundary strength values.
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9.1.6 Generative Theory of Tonal Music of Lerdahl and Jackendorf

Lerdahl and Jackendoff (1983) developed a model called Generative Theory of Tonal Music (GTTM).
This model offers a complementary approach to understanding melodies, based on a hierarchical
structure of musical cognition. According to this theory music is built from an inventory of notes and
a set of rules. The rules assemble notes into a sequence and organize them into hierarchical structures
of music cognition. To understand a piece of music means to assemble these mental structures as we
listen to the piece.

It seeks to elucidate a number of perceptual characteristics of tonal music - segmentation, peri-
odicity, differential degrees of importance being accorded to the components of a musical passage or
work, the flow of tension and relaxation as a work unfolds - by employing four distinct analytical lev-
els, each with its own more-or-less formal analytical principles, or production rules. These production
rules, or Well-Formedness rules, specify which analytical structures may be formed - which analyt-
ical structures are possible - in each of the four analytical domains on the basis of a given musical
score. Each domain also has a set of Preference Rules, which select between the possible analytical
structures so as to achieve a single ”preferred” analysis within each domain.

Figure 9.24: Main components of Lerdahl and Jackendoff’s generative theory of tonal music.

GTTM proposes four types of hierarchical structures associated with a piece: the grouping struc-
ture, the metrical structure, the time-span reduction structure, and the prolongational reduction struc-
ture (fig. 9.24).

The grouping structure describes the segmentation units that listeners can establish when hearing a
musical surface: motives, phrases, and sections.

The metrical structure describes the rhythm hierarchy of the piece. It assign a weight to each note
depending on the beat in which is played . In this way notes played on strong (down) beats have
higher weight than notes played on week (up) beats.

The time-span reduction structure is a hierarchical structure describing the relative structural im-
portance of notes within the audible rhythmic units of a phrase (see Fig. 9.25). It differentiate
the essential parts of the melody from the ornaments. The essential parts are further dissected
into even more essential parts and ornament on them. The reduction continues until the melody
is reduced to a skeleton of the few most prominent notes.

The prolongational reduction structure is a hierarchical structure describing tension-relaxation re-
lationships among groups of notes. This structure captures the sense of musical flow across
phrases, i.e. the build-up and release of tension within longer and longer passages of the piece,
until a feeling of maximum repose at the end of the piece. tension builds up as the melody
departs from more stable notes to less stable ones and is discharged when the melody returns
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to stable notes. tension and release are also felt as a result of moving from dissonant chords to
consonant ones, from non accented notes to accented ones and from higher to lower notes.

The four domains - Metrical, Grouping, Time-Span and Prolongational - are conceived of as partially
interdependent and at the same time as modelling different aspects of a listener’s musical intuitions.

Figure 9.25: Example of a time-span tree for the beginning of the All of me ballad [from Arcos 1997].

Each of these four components consists of three sets of rules:

Well-formedness Rules which state what sort of structural descriptions are possible. These rules
define a class of possible structural descriptions.

Preference Rules which try to select from the possible structures the ones that correspond to what an
experienced listener would hear. They are designed to work together to isolate those structural
descriptions in the set defined by the well-formedness rules that best describe how an expert
listener interprets the passage given to the theory as input.

Transformational Rules that allow certain distortions of the strict structures prescribed by the well-
formedness rules.

The application of their theory to the first four bars of the second movement of Mozart’s K.311 is
shown in fig. 9.26 and 9.27. The Metrical analysis (shown in the dots below the piece in Figure 9.26)
appears self-evident, deriving from Well-Formedness Rules such as those stating that ”Every attack
point must be associated with a beat at the smallest metrical level present at that point in the piece”
(although the lowest, semiquaver, level is not shown in the figure), ”At each metrical level, strong
beats are spaced either two or three beats apart”, etc. These Well-Formedness rules are supplemented
by Preference rules, that suggest preference should be given to e.g., ”metrical structures in which the
strongest beat in a group appears relatively early in the group”, ”metrical structures in which strong
beats coincide with pitch events”, etc.

The Grouping structure (shown in the brackets above the piece in Figure 9.26) appears similarly
self-evident, being based on seemingly truistic Well-Formedness rules such as ”A piece constitutes a
group”, ”If a group contains a smaller group it must contain all of that smaller group” (thus ensuring a
strictly nested hierarchy), etc. Preference rules here specify such matters as the criteria for determining
group boundaries (which should occur at points of disjunction in the domains of pitch and time),
conditions for inferring repetition in the grouping structure, etc. Thus a group boundary is formed
between the end of bar two and the beginning of bar three both in order to ensure the symmetrical
subdivision of the first four bars (themselves specifiable as a group in part because of the repetition
of the opening of bar one in bar five) and because the pitch disjunction occurring between the G and
the C is the largest pitch interval that has occurred in the upper voice of the piece up to that moment.
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Figure 9.26: Example of GTTM analysis of the first four bars of the second movement of Mozart’s
K.311: Metrical analysis (dots below the piece ) and Time-Span analysis (tree-structure above the
piece) [from Cross 1998].

Perhaps the only point of interest in the Grouping analysis is the boundary between the third quaver
of bar three and the last semiquaver of that bar, brought about by the temporal interval between the
two events (again, the largest that has occurred in the piece up to that moment). Here, the Grouping
structure and the Metrical structure are not congruent, pointing-up a moment of tension at the level of
the musical surface that is only resolved by the start of the next group at bar five.

The Time-Span analysis (tree-structure above the piece in Figure 9.26) is intended to depict the
relative salience or importance of events within and across groups. The Grouping structure serves
as the substrate for the Time-Span analysis, the Well-Formedness rules in this domain being largely
concerned with formalising the relations between Groups and Time-Spans. The Preference rules
suggest that metrically and harmonically stable events should be selected as the ”heads” of Time-
Spans, employment of these criteria resulting in the straightforward structure shown in the Figure.
This shows clearly the shift in metrical position of the most significant event in each Group or Time-
Span, from downbeat in bar one to upbeat crotchet in bars two and three to upbeat quaver in bar
four.

A similar structure is evident in the Prolongational analysis (Figure 9.27), which illustrates the
building-up and release of tension as a tonal piece unfolds. The Prolongational analysis derives in
part from the Time-Span analysis, but is primarily predicated on harmonic relations, which the Well-
Formedness and Preference rules specify as either prolongations (tension-producing or maintaining)
or progressions (tension-releasing).

Lerdahl and Jackendoff’s theory however lack of a detailed, formal account of tonal-harmonic
relations and tend to neglect of the temporality of musical experience. Moreover it let the analyst to
make different choices that are quite difficult to formalize and implement on a computational model.
Although the authors attempt to be thorough and formal throughout the theory, they do not resolve
much of the ambiguity that exists through the application of the preference rules. There is little or no
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Figure 9.27: Example of GTTM analysis of the first four bars of the second movement of Mozart’s
K.311: Prolongational analysis [from Cross 1998].

ranking of these rules to say which should be preferred over others and this detracts from what was
presented as a formal theory.

9.1.7 Key finding algorithm

All humans perceive a large continuum of pitch. However, the pitch systems of all cultures consist of
a limited set of pitch categories that are collected into ordered subsets called scales. In the Western
equal-tempered pitch system, all diatonic scales of seven notes (are derived from an alphabet of the 12
chromatic notes within an octave, called pitch class). The pitches of adjacent notes in the chromatic
scale are separated by a semitone which corresponds to a frequency difference of approximately 6%.
The octave is a special interval (a 2:1 frequency ratio) at which two pitches, though separated along
the pitch dimension, seem to have something in common, or are perceived to be equivalent. In all
cultures that name the pitches in scales, two pitches separated by an octave are given the same name
(e.g. do re mi fa sol la ti do or C D E F G A B C in the Western system, and Sa Re Ga Ma Pa Dha Ni
Sa in the Indian system).

A given scale is defined by the pattern of intervals between the pitch categories. A major scale
has the pattern 2–2–1–2–2–2–1 in numbers of semitones between scale steps (Fig. 9.28, upper panel).
One type of minor scale (called natural minor) has the pattern 2–1–2–2–1–2–2 (Fig. 9.28, lower
panel). Within a scale there often exists a functional hierarchy among the pitches, as well as among
chords that can be formed of the pitches. In the Western tonal pitch system, some pitches and chords,
such as those related to the first and fifth degrees of the scale (C and G are the tonic and dominant
notes of the key of C major, for example) are structurally more important than others (Fig. 9.28).
This hierarchization gives rise to a sense of key. In fact when chords are generated by playing several
pitches at once, the chord that is considered to be most stable within a key, and in a certain sense to
”represent” the key, comprises the first, third and fifth degrees of the scale. In tonal music, one can
establish a sense of key within a given major or minor scale and then move progressively to a new
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Figure 9.28: Piano keyboard representation of the scales of C major and C minor. Notes in each scale
are shaded. The relative importance of the first (tonic - C), fifth (dominant - G) and third (mediant -
E) degrees of the scale is illustrated by the length of the vertical bars. The other notes of the scale are
more or less equally important followed by the chromatic notes that are not in the scale (unshaded)
[from McAdams 1996].

key (a process called modulation) by introducing notes from the new key and no longer playing those
from the original key that are not present in the new key.

Factors other than the simple logarithmic distance between pitches affect the degree to which
they are perceived as being related within a musical system. The probe tone technique developed by
Krumhansl has been quite useful in establishing the psychological reality of the hierarchy of relations
among pitches at the level of notes, chords, and keys. In this paradigm, some kind of musical context
is established by a scale, chord, melody or chord progression, and then a probe stimulus is presented.
Listeners are asked to rate numerically either the degree to which a single probe tone or chord fits with
the preceding context or the degree to which two notes or chords seem related within the preceding
context. This technique explores the listener’s implicit comprehension of the function of the notes,
chords, and keys in the context of Western tonal music without requiring them to explicate the nature
of the relations.

If we present a context, such as a C major or C minor scale, followed by a single probe tone that is
varied across the range of chromatic scale notes on a trial-to-trial basis, a rating profile of the degree
to which each pitch fits within the context is obtained. This quantitative profile, when derived from
ratings by musician listeners, fits very closely to what has been described intuitively and qualitatively
by music theorists (Fig. 9.29). Note the importance of the tonic note that gives its name to the scale,
followed by the dominant or fifth degree and then the mediant or third degree. These three notes form
the principal triad or chord of the diatonic scale. The other notes of the scale are of lesser importance
followed by the remaining chromatic notes that are not within the scale. These profiles differ for
musicians and non-musicians. In the latter case the hierarchical structure is less rich and can even be
reduced to a simple proximity relation between the probe tone and the last note of the context.
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Figure 9.29: C Major and C minor profiles derived with the probe-tone technique from fittingness
ratings by musician listeners.

Figure 9.30: Comparison between tonal hierarchies and statistical distribution of tones in tonal works.
It is shown the frequency of occurrence of each of the 12 chromatic scale tones in various songs and
other vocal works by Schubert, Mendelssohn, Schumann, Mozart, Richard Strauss and J. A. Hasse.
and the key profile (scaled).

Krumhansl has shown (fig. 9.30) that the hierarchy of tonal importance revealed by these profiles
is strongly correlated with the frequency of occurrence of notes within a given tonality (the tonic
appears more often than the fifth than the third, and so on). It also correlates with various measures
of tonal consonance of notes with the tonic, as well as with statistical measures such as the mean
duration given these notes in a piece of music (the tonic often having the longest duration).

These correlations are the base of the classic key finding algorithm of Krumhansl-Schmuckler
(as explained in Krumhansl’s book Cognitive Foundations of Musical Pitch [Oxford University Press,
1990]). Each key has a key-profile: a vector representing the optimal distribution of pitch-classes
for that key. The algorithm works as follows. The input piece is divided into segments, and within
each segment, without regard for enharmonic spellings, all pitch-classes in the passage are counted
resulting in 12 values. For example, a segment may contain 14 C’s, 2 C#’s, 8 D’s, and so on. These
12 values are then correlated with the major key profile where C is deemed the tonic. Similarly, the
12 values are then correlated with the minor key profile where C is deemed the tonic. The process is
repeated for all possible tonics: C-sharp/D-flat, D, D-sharp/E-flat, E, etc. After correlations have been
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calculated for all 24 major and minor pitch-class keys, the estimated key for the passage is given by
the largest positive correlation. It is possible to handle modulation: in considering a key for a segment,
a penalty is assigned if the key differs from the key of the previous segment. In this way, it will prefer
to remain in the same key, other things being equal, but will change keys if there is sufficient reason
to do so.

In this method, the input vector for a segment represents the total duration of each pitch-class
in the segment. The match between the input vector and each key-profile is calculating using the
standard correlation formula.

Figure 9.31: Example of Krumhansl-Schmuckler key fining algorithm: opening bar of Yankee Doodle.

Figure 9.32: Example of Krumhansl-Schmuckler key fining algorithm: duration distribution of Yankee
Doodle.

For example, if we take opening bar of Yankee Doodle, as shown in fig. 9.31, we find that: the
sum of the durations of the G naturals gives .75 of a minim, the durations of the B naturals add up to
half a minim, the durations of the A naturals add up to half a minim and there is one quaver D natural.
We can then draw a graph showing the durations of the various pitch classes within the passage being
analysed, as shown in fig 9.32. The next step in the algorithm is to calculate the correlation between
this graph and each of the 24 major and minor key profiles. This table (tab. 9.1) shows the correlation
between this graph showing the durations of the various pitches in the Yankee Doodle excerpt and
each of the major and minor key profiles. The algorithm then predicts that the perceived key will be
the one whose profile best correlates with the graph showing the distribution of tone durations for the
passage. So in this case, the algorithm correctly predicts that the key of Yankee Doodle is G major.

A variation of the key finding algorithm is proposed in Temperley 2001. In this method, the input
vector for a segment simply has 1 for a pitch-class if it is present at all in the segment (the duration and
number of occurrences of the pitch-class are ignored) and 0 if it is not; the score for a key is given by
the sum of the products of key-profile values and corresponding input vector values (which amounts
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Table 9.1: Correlation between the graph showing the durations of the various pitches in the Yankee
Doodle excerpt and each of the major and minor key profiles.

Key Score Key Score
C major 0.274 C minor -0.013
C sharp major -0.559 C sharp minor -0.332
D major 0.543 D minor 0.149
E flat major -0.130 E flat minor -0.398
E major -0.001 E minor 0.447
F major 0.003 F minor -0.431
F sharp major -0.381 F sharp minor 0.012
G major 0.777 G minor 0.443
A flat major -0.487 A flat minor -0.106
A major 0.177 A minor 0.251
B flat major -0.146 B flat minor -0.513
B major -0.069 B minor 0.491

to summing the key-profile values for all pitch class present in the segment).

9.2 Music Information Retrieval: Issues, Problems, and Methodologies

by Nicola Orio

9.2.1 Introduction

The core problem of Information Retrieval (IR) is to effectively retrieve documents which convey
content being relevant to the users information needs. Effective and efficient techniques have been
developed to index, search, and retrieve documents from collections of hundreds of thousands, or
millions of textual items.

The most consolidated results have been obtained for collection of documents and users queries
written in textual form and in English language. Statistical and probabilistic techniques have lead to
the most effective results for basic system functions and are currently employed to provide advanced
information access functions as well. The content description of media being different from text, and
the development of different search functions are necessary steps for content-based access to Digital
Libraries (DL). This statement mainly applies to cultural heritage domain, where different media and
search functions live together.

In order to provide a content-based multimedia access, the development of new techniques for
indexing, searching, and retrieving multimedia documents have recently been the focus of many re-
searchers in IR. The research projects in DLs, and specifically those carried out in cultural heritage
domain, have shown that the integrated management of diverse media - text, audio, image, video - is
necessary.

The problem with content-based access to multimedia data is twofold.

• On the one hand, each media requires specific techniques that cannot be directly employed for
other media.
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• On the other hand, these specific techniques should be integrated whenever different media are
present in a individual item.

The core IR techniques based on statistics and probability theory may be more generally employed
outside the textual case and within specific non-textual application domains. This is because the under-
lying models, such as the vector-space and the probabilistic models, are likely to describe fundamental
characteristics being shared by different media, languages, and application domains.

9.2.1.1 Digital Music and Digital Libraries

There is an increasing interest towards music stored in digital format, which is witnessed by the
widespread diffusion on the Web of standards for audio like MP3. There are a number of reasons to
explain such a diffusion of digital music.

• First of all, music is an art form that can be shared by people with different culture because it
crosses the barriers of national languages and cultural backgrounds. For example, tonal Western
music has passionate followers also in Japan and many persons in Europe are keen on classical
Indian music: all of them can enjoy music without the need of a translation, which is normally
required for accessing foreign textual works.

• Another reason is that technology for music recording, digitalization, and playback, allows for
an access that is almost comparable to the listening of a live performance, at least at the level
of audio quality, and the signal to noise ratio is better for digital formats than for many analog
formats. This is not the case of other art forms, like painting, sculpture or even photography,
for which the digital format is only an approximate representation of the artwork. The access to
digitized paintings can be useful for studying the works of a given artist, but cannot substitute
the direct interaction with the real world works.

• Moreover, music is an art form that can be both cultivated and popular, and sometimes it is
impossible to draw a line between the two, as for jazz or for most of ethnic music.

These reasons, among others, may explain the increasing number of projects involving the creation
of music DLs. A music DL allows for, and benefits from, the access by users from all over the world, it
helps the preservation of cultural heritage, and it is not tailored only to scholars or researchers needs.
More in general, as music is one of the most important means of expression, the organization, the
integration with other media, and the access to the digitized version of music documents becomes an
important multimedia DL component. Yet, music has some peculiarities that have to be taken into
account when developing a music DL. In figure 9.33 the architecture of a music information retrieval
system is shown.

9.2.1.2 Music Information Retrieval

Specific and effective techniques being capable of indexing and retrieving such multimedia documents
as the music ones need to be designed and implemented.

Current approaches to Music Information Retrieval (MIR) are based either on string matching
algorithms or textual bibliographic catalogue.

• Sting matching approach makes content-based retrieval very difficult - indeed, retrieving textual
files using Unix grep-like commands gives poor results.
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Figure 9.33: Architecture of a music information retrieval system

• Textual bibliographic catalogue approach makes content-based retrieval impossible since the
music content cannot be described by bibliographic catalogue.

The requirement for a content-based MIR has been stressed within the research area of music in-
formation systems as well. The developments in the representation of music suggest a need for an
information retrieval philosophy directed toward non-text searching and eventual expansion to a sys-
tem that encompasses the full range of information found in multimedia documents. As IR has dealt
with the representation and the disclosure of content from its early days, it is natural to think that
IR techniques should be investigated to evaluate their application to music retrieval. According to
McLane “what has been left out of this discussion, and will no doubt be a topic for future study,
is the potential for applying some of the standard principles of text information retrieval to music
representations”.

• If we follow the hypothesis that the use of standard principles of text information retrieval
to index and retrieve music documents is possible, then the design of ad-hoc segmentation
algorithms to produce musical lexical units like words in textual documents is required.

The concept of lexical unit may vary depending on the approach. A lexical unit can be: a fixed-
length string, the incipit, a complete theme, a melodic phrase, and so on. Music is a continuous
flow of events (e.g., notes, chords, and unpitched percussive sounds) without explicit separators,
if not those perceived by listeners. Also music representation lacks of separators of lexical units,
because it conveys information only about macro-events, like changes in tonality or the presence
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of repetitions. It is therefore necessary to automatically detect the perceived lexical units of a
music document to be used like words in textual documents.

• Moreover, content-based MIR requires the design of normalization algorithms. Once detected,
musical lexical units occur in documents with many variants like textual words do within textual
documents. For example, a melodic pattern may occur in many music works, perhaps composed
by different authors, with small deviations of note intervals or timing. Despite these deviations,
different patterns may be perceptually similar, hence conveying the same music perception. It is
therefore necessary to detect these variants and conflate all the similar musical lexical units into
a common stem expressing the same music perception. This conflation process is analogous to
the one performed in the textual case for detecting word stems through, for example, the Porters
stemming algorithm.

To allow the integration of automatic music processing techniques with automatic IR techniques,
segmentation and normalization algorithms are applied also on music queries.

In a content-based music IR system, users may be able to interact with the system by using the
same language, that is the music language. This because content-based MIR requires users to be able
of expressing the music document content. The most natural way of express music content is singing
and playing music. This approach is often referred to as the query by example paradigm. Therefore,
users should be provided with interfaces and search functions so that they can play music and send a
music query to the system.

To make content-based music retrieval possible, query content and document content have to be
matched: Describing query content is then necessary. If we regard music queries as music documents,
segmentation and normalization can be performed also on music queries using the same algorithms
used for disclosing document content.

9.2.2 Issues of Content-based Music Information Retrieval

Music, in its different representations, can be considered as another medium together with text, image,
video, and speech. Nevertheless, there are some issues that make music different from other multi-
media IR application domains. The issues we address are form, instantiation, dimension, content,
perception, user profile, and formats. The most relevant issues are describes in the following Sections.

9.2.2.1 Peculiarities of the Music Language

The same entity, i.e. a music work, can be represented in two different main forms: the notated and
the acoustic form, respectively corresponding to score and performance. Hence the communication in
music is performed at two levels:

• the composer translates his intentions in a music structure (music as a composing art),

• the musician translates the written score into sounds (music as a performing art).

Also users may have different needs, in particular the music scholar may look for a given composition,
while the melomane may look for a particular performance.

Each music work may have different instantiations. As musicians can interpret scores, the re-
sulting performances may differ and therefore more performances correspond to an individual score.
Furthermore, the same music work may be transcribed into different scores, depending on the revisers
choices. As a consequence, different performances and scores may rely to the same music work.
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Different dimensions characterize the information conveyed by music. Melody, harmony, rhythm,
and structure are dimensions, carried by the written score, that may be all or in part of interest for
the final user. In the case of a performance other dimensions should be added, for instance timbre,
articulation, and timing. It is likely that the dimensions of interest vary with the level of users expertise
and the specific users search task. As described in Section 9.2.2.3, different formats are able to capture
only a reduced number of dimensions. Therefore, the choice of a representation format has a direct
impact on the degree to which a music retrieval system can describe each dimension.

While text, image, video, or speech-based documents in general convey some information that
form their content, it is still unclear what type of content, if any, music works do convey. Let us
consider an example: the concept of tempest can be described with a textual document, such as the first
chapter of Shakespeares The Tempest, a painting, such as the landscape of Giorgiones The Tempest,
a video or speech, such as broadcasting news about, for instance, a tornado. All these media are able
to convey, among all the other information, the concept of tempest. There are up to forty music works
of tonal Western music whose title is related to tempests, among those the most famous probably are
Beethovens Sixth Symphony IV Movement, Rossinis Overture of William Tell, and Vivaldis Concerto
La Tempesta di Mare. These works differ in music style, form, key and time signature, and above all
the user may be not able to recognize that the work is about a tempest and not just pure music.

In principle, music language does not convey information as, for instance, text or video do. Many
composers wrote music to stir up emotions, and in general they aimed to communicate no specific
information to the listener. The final user feels emotions on listening to the music, and he interprets
some information independently from the composers and performers thought and differently from the
other users. There is a particular kind of music works, called musica a programma, in which the title
(like Vivaldis The Spring) or a lyric (like Debussys Prlude laprs-midi dun faune) suggests a meaning
to the listener; this sort of textual data would be better managed using a database system rather than
a IR system. Moreover in sung music, such as Cantatas, the accompanied text gives the work some
meaning, yet that sort of text would require ad-hoc IR techniques to be effectively managed. In general
the availability of textual material together with music documents is insufficient.

It is then important to consider how music is perceived and processed by listeners, to highlight
which kind of content is carried by this medium. A number of different theories was proposed by
musicologists, among which the most popular ones are the Generative Theory of Tonal Music (see
Sect. 9.1.6) and the Implication-Realization Model (see Sect. 9.1.4). In both cases it is stated that
listeners perceive music as structured and consisting of different basic elements. Therefore, even if
music notation and performance lack of explicit separators (like blanks or commas in text) musicians
and listeners perceive the presence of small elements which constitute the music work: we can con-
sider these elements as the lexical units for a content-based approach to MIR. It is likely that all the
dimensions of music language can be segmented in their lexical units and be used to extract a content
from a music document.

9.2.2.2 The Role of the User

As always happens in IR, the effectiveness of techniques does strongly depend on the final user.
DL systems does indeed interact with final users of very diverse types and with different levels of
expertise in the use of the system itself. This is particularly true for music DLs, because there is a
great difference in users expertise depending on the practice of a musical instrument, the ability of
reading a score, the knowledge of harmony rules, the familiarity with composition styles, and so on.
Users may have different needs, for instance a music scholar may look on how a given cadenza is
used by different authors, while a melomane may look for a particular performance of a well-known
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musician. This is a key aspect in the design of a methodology for content-based MIR, because it
affects the choice of the dimension to be used for describing a music work, that is which kind of
content has to be extracted from it.

Considering that access to DL is widely spread to users of any type, final users of a music DL
may not have a deep knowledge of music language. Therefore, melody seems to be the most suitable
dimension. In fact, almost everybody can recognize simple melodies and perform them at least by
singing or humming. In this case, lexical units can be considered the musical phrases, which may be
defined as short excerpts of the melody which constitute a single musical gesture. Moreover, melody
carries also explicit information about rhythm and implicit information about harmony.

Melody can be the most suitable evidence for content-based music retrieval, it may however be the
case that only a part of the melody can effectively be exploited as useful evidence for music document
and query description. This implies that, if phrases can be detected by means of some segmentation
algorithms, then it is likely that some of these phrases are good descriptors of the music content from
users point of view, while others can be dropped since they give little contribution to the music content
description and may negatively affect efficiency. This latter consideration leads us to contemplating
the possibility of building lists of stop phrases, that may be dropped from the index of phrases similarly
to the textual case. However, it is still unclear if stop phrases exist how users perceive them. While
one can identify a word as stop word because it has no, little, or less meaning than keywords, one
cannot identify a phrase as stop phrase because it is very difficult to say what phrase meaning does
mean, and frequency-based stop phrase list construction may be a difficult task because, for instance,
users may recall melody excerpts just because they are very frequent in a musical genre.

9.2.2.3 Formats of Music Documents

As previously mentioned, the communication in music is achieved at two levels, corresponding to two
forms: the composer translates his intentions into a musical structure, that is represented by a music
score, and the musician translates the written score into a performance, that is represented by a flow
of acoustic events. A number of different digital formats correspond to each form. It can be noted
that, as musicians can interpret scores, the resulting performances differ and therefore more than one
performance correspond to a single score. Even if the two forms can be considered as instantiations
of the same object, they substantially differ in the information that can be manually or automatically
extracted from their respective formats.

The first problem which arises in the automatic processing of music is then that a music work may
be digitally stored in different formats. The same music piece can be represented, for example,

• by a reproduction of the manuscript,

• by a symbolic notation of the score,

• by a sequence of time-stamped events corresponding to pitched and unpitched sounds,

• or by a digital recording of an acoustic performance.

Each format carries different information on the content of the document. For instance, at the state-
of-the-art it is impossible to recover informations about the written score from the digital sampling,
e.g. stored in a compact disk, of a polyphonic audio signal, and the score carries no information
about the timbre, expressive timing and other performing parameters. Hence, the documents format
has to be chosen depending on the aims of the DL, which may encompass preservation, displaying,
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listening, indexing, and retrieval for example, preservation requires high quality audio coding and
dissemination over the Internet requires lossy compression.

Formats for digital music documents can be divided in two classes.

• The score is a structured organization of symbols, which correspond to acoustic events; the
score is a direct representation of all the dimensions of music (i.e., melody, harmony, and
rhythm) and it usually contains all the information that is relevant for classifying and catalogu-
ing: type of movement, time and key signatures, composers notes, and so on. The symbolic
nature of the score allows for an easy representation of its content, and many proposed formats
represents score in the form of a textual markup language, for instance ABC and GUIDO.

• The performance is made of a sequence of gestures performed by musicians on their musical
instruments; the result is a continuous flow of acoustic waves, which correspond to the vibration
induced on musical instruments. Even if all the dimensions of music are embedded in a per-
formance, it requires high-level information processing to recognize them. In particular, only
experienced musicians can recognize all the dimensions of music from listening to a perfor-
mance and, at the state of the art, there is no automatic system that can recognize them from
an acoustic recording, apart from trivial cases. The nature of a performance does not allow
for an easy representation of its content. The formats adopted to digitally represent perfor-
mances, such as AIFF (Audio Interchange File Format, proposed by Apple Computers) or MP3
(MPEG1, Layer3), are a plain digital coding of the acoustic sound waves, with a possible data
compression.

(a) (b)

Figure 9.34: Example of a melody

We present now an example of different representations of a melody with reference to fig. 9.34(a).
we can represent as absolute or relative values.

• Absolute measure:

– Absolute pitch: C5 C5 D5 A5 G5 G5 G5 F5 G5

– Absolute duration: 1 1 1 1 1 0.5 0.5 1 1

– Absolute pitch and duration:
(C5,1)(C5,1)(D5,1)(A5,1)(G5,1)(G5,0.5)(G5,0.5)(F5,1)(G5,1)

• Relative measure:

– Contour (in semitones): 0 +2 +7 -2 0 0 -2 +2

– IOI (Inter onset interval) ratio: 1 1 1 1 0.5 1 2 1

– Contour and IOI ratio:
(0,1)(+2,1)(+7,1)(-2,1)(0,0.5)(0,1)(-2,2)(+2,1)



9.2. MUSIC INFORMATION RETRIEVAL 9.35

In a polyphonic case (see fig. 9.34(b)) we can represent in different ways.

• Keep all information of absolute pitch and duration (start time, pitch, duration)
(1,C5,1)(2,C5,1)(3,D5,1)(3,A5,1)(4,F5,4)(5,C6,1)(6,G5,0.5)(6.5,G5,0.5)...

• Relative note representation: Record difference of start times and contour (ignore duration)
(1,0)(1,+2)(0,+7)(1,-4) ...

• Monophonic reduction, e.g. select one note at every time step (main melody selection)
(C5,1)(C5,1)(A5,1)(F5,1)(C6,1)...

• Homophonic reduction (chord reduction), e.g. select every note at every time step
(C5)(C5)(D5,A5)(F5)(C6)(G5)(G5) ...

With the aim of taking into account all the variety in which music information can be represented,
it has been proposed the Standard Music Description Language (SMDL), as an application of the
Standard ISO/IEC Hyper-media/Time-based Structuring Language. In SMDL, a music work is di-
vided into different domains, each one dealing with different aspects, from visual to gestural, and
analytical. SMDL provides a linking mechanism to external, pre-existing formats for visual repre-
sentation or storage of performances. Hence SMDL may be a useful way for music representation
standardization, but the solution is just to collect different formats rather that proposing a new one
able to deal with all the aspects of the communication in music.

A Note on MIDI A format that can be considered as a compromise between the score and the
performance forms is MIDI (Musical Instrument Digital Interface), which was proposed in 1982 for
data exchange among digital instruments. MIDI carries both information about musical events, from
which it is possible to reconstruct an approximate representation of the score, and information for
driving a synthesizer, from which it is possible to listen to a simplified automatic performance. It
seems then that MIDI draws a link between the two different forms for music representation. This
characteristics, together with the fortune of MIDI as an exchange format in the early times of the
Internet, can explain why many music DLs and most projects regarding music indexing and retrieval
refer to it. Some of the research work on music information retrieval take advantage of the availability
of MIDI files of about all the different music genres and styles. MIDI files are parsed in order to
extract a representation of the music score, and then indexed after different preprocessing.

Nevertheless, MIDI is becoming obsolete and users on the Internet increasingly prefer to exchange
digital music stored in other formats such as MP3 or RealAudio, because they allow for a good
audio-quality with a considerably small dimension of the documents size. Moreover, if the goal
of a music DL is to preserve the cultural heritage, more complete formats for storing both scores
and performances are required. Being a compromise between two different needs i.e., to represent
symbols and to be playable MIDI turns out to fit neither the needs of users who want to access to
a complete digital representation of the score, nor to users who want to listen to high-quality audio
performances.

9.2.2.4 Dissemination of Music Documents

The effectiveness of a retrieval session depends also on the ability of users to judge whether retrieved
documents are relevant to their information needs. The evaluation step, in a classical presentation-
evaluation cycle, for an information retrieval session of textual documents usually benefits from tools
for browsing the document (e.g., the find function), in particular when the size of documents is large.
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Moreover, a general overview of the textual content may help users to judge the relevance of most of
the retrieved documents.

Users of a music DL cannot take advantage of these shortcuts for the evaluation of documents
relevance, when they are retrieving music performances. This is due to the central role played by time
in the listening to music. A music performance is characterized by the organization of music events
along the time axis, which concatenates the single sounds that form the whole performance. Changing
playback speed of more than a small amount may result in a unrecognizable performance. In other
words, it requires about 20 minutes to listen to a performance that lasts 20 minutes. It may be argued
that many music works are characterized by their incipit, that is by their first notes, and hence a user
could be required to listen only to the first seconds of a performance before judging its relevance to
his information needs. Anyway, the relevant passage of a music document e.g., a theme, the refrain
may be at any position in the time axis of the performance.

A tool that is often offered by playback devices is the skip function, that allows for a fast access to a
sequence of random excerpts of the audio files, to help listeners looking for given passages. Everyone
who tried to find a particular passage in a long music performance, knows that the aid that the skip
function gives when accessing to music documents is not even comparable with the find function for
textual documents. This is partially due to the fact that auditory information does not allow a snapshot
view of the documents as visual information does. The evaluation of relevance of retrieved music
documents may then be highly time-consuming, if tools for a faster access to document content are
not provided.

9.2.3 Approaches to Music Information Retrieval

There is a variety of approaches to MIR and there are many related disciplines involved. Because of
such wide varieties, it is difficult to cite all the relevant work. Current approaches to MIR can broadly
be classified into data-based and content-based approaches. For the aims of scientific research on
multimedia IR, content-based approaches are more interesting, nevertheless the use of auxiliary tex-
tual data structures, or metadata, can frequently be observed in approaches to non-textual, e.g. image
or video document indexing. Indeed, textual index terms are often manually assigned to multimedia
documents to allow users retrieving documents through textual descriptions.

9.2.3.1 Data-based Music Information Retrieval

Data-based MIR systems allow users for searching databases by specifying exact values for predefined
fields, such as composer name, title, date of publication, type of work, etc. we actually speak about
exact match retrieval. Data-based approaches to MIR makes content-based retrieval almost impossible
since the music content cannot easily be conveyed simply by bibliographic catalogue only.

Indeed, music works are usually described with generic terms like Sonata or Concerto which are
related only to the music form and not the actual content. From an IR point of view, data-based ap-
proaches are quite effective if the user can exhaustively and precisely use the available search fields.
However, bibliographic values are not always able to describe exhaustively and precisely the con-
tent of music works. For example, the term Sonata as value of the type of work cannot sufficiently
discriminate all the existing sonatas.

Moreover, many known work titles, such as the Tchaikovskijs Pathetic, are insufficient to express
a final users query whenever he would find the title not being a good description of the music work.
The use of cataloging number, like K525 for Mozarts Eine Kleine Nachtmusic, will be effective only
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if the user has a complete information on the music work, and in this case a database system will
suffice.

Searching by composer name can be very effective. However, some less known composers and
their works may not be retrieved if only because the authors are little known. Content-based MIR may
allow for the retrieval of these pieces since querying by a known melodic pattern, such as a Mozarts
one, may retrieve previously not considered or unknown composers. On the other hand, for a prolific
composer, just like Mozart, a simple query by composers name will retrieve an extremely high number
of documents, unbearable for the final user.

9.2.3.2 Content-based Music Information Retrieval

Content-based approaches take into account the music document content, such as notation or perfor-
mance, and automatically extract some features, such as incipites or other melody fragments, timing
or rhythm, instrumentation, to be used as content descriptors. Typical content-based approaches are
based on the extraction of note strings from the full-score music document. If arbitrarily extracted,
note strings may be meaningless from a musical point of view because no music information is ex-
ploited to detect those strings, yet allows for a good coverage of all the possible features to be ex-
tracted.

Content-based approaches to MIR can sometimes be oriented to disclosing music document se-
mantic content using some music information, under the hypothesis that music documents can convey
some meaning and then some fragments can effectively convey such meaning. In the latter case, some
music information is exploited to detect those strings so that the detected strings can musically make
sense if, for instance, they were played.

The research work on this area of MIR can be roughly divided in two categories:

• on-line searching techniques, which compute a match between a representation of the query
and a representation of the documents each time a new query is submitted to the system;

• indexing techniques, which extract off-line from music documents all the relevant information
that is needed at retrieval time and perform the match between query and documents indexes.

Both approaches have positive and negative aspects.

• From the one hand, on-line search allows for a direct modelling of query errors by using, for
instance, approximate pattern matching techniques that deal with possible sources of mismatch,
e.g. insertion and/or deletion of notes. This high flexibility is balanced by high computational
costs, because the complexity is at least proportional to the size of the document collection (and,
depending on the technique, to the documents length).

• From the other hand, indexing techniques are more scalable to the document collection, because
the index file can be efficiently accessed through hashing and the computational complexity
depends only on query length. The high scalability is balanced by a more difficult extraction
of document content, with non trivial problems arising in case of query errors that may cause a
complete mismatch between query and document indexes.

Both approaches had given interesting and promising results. Yet, indexing approaches need to be
investigated in more detail because of the intrinsic higher computational efficiency.

Previous work on on-line search has been carried out following different strategies. A first ap-
proach is based on the use of pattern discovery techniques, taken from computational biology, to
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compute occurrences of a simplified description of the pitch contour of the query inside the collection
of documents. Another approach applies pattern matching techniques to documents and queries in
GUIDO format, exploiting the advantages of this notation in structuring information. Approximate
string matching has been used. Markov chains have been proposed to model a set of themes that
has been extracted from music documents, while an extension to hidden Markov models has been
presented as a tool to model possible errors in sung queries.

An example of research work on off-line document indexing has been presented in[8]. In that work
melodies were indexed through the use of N-grams, each N-gram being a sequence of N pitch inter-
vals. Experimental results on a collection of folk songs were presented, testing the effects of system
parameters such as N-gram length, showing good results in terms of retrieval effectiveness, though the
approach seemed not be robust to decreases in query length. Another approach to document indexing
has been presented in[24], where indexing has been carried out by automatically highlighting music
lexical units, or musical phrases. Differently than the previous approach, the length of indexes was not
fixed but depended on the musical context. That is musical phrases were computed exploiting knowl-
edge on music perception, in order to highlight only phrases that had a musical meaning. Phrases
could undergo a number of different normalization, from the complete information of pitch intervals
and duration to the simple melodic profile.

Most of the approaches are based on melody, while other music dimensions, such as harmony,
timbre, or structure, are not taken into account. This choice may become a limitation depending on the
way the user is allowed to interact with the system and on his personal knowledge on music language.
For instance, if the query-by-example paradigm is used, the effectiveness of a system depends on
the way a query is matched with documents: If the user may express his information need through a
query-by-humming interface, the melody is the most likely dimension that he will use. Moreover, for
non expert users, melody and rhythm (and lyrics) are the more simple dimensions for describing their
information needs.

Query processing can significantly differ within content-based approaches. After a query has
been played, the system can represent it either as a single note string, or as a sequence of smaller
note fragments. The latter can be either arbitrary note strings, such as n-grams, or fragments extracted
using melody information. Regarding the query as a single note string makes content-based retrieval
very difficult since it would be similar to retrieving textual files using Unix grep-like commands which
provides very poor results. On the contrary, extracting fragments using melody information can result
in a more effective query description. We then speak about partial match retrieval.

9.2.3.3 Music Digital Libraries

Digital library projects have been carried out for designing, implementing, and testing real MIR sys-
tems. Some of them implement data-based, content-based, or both approaches to MIR. We cite some
of the projects being most relevant to our research aims. The reader can access to the cited papers
to have a complete description of methods and systems. The VARIATIONS digital library has been
reported in [9], while the MELDEX project is reported in [4]. A project involved the University of
Milan and the Teatro alla Scala, Milan [10] to implement a multimedia object-relational database
storing the music contents of the archive, as well as catalogue data about the nights at the Teatro alla
Scala. The access to the archive is basically based on fragment extraction and approximate string
matching. A feasibility study was conducted for the ADMV (Digital Archive for the Venetian Music
of the Eighteenth century) digital library project [3]. The feasibility study allowed for defining archi-
tecture, technology, and search functions for a data and content-based MIR and database management
system. The system complexity is due to the number of inter-relationships of all the aspects being
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typical of a real effective DL distributed databases, preservation, wide area networking, protection,
data management, content-based access.

9.2.4 Techniques for Music Information Retrieval

Content-based MIR is a quite new research area, at least compared to classical textual IR. For this
reason, most of the techniques applied to retrieve music documents derive from IR techniques. In this
section, after introducing some terminology typical of content-based description of music documents,
techniques for MIR and their relationship with IR techniques are described. A final example is given
on how evaluation can be carried out.

9.2.4.1 Terminology

There is a number of terms that have a special meaning for the research community on MIR.
A feature is one of the characteristics that describe subsequent notes in a score. A note feature

can be: the pitch, the pitch interval with the previous note (PIT), a quantized PIT, the duration, the
interonset interval with the subsequent note (IOI), the ratio of IOI with the previous note, and so
on. All the features can be normalized or quantized. In the example of sect. 9.2.5.4, features are
related to pitch and rhythm that, though usually correlated, can be treated independently. For example,
many songs can be guessed only by tapping the rhythm of the melody while other ones can be easily
recognized even if played with no tempo or rubato.

A string is a sequence of features. Any sequence of notes in a melody can be considered a string.
It can be noted that strings can be used as representative of a melody, which is the idea underlying
many approaches to MIR, but the effectiveness by which each string represents a document may
differ. For instance, it is normally accepted that the first notes of a melody play an important role
in recognition, or that strings that are part of the main theme or motif are good descriptors as well.
String length is an important issue: Long strings are likely to be effective descriptors, yet they may
lead to problems when the user is request to remember long parts of a melody for querying a MIR
system. Often, strings shorter than three notes can be discarded, because they can be considered not
significant descriptors.

A pattern is a string that is repeated at least twice in the score. The repetition can be due to the
presence of different choruses in the score or by the use of the same music material (e.g., motifs,
rhythmical cells) along the composition. Each pattern is defined by the string of features, by its length
n and by the number of times r it is repeated inside the score. All patterns that appear only inside
longer patterns have been discarded in the example of sect. 9.2.5.4. The computation of patterns can
be done automatically using well known algorithms for pattern discovery. Given a particular feature,
patterns can be considered as effective content descriptors of a music document. Depending on the
selected feature, patterns carry different information about document content.

It can be noted that a music documents may be directly indexed by its strings. In particular, it can
be chosen to describe a document with all its strings of a given length, usually from 3 to 5 notes, that
are called n-grams. The n-gram approach is a simple, but often effective, alternative to more complex
approaches that are based on melodic information. In the following sections, patterns are considered
as possible content descriptors, yet the discussion may be generalized to n-grams, musical phrases,
and so on. Moreover, in the following discussion, three kinds of features are considered for the pattern
selection step – the interonset interval (IOI) normalized to the quarter note, the pitch interval (PIT) in
semitones, and both (BTH).
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9.2.5 Document Indexing

Document indexing is a mandatory step for textual information retrieval. Through indexing, the rele-
vant information about a collection of documents is computed and stored in a format that allows easy
and fast access at retrieval time. Document indexing is carried out only when the collection is created
or updated, when users are not yet accessing the documents, and then the problems of computational
time and efficiency are usually less restrictive. Indexing speeds up retrieval time because it is faster to
search for a match inside the indexes than inside the complete documents.

Following the terminology introduced in the previous section, each document may be indexed by
a number of patterns of different length and with different multiplicity. If it is assumed that patterns
are effective descriptors for document indexing, the first step of document indexing consists in the
automatic computation of the patterns of each document. As previously mentioned, relevant features
which are usually taken into account are IOI, PIT, and BTH. Pattern computation can be carried out
with a ad-hoc algorithms that compute exhaustively all the possible patterns, and store them in a hash
table.

An exhaustive pattern discovery approach highlights a high number of patterns that have little or
no musical meaning; for instance, a pattern that is repeated only two or three times in a document is
likely to be computed by chance just because the combination of features is repeated in some notes
combinations. Moreover, some patterns related to scales, repeated notes, or similar musical gestures,
are likely to appear in almost all documents and hence to be poor discriminants among documents.
In general, the degree by which a pattern is a good index may vary depending on the pattern and on
the document. This is a typical situation of textual information retrieval, where words may describe a
document to a different extent. For this reason it is proposed to apply the classical tf · idf weighting
scheme.

The extent by which a pattern describes a document is the result of the multiplication of two terms.
The term frequency is the number of occurrences of a given pattern inside a document. Hence, the
term frequency of pattern p for document d can be computed as

tfd
p = # occurrences of p ∈ d

The inverse document frequency takes into account the number of different documents in which a
patters appears. The inverse document frequency of pattern p can be computed as

idfp = −log
# documents containing p

# documents

Relevant patterns of a document may have a high tf – they are frequent inside the document – and/or
a high idf – they are infrequent across the collection.

For the aims of indexing, a document is described by a sparse array, where each element is asso-
ciated to a different pattern in the collection. The value of each element is given by the tf · idf value.
The index is built as an inverted file, where each term of the vocabulary is a different pattern in a given
notation (i.e., a text string). Each entry in the inverted file corresponds to a different pattern, and can
efficiently be computed in an expected time O(1) with an hashing function. Given the different sets
of features, three inverted files are built, respectively for features IOI, PIT, and BTH. Inverted files
can be efficiently stored in memory, eventually using compression, and fast accessed at retrieval time.
The size of the inverted file and the implementation of the hashing function depend on the number of
different patterns of the complete collection.

It may be useful to fix the maximum allowable pattern length to improve indexing. In fact, it
is likely that very long patterns are due to repetitions of complete themes in the score and taking
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into account also them will give a quite sparse inverted file. Moreover, it is unlikely that a user will
query the system singing a complete theme. These considerations suggest that long patterns could be
truncated when they are over a given threshold.

9.2.5.1 Query Processing

For the query processing step, it can be assumed that users interact with the system according to a
query-by-example paradigm. In particular, users should be able to describe their information needs
by singing (humming or whistling), playing, or editing with a simple interface a short excerpt of the
melody that they have in mind. Pitch tracking can be applied to the user’s query in order to obtain
a transcription in a notation format, such as a string of notes. The string representing the translated
query needs to undergo further processing, in order to extract a number of descriptors that can be used
to match the query with potentially relevant documents. It is normally assumed that a query is likely to
contain strings that characterize the searched document, either because they appear very often inside
its theme or because they are peculiar of that particular melody. In other words, a query is likely to
contain relevant patterns of the searched document, which may have a high tf and/or idf .

The automatic detection of relevant strings cannot be carried out through pattern analysis, because
normally queries are too short to have repetitions and hence to contain patterns. A simple approach
to extract relevant strings, or potential patterns, from a query consists in computing all its possible
substrings. That is, from a query of length q notes are automatically extracted q − 2 strings of three
notes, plus q − 3 strings of four notes, and so on until the maximum allowable length for a pattern is
reached. This approach can be considered similar to query expansion in textual information retrieval,
which is known to increase recall at the risk of lowering precision. On the other hand, it is expected
that most of the arbitrary strings of a query will never form a relevant pattern inside the collection,
and then the negative effects on precision could be bounded.

9.2.5.2 Ranking Relevant Documents

At retrieval time, the strings are automatically extracted from the query and matched with the patterns
of each document. The computation of potentially relevant documents can be carried out computing
the distance between the vector of strings representing the query and the vector of patterns representing
each document. Hence, for each document a Retrieval Status Value (RSV) is calculated, the higher
the RSV, the closer the document with the query. A rank list of potentially relevant documents is
computed from RSVs, obtaining a different rank lists for each of features used.

In general the orderings of documents in the rank lists differ. Differences may be due to many
factors, as the diverse importance of rhythm and melodic profile for a the document collection, the
effect of errors in the query, the kind of melodic excerpt chosen by the user as a representative of his
information needs. It is expected that BTH ranking will give high scoring to the relevant documents
when the query is sufficiently long and correctly played, because BTH patterns are a closer represen-
tation of the original melody. On the other hand, IOI and PIT are robust to query errors in melodic
profile and rhythm, respectively. Moreover, simple representations as IOI and PIT are expected to be
less sensitive to query length because of the possible presence of subpatterns of relevant motifs.

It is possible to take advantage from the existence of different rank lists by fusing together the
results, in order to give the user a single rank list which takes into account the results of the three
parallel approaches. This is a typical problem of data fusion, an approach that is usually carried
out in the research area of Meta Search Engines, where the results obtained by different indexing
and retrieval methodologies are combined – or fused – together according to a predefined weighting
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Figure 9.35: The phases of a methodology for MIR: Indexing, retrieval, and data fusion

scheme. Since the RSVs of individual search engines are not known, or not comparable with others,
the classical approach to data fusion is based on the information of rank only. In the case of MIR
based on parallel features, the fusion can be carried out directly using the RSVs, because they are all
based on the same tf · idf scheme. A new RSV can be computed as a weighted sum of RSVs of single
features obtaining a new rank list.

A complete methodology for MIR shown in Figure 9.35, where steps undertaken at indexing time
are shown on the left, while the operations that are performed at retrieval time are shown on the right.
From Figure 9.35 and the above discussion, it is clear that the computational complexity depends on
the query length – i.e., the number of strings that are computed from the query – while it is scalable on
the number of documents. This is an important characteristic given by indexing techniques, because
the time needed to reply to a query can be reasonably low also for large collections of documents.

9.2.5.3 Measures for Performances of MIR Systems

The output of almost any information retrieval system, and this applies also to MIR, is a ranked list of
potentially relevant documents. It is clear that only the final user can judge if the retrieved documents
are really relevant to his information needs. That is, the user should evaluate system performances in
terms of retrieval effectiveness. There are two main reasons why the user may not be satisfied by the
result of an information retrieval system.

• the system does not retrieve documents that are relevant for the user information needs – which
is usually called silence effect;

• the system retrieves documents that are not relevant for the user information needs – which is
usually called noise effect

All real systems for MIR try to balance these two negative effects. From the one hand, a high silence
effect may result in not retrieving all the music documents that are similar to a given query sung by
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the user. From the other hand, a high noise effect may cause the user to spend great part of a retrieval
session in listening to irrelevant documents.

Even if user satisfaction plays a central role in the evaluation of performances of a MIR system,
and in general of any IR system, user studies are very expensive and time consuming. For this reason,
the IR research community usually carries out automatic evaluation of the proposed systems using
commonly accepted measures. In particular, there are two measures that are connected to the concepts
of silence and noise effects. The first measure is recall, which is related to the ability of a system to
retrieve the highest percentage of relevant documents (thus minimizing the silence effect). Recall is
defined as

recall =
# relevant retrieved

# total relevant

that is the number of relevant documents retrieved by the system divided by the total number of
relevant documents in the complete database of documents. The second measure is precision, which
is related to the ability of the system of retrieving the lowest percentage of irrelevant documents (thus
minimizing the noise effect). Precision is defined as

precision =
# relevant retrieved

# total retrieved

that is the number of relevant documents retrieved by the system divided by the total number of
retrieved documents. An ideal system retrieved only relevant documents, and hence has 100% recall
and precision. For real systems, high precision is usually achieved at the cost of low recall and
viceversa.

Both precision and recall do not take into account that a MIR system may output a rank list of
documents. For this reason it is a common practice to compute these measures also for the first
N documents (for N ∈ {5, 10, 20, . . .}) and, in particular, to compute the precision at given levels
of recall. Another approach is to summarize these measures, and the effect of the documents rank,
in a single measure. For instance, the average precision is computed as the mean of the different
precisions computed each time a new relevant document is observed in the rank list.

The evaluation of MIR systems is usually carried out on a test collection according to the Cran-
field model for information retrieval, which is used at the Text REtrieval Conference (TREC). A test
collection consists in a set of documents, a set of queries, and a set of relevance judgments that match
documents to queries. The creation of a common background for evaluation is still an open issue in
the MIR community, hence each research group created its own test collection from scratch. A “good”
test collection should be representative of real documents and, in particular, of real user’s queries. The
size of the document set, as well as the way queries are collected, may deeply influence the evaluation
results. Relevance judgments should be normally given by a pool of experts in the music domain,
which is an expensive task, but they can also be automatically constructed when queries are in the
form of excerpts of a known tune. In this latter case, only the document from which the query derives
is considered as relevant.

9.2.5.4 An Example of Experimental Evaluation

In the following paragraphs, the result of an experimental evaluation of a running MIR system are
reported. The system is based on pattern analysis, based on three alternative features (IOI, PIT, and
BTH) and data fusion techniques applied to the combination of IOI and PIT, called Fuse2, and the
combination of all the three features, called Fuse3.
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The Test Collection A small test collection of popular music has been created using 107 Beatles’
song in MIDI format downloaded from the Web. As for any test collection, documents may contain
errors. In a preprocessing step, the channels containing the melody have been extracted automatically
and the note durations have been normalized; in case of polyphonic scores, the highest pitch has been
chosen as part of the melody. After preprocessing, the collection contained 107 complete melodies
with an average length of 244 notes, ranging from 89 of the shortest melody to 564 of the longest. Even
if a number of approaches for performing automatic theme extraction has been already proposed in the
literature, the methodology relies on indexing of complete melodies, because repetitions of choruses
and verses can be taken into account by the tf · idf measure.

A set of 40 queries has been created by randomly selecting 20 themes in the dataset and using
the first notes of the chorus and of the refrain. The initial note and the length of each query were
chosen to have recognizable motifs that could be considered representative of real users’ queries. The
queries had an average length of 9.75 notes, ranging from 4 to 21 notes. Only the theme from which
the query was taken was considered as relevant. Using this initial set of correct queries, an alternative
set has been created by adding errors on pitch, duration, and both, obtaining a new set of 120 queries.
A simple error model has been applied, because errors were uniformly distributed along the notes
in the queries, with a probability of about 13.3%. As for many approaches to approximate string
matching, an error can be considered the result of a deletion and an insertion, thus these alternative
sources of errors have not been explicitly modelled. Tests on robustness to query length were carried
out by automatically shortening the initial queries by an increasing percentage, disregarding the fact
that query would not sound musical. In this way, 160 more queries with decreasing length have been
automatically generated. For all the modified queries, only the theme of initial query was considered
as relevant. In the following, we will refer to the only relevant document with the term r-doc for all
the experiments.

Truncation of Patterns All the experimental analyses, whose results are shown in the following
sections, have been carried out after truncating patterns longer than a given threshold t. When a pattern
[f1 . . . fn] had a length of n > t, it has been replaced (in the indexing step) by all its subpatterns of
exact length t, that is the n − t + 1 subpatterns [f1 . . . ft], [f2 . . . ft+1], and so on until [fn−t . . . fn],
where some of the subpatterns may be already extracted, because they were part of other motifs.

With the aim of computing the optimal threshold for the test collection, five different thresholds
have been tested, respectively 5, 7, 10, 15, and 20 notes. The retrieval effectiveness decreased with
high values of the threshold, meaning that a compact representation of patterns can be more effective
than longer ones. The average precision was approximately constant when thresholds higher than
15− 20 notes were applied, probably because the number of different patterns longer than 20 notes is
less than 8% and with a low value of r. The use of short patterns can be a useful way to control the
increase of the index when new documents are added to the collection. Due to simple combinatorial
reasons, the number of different patterns is bounded by the pattern length; on the other hand, the use of
short patterns has the drawback of a higher number of patterns that are in common among documents,
which may lower precision. It is interesting to note that data fusion approaches gave consistently
better results than single approaches. This behaviour has been found in all our experiments, which are
presented in the following sections, where results are shown only for t = 5.

Retrieval Effectiveness The first detailed analysis regarded the retrieval effectiveness with the set
of 40 correct queries. Results are shown in Table 9.2, where the average precision (Av.Prec.), the
percentage queries that gave the r-doc within the first k positions (with k ∈ {1, 3, 5, 10}), and the
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ones that did not give the r-doc at all (“not found”), are reported as representative measures. As it can
be seen, IOI gave the poorest results, even if for 90% of the queries the r-doc were among the first
three retrieved. The highest average precision using a single feature was obtained by BTH, with the
drawback of an on-off behaviour: either the r-doc is the first retrieved or it is not retrieved at all (2.5%
of the queries). PIT gave good results, with all the queries that found the r-doc among the first three
documents.

IOI PIT BTH Fuse2 Fuse3
Av.Prec. 0.74 0.93 0.98 0.96 0.98
= 1 57.5 87.5 97.5 92.5 95.0
≤ 3 90.0 100 97.5 100 100
≤ 5 95.0 100 97.5 100 100
≤ 10 97.5 100 97.5 100 100
not found 0 0 2.5 0 0

Table 9.2: Retrieval effectiveness for correct queries

The best results for Fuse2 and Fuse3 have been obtained assigning equal weights to the single
ranks. When the tf · idf scores had different weights an improvement was still observed in respect to
single rankings, though to a minor extent. For this reason, results for Fuse2 and Fuse3 are presented
only when equal weights are assigned.

Robustness to Errors in the Queries Users are likely to express their information needs in an
imprecise manner. The query-by-example paradigm is error prone because the example provided
by the user is normally an approximation of the real information need. In particular, when the user is
asked to sing an excerpt of the searched document, errors can be due to imprecise recall of the melody,
problems in tuning, tempo fluctuations, and in general all the problems that untrained singers have.
Moreover, transcription algorithms may introduce additional errors in pitch detection and in melody
segmentation. The robustness to errors has been tested on an experimental setup. Since indexing
is carried out on melodic contour and on rhythm patterns, the errors that may affect the retrieval
effectiveness regard the presence of notes with a wrong pitch and a wrong duration. As previously
mentioned, a set of queries with automatically added errors has been generated in order to test the
robustness of the approach in a controlled environment.

As expected, the performances of IOI dropped for queries with errors in rhythm and the same
applied to PIT for queries with errors in pitch. The same considerations apply to BTH in both cases,
with an even bigger drop in the performances. It is interesting to note that data fusion allowed for
compensating the decreases in performances of single ranks, giving for both Fuse2 and Fuse3 an
average precision equal to the one obtained without errors. In the case of errors in both pitch and
rhythm, also Fuse2 and Fuse3 had a decrease in performances, even if their average precision was
consistently higher than the one of single features.

The experimental results showed that Fuse3 gave a considerable improvement in respect to the
single rankings contribution. A query-by-query analysis showed that this behaviour is due to the fact
that the sum of tf · idf scores of the single features gave always a new ranking where the r-doc was
at the same level of the best of the three separate ranks; that is, if one of the three gave the r-doc as
the most relevant document, also Fuse3 had the r-doc in first position. Moreover, for some queries,
the fused rank gave the r-doc at first position even if none of the three single ranks had the r-doc as
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the most relevant document. These improvements can be explained by two factors: First, when the
r-doc was retrieved at top position by one of the features, it had a very high tf · idf score that gave an
important contribution to the final rank; Second, the r-doc was often retrieved with a high rank by two
or three of the features, while in general other documents were not considered as relevant by more
than one feature. Similar considerations apply, though at a minor extent, also to Fuse2.

Dependency to Query Length A final analysis has been carried out on the effects of query length
to the retrieval effectiveness. It is known that users of search engines do not express their information
needs using much information. The community of information retrieval had to face the problems
of finding relevant information also with vague or short queries. To some extent, a similar problem
applies to MIR because users may not remember long excerpts of the music documents they are
looking for. Moreover, untrained singers may not like to sing for a long time a song that they probably
do not know very well. The effects of query length on a MIR system should then be investigated.

Tests on the dependency to query length have been carried out on a set of queries that were
obtained from the original set of queries by shortening the number of notes from 90% to 60% of their
original lengths. With this approach, queries may become very short, for instance a query of two notes
cannot retrieve any document because patterns shorter than three notes are not taken into account.

Consistently with previous results, Fuse3 gave the best performances and showed a higher ro-
bustness to decrease in query length. Also in this case results showed that the data fusion approach
was enough robust to changes in the initial queries. As previously mentioned, each initial query has
been created selecting a number of notes that allowed to recognize the theme by a human listener.
Moreover, each query was made by one or more musical phrases – or musical gestures or motifs –
considering that a user would not stop singing his query at any note, but would end the query in a
position that have a “musical sense”. For this reason, tests on query length can give only a general
indication on possible changes in retrieval effectiveness.

9.2.6 Conclusions

This section present a short overview on some aspects of music IR. In particular, the issues typical of
the music language have been discussed, taking into account the problems of formats and the role of
the user. A number of approaches that have been proposed in the literature are presented, in particular
the ones related to music Digital Libraries.

There are a number of aspects that are beyond the scope of this overview. In particular, all the
research work related to audio processing that, even if not central to music IR, plays an important role
in creating tools for classification of audio files and automatic extraction of low level features, that
may be useful for expert users.

9.3 Commented bibliography

The reference book for Auditory scene analysis is [4]. The Implication realization model is described
in [12]. The Local Boundary Detection algorithm is presented in [5]. The Generative Theory of Tonal
Music is described in [9].

Research on automatic metadata extraction for MIR can be classified in two main fields, depending
on the two different classes of formats in which a music document can be represented: the automatic
extraction of relevant information from a music score, which is typically achieved through melody
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segmentation and indexing; the automatic categorization of a music recording, which is typically
achieved through audio classification. In this chapter we deal with the first field.

In the case of melody segmentation and indexing, the main assumption is that it is not possible to
use textual descriptors for music documents, in particular for compositions and for melodies. Since it
is not clear what kind of meaning is conveyed by a music document, the common approach is to de-
scribe a document using perceptually relevant elements, that may be in the same form of the document
itself (that is the only way to describe music is through music). Clearly, the alternative description of a
music document should be more compact and summarize the most relevant information, at least from
a perceptual point of view. The music language may be characterized by different dimensions, which
may regard the score representation e.g., melody, harmony, rhythm the recording of performances
e.g., timbre, instrumentation and high level information e.g., structure, musical form. Among the
different dimensions, melody seems to be the most suitable for describing music documents. First of
all, users are likely to remember and use, in a query-by-example paradigm, parts of the melody of
the song they are looking for. Moreover, most of the dimensions require a good knowledge of music
theory to be effectively used, reducing the number of potential users to scholars, composers, and mu-
sicians. Finally, melody can benefit from tools for string analysis and processing to extract relevant
metadata. For these reasons, most of the research work on metadata extraction focused on melody
segmentation and processing. The need for automatic melody processing for extracting relevant infor-
mation to be used as alternative descriptors, arises from the fact that the melody is a continuous flow
of events. Even though listeners perceive the presence of elements in the melodic flow, which may
be called lexical units, there is no explicit separator to highlight boundaries between them. Moreover,
it is well known that there are parts of the melody e.g., the incipit, the theme, the leit-motiv, and so
on that are more relevant descriptors of a music document than others. Yet, the automatic labelling
of these relevant parts needs ad-hoc techniques.

One of the first works, probably the most cited in the early literature on MIR, is [6]. In this paper it
is proposed the use of a query-by-example paradigm, with the aim of retrieving the documents that are
more similar to the melody excerpts sung by the user: both documents and queries are transformed in
a different notation that is related to the melodic profile. An alternative approach to MIR is proposed
in [3], where metadata is automatic computed and stored in a parallel database. Metadata is in the
form of hyperlinks between documents that are judged similar by the system.

Music language is quite different from other media, because it is not clear if music conveys a
meaning and how a music document can be effectively described; this mostly because perception
plays a crucial role in the way users can describe music. The important issue of perception is faced
in [14], where a user study is presented on users melody representation. The knowledge of music
structure is exploited in [10] for extracting relevant information, where music documents and queries
are described by surrogates made of a textual description of musical lexical units. Experiments on
normalization are also reported, in order to cope with variants in musical lexical units that may de-
scribe similar documents. In [1] is proposed a multimodal description of music documents, which
encompasses the audio, a visual representation of the score, the eventual lyrics, and other metadata
that are automatically extracted from files in MIDI format.

An alternative approach to automatically compute melodic descriptors of music documents is pre-
sented in [1], which is based on the use of N-grams as musical lexical units. Alternatively, musically
relevant phrases are proposed in [11], where an hypertextual structure is automatically created among
documents and musical phrases. In this case a document is described by a set of links to similar doc-
uments and to its most relevant phrases. Musical structure is exploited in [7] for computing a set of
relevant features from a music document in a complex notation format.

Alternatively to previous works, in [2] it is proposed that a good descriptor of a music document
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is its set of main themes, which are units longer than N-grams or musical phrases. Themes are mod-
elled through the use of Markov chains. An extension to hidden Markov models is presented in [13],
where possible mismatches between the representation of the query and of the documents are explic-
itly modelled by emission probabilities of Hidden Markov Models states. An evaluation of different
approaches is presented in [8], where the problem of efficiency is raised and discussed.
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