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3.1 The quest for expressiveness

During the last decade, lot of research effort has been spent to connect two worlds that seemed to be
very distant or even antithetic: machines and emotions. Mainly in the framework of human-computer
interaction an increasing interest grew up in finding ways to allow machines communicating expres-
sive, emotional content. Such interest has been justified with the objective of an enhanced interaction
between humans and machines exploiting communication channels that are typical of human-human
communication and that can therefore be easier and less frustrating for users, and in particular for non
technically skilled users.

Starting from the findings from psychology and neurosciences, research has been aimed at devel-
oping computational models and algorithms for analysis and synthesis of emotional content.

While from the one hand research on emotional communication found its way into more tradi-
tional fields of computer science like Artificial Intelligence, on the other hand novel fields developed
explicitly focusing on such issues.

Examples are researches on Affective Computing in the United States, KANSEI Information Pro-
cessing in Japan and Expressive information processing in Europe. In this section 1 Affective Com-
puting and KANSEI Information Processing are shortly described with reference to the work of the
two researchers that in a certain way started the two fields: Rosalind Picard and her group at MIT Me-
dia Lab for Affective Computing, and Shuji Hashimoto and his group at Waseda University, Tokyo,
for KANSEI Information Processing. In the following sections, analysis and synthesis of expressive
content in performing arts (a typical European research stream), with a particular reference to music
performance, is presented.

3.1.1 Affective Computing: the American way to artificial emotions

The Affective Computing approach is mainly illustrated in the homonymous book (Picard, 1997).

1from PhD dissertation of Gualtiero Volpe (2003)
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In her book Picard defines Affective Computing as computing that relates to, arises from, or
deliberately influences emotions. Affective Computing addresses the design and implementation of
machines that are able to

recognize emotions

express emotions

have emotions.

These are human-centred machines that observe their users and sensitively interact with them by ex-
pressing emotions depending on what they observed and on the current emotional state of the machine.

• Computers that are able to recognize emotions are conceived as systems collecting a variety of
input signals ranging from face expressions to voice, movement features (e.g., hand gestures,
gait, posture), physiologic measures (e.g., respiration, electrocardiogram, blood pressure, tem-
perature). They perform feature extraction and classification on these inputs (e.g., video analysis
of movement, audio analysis of speech) and try to classify the emotion the user is communi-
cating through a reasoning process taking into account information about context, situations,
personal goals, social display rules, and other emotion related data. Learning techniques can
be employed to adapt recognition to a specific user (e.g., a personal computer can learn the
habits of its master to improve its performances in the recognition task). If the computer has an
emotional state, this can influence the recognition process.

• Computer that are able to express emotions (either depending on instructions given by humans
or as a result of an internal mechanism for generating emotions) are systems that modulate
audio (e.g., synthetic voice, sound, music) and visual signals (e.g., face, posture, gait of ani-
mated creatures, colours) in a way suitable for the emotion that has to be communicated. The
expressed emotion can be intentional (i.e., deliberated as a result of a reasoning process) or
spontaneous (i.e., reactively triggered). It can directly express the affective state of the machine
that can in turn be influenced by the expression of the emotion. Expression partially depends
on social display rules.

• If computers can have emotions is perhaps one of the most controversial issues in Affective
Computing. In her book, Picard proposes to consider five components of an emotional system:
a computer can be said to have emotions if all five components are present in it.

The five components are the following:

i. Emergent emotions and emotional behaviour i.e., the machine is able to express an emo-
tion through its behaviour even if it does not have any emotion. By observing the machines
behaviour, humans naturally tend to attribute an emotional state to the machine.

ii. Fast primary emotions i.e., mechanisms to generate a kind of hard-wired, reactive responses
(especially to potentially harmful events). Fast primary emotions are what Damasio calls
primary emotions (Damasio, 1994). Studies about the mechanisms triggering such emo-
tions can be found in neurosciences. They are associated with the inner regions of the
brain.

iii. Cognitively generated emotions i.e., emotions that are generated as a result of explicit
reasoning. Cognitively generated emotions are slower than fast primary emotions and are
usually consequence of deliberate thoughts. They are located in the brain cortex. Several
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cognitive models of emotion have been developed. One of the most famous is the model
by Ortony, Clore, and Collins, usually referred as OCC model (Ortony, Clore, and Collins,
1988) that has been also employed in a number of concrete applications. Originally, the
OCC model was not developed for building machines that could have emotions; rather it
was conceived as a way for reasoning about emotions. The model develops a collection of
rules associating emotions to cognitive evaluations about consequences of events, actions
of agents, and aspects of objects.

iv. Emotional experience, i.e., the system is cognitively aware of its emotional state. Emo-
tional experience consists of cognitive awareness, physiologic awareness and subjective
feelings. If it is possible to have such an emotional experience in a machine and, if yes,
how it can be implemented is still an open and quite tricky issue. It relates to conscious-
ness and requires the machine to have sensors able to measure its own emotional state.

v. Body-mind interactions , i.e., the emotional state can influence other processes simulating
similar human physical and cognitive functions like memory, perception, decision making,
learning, goals, motivations, interest, planning, etc.

Research on Affective Computing has been applied in a number of application scenarios, ranging
from entertainment, to edutainment, to detection of emotional responses (e.g., frustration) in particu-
lar relevant tasks (e.g., learning, driving), to the design and implementation of devices for analysis and
synthesis of emotions. Detailed descriptions of ongoing and past research projects can be found in the
website of the Affective Computing group at MIT media lab (http://affect.media.mit.edu/).

With respect to the three issues mentioned above (i.e., machines recognizing, expressing, and
having emotions), we will mainly address the first two aspects, i.e. the design and implementation
of algorithms for recognizing and communicating expressive content, rather than with machines that
have a their own emotional state.

In fact, if the goal is to open novel perspective to artistic performances by introducing new tools
allowing an extension of the artistic languages by acting on the communicated expressive content
through technology, what is mainly needed is

• the possibility to classify and encode in digital format the communicated expressive content in
order to process it,

• the ability to produce suitable output to induce emotional reactions in spectators.

In other words, we believe that humans only have emotions. Machines do not need to have them, but
they can give more and better support to human activities if they are able to process information not
only related to the rational aspects of human behaviour, but also to the emotional ones.

3.1.2 The eastern approach: KANSEI Information Processing

In the same period the Affective Computing research started in the United States, another approach
to understanding expressive content communication was developed in Japan: KANSEI Information
Processing.

According the Japanese view (Hashimoto, 1997) information processing has three phases:

Physical information processing: physical signals capturing data from the real world (e.g., sound,
light, force) are identified as the first target of information processing. Signal processing is the
technology field that is mainly responsible of processing such kind of information.
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Semantic information processing: The second phase is the semantic information processing to deal
with knowledge and rule, that is the field of logic and symbolic knowledge. Artificial Intelli-
gence is the discipline that mainly covers such aspects.

KANSEI information processing: The third target is KANSEI ( a Japanese word) that refers to feel-
ings, intuition, and sympathy and according to Hashimoto we are just entering in an historical
period in which technology will start to deal with KANSEI, an issue that in the past was often
left as a research field for only humanistic or humanistic related disciplines.

The exact meaning of the Japanese word KANSEI is something controversial for western people:
it does not have a univocal correspondent in western languages and culture, but is rather associated
to a collection of words related to the emotional sphere (e.g., emotion, sensibility, sensuality, sense,
feeling). In his paper Hashimoto gives some examples of common uses of the word in Japanese
language such as for example Her KANSEI is excellent, He is a man of rich KANSEI, He has no
KANSEI, Her KANSEI seems well suited to me, etc. It should be noticed that KANSEI refers to a
dynamic process rather than to emotional labels or categories to be applied to expressive contents.

KANSEI Information Processing can be regarded as a coding and decoding process. In other
words, KANSEI Information Processing supposes an underlying model in which expressive content
is conceived as a kind of high-level information that, in the framework of a human-human commu-
nication process, modulates the physical signals carrying some usually symbolic message. That is,
when a (human) sender sends a message to a (human) receiver he/she encodes in the message some
expressive emotional information. Such information together with the symbolic content is embedded
in the physical signal carrying the message. When the receiver receives the signal he/she decodes it
and extracts both the symbolic message and the additional expressive information the sender encoded
into it. Notice that it is not required that the sender deliberately add the expressive information to
the message: such additional expressive information can be included unconsciously and can refer to
aspects such as personality traits or personal dispositions toward objects, actions, and other people.

By making a comparison with the Affective Computing approach, it can be noticed that all the
three aspects of recognizing, expressing, and having emotions are included in the KANSEI process:
in fact,

• the sender expresses his/her emotions by encoding them in the physical signals carrying a mes-
sage,

• the receiver recognizes the emotions expressed by the sender while decoding the message car-
ried by the physical signals,

• sender and receiver have an emotional state that can both influence the encoding/decoding pro-
cess and be itself the high-level additional expressive information encoded in a message.

KANSEI Information Processing seems therefore to adopt an holistic approach, broader with respect
to the Affective Computing perspective because it includes in the same model of encoding/decoding
process all the three aspect Affective Computing separately deals with , and because while Affective
Computing is more concerned with emotions, KANSEI rather refers to a wide collection of emotion
related aspects (e.g., moods, feelings, personality traits etc.).

3.2 Music performance

Music is an important mean of communication where three actors participate: the composer, the per-
former and the listener. The composer instils into his works his own emotions, feelings and sensations,
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and the performer communicates them to the listeners. The composer describes his/her musical ideas
by a score or a process. The information contained in the score (or produced by the process) has a
double function: a descriptive one, as a symbolic representation of the cognitive elements constitut-
ing the composition, and a functional one, as a mean to convey instructions to the performer. Other
information is implicit in the score and regards performance style and interpretative conventions. The
performer interprets these symbols, taking into account the implicit information and his/her personal
artistic feeling and aim, and produces the sounds by using a musical instrument. Music performance
includes all the human activity that lies between the symbolic score and the music instrument

Music performance is an interesting topic to study for its multidisciplinary valence. In this paper
paradigms and issues emerged in research on modelling expressiveness in music performance will be
reviewed and future research perspectives will be discussed. In the following we will discuss per-
formance modelling approaches mainly from a information processing point of view. In section 3.3
we will present the basic issue on what models, and computational models, are for and we will dis-
cuss expression communication in music performance. In the next section 3.4 we will introduce the
aspect of how musical information is represented for modelling purposes. Finally in section 3.5 the
main strategies used in model development will be presented in detail. Models for understanding,
performance synthesis and artistic creation will be discussed.

3.3 Models, expressiveness and music performance

3.3.1 Models

Frequently in science, models are employed to evidence and abstract some relations that can be hy-
pothesized, discarding details that are felt to be irrelevant for what is being observed and described.
Models can be used to predict the behaviour in certain conditions and compare these results with
observations. In this sense, they serve to generalize the findings and have both a descriptive and
predictive value.

In the study of music performance, scientists have been developing models for the past few
decades. The possibility, offered by advancing technology, of implementing the models and to ex-
periment with their behaviour by simulation gave rise to an increased use of technology in music
research. Moreover, computer science and music technology developed many conceptual frameworks
and practical tools in the last few decades that are very useful for music performance investigation. For
example artificial intelligence, knowledge engineering, soft computing methodologies, physics based
models, MIDI instruments, signal processing analysis methods, computer controlled performance,
motion capture devices, constitute paradigms and tools that are at the base of many performance
models.

The idea of developing computational models of music performance dates back to the first music
application of computers.

• The first models were mainly dedicated to music production and experimentation, and were
embedded in computer programs for music synthesis or representation and for interactive per-
formance. Their theoretical assumptions and conceptual foundation were often not explicit.
One such application is the Groove system that allowed real time control and editing of per-
former actions described (graphically or symbolically) by time functions.

• Later models for performance understanding started to be developed (e.g. KTH performance
rule system (see section 3.8). Their aim is analytical, trying to explain why a performer acts in
a certain way and which relation exists between a gesture and its musical effect.
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Both kinds of models are based on theoretical concepts and share the idea that an artistic activity
can be, at least partially, formalized. We can expect a convergence of efforts toward models that are
oriented toward both performance understanding and production.

We can distinguish two kinds of models. The complete model tries to explain all of the observed
performance deviations on the basis of the given data. This approach tends to give very complex
models and thus poor insight on the relevant relations. In fact, note level analysis cannot explain all
the observed deviations. The other kind is the partial model, which aims only to explain what can
be explained at note level, giving a small and robust set of rules. Moreover when rules for categor-
ical decisions (e.g. play faster of slower) rather than for computing an exact value are used, more
understandable results can be obtained.

3.3.2 From mathematical models to information processing models

The classic approach to describe relations in models is by using mathematical expressions among ob-
servable (and often measurable) facts called variables or parameters. Developing and then validating
mathematical models is the typical way to proceed in science and engineering. Often the variables are
distinguished in input variables, supposedly known, and output variables, which are deduced by the
model. In this case, inputs can be considered as the causes and output the effect of the phenomenon.
A mathematical model can be implemented on a computer by numerical analysis techniques. In this
way, we can compute the values of output variables corresponding to the provided values of inputs.
This process is called simulation and it is widely used to predict the behaviour of the phenomenon in
different circumstances.

However, a computer does not only deal with numerical values. More generally, it can be con-
sidered as information processing engine. From this perspective, models describe relations among
different kinds of information about the phenomenon. Thus, a fundamental problem in developing
information processing models is to define which kind of information we want to deal with and how
we may represent it on a computer.

The case of music performance is quite interesting; in fact, the information that can be considered
regards many aspects. We can distinguish three layers.

• The first is the physical information that can be measured, as timing or performer’s movements.
This information can be represented as numbers and is typically used and processed by mathe-
matical tools.

• The second layer is the symbolic information as the score, where the notes are represented by
symbols in the common music notation. These symbols refer more to a cognitive organization
of the music than to an exact physical value. For example, the duration symbol indicates a
division of the meter, while the actual duration of a performed note can vary. Processing at this
level uses typical symbolic and logic representations of computer science.

• At a higher level, we have the expressive information more related to the affective and emotional
content of the music. Recently computer science and engineering started paying attention to this
level of information and developing suitable theories and processing tools.

Music and music performance in particular, attracted the interest of researchers for developing and
testing such tools. Moreover in performance modelling, all the information levels should be taken
into account in a coordinated way. As a consequence, information representation and model structure
are crucial topics in model design and will be discussed in section 3.4.
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3.3.3 Expressiveness in music performance

The communication of expressive content by music can be studied at three different levels: consider-
ing the composer’s message, the expressive intentions of the performer, and the listener’s perceptual
experience. Studies of the first kind are historically more developed. Generally, they analyze the ele-
ments of the musical structure and the musical phrasing that are critical for a correct interpretation of
composer’s message.

The contribution of the performer to expression communication has two facets: to clarify the com-
poser’s message enlightening the musical structure and to add his personal interpretation of the piece.
A mechanical performance of a score is perceived as lacking of musical meaning and is considered
dull and inexpressive as a text read without any prosodic inflexion. Indeed, human performers never
respect tempo, timing and loudness notations in a mechanical way when they play a score: some
deviations are always introduced, even if the performer explicitly wants to play mechanically.

Thus in general expressiveness refers both to the means used by the performer to convey the
composer’s message and to his own contribution to enrich the musical message. However, many music
performance studies concentrate on the first aspect, trying to understand the performer actions to better
convey the musical structure. Simulation models are often evaluated by the musical acceptability of
their results, or in other words how well a supposed ideal interpretation of that particular piece is
approached. Expressiveness related to the musical structure may depend on the dramatic narrative
developed by the performer, on physical and motor constraints or problems (e.g. fingering), on stylistic
expectation based on cultural norm (e.g. jazz vs. classic music) and actual performance situation
(e.g. audience engagement). Figure 3.1 shows the relation between dynamics profiles and the main
elements of music structure of the first measures of a piano performance of Mozart sonata K 545
(figure 3.2). It is particularly evident that the musician emphasized with a decrescendo the end of the
first melodic unit (bar 2), the first semi-phrase (bar 4), the first phrase (bar 8) and the period (bar 16).

Figure 3.1: Dynamics profiles and the main elements of music structure of the first measures of a
piano performance of Mozart sonata K 545 (figure 3.2). It is particularly evident that the musician
emphasized with a decrescendo the end of the first inciso (bar 2), the first semi-phrase (bar 4), the first
phrase (bar 8) and the period (bar 16).

Recently interest is also growing in taking into account the expression component added by the
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Figure 3.2: Score of the first 16 measures Mozart sonata K 545. The arrows indicate the end of the
first inciso (bar 2), the first semi-phrase (bar 4), the first phrase (bar 8) and the period (bar 16).

performer. Some aspects are still strongly related to the musical piece, as performer specific style,
and influences of stylistic expectation based on cultural norm (e.g. jazz vs. classic music) or actual
performance situation (e.g. audience engagement). Nevertheless, other communicative aspects can be
taken into account. Experiments are carried out by asking performers to play the same piece according
diverse specific adjectives or nuances or trying to convey different content. The researcher then seeks
to understand and model the strategies used in these performances. Often basic emotions are chosen
as possible expressions (see section 3.10). and in this case the term expressive performance refers
to emotional performance. Notice that sometimes emotions the performer tries to convey can be in
contrast with the character of the musical piece. A slightly broader interpretation of expression as
KANSEI (Japanese term indicating sensibility, feeling, sensitivity) [Suzuki and Hashimoto, 2004]
or affective communication [Picard 1997] is proposed in some Japanese or American studies (see
Sect. 3.1). We prefer the broader term expressive intentions that include emotion, affect as well other
sensorial and descriptive adjectives or actions. Furthermore, this term evidences the explicit intent of
the performer in communicating expression.

Understanding of specific artistic intentions of top-level performers is more challenging. While
artists aim to express aesthetic value, we feel that these qualities are probably impossible to model,
without losing their real essence.
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3.4 Information and music performance

3.4.1 Expressive performance parameters

When we want to develop an information processing model, it is important to define which is the
relevant information we will use. This choice depends on the phenomenon we are observing and
on the available detection techniques. In our case, we want to describe music performance and we
can observe the variations a music performer is doing when he plays. This kind of information is
often called expressive parameters. The most relevant information used in performance models are
discussed in this section.

3.4.1.1 Physical information level

At a physical information level, the main expressive parameters, considered in the models, are re-
lated to timing of musical events and tempo, dynamics (loudness variation), and articulation (the
way successive notes are connected). These parameters are particularly relevant for keyboard instru-
ments. Moreover, they are the basic parameters of the MIDI protocol and thus are easily measurable
on electronic music instruments or employable for obtaining a music performance. In some instru-
ments and in the singing voice other acoustic parameters are taken into account such as vibrato and
micro-intonation or pedalling at the piano. In contemporary music, timbre is often an essential ex-
pressive parameter; sometimes also virtual space location or movement of the sound source is used as
expression feature.

These parameters can be measured directly by a MIDI musical instrument or (with more effort) by
detecting the performer movements. However, it should be noticed that these measurements depends
on an accurate instrument calibration. In fact, the relation of MIDI command with their sonic realiza-
tion depends greatly on the instrument. Moreover, the Note-off command indicates the beginning of
the sound decay and not the ending of the note, as often it would be desired.

Physical information can also be gathered from audio recordings. Additional expressive param-
eters can be taken into account, such as timbre. However, parameters are more difficult to collect
automatically, especially for multi voice music, and depend on the recording conditions. Different
methods are often used and thus the measures, reported in the literature, may be not directly compara-
ble. This fact contributes to make the accumulation of knowledge hard. For instance, it is not always
clear when exactly a tone exactly starts nor when the attack phase can be considered completed. The
amplitude envelope inspection is not sufficient. Therefore, the attack duration of a note can be mea-
sured in different ways, leading to dissimilar values. On the other hand, in real time applications
we need effective, but not too complex feature-analysis algorithms. It is advisable that the progress
of computational analysis techniques should provide useful and standardized tools for performance
parameter detection.

The interrelation of these physical parameters is not well understood. Therefore, models often
try to separate the parameters and to model their effect separately or to deal with a combination of
very few of them. The problem is particularly evident when we want to model some effects that can
be rendered in different ways. For example, the performer can emphasize a note by increasing its
loudness, or by lengthening its duration or by a slight time shift, or by a particular articulation or
timbre modification.

The use of more abstract representations could probably help in separating the low-level features
from higher-level ones. This approach would call for multilevel models or a combination of models
acting at different abstraction levels. For instance, in the previous example, a model can decide that a



3.10 CHAPTER 3. MODELING EXPRESSIVENESS IN MUSIC PERFORMANCE

note should be emphasized because of its structural importance and a second model will decide how
to realize the emphasis taking into account the context, the expressive resources of the instrument,
stylistic expectations etc.. While the performer probably uses such multilevel strategies intuitively
in his/her musical practice, a precise definition of intermediate parameters, effective for modelling
purpose, is still partial. More research is needed for the selection of these intermediate parameters,
for finding a possible quantification, and for assessing their effectiveness.

3.4.1.2 Symbolic information level

As regards symbolic information, the score is a typical reference and it is usually represented as a
list of time events. More difficult is the representation of the musical structure. The knowledge is
only partially formalized, especially toward classical music. Very few computational models were
proposed for automatic (or semiautomatic) structure extraction from the score and their results are
not very reliable. Thus the segmentation and the structure is often introduced by hand. The classic
paradigm derives from early language modelling and consists in musical grammars represented as a
hierarchical tree structure (e.g. phrase, sub phrase, melodic gesture, note). This paradigm is much less
applicable for contemporary music, where other musical parameters and constructs are more pertinent.
Music performance research will greatly benefit from theoretic advancements on contemporary music
analysis.

The understanding of the expressive information is still vague. While its importance is generally
acknowledged, the basic constituents are less clear. Often the simple range expressive-inexpressive
is used. The most frequently used paradigms, for representing emotions in music performance mod-
elling, are the basic emotions and the dimensional approach (e.g. valence-arousal space), see sec-
tion 3.10. The dimensional approach was also used with success for other kinds of expressive inten-
tions (see e.g. sect. 3.9. In this field too, more research and experimental insight will be very fruitful.
On the other hand continuous measurements of subject reactions during a performance, recently used
in psychological research, may provide useful data and parameters for performance research.

3.4.2 Information representation

A key issue is how to represent the musical information. First a multilevel representation scheme for
musical events will be presented, then the timing information representation for performance models
will be discussed.

3.4.2.1 Event information representation

To represent events in a performance, a multi-level representation of musical information is proposed
and the relation between adjacent levels is outlined (Fig. 3.3).

• The first level is the audio level, where the sound is represented as a digital signal, normally
with sampling rate fs = 44.1 kHz and 16 bits.

• The second level is the sound model representation of the signal, where the sound is represented
by the parameters of a sound model that can synthesise it, as described in the sound modelling
chapter. Normally the sound properties change during the event evolution. Thus the sound
is divided in partially overlapped portions (called frames) where the model parameters can be
considered constant. At this level the event is represented as a sequence of parameter vectors,
one for each frame. The parameters can be considered as time varying signals, sampled at a
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sampling rate (called frame rate) much lower than audio rate. The most effective model for
musical audio transformation is the spectral model with its time-frequency representation (TF).
TF representations are appreciated in the field of musical signal processing since they provide a
reliable representation of musical sounds as well as an effective and robust set of transformation
tools.

Figure 3.3: Multi-level representation.
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Figure 3.4: Musical parameters involved at event level.

• The third level represents the knowledge on the musical performance as events. This level
corresponds to the same level of abstraction of the MIDI representation of the performance, e.g.
as obtained from a sequencer (MIDI list events). A similar event description can be obtained
from an audio performance. A performance can be considered as a sequence of notes. The
n-th note is described by the pitch value FR(n), the Onset time O(n) and Duration DR(n)
(which are time-related parameters), Intensity I(n) or KeyVelocity KV (n) for MIDI event
description. and by a set of timbre-related parameters. Frequently used timbre parameters
are: Brightness BR(n) (measured as the centroid of the spectral envelope and energy envelope,
described by Attack Duration AD(n) and Envelope Centroid EC(n) (i.e., the temporal centroid
of the dynamic profile of the note). This representation often can be obtained from the sound
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model representation by a semi-automatic segmentation. From the time-related parameters, the
Inter Onset Interval

IOI(n) = O(n + 1) − O(n)

and the Legato
L(n) = DR(n)/IOI(n)

parameters can be derived and are widely used in performance modelling. Figure 3.4 shows
the principal parameters introduced. At this level an event is described by a unique vector of
parameters. Notice that while the note abstraction is the most common way to think of musical
events, it is not the only one. Often sound continuously varying and not easily sliceable in
different notes. The concept of note typically refers to pitched sounds. In general a sound event
is characterized by a certain acoustic or perceptual unit and by a beginning and an end.

3.4.2.2 Time information representation

The most important aspect is the representation of time.
Time can be considered from both a physical and a symbolic point of view. The first one, perfor-

mance time t, refers to the actual time that can be measured during a performance, while the second
refers to the position in the score (e.g. phrase or measure) and it is often called score-time or score
position x; it is often measured in units (or subunits) of measure.

Timing A musical piece is considered as composed by a set of musical events (notes and rests). The
n-th musical event has a onset time o(n) and a corresponding onset position x(n); a inter onset
interval ioi(n) = o(n + 1) − o(n) denoting the measured time delay of the next event and a
corresponding nominal duration dn(n) expressed in score time. For example with a (allegro)
metronome of 120 quarters per minute, i.e. 2 quarters per second, a whole note has dn(n) = 4
beats and ioi(n) = d(n)/2 = 2 seconds. It is also defined the performance duration, often
simply called duration, dr(n) that is the time interval between the beginning and the ending of
the event; notice that it not alter the position or performance onset time of the next event.

Models of timing normally aim to describe the relation between performance and score time
expressed as x = x(t) or t = t(x). Performers adapt performance time of musical events
in subtle way. Understanding models try to explain these variations, while synthesis models
compute these variations.

Tempo Another important aspect of time representation is tempo, often denoted as v, that is the recip-
rocal of durations as a function of score position. Traditionally it is measured by a metronome
(M.M.) number indicating the number of beats per minute (bpm) of performance time. A dis-
tinction may be made between

• the mean tempo (i.e. the average tempo across the whole piece disregarding possible
variations);

• the main tempo (i.e. the prevailing tempo when passages with momentary variations such
as slow start, final retard, fermatas, and amorphous caesuras are deleted);

• the local tempo, which is maintained only for a short time and is measured as the inverse
of the inter-onset interval relative to its nominal length in the score. It can be defined at
event level as vloc(n) = dn(n)/ioi(n).
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Although it is still unclear what exactly constitutes the perception of tempo, it seems to be
related - at least in metrical music - to the notion of beat or tactus: the speed at which the pulse
of the music passes at a moderate rate (i.e. the metrical level at which one counts the beat).

Models for understanding usually describe tempo as function of score position v(x) and mea-
sure it in seconds per metrical or score unit. In this case, global and local tempos are considered,
depending on the time scale. Typical representation are the duration of a measure and the rela-
tive inter onset interval ioirel(n) = ioi(n)/dn(n), i.e. time difference between the next event
and the actual event divided by the symbolic (score) duration. Notice that the inter onset inter-
val is not the physical duration of a note: in fact, notes can be played staccato or legato, greatly
affecting their expressive character.

While tempo and timing refers both to time values, they tend to be perceived somewhat inde-
pendently by listeners. Thus, timing models should take into account both aspects trying to separate
them. Often expressive timing is considered as describing the timing deviations in a performance
(e.g., accentuating notes by lengthening them for a bit, or playing notes after the beat). In addition,
timing might be perceived independently of any changing tempo (tempo rubato). So it could be ar-
gued that expressive timing and expressive tempo possibly co-exist as two, relatively independent and
perceptible aspects of a performance.

Continue vs. discrete values. The musical parameters used in modelling can be represented as
values or attributes of discrete time instants (musical events) such as notes or structural units. Alter-
natively they can be represented as profiles, i.e. as functions of continuous (performance or score)
time. An example of discrete time representation is the articulation of timing of individual notes or
the micropauses between melodic units; an example for continuous time representation is the vibrato
of a note or a crescendo curve. The first representation is more related to the symbolic level, while
the second one to the physical level. The choice depends on the aim of a model, on availability of
data and on their ability to explain. Sometimes models combine both kinds of representations or are
able to transform data from one to the other representation, e.g. by interpolation or sampling. For ex-
ample a crescendo is a discrete parameter at the piano, but not at other instruments as e.g., the violin.
Moreover it can be interpreted as continuous curve sampled at the note onsets.

Granularity. Another aspect of the representation is the granularity. When possible the information
is represented as numerical values. Sometimes absolute values, e.g. time interval in ms, sometimes
relative values, e.g. relative inter onset interval, are used. In this case the inter onset intervals are
represented as normalized to their score duration or at a certain metrical level, most often the beat level
or the bar level. In this last way, the timing pattern becomes a local tempo indicator. In other situations,
the information is categorical describing one choice among few alternatives, e.g. staccato vs. legato,
shortening vs. lengthening. Even for granularity, the effectiveness of the representation depends on
the problem we are dealing with and on the musical contex. However, in symbolic representation of
music often the concepts are not easily expressible as numbers or as precisely defined categories. A
possibility of using effectively vague definitions is offered by the techniques of soft computing such
as fuzzy sets.

Music is an organization of events in time and often a hierarchical time structure can be envisaged.
Therefore, models are developed for representing performance aspects at different time scales. We
may have models at note scale, e.g. for attack time or vibrato, at local scale considering only few
notes, e.g. articulation of a melodic gesture, or at a more global scale, e.g. for phrase crescendo. The
most complete models deal with the different time scales by using distinct but coordinated strategies.
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3.4.3 Expressive deviations

Most studies of performance expressiveness aim at understanding the systematic presence of devia-
tions from the musical notation as a communication means between musician and listener. Deviations
introduced by technical constraints (such as fingering) or by imperfect performer skill, are not nor-
mally considered part of expression communication and thus are often filtered out as noise. Deviations
considered in models normally refers to the expressive performance parameters as discussed above.

The analysis of these systematic deviations has led to the formulation of several models that try to
describe their structure, with the aim to explain where, how and why a performer modifies, sometimes
unconsciously, what is indicated by the notation in the score. It should be noticed that, although
deviations are only the external surface of something deeper and often not directly accessible, they are
quite easily measurable, and thus widely used to develop computational models in scientific research
and generative models for musical applications.

3.4.3.1 Reference for computing deviations

When we talk of deviation, it is important to define which is the reference used for computing de-
viation. Different solutions were proposed and the choice depends on the problem we are dealing
with.

• Very often the score is taken as reference, both for theoretical (the score represents the music
structure) and practical (it is easily available) purposes (see e.g. the KTH model in sect. 3.8.
However, the use of a score as reference has some drawbacks for the interpretation of how
listeners judge expressiveness.

• Alternative approaches are the intrinsic definitions of expression (expressive deviations defined
in terms of the performance itself) or non-structural approaches relating expression to motion,
emotion, etc.. The idea is that, from the structural description of a music piece, we can indi-
viduate units which can act as a reference at that level. Its subunits will act as atomic parts
whose internal detail will be ignored. Then expression is intended as the deviation from the
norm as given by a higher level unit. For example, the expressive variations of the durations of
beats are expressed in reference (as ratio) of the bar duration. An example of this approach is
the hierachical phrasing model of sect. 3.7. Using this intrinsic definition, expression can be
extracted from the performance data itself, taking more global measurements as reference for
local ones.

• When we studied how a performer plays a piece according to different expressive intentions,
we found that a clearer interpretation and best results in simulation are obtainable by using a
neutral performance as reference (see section 3.9). We intend neutral in the sense of a human
performance without any specific expressive intention.

• In other cases the mean performance (i.e. the mathematical mean among different perfor-
mances, by the same or many performers) was taken as reference, when stylistic choices and
preferences were investigated.

3.5 Models of / for music performance

Models are developed with different aims. A basic difference is between models of music perfor-
mance, i.e. models for understanding (also called analysis models) and models for music performance,
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i.e. models able to produce music performances (also called synthesis models). In the following sec-
tions, the main paradigms will be presented and discussed.

3.5.1 Model structures

It is often convenient, in developing and using models, to break the problem into simpler parts, each
one described and modelled by a proper strategy, and then combine everything into a larger unit. In
the following, the principal way used to combine rules or models will be discussed.

• The first, and frequently used, strategy assumes that the partial results computed by sub-models
can be added to obtain the final result. Let x1, x2, ..., xn be the inputs of the models and yj =
fj(x1, x2, ..., xn) be the j-th sub-model, the additive model composition is given by

y =
∑

j

fj(x1, x2, ..., xn)

For example, the deviations computed by the KTH rule system (see section 3.8) are obtained
by a weighted sum of the deviations computed by the single. Another application is when the
final result is obtained as the sum of profiles at different time scale, e.g. the crescendo and
accelerando curves computed for phrases and sub-phrases by Todd (see section 3.7). An appli-
cation of this strategy in analysis is when the principal component analysis (PCA) of measured
deviations on a musical passage is used to highlight differences among performing styles of
different pianists [Repp 1992]. In fact PCA involves a mathematical procedure that transforms
a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables
called principal components. The first principal component accounts for as much of the vari-
ability in the data as possible, and each succeeding component accounts for as much of the
remaining variability as possible. The original data are thus expressed as a linear combination
of (few) significant and independent variations around their mean value.

The additivity hypothesis is attractive from both a mathematical and a practical point of view: it
allows the use of many computational tools and it is easily interpretable. However, it may result
in over- simplifying and tends to hide the interrelation of different aspects of performance.

• A partially different strategy for combining numerical values consists in multiplying the partial
results.

y =
∏

j

fj(x1, x2, ..., xn)

It is often used when relative values are employed. Of course taking the logarithms will trans-
form it in an additive strategy.

• More complex is the non linear combination of the sources yj = fj(x1, x2, ..., xn).

y = F [f1(x1, x2, ..., xn), · · · , fJ(x1, x2, ..., xn)]

In this way the interrelations of inputs can taken into account. An example is the use of feed-
forward neural networks as general approximators of observed performance deviations.

• Models are sometimes combined using the output of a model as input to a second one, i.e. by
functional composition, as in cascade model that compute y = f [g(x)]. A typical example is
timing function composition as discussed by Honing.
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• A more general approach is in hierarchical models when they operate at different abstraction
level. The information is processed and combined at the proper level. An example is the
distinction of rules and metarules in the KTH system, where the metarules choose the proper
setting of basic rules to express, for example, different emotion (see section 3.8).

From another point of view, we may distinguish local models, that acts at note level and try to
explain the observed facts in a local context. A different perspective is assumed by phrasing models
(see section 3.7) that take into account the higher level of the musical structure or more abstract
expression pattern. The two approaches often require different modelling strategies and structures.
In certain cases, it is possible to devise a combination of both approaches with the purpose being
to obtain better results. The composed models are built by several components, each one aiming to
represent the different sources of expression. However, a good combination of the different parts is
still quite challenging.

Moreover we can distinguish two kinds of models, according their explanation aims.

• The complete model tries to explain all of the observed performance deviations on the basis of
the given data. This approach tends to give very complex models and thus poor insight on the
relevant relations. In fact, note level analysis cannot explain all the observed deviations.

• The partial model aims only to explain what can be explained at note level, giving a small and
robust set of rules. Moreover when rules for categorical decisions (e.g. play faster of slower)
rather than for computing an exact value are used, more understandable results can be obtained.

3.5.2 Comparing performances

A problem that normally arises in performance research is how performances can be compared. In
subjective comparison often a supposed ideal performance is taken as reference by the evaluator.
In other cases, an actual reference performance can be assumed. Of course subjects with different
background can have dissimilar preferences that are not easily made explicit.

However when we consider computational models, objective numerical comparisons would be
very appealing. In this case, performances are represented by a set of values. Sometimes the adopted
strategies compare absolute or relative values. As measure of distance the mean of the absolute dif-
ferences can be considered, or the Euclidean distance (square root of difference squares) or maximum
distance (i.e. take the maximal difference component). It is not clear how to weight the components,
nor which distance formulation is more effective. Different researchers employ different measures.

More basically it is not clear how to combine time and loudness distances for a comprehensive
performance comparison. For instance as already discussed, the emphasis of a note can be obtained
by lengthening, dynamic accent, time shift, timbre variation. Moreover, it is not clear how perception
can be taken into account, nor how to model subjective preferences. How are subjective and objective
comparisons related? The availability of good and agreed methods for performance comparison would
be very welcome in performance research. A subjective assessment of objective comparison is needed.
More research effort on this direction is advisable.

3.5.3 Models for understanding

We may distinguish some strategies in developing the structure of the model and in finding its pa-
rameters. The most prevalent ones are analysis-by-measurement and analysis-by-synthesis. Recently
some methods from artificial intelligence started being developed: machine learning and case based
reasoning.
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3.5.3.1 Analysis by measurements

The first strategy, analysis-by-measurement, is based on the analysis of deviations measured in recorded
human performances. The analysis aims at recognizing regularities in the deviation patterns and to
describe them by means of a mathematical model, relating score to expressive values [see Gabrielsson
1999 for an overview of the main results]. The method consists in different stages:

1. Selection of performances. The choice of good and/or typical performances of the musical
excerpt to study is important. Often rather small set of carefully selected performances are
used. While normally the performer is left free to play according to his own taste, sometimes
for experimental purpose he is asked to play according to specific instructions, e.g. to convey a
specific emotion.

2. Measurement of the physical properties of every note. The physical variations of the perfor-
mance are many: duration, intensity, frequency, envelope, note vibrato; which and how many
variables to study depends on the aims and working hypothesis, on the technical possibility of
the instrument and on the considered instruments.

3. Reliability control and classification of performances. It is necessary to verify the reliability and
consistency of the data obtained from the physical variable measurement, classifying the per-
formance in different categories, with different characteristics, taking into account the collected
data.

4. Selection and analysis of the most relevant variables. This stage depends on the two previous
ones and it ends temporarily the analytical part of the scheme to give space to the judgment of
the listeners, in the following stages.

5. Statistical analysis and development of mathematical interpretation model of the data. The
analysis of the selected variables is often carried out on different time scale representations.

The most frequently used approaches are statistical models and mathematical models (see e.g.
sec:todd). Sometimes multidimensional analysis is applied to performance profiles in order to ex-
tract independent patterns. Often the hypothesis that deviations deriving from different patterns or
hierarchical levels can be separated and then added is implicitly assumed. This hypothesis helps the
modelling phase, but may be oversimplified.

Several methodologies of approximation of human performances were developed using neural
network techniques or fuzzy logic approach or using a multiple regression analysis algorithm or linear
vector space theory. In these cases, the researcher devises a parametric model and then estimates its
parameters that best approximate a set of given performances.

As an alternative to this method that analyses actual music performances, some researchers are
performing controlled experiments in collecting and studying performances. The idea is that by ma-
nipulating one parameter in a performance (e.g. the instruction to play at a different tempo), the
measurements may reveal something of the underlying mechanisms.

3.5.3.2 Analysis by synthesis

The analysis-by-synthesis paradigm takes into account the performance-perception and it starts from
the results of the previous stages (steps 1-5 of the previous section) continuing with the following
stages.
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6. Synthesis of performances with systematic variations. At this stage the researcher produces
different versions of the piece in order to have performances in which the physical variables to
be studied (duration, intensity, etc.) systematically vary.

7. Judgment on synthesized versions, paying particular attention to the different experimental as-
pects selected. Knowledge of relevant experimental variables and the designation of useful
evaluations scales are required.

8. Control of the reliability judgments and classifications of the listeners. We need to use adequate
methods to control the listeners? reliability and their judgments, possibly classifying them in
different class.

9. Study of relation between performance and experimental variables. At this point, it is possible
to observe the relations between performances with manipulated physical variations and the
selected variables asking questions such as: are the listeners sensitive to the manipulations
made? If yes, in which way? Are there general effects or interactions among different variables?
Which are the most important variables? Can we eliminate some of them?

10. Repetition of the procedure (steps 3-9) until the results converge. In relation to the results of
stages 3-9, the process should be continued in an interactive manner until the relations of the
selected variables of the performance converge to the experimental variables.

The scheme here described can be modified and extended, but the main concept remains the fol-
lowing: the analysis of the real performances produces hypotheses to be tested through the systematic
variations introduced in the synthetic versions. With regard to such variations, it should be noticed
that factors must be modified one by one keeping the rest constant. The best method to generate them
should be, for instance, to produce simplified versions where only one variable is modified, while
imposing constant values to the others. The product will sound rather different from a real perfor-
mance where all the physical variables change continuously. In order to obtain data about the effect
of the other variables and their interaction, we must proceed to further experiments, in a long series
of working sessions.

This strategy derives models, which are described with a collection of rules, using an analysis-by-
synthesis method. The most important is the KTH rule system presented in section 3.8. In the KTH
system, the rules describe quantitatively the deviations to be applied to a musical score, in order to
produce a more attractive and human-like performance than the mechanical one that results from a
literal playing of the score. Every rule tries to predict (and to explain with musical or psychoacoustic
principles) some deviations that a human performer is likely to insert. At first, rules are obtained
based on the indications of professional musicians, using knowledge engineering paradigms. Then,
the performances, produced by applying the rules, are evaluated by listeners, allowing further tuning
and development of the rules. The rules can be grouped according to the purposes that they apparently
have in music communication. Differentiation rules appear to facilitate categorization of pitch and
duration, whereas grouping rules appear to facilitate grouping of notes, both at micro and macro level.
As an example of such rules, let us consider the Duration Contrast rule: it shortens and decreases in
amplitude the notes with duration between 30 and 600 ms, depending on their duration according to a
suitable function. The value computed by the rule is then weighted by a quantity parameter k.
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Figure 3.5: Dynamics deviation learned from the training pieces applied to Chopin Waltz Op.18,
Op.64 no.2

3.5.3.3 Machine learning

In the traditional way of developing models, the researcher normally makes some hypothesis on the
performance aspects s/he want to model and then s/he tries to establish the empirical validity of the
model by testing it on real data or on synthetic performances. A different approach, pursued by
Widmer and coworkers, instead tries to extract new and potentially interesting regularities and per-
formance principles from many performance examples, by using machine learning and data mining
algorithms. The aim of these methods is to search for and discover complex dependencies on very
large data sets, without any preliminary hypothesis. The advantage is the possibility of discover new
(and possibly interesting) knowledge, avoiding any musical expectation or assumption. Moreover,
these algorithms normally allow describing discoveries in intelligible terms. The main criteria for
acceptance of the results are generality, accuracy, and simplicity. It can be noticed that when rules for
categorical decisions (e.g. play faster of slower) rather than for computing an exact value are used,
more understandable results can be obtained. An example is shown in figures 3.5 and 3.6.

3.5.3.4 Case based reasoning

An alternative approach, much closer to the observation-imitation-experimentation process observed
in humans, is that of directly using the knowledge implicit in human performances samples. Case
based reasoning (CBR) is based on the idea of solving new problems by using (often with some kind
of adaptation) similar previously solved problems. Two basic mechanisms are used: retrieval of solved
problems (called cases) using suitable criteria and adaptation of solutions used in previous cases to
the actual problem. The assumption is that similar problems have similar solutions.

The CBR paradigm covers a family of methods that may be described in a common subtask
decomposition: the retrieve task, the reuse task, the revise task, and the retain task. Different CBR
methods differ in the way of achieving these four tasks.

• The goal of the retrieve task is to recover a set of previously solved problems similar to the
current problem. The retrieval task is usually performed using, in turn, three subtasks: identify,
search, and select tasks.
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Figure 3.6: Tempo deviation learned from the training pieces applied to Chopin Waltz Op.18, Op.64
no.2

– The identify subtask determines, using domain knowledge, the set of relevant aspects of
the current problem.

– The search subtask retrieves a set of precedent cases, using these relevant aspects as simi-
larity criterion,

– The select subtask has as a goal to rank the set of precedents using domain knowledge.

• Given a set of ordered precedent cases, the reuse task constructs a solution for the current
problem adapting the solutions taken in precedent cases. The ranking over cases is interpreted
as preference criterion. An usual policy is to consider only the maximal precedent determined
by the select subtask.

• When the solution generated by the reuse task is not correct, an opportunity for learning arises.
The revision phase involves detecting the errors of the current solution and modifying the solu-
tion using repair techniques. This phase, that is not present in all CBR methods, takes the result
from applying the solution in the real world (or by asking a teacher).

• Finally, the new solved problem is incorporated into the system by the retain task in order to
help the resolution of future problems. This task involves selecting which information of the
case retain and how to integrate the new case in the memory structure.

CBR is appropriate for problems where many examples of solved problems can be obtained and
a large part of the knowledge involved in the solution of problems is tacit, difficult to verbalize and
generalize. Moreover new problem solution can be checked by the user and then memorized. Thus,
the system learns from experience. The success of this approach greatly depends on the availability
of a large amount of well-distributed previously solved problems. These are not easy to collect.

3.5.3.5 Expression recognition models

The methods seen in the previous sections aim at explaining how expression is conveyed by the per-
former and how it is related to the musical structure. Recently these accumulated research results
started giving rise to models that aim to extract and recognize expression from a performance.
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In particular, Dannenberg [1997] proposed a style classifier for interactive performance systems,
employing a machine learning approach. The features he used to classify are simple parameters that
can be extracted from trumpet performances played by one performer and recorded as MIDI data. The
classified styles consist of a range of performance intentions: frantic, lyrical, pointillistic, syncopated,
high, low, quote and blues.

Friberg (2002) developed a system that combines a low-level cue extraction algorithm with a
listener model to predict what emotion the performer is trying to convey in his or her performance.
One or several types of listener panels can be stored as models which are used to simulate judgments
of new performances based on results from previous listening experiments. From audio input data
the following parameters are computed for each tone: interonset duration, relative articulation, peak
sound level, attack velocity, and spectral ratio. The spectral ratio is simply defined as the difference in
sound level below and above 1000 Hz. The acoustic cues are obtained by computing running averages
and standard deviations of the parameters. An estimation of the strength of each intended emotion
(happy, angry, sad) is obtained from a regression equation taking the standardized cue values as input
variables.

Mion (2003) employed Bayesian Networks for the recognition of expressive content in musical
improvisations. From MIDI piano improvisations, the extracted features are: note number, intensity,
articulation, inter-onset duration, features pattern. The following expressive intentions described by
sensorial adjectives are recognized: slanted, heavy, hopping, vacuous, bold, hollow, fluid, tender.

3.5.4 Models for music production

3.5.4.1 Performance synthesis models

While the models described above were developed mainly for analysis and understanding purpose,
often they are used also for synthesis purpose. Starting from expressiveness models, several software
systems for the computer automatic generation of musical performances were developed. Moreover,
many sequencers now implement functions, called humanizers, that add deviations to the score, com-
puted in a random way or according to specific criteria. The typical scheme is represented in figure 3.7.

Figure 3.7: Typical structure of a performance synthesis model.

The model defined at Centro di Sonologia Computazionale (CSC), University of Padova, was de-
veloped using the results of perceptual and sonological analyses made on professional performances
(see also section 3.9). Different applications based on this model were developed. Music performance
is an activity that is well suited as a target for multimodal concepts. Music is a nonverbal form of
communication that requires both logical precision and intuitive expression. Our research in the cre-
ative arts domain has focused on musical mapping of gestural input. In fact, since the control space
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works at an abstract level, it can be used as an interface between transmodal signals. In particular, we
developed an application allowing control of the expressive content of a pre-recorded music perfor-
mance by means of dancer’s movement as captured by a camera. Then expressive features extracted
by dancer’s movements are used as input for the abstract space. In the entertainment area, we built
the application Once upon the time, released as an applet, for the enjoyment of fairy-tales in a remote
multimedia environment. In this software, an expressive identity can be assigned to each character in
the tale and to the different multimedia objects of the virtual environment. Starting from the story-
board of the tale, the different expressive intentions are located in synthetic control spaces defined for
the specific contexts of the tale. The expressive content of audio is gradually modified with respect to
the position and movements of the mouse pointer, using the abstract control space described above.

3.5.4.2 Discussion on synthesis models

The idea of automatic expressive music performance, especially when it is applied to the performance
of classical music is questionable. We can remark that classical music was not written for this pur-
pose. Even if the models could be very accurate (and they still are not), some very important artistic
aspects of this kind of music will be omitted. When we listen to a recording of a classic music perfor-
mance, we are aware that it is just a reproduction of an event and not an experience of the music as
it was conceived at its time. On the other hand, the possibility to fully model and render the artistic
creativity implied in the performance is still to be demonstrated. For the moment, at best, we can
expect a reproduction of a specific performance, without a real new creative contribution, that would
make listening interesting. Or we can expect the rendering of some, hopefully relevant, aspects of a
musically acceptable performance, but not sufficient for a full artistic appreciation.

Performers are particularly sensitive to these aspects and usually look at performance synthesis
in a very suspicious manner. An instinctive fear of a possible danger for their competence and even
their job can be guessed to contribute, but the cultural motivations are definitely true. On the other
hand if we think to music applications, where a real artistic value is not necessary (even if useful
as in many multimedia applications), and where the alternative is a mechanic performance of the
score (as in many sequencers), automatic performance can be acceptable. From this point of view
such models can be used for entertainment application or when it is not necessary to preserve the
exact artistic environment of the composition, as in popular music. However, in many occasions a
human performer is not available and should be substituted in a certain way. Performance models or
processing MIDI recorded performance could be a solution. Notice that the quality of performance
processing is much higher when it is based on performance models and knowledge.

Another important application of performance models, even of classical music, is in education.
The knowledge embodied in performance models may help teachers to increase their students’ aware-
ness for certain performance strategies and to better convey their teaching goals.

3.5.4.3 Models for multimedia application

Representing, modelling and processing expressive information is useful not only for automatic music
performance. In fact a user can interact with the model during the performance. We can thus consider
interactive performance models where expression is conveyed by a joint action of the user and of
the model. This paradigm of human machine interaction for expression communication is not only
fruitful in music applications, but it can be extended to many other fields where non-verbal content can
be very relevant. We may distinguish two main classes of possible interfaces for the human-machine
communication:
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• Graphic panel dedicated to the control, where the control variables are directly displayed on the
panel and the user should learn how to use it.

• Multimodal, where the user interacts freely through movements and non-verbal communication.
Task of the interface is to analyze and to identify human intention correctly.

Expressiveness control is a relevant aspect in multimodal systems. The current state-of-the-art al-
lows for a growing number of applications, from advanced human-computer interfaces in multimedia
systems to new kinds of interactive multimodal systems. An explosion of human interface technolo-
gies involving ecological interface design, agents, virtual immersive workspaces, decision support
systems, avatars, distributed architectures, and computer-supported cooperative work, are appearing
into the scene as means to address these complex problems.

Multimodal interfaces have the potential to offer users more expressive power and flexibility, as
well as better tools for controlling sophisticated visualization and multimedia output capabilities. As
these interfaces develop, research will be needed on how to design complete multimodal-multimedia
systems that are capable of highly robust functioning. To achieve this goal, a better expressive content
analysis and processing ability will be essential. The computer science community is just beginning
to understand how to design innovative, well integrated, and robust multimodal systems. Most mul-
timodal systems remain bimodal, and recognition technologies related to several human senses (e.g.,
haptics, smell, taste) have yet to be well represented or included at all within multimodal interfaces.
This means that it is very important, for a successful design of multimodal systems, to consider per-
formance models for non-verbal communication.

3.5.5 Models for artistic creation

The situation is different when music is expressively created bearing in mind the use of technology.
We are in the era of information society and artists are always more frequently using technology in
their artworks. Since the beginning of last century, some musicians started to think how to enlarge the
sound palette by using un-conventional instruments. The availability of new electronic and computer
generated sounds gave rise to a new kind of music. Artists exploited and innovated greatly the methods
of producing and performing music. In the first period of computer music, a lot of research effort
was dedicated to sound synthesis and modelling. New synthesis algorithms were discovered, such
as frequency modulation, and new paradigms were developed for musical sound generation, such as
spectral and physical models. On the other side, models for music representation and algorithmic
composition were developed.

Less attention was being paid to the performance aspects. The music was automatically generated
from the score as it was written by the composer or generated by the composition program. The com-
poser had to take into account all the nuances often implicit in the score to communicate the expressive
content of the music. In this situation, the composer must explicitly preview what the performer nor-
mally handles. The composer is also a performer and needs to formalize the performance process. A
different approach, to overcome the limitations of computer generated music, was followed by music
for live electronics where the performer interacts with technology on the stage transforming in real
time the sound produced by traditional or synthetic instruments.

In both cases, a central challenge is the control of the sound synthesis or processing engines
(systems, algorithms, etc.). This problem is a typical performance topic and it refers to the need of
establishing and computing the relation of musical and compositional aspects with sound parameters,
according to the expressive aim of the musician. The inputs are discrete events, as described in the
score or generated by computer, and continuous signals, e.g. performer gestures. These inputs should
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be coordinated and merged to produce and process sound events. In music technology the concept
of mapping strategies, which describe these relations, is of great importance. The conventional (and
simplest) aspect refers to specific relation; for example how to convert a pitch and loudness informa-
tion into proper spectral and micro-timing values of a synthetic note. Nevertheless, the word strategies
tends to refer to other possible choices and source of information as phrasing, musical character, mood
of the performer, stylistic alternatives.

All these aspects are typical music performance issues. Suitable music performance models are
very desirable.

Figure 3.8 shows the typical situation of music performance with digital instruments where the
electronic instrument performer controls the sound synthesis with gestures and suitable processes. A
performance model lies between the symbolic and the audio control level. The performer receives an
audio feedback from the instrument as with traditional instruments. In live electronics, the scheme is
different (fig. 3.9). Here the live electronics performer processes the sound produced by the instrument
performer, acting on his computer. In the live electronic box, we still have score processes and gestures
controlling, via a performance model, the sound processing devices. However, in this case the input
is a music sound, already performed. In a certain sense, we have a combined effect of performances
(e.g. deviations of deviations) that the models should take into account. The performer receives an
audio feedback from both the instrument and the sound processing.

Figure 3.8: Scheme of music performance with digital instruments where the electronic instrument
performer controls the sound synthesis with gestures and suitable processes. A performance model
lies between the symbolic and the audio control level. The performer receives an audio feedback from
the instrument as with traditional instruments.

3.5.6 Conclusions

Recently music performance researchers are becoming more aware of the need of a well-founded
approach based on strong scientific knowledge. This aim can be faced from two complementary
directions. One way is to start from the knowledge gained in classical music performance studies and
formalized in performance models; then generalize their results and apply them to the performance
of new music creation. The other direction starts from the practical knowledge of new music creators
(often embodied in their music performance systems) in order to extract possible suggestions and
proposals of new performance models. From the joint effort of scientists and musicians valid results
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Figure 3.9: Scheme of live electronic music performance. The live electronics performer processes
the sound produced by the instrument performer, acting on his computer. In the live electronic box,
we still have score processes and gestures controlling, via a performance model, the sound processing
devices. The performer receives an audio feedback from both the instrument and the sound processing.

can be expected and real new tools can be developed, not only inspired to problems and solutions of
the past times.

It can be noticed that music performance is an interesting topic for scientific investigation and
for technology research: it involves human non-verbal communication, has artistic-creative finality,
and requires strong cooperation between art and science - technology. Probably still more important
is the fact that music is an immaterial art that has a strong tradition of symbolic representation and
abstract thinking. This attitude may explain why musicians were the most enthusiastic and successful
in promoting and contributing to the joint development of art and science since the beginning of
computer science. In other arts, this collaboration started much later and very often it is restricted to
the use of technology rather than a real contribution to joint development of knowledge and tools.

3.6 From synthesis models to control models

Even at the beginning of the century, some musicians had started to turn their attention to the search
for new forms of sonority. They were of the opinion that the new technologies under development
would not only bring about further evolution of existing instruments, but that they were, in particular,
a possible source of alternative sounds - unlike the traditional ones - and that they could, therefore,
stimulate new organisational criteria in the composing of music.

In the scientific field, the development of new methods connected to information technology, on
the other hand, offered an ever growing number of instruments which, even though conceived for
other applications, could also be used to produce sounds. The meeting of these two factors and the
enthusiastic collaboration between musicians and researchers led to intensive research activity and
experimentation into new sounds.

After an initial period during which only a few pioneers went ahead in almost complete isolation,
some twenty years ago an ever growing community strongly felt the need to meet and join together.
This led to the establishment of the International Computer Music Conferences and the publication of
the Computer Music Journal which quickly became a reference point for the whole community.
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Over the years, the study of sound, and above all, producing sound by new methods, has become
the focal point of attention on the part of researchers and musicians. That this was of considerable
interest is shown by the fact that the computer music centres, which arose at the time, were given
names indicating this orientation such as, for example, the Institute of Sonology - Utrecht; CCRMA
- Stanford; IRCAM - Paris; CSC - Padua. The basic idea was that, using digital means, it would be
possible to generate any sound that the human ear could hear. In reality, any sound can be reproduced,
but it is only possible to produce a sound when a computing procedure can be described for its gen-
eration (synthesis algorithm). This idea has given great impulse to search for algorithms (or models)
of sound synthesis and their successive utilisation in the creation of music. In a certain sense, there
was a tendency to identify the technique of synthesis with the concept of instrument, not only in the
sense of its being a method for generating sounds but also as something which could describe a class
of sonority. In fact, the same synthesis model can produce many different sounds all of which have
the same method of production in common and, therefore, often the same acoustic properties.

The various sounds within any one class are differentiated by the parameters of the model. A sim-
ple choice of parameters produces the basic sounds in that particular class. However, when richer and
more interesting musical sounds are investigated, then ever more rapid and well calibrated parameters
must be utilised. The problem then becomes one of knowing how to describe the desired sound in
terms of parameters of the chosen model. This is the so called problem of synthesis control. This
aspect of the problem quickly became a rather difficult one to resolve. In fact, if a synthesis model
is compared to an instrument, then much experimentation is required in order to explore the class of
sounds that can be produced and to understand how to obtain them. Furthermore, a great deal of time
is necessary in order to learn how to play the instrument and the process of experimental creativity
takes even longer.

The problem is made more difficult by the fact that conceptual categories are used to describe
some aspects of the sound, such as pitch and loudness, while other aspects remain elusive and, above
all, badly defined. This is seen, for example, in the uncertainty about the notion of timbre and its
quantitative evaluation.

3.6.1 Models of control signals

The problem of control in synthesis refers to everything that must be done in order to pass from
the symbolic description of sounds, as expressed by the score, to the sound, using synthesis models.
Traditionally, the score consisted of a series of notes (symbols that described the sound and its property
at an abstract level) and the player, with the aid of an instrument, was charged with translating it into
sound. Therefore, control in synthesis occurs by co-ordinating symbolic information, discrete in time,
and information that can be thought of as varying continuously (control signals).

Two different types of approach are practised in effecting schemes of control.

• The first approach, of the compositional type, is based on the possibility that computers offer
in the ever more precise and explicit control of the properties of sound, meant above all as the
dynamic evolution of the spectrum. This allows the composer to amplify his range, even so far
as being able to directly compose the sound. Carried to its extreme, this means that everything
is specified in the score or by procedures for generating the sound parameters. Moreover, it is
often held that a new synthesis technique, in that it is the generator of a class of sounds, can
be a source of inspiration for composers. Methods of compositional organisation based on the
properties of the control parameters offered by the algorithm used can, in fact, be seen.

• The other approach, of an performance type, tends to exploit the ever increasing possibility
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of synthesising, in real time and developing appropriate gestural interfaces, thus dealing with
the synthesis of sound as if it were a new instrument. Control occurs directly by means of the
gesture, exactly at the moment that the sound is produced. In this way, the role of the player is
recovered in that the player acts as the intermediary between the composer and the sound. In
this case, the quality of the sound depends on the type of synthesis chosen, but above all, on the
virtuosity of the executor. Two aspects of virtuosity can be distinguished: the first refers to the
planning of the executive environment, while the second refers to the actual real execution.

In practise, musical control is brought about by a combination of these two types of orientation.
It seems that little has been done up to the present to formalise what knowledge and experience

gained in synthesis techniques. Control still occurs very often at low levels of abstraction or using
rather simple procedures. Few models up to now have been put forward to describe and generate
control signals. In a certain sense, the situation regarding control models is similar to what synthesis
was at its initial stages.

Two levels of abstraction in control can, in general, be distinguished and which correspond to two
different time scales.

• The first level, sonological control, determines the spectral dynamics of a note and acts on the
underlying algorithm. In this case the signals vary during the evolution of the note and operate
along the time scale of its duration. Random and periodic frequency variations, in order to
obtain a vibrato effect, are an example of this.

• The second, expressive control, concerns the player as the interpreter. It refers to the passage
from symbols to action in order to choose and render the desired expressive effects. Generally,
this does not mean just the simple transformation from symbol to symbol, but determines rather,
the continuous variation of a set of parameters. It consists, therefore, in the generation of signals
that vary along the time scale of the phrases. The musician, thus, directs and shapes the flow of
musical sound which form the entire work. Variations in the duration and amplitude of the note
in order to emphasise the grouping of the phrase, is an example.

The idea of the quality of the timbre, i.e. the capacity of the instrument to produce ”beautiful sounds”,
is associated to the first level. At the second level, the ”playability” property, i.e. the possibility that
the player is given to interact satisfactorily with the instrument is given priority.

Summarising, now, the principle models of control signals that have, over the years, become
successful. Interpolation models refer to functions in the time specified by points and which then
become continuous by means of opportune interpolation, for example those generators of envelopes
such as ADSR (Attack, Decay, Sustain, Release). Random or fractal signal models are often used,
whenever one does not want to describe a precise trend. When, however, reference is made to real
signals, then control signals are taken from analysis. These are successively used in resynthesis and
with typical manipulations in the time domain. In a certain sense, this approach is similar to the use
of sampling in synthesis. When a model can not produce anything that can be perceived as being real,
then the signal, eventually deformed, is reproduced.

Generally, it can be observed that the synthesis of control signals uses rather simplified methods.
With respect to what has been said in the foregoing, then further research on control, both sonological
and expressive, should be effected in order to identify models that are general enough to allow the
musician to turn his/her attention to controlling the control signals and, therefore, operate at a more
abstract level. This would be a move towards an objective, whether realistic or otherwise, a type of
control based on perceptive and cognitive parameters.
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3.6.2 Other fields of research into sound control

The space parameter seems, among other fields of musical research which should be further investi-
gated, interesting. In fact, the use of loudspeakers tends to have a punctiform source. The position
of sound in virtual space could be exploited more efficiently by utilising further loudspeakers and
suitable control.

For synthesis techniques by physical models, research is looking into efficient algorithms and
ever more efficient models for some particular classes of objects. Furthermore, structures which
are not anchored in physical reality, but which have only stable and passive constraints, should be
experimented with. These models consider physical reality only as a source of inspiration, but they
represent a field of sound synthesis that has yet to be explored.

With reference to the study of sound, an effort should be made to combine the skills of experi-
mental psychologists and sound researchers, in order to better understand the concept of timbre and to
evaluate it quantitatively. Methods of acoustic analysis, based on auditory models, are already being
developed. It is probable that this will develop towards descriptive forms of sound which are closer to
perception.

Up till now, focus has been placed more on sound synthesis, which is a relatively simple problem.
Increased research into analysing or rather, understanding, acoustic signals should be undertaken, both
to identify the source as well as to separate complex acoustic events.

Moreover, with the explosion of multimedia systems, processing with sound models - rather than
with sounds themselves which is, substantially, what happens now - should offer the computer music
community many opportunities and interesting prospectives, even in the non-artistic field.

3.7 A dynamic model of phrasing

The idea that there is an intimate relationship between musical motion and physical movement is
an old one and can be traced back to antiquity. Classical Greek musical writings can be broadly
classified in two distinct schools, a Pythagorean an Aristoxènian school. It is intersting yo notice that
whereas for Pythagoreans pitch intervals between notes should be expressed as ratios of numbers,
for the Aristoxènians notes are geometrical points in a space (defined by ratios) and intervals the
distance between them. It is this concept of a space that enabled Aristoxènus to think in term of
melodic motion. The concept of melodic motion relative to an abstract space is central in his thinking.
Moreover he makes clear reference to rhythmic movement and its analogy to physical movement.

The idea of a connection between music and motion is a recurrent one. In general the following
has been suggested:

• musical movement has two degree of freedom, tonal movement and rhythmic movement;

• this movement is similar to and imitates motion in physical space;

• the object of motion in physical space, to which musical movement alludes, is that of a body or
limb.

In this section a dynamic model of phrasing, based on the analogy of physical movement, proposed by
Todd, is presented. He consider the score as a trajectory in a 2-D space. The vertical axis is describe a
1-D pitch space p while the horizontal axis describe a space like dimension, measured in unit of beats
or bars, called metrical position x. Thus he distinguishes two kind of motion in music, tonal motion,
i.e. pitch as function of time p(t), and rhythmic motion, i.e. metrical position as a function of time
x(t). Its model deals with metrical motion.
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3.7.1 Definition of the basic terms

A model based on physical analogy has been proposed by Todd(1992,1995). Every note event is
described by its onset time o(n), intensity I(n). Let a be the acceleration, u the initial tempo, x
score position (measured in units of beats or bars), and t the performance time. Given some analytical
function for acceleration or tempo (velocity), we may obtain either t = t(x) or x = x(t) by integration
so that these variables are related by the following system of equations

a = a(t) (3.1)

v = v(t) =

∫

a(t)dt (3.2)

x = x(t) =

∫

v(t)dt (3.3)

and

a = a(x) (3.4)

v = v(x) (3.5)

t = t(x) =

∫

1

v(t)
dx (3.6)

where a(x) and v(x) are obtained by solving for t = t(x) and substituting in a(t) or v(t). Conversely,
if given a function for position, then the tempo and acceleration may be obtained by differentiation.

3.7.2 The linear tempo model

For instance the classic linear tempo model, i.e. when tempo is supposed to vary linearly in time on a
performance segment, assumes that the acceleration (or deceleration as in the final retard) is constant
in that segment. The corresponding equations relative to performance time t are

a(t) = a (3.7)

v(t) =

∫

a(t)dt = u + at (3.8)

x(t) =

∫

v(t)dt = ut +
at2

2
(3.9)

where u is the initial tempo. The equations relative to score position x are

a(x) = a (3.10)

v(x) =
√

u2 + 2ax (3.11)

t(x) =

√
u2 + 2ax − u

a
(3.12)

3.7.3 Energy, tempo and intensity

The model assumes that a piece can be decomposed in a hierarchical sequence of segments, where
each segment is on its turn decomposed in a sequence of segments. It is similar as a musical phrase
can be decomposed in a sequence of sub-phrases, a sub-phrase on a sequence of melodic gestures, etc..
Every segment is characterized by an accelerando-ritardando pattern and by a crescendo-decrescendo
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pattern. The models further assumes a linear tempo model, i.e. a constant acceleration in the first
phase, followed by a constant deceleration in the second phase. The analogy is the movement of a
particle of mass m in a V-shaped potential well of length L, where the depth of teh well and the
position of the lower point are parameters of the model. Outside the well the particle moves with
constant velocity. let us assume also that the total energy E of the system is constant and given by
E = T + V where T = mv2/2 is the kinetic energy and v is the potential energy linearly varying
from zero to a minimum and then linearly returning to zero. Thus the velocity (tempo) is given
by v(x) =

√

2(E − V (x))/m. A similar expression is used for the intensity I(x). Notice that
this expression corresponds to a parabolic mapping x(t) in the first and in the second phase. The
hierarchical structure that a piece is composed by a number of components of this type describing
from the global variation over the whole to local fluctuations at the note level. These components are
superimposed (summed) onto each other. Thus the complete function is given by

v(x) =
∑

j

√

2
E − Vj(x)

mj

.

The complete x(t) mapping results shaped as piece-wise parabolas. Some authors try to estimate the
parameters of the parabolas from measurements of onset time in real performances. An example of
phrasing computed for the theme, from the six variations composed by Beethoven over the duet Nel
cor più non mi sento (fig. 3.10), is shown in figure 3.11.

Figure 3.10: Theme from the six variations composed by Beethoven over the duet Nel cor più non mi
sento.

This model is interesting for describing the typical acceleration-rallentando patterns used in most
romantic music performances to communicate the phrasing structure and is quite effective in perfor-
mance synthesis. It is in alternative with the idea of punctuation (see sect. 3.8), where the boundary
of segments are marked by a micro-pause inserted between them. Probably the best way of modelling
the phrasing of a piece is using a combination of both methods.

3.7.4 Other parabolic models

The idea of using parabolas as (least square) approximators of observed data is quite common in music
performance analysis. But different authors approximate different kind of data. A quite widespread
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Figure 3.11: Example of phrasing model (score shown in fig 3.10). Each phrase and sub-phrase
contributes its own curve. The combination of which is shown here (with black dots, as is a real
performance (with white dots).

model is parabolic inter onset interval ioi(x) or relative inter onset interval ioirel(x) as function of
score position x or event number n. It is important to notice that different representation of the
data to be analysed and modelled tends to evidence different aspects. However the use of different
representations makes the comparison of the analyses problematic.

3.8 KTH music performance rules

adapted from PhD dissertation of Anders Friberg
In this section the most important model, developed using the analysis by synthesis paradigm (see

sect. 3.5.3.2), is presented. In the KTH system, the rules describe quantitatively the deviations to be
applied to a musical score, in order to produce a more attractive and human-like performance than the
mechanical one that results from a literal playing of the score.

3.8.1 Rule history

The entire project started in 1977 when the analog singing machine MUSSE, previously constructed
at the department, could be controlled from a mini computer. While MUSSE’s ability to replicate sung
wowels was excellent, computer produced MUSSE performances revealed that an entire dimension
of great musical significance was missing. It should be noted that in the seventies computer generated
music performances were rare. The co-operation between Johan Sundberg and Lars Frydn began in
1978. They started to implement rules in a modified version of the text-to-speech system RULSYS.
Later, Anders Askenfelt assisted in the programming. Early versions of many of the current rules
were elaborated on that system. When Anders Friberg started to work at the department in 1984 the
main task was to organize the existing rule system and to develop a new program Rulle, later Director
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Musices. The major advantages of the new program were its polyphonic capability, the use of the
MIDI format, and the fact that the program could be tailored for instrumental performance. The work
has since then mainly been carried out jointly by Johan Sundberg, Lars Frydn and Anders Friberg.
It has resulted in the ensemble rules and in the more recent additions for punctuation and phrasing.
Also, some existing rules were modified and the general rule quantity parameter K (earlier Q) was
introduced.

3.8.2 From composer to listener: A closer look

The communication of a composer’s mental representation of a piece of music to a listener can be
assumed to contain three major transformations, as illustrated in Fig. 3.12. : (1) from composer to
score (TCS), (2) from score to performance (TSP), and (3) from performance to listener (TPL). The
music appears in four different representations in the figure. In addition, the performer has also a
mental representation. Of these, only two are easily accessible to a scientific analysis: the score and
the performance. The performance is assumed to be the sound signal, i. e. a recording that can be
analyzed in terms of physical parameters. The transformation TSP is done by the performer and is the
main focus of this study.

Figure 3.12: From the composer to the listener: the four different music representations and the three
corresponding transformations.

It is advantageous to compare a performance to a nominal performance in which the score is
simply translated to nominal values of performance parameters; in such a translation simple integer
ratios, for instance, are used for converting note values to tone durations. The difference between the
actual and the nominal performances constitutes the expressive deviations.

Why do these deviations from the score exist? There are many possible reasons. First, the score
serves primary as an aid for the memorization and conservation, as well as for the communication from
the composer to the performer. Scores were never intended as exact descriptions of sounding music.
Second, as the composer and the performer are unaware of the measured physical quantities, the score
may serve as a representation of the cognitive parameters rather than the physical parameters. There
is no need to notate cognitive representations that both the composer and the performer agree upon.
In this sense the score may be more accurate with respect to cognitive than to physical parameters.
Third, over the centuries the liberty of the musicians to exhibit their own, personal interpretation of
the composer’s piece of art has varied, but has rarely been completely denied by composers. In cases
where this liberty was ample, great deviations from a nominal performance can be expected.

3.8.3 Analysis-by-synthesis

As mentioned above, the main method used for developing the rules was analysis-by-synthesis. It
was adapted from speech synthesis research where it is considered as a standard method. It was a
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natural choice since the system developed for text-to-speech translation could be adapted to a score-
to-musical-expression system. Here some aspects of this method will be discussed.

The typical start is an idea which is formulated as a tentative rule in the computer. Then this
rule is applied to a music example so that the result can be evaluated by listening. This offers an
immediate feedback, often suggesting further modifications. The process is then repeated until a
satisfactory performance is obtained. Thus in a sense the system acts as a student acquiring some
basic knowledge of music interpretation from an expert teacher.

One requirement of this method is that everything must be quantified. A typical observation has
been that the exact quantity of each parameter is crucial for a good performance. In determining the
dependence of a rule on a certain parameter, such as note duration, it is generally helpful to find two
extremes and then to interpolate linearly between them. If this does not yield an appropriate result a
different function, e. g., a power function can be tried. In this way we can successively improve the
rule step by step.

Let us consider an exclusive use of the analysis-by-synthesis method to detect its advantages and
disadvantages as compared to a strict analysis-by-measurement method.

One advantage is that the perception of the music is directly used in the development of the rules,
similar to how a musician also act as listener while playing, and use this information as a feedback,
see Fig. 3.13. In analysis-by-measurement, the listener’s viewpoint, or rather the perception of the
music, is not incorporated in the same direct sense.

Figure 3.13: From score to listener: the rule transformation and the analysis-by-synthesis loop.

Another advantage is that the general validity of the hypotheses can directly be tested by applying
it to other music examples and that the feedback loop is very short between stating the hypothesis and
evaluating the results.

A disadvantage is that conclusions are based on the expertise of just a few people. It raises very
high demands on the experts that they are competent, consistent, able to focus on a certain aspect of
the performance and that they are sensitive also to small deviations. Another disadvantage is that the
parameters in the rules can in some cases be chosen rather arbitrarily.

For these reasons the current system was not based solely on the analysis-by-synthesis method
but also on analysis-by-measurement. This is probably quite essential in performance research. Con-
versely it is quite important to complement the analysis-by-measurement method by listening tests
where the deduced principles are applied to synthetic performances.

3.8.4 Generative rules

The purpose of the rules is to convert the written score complemented with cords symbols and phrase
markers, to a musically acceptable performance.
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Whenever possible, the resulting deviations computed from the rules are additive. This means that
each tone may be processed by several rules, and the deviations made from each rule will be added
successively to the parameters of that tone. Most of the rules include the quantity parameter k. This
parameter is used to alter the quantity of the manipulation induced by the rule. The default value is
k = 1. This value is appropriate when all rules are applied. when a rule is used in isolation, slightly
higher settings of k can be necessary to produce audible changes. Different settings of k can be used
to generate different performances of the same melody.

A rule is expressed as

if (condition)
then (action)

where action normally compute a deviation of some parameter.
The rules can be grouped according to the purposes which they apparently have in music com-

munication. Three major principles can be identified: differentiation of categories and grouping. The
grouping rules mark which tones belong together and where the structural boundaries are. The dif-
ferentiation rules increase the differences between tone categories such as pitch classes, intervals, and
note values. The emphasis rules emphasise unexpected notes.

All rules are not intended to be used simultaneously. Some of the rules are partly overlapping, as
explained below where each rule is discussed. The concept is that the user of the rules may act as a
meta-performer where different performances can be realized by selecting rules and rule quantities.
The default value of the quantity is k = 1. This was developed when many rules were applied
simultaneously. When fewer rules are applied higher quantities may be used.

Examples of differentiation rules are:

Double-duration Decreases the IOI contrast for two adjacent notes having the nominal IOI ratio 2 :
1, e.g., a quarter note followed by an eighth note.

Duration-contrast Long notes are lengthened and short note shortened; i.e., comparatively short
notes are shortened and softened, while comparatively long notes are lengthened and made
louder (see fig. 3.14 ).

Figure 3.14: Example of Duration Contrast rule k = 2.2: Theme from First movement of Quartet in
F major for strings, Op 74:2.

Example of emphasis rules is:
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Melodic-charge Increases loudness and IOI of notes far away from the root of the current chord
along the circle of fifths. The rule is not applicable in atonal music. An analysis of harmony
must be provided in the score. Melodic and harmonic charge, as defined below, belong to the
same category but are applied on different levels. The idea is to put emphasis on unusual events
on the assumption that these events are less obvious, have more tension and are more unstable.
The melodic charge Cmel value is defined as a value reflecting the note’s distance on the circle
of fifths to the root of the current underlying chord. The value of Cmel is largely a distance
measure on the circle of fifths with the exception that there is more weight on the subdominant
side (see table 3.1). Note that melodic charge is not associated with any particular scale since it
is the same in both major and minor tonality.

Table 3.1: Melodic charge Cmel for the various scale tones in a C major or minor scale.
Tone C G D A E B F# D Ab Eb Bb F
Cmel 0 1 2 3 4 5 6 6.5 5.5 4.5 3.5 2.5

Examples of grouping rules at microlevel are:

Faster-uphill Decreases IOI of notes in uphill motion of melody. This rule makes the notes ”aim”
towards the target note, that is, the top note.

Leap-tone-duration The first note in an ascending melodic leap is shortened and the second note
lengthened if the preceding and succeeding intervals are by step (less than a minor third). In a
descending leap the first note is lengthened and the second shortened. The amount in ms is only
dependent on the interval size of the leap (unaffected by the duration). This rule is typically
effective in a romantic context with rather long note values.

Figure 3.15: Example of harmonic Charge rule k = 2.5: F Schubert, Second theme from the First
movement of Symphony in b minor, Unfinished

Examples of grouping rules at macrolevel are:

Harmonic-charge Produces rallentando and crescendo when a chord harmonically remote from the
current key is approaching and vice versa. Just as with the scale tones, the harmonies in tradi-
tional Western tonal music are not equal: there are trivial chord and fantastic chords. Harmonic
charge is a concept reflecting the remarkableness of chord in its harmonic context. It is a
weighted sum of the chord tones’ melodic charges, using the root of the main chord of the key,
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i. e. the root of the tonic as the reference. This rule marks the distance (related to the distance
on the circle of fifths) of the current chord to the root of the current key. Sound level, duration
and vibrato frequency are increased in proportion to the harmonic charge value. The increases
and decreases of these parameters are gradual with linear interpolation between chord changes
(see fig. 3.15). This rule is not applicable in atonal music. An analysis of harmony must be
provided in the score. In the case of a temporary new tonal region within a piece, the tonic
in the analysis can stay the same since the rule in general works in the intended way in tonal
regions close to the original tonic. This also has the advantage that the problem of treating the
change of tonic in an overlap region is avoided. One uncertain part of this rule is the chord
analysis. In general this can be done on several levels of detail and usually there are also chords
which can be analyzed in different ways. The level of the chord analysis in this rule should be
on structurally important chords with the exclusion of passing chords.

Phrase-arch Each phrase is performed with an arch-like tempo curve: starting slow, faster in the
middle, and ritardando towards the end according to a set of adjustable parameters. The sound
level is coupled so that a slow tempo is associated with a low sound level. Phrase boundaries
must be marked in the score. The motivation is that music has a hierarchical structure, so that
small units, such as melodical gestures, join to form sub-phrases, which join to form phrases
etc. When musicians play, they mark the endings of these tone groups.

The way in which it affects the performance can be varied by several additional parameters, for
example the hierarchical phrase-level, the amount of lengthening of the last note in each phrase,
the position of the turning point. This rule is rather sensitive to musical style and personal
taste. In romantic music the amount can be rather large while in Baroque music, for instance,
it has to be much lower. There is a large variation seen in measurements of the same piece
played by different performers or different pieces played by the same performer. In fig. 3.16 an
example is presented of phrase arch applied to F Mendelson, Aria n. 18 from ”St. Paul”, Op.
36. In this example two other rules are applied: Durational contrast, increasing or decreasing
the duration contrasts between note values. In this example the last mentioned alternative have
been selected. Punctuation, inserting micropauses after melodic gestures.

Punctuation Automatically locates small tone groups and marks them with a lengthening of the last
note and a following micropause. This is an attempt to automatically, from the score, identify
the musical gestures and transform them to the performance, by inserting a comma realized in
term of a micropause at the boundary. These gestures are melodic units consisting of 1 and
up to approximately 5-8 tones. The gesture analysis is roughly analogous to grouping analysis
at the lowest hierarchical level of the Lerdhal Jackendorf theory (1983), although it includes
also the lowest group level which may consist of one single tone. The purpose of Punctuation
rule is to find tone units at the end of which it is appropriate to insert a micropause, with the
aim of signalling a separation of the different parts of the musical phrase. The punctuation is
mostly bottom-up, operating on contexts comprising a maximum of five notes that potentially
surround the comma. This rule is composed by a set of 14 finder or eliminator sub-rules. Finder
rules mark potential positions of boundary between musical gesture. Eliminator rules indicate
positions where boundary markers should not appear. The finder rules use weight values to
estimate the importance of the inserted boundary mark. Intervals between adjacent tones will
be referred to as steps, and larger intervals as leaps. When a note has received a comma mark,
this implies that the comma appears at the end of this note.

The main principles for the finder rules are:
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Figure 3.16: Example of Phrase Arch rule: F Mendelsohn, Aria n. 18 from St. Paul, Op. 36. (above)
only Duration Contrast and Punctuation; (below) Duration Contrast, Punctuation plus Phrase Arch
k = 1.5

• in melodic leap, with different weights for different contexts,

• after longest of five notes,

• after appoggiatura

• before a note surrounded by longer notes

• after a note followed by two or more shorter notes of equal duration

The eliminator rules remove marks or reduce weights in this cases

• after very short notes

• in a melodic step motion

• when several duration rules interact

• at two adjoining marks in a tone repetition

A real boundary is assumed to exist if the sum of the weights in that position exceeds a certain
percentage of the total average of inserted weight values. These boundary marks are introduced
in the performance by transforming them in micropauses plus lengthening of the previous tone.
The duration of the micropause and of the lengthening are proportional to the preceding note
duration. The weight values are not taken into account in this translation.
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Final Retard introduces a ritardando at the end of the piece similar to a stopping runner. The tempo
at the end of the piece is decreased according to a square-root function of nominal time (or score
position)

Figure 3.17: Example of Final Retard rule: J S Bach, Invention for two voices, F major, BWV 779.
(above) only Punctuation; (below) Punctuation plus Final Retard k = 1.3

3.8.5 Macro-Rules for Emotional Expressive Performance

Gabrielsson (1994, 1995) and Juslin (1997a, 1997c) proposed a list of expressive cues that seemed
characteristic of each of the emotions fear, anger, happiness, sadness, solemnity, and tenderness (see
Table 1). The cues, described in qualitative terms, concern tempo, sound level, articulation (staccato/
legato), tone onsets and decays, timbre, IOI deviations, vibrato, and final ritardando. These descrip-
tions were used as a starting point for selecting rules and rule parameters that could model each
emotion. The cues were restricted to those possible on a keyboard instrument, therefore eliminating
the cues of tone onset and decay, timbre, and vibrato, although these do belong to the Gabrielsson
and Juslin list of characteristic cues. The method used was analysis by synthesis After trying several
musical examples, a consensus was obtained, resulting in a macro-rule (rule palette in DM) consisting
of a set of rules and parameters for each emotion. Each macro-rule could be applied with the same
parameters to each of the musical examples tried. The rules contained in a macro-rule are automati-
cally applied in sequence, one after the other, to the input music score. The effects produced by each
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rule are added to the effects produced by previous rules. For example in order to perform a piece
with Sadness the Tempo should be Slow, so Tone IOI is lengthened by 30%; Sound Level should be
moderate or loud, so Sound Level is decreased by 6 dB; Articulation should be played as Legato;
Time Deviations should be moderate, Duration Contrast rule is applied with k = 2 and Phrase Arch
rule is applied on phrase level and sub-phrase level; and Final Ritardando is applied.

Tables 3.2 to 3.6 show the cue profiles for fear, anger happyness, sadness and tenderness emotion,
as outlined by Gabrielsson and Juslin, and the rule setup used for synthesis with Director Musices
[from Bresin, 2001].

Table 3.2: Cue profiles and macro rules for fear emotion
Expressive Cue Gabrielsson and Juslin Macro-Rule in Director Musices
Tempo Irregular Tone IOI is lengthened by 80%
Sound Level Low Sound Level is decreased by 6 dB
Articulation Mostly staccato or non-legato Duration Contrast Articulation rule
Time Deviations Large Duration Contrast rule

Structural reorganizations Punctuation rule
Final acceleration (sometimes) Phrase Arch rule applied on phrase level

Phrase Arch rule applied on sub-phrase level
Final Ritardando

Table 3.3: Cue profiles and macro rules for anger emotion
Expressive Cue Gabrielsson and Juslin Macro-Rule in Director Musices
Tempo Very rapid Tone IOI is shortened by 15%
Sound Level Loud Sound Level is increased by 8 dB
Articulation Mostly non-legato Duration Contrast Articulation rule
Time Deviations Moderate Duration Contrast rule

Structural reorganization Punctuation rule
Increased contrast between Phrase Arch rule applied on phrase level
long and short notes Phrase Arch rule applied on sub-phrase level

Table 3.4: Cue profiles and macro rules for happyness emotion
Expressive Cue Gabrielsson and Juslin Macro-Rule in Director Musices
Tempo Fast Tone IOI is shortened by 20%
Sound Level Moderate or loud Sound Level is increased by 3 dB

High Loud rule
Articulation Airy Duration Contrast Articulation rule
Time Deviations Moderate Duration Contrast rule

Punctuation rule
Final Ritardando rule
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Table 3.5: Cue profiles and macro rules for sadness emotion
Expressive Cue Gabrielsson and Juslin Macro-Rule in Director Musices
Tempo Fast Tone IOI is lengthened by 20%
Sound Level Moderate or loud Sound Level is decreased by 3 dB
Articulation Legato Duration Contrast rule
Time Deviations Moderate Duration Contrast rule

Phrase Arch rule applied on phrase level
Phrase Arch rule applied on sub-phrase level

Final Ritardando Yes Obtained from the Phrase rule with the next parameter

Table 3.6: Cue profiles and macro rules for tenderness emotion
Expressive Cue Gabrielsson and Juslin Macro-Rule in Director Musices
Tempo Slow Tone IOI is lengthened by 30%
Sound Level Mostly low Sound Level is decreased by 6 dB
Articulation Legato Duration Contrast rule
Time Deviations Diminished constrast Duration Contrast rule
Final Ritardando Yes Final Ritardando rule
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3.9 Modeling expressive intention in music performance: the Caro sys-
tem

A musical interpretation is often the result of a wide range of requirements on expressiveness render-
ing and technical skills. The understanding of why certain choices are, often unconsciously, preferred
to others by the musician, is a problem related to cultural aspects and is beyond the scope of this
work. However, it is still possible to extrapolate significant relations between some aspects of the
musical language and a class of systematic deviations. For our purposes it is sufficient to introduce
two sources of expression.

• The first one deals with aspects of musical structures such as phrasing, hierarchical structure of
phrase, harmonic structure and so on.

• The second one involves those aspects that are referred to with the term expressive intention, and
that relate to the communication of moods and feelings. In order to emphasize some elements
of the music structure (i.e. phrases, accents, etc.), the musician changes his performance by
means of expressive patterns as crescendo, decrescendo, sforzando, rallentando, etc., otherwise
the performance would not sound musical.

Many works analyzed the relation or, more correctly, the possible relations between music structure
and expressive patterns.

Let us call neutral performance a human performance played without any specific expressive
intention, in a scholastic way and without any artistic aim. Our model is based on the hypothesis that
when we ask a musician to play in accordance with a particular expressive intention, he acts on the
available freedom degrees, without destroying the relation between music structure and expressive
patterns. Already in the neutral performance, the performer introduces a phrasing that translates into
time and intensity deviations respecting the music structure. In fact, our studies demonstrate that by
suitably modifying the systematic deviations introduced by the musician in the neutral performance,
the general characteristics of the phrasing are retained (thus keeping the musical meaning of the piece),
and different expressive intentions can be conveyed.

The purpose of this research is to control in an automatic way the expressive content of a neutral
(pre-recorded) performance. The model adds an expressive intention to a neutral performance in order
to communicate different moods, without destroying the musical structure of the score. The functional
structure of the system used as a test bed for this research is shown in Fig. 3.18.

In multimedia systems, musical performance are normally stored as MIDI score or audio signal.
The MIDI (Musical Instrument Digital Interface) protocol allows electronic devices to interact and
work in synchronization with other MIDI compatible devices. It does not send the actual musical
note, but the information about the note. It can send messages to synthesizers telling it to change
sounds, master volume, modulation devices, which note was depressed, and even how long to sustain
the note. Our approach can deal with a melody in both representations. The input of the expressiveness
model is composed by a description of a neutral musical performance, and a control on the expressive
intention desired by the user. The expressiveness model acts on the symbolic level, computing the
deviations of all musical cues involved in the transformation. The rendering can be done by a MIDI
synthesizer and/or driving the audio processing engine. The audio processing engine performs the
transformations on the pre-recorded audio in order to realize the symbolic variations computed by the
model. The system allows the user to interactively change the expressive intention of a performance
by specifying its own preferences through a graphical interface.
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Figure 3.18: Scheme of the system. The input of the expressiveness model is composed by a musical
score and a description of a neutral musical performance. Depending on the expressive intention
desired by the user, the expressiveness model acts on the symbolic level, computing the deviations
of all musical cues involved in the transformation. The rendering can be done by a MIDI synthesizer
and/or driving the audio processing engine. The audio processing engine performs the transformations
on the pre-recorded audio in order to realize the symbolic variations computed by the model.

3.9.1 Multi-level representation

To process expressively a performance, a multi-level representation of musical information is em-
ployed. It is composed of the three level seen previously in sect. 3.4.2.1 for musical event representa-
tion for performance modeling. Two more higher level are added (Fig. 3.19).

• At the sound model level (second level) the time-frequency (TF) representation is used. The
specific TF representation adopted here relies on the well known sinusoidal model of the signal,
which has been previously used in the field of musical signal processing with convincing results,
and for which a software tool is freely available (SMS). The analysis algorithm acts on win-
dowed portions (here called frames) of the signal, and produces a time-varying representation as
sum of sinusoids (here called partials), which frequencies, amplitudes, and phases, slowly vary
over time. Thus, the i-th frame of the sinusoidal modeling is a set {(fh(i), ah(i), φh(i))}H

h=1

of triples of frequency, amplitude and phase parameters describing each partial. H , the number
of partials, is taken high enough to provide the maximum needed bandwidth. The noisy (or
stochastic) part of the sound, i.e. the difference between the original signal and the sinusoidal
reconstruction, is sometimes modeled as an AR stochastic process. However, we will not con-
sider this component here, and we use the sinusoidal signal representation to model string- and
wind-like, non percussive, musical instruments. Looking at the time-frequency representation,
Fig. 3.20, the signal appears extremely rich in micro-variations, which are responsible for the
aliveness and naturalness of the sound.

• The third level represents the knowledge on the musical performance as events. The parameters
used to represent events (third level) P (n) (from now on, P-parameters) that will be modified
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Figure 3.19: Multi-level representation for expressive intention modelling.
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Figure 3.20: Time-frequency representation of a violin tone: frequencies and amplitudes (only 20
partials are shown).

by the model are L(n), IOI(n) and the timbre related parameters key velocity for MIDI per-
formance or I(n), BR(n), AD(n) and EC(n) for audio performance. They are summarized
in Table 3.7.

• The fourth level represents the internal parameters of the expressiveness model. We will use, as
expressive representation, a couple of values E = {k,m} for every P-parameter. The meaning
of these values will be explained in the next subsection.

• The last level is the control space (i.e the user interface), which controls, at an abstract level, the
expressive content and the interaction between the user and the audio object of the multimedia
product.
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Table 3.7: P-parameters at the third level representation
FR(n) pitch value
O(n) onset time
DR(n) duration
IOI(n) inter onset interval
L(n) legato
I(n) intensity
BR(n) brightness
AD(n) attack duration
EC(n) envelope centroid

Figure 3.21: Interpretation of the expressive parameters k and m.

3.9.2 The expressiveness model

The model is based on the hypothesis, introduced in Section 3.9, that different expressive intentions
can be obtained by suitable modifications of a neutral performance. The transformations realized by
the model should satisfy some conditions: 1) they have to maintain the relation between structure and
expressive patterns, and 2) they should introduce as few parameters as possible to keep the model
simple. In order to represent the main characteristics of the performances, we used only two trans-
formations: shift and range expansion/compression. Different strategies were tested. Good results
were obtained by a linear instantaneous mapping that, for every P-parameter and a given expressive
intention e, is formally represented by the equation:

Pe(n) = keP 0 + me

(

P0(n) − P 0

)

(3.13)

where Pe(n) is the estimated profile of the performance related to expressive intention e, P0(n) is
the value of the P-parameter of the n-th note of the neutral performance, P 0 is the mean of the
profile P0(n) computed over the entire vector, ke and me are respectively the coefficients of shift
and expansion/compression related to expressive intention. We verified that these parameters are very
robust in the modification of expressive intentions. Thus, Eq. (3.13) can be generalized to obtain, for
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every P-parameter, a morphing among different expressive intentions as:

P (n) = k(x, y)P 0 + m(x, y)
(

P0(n) − P 0

)

(3.14)

This equation relates every P-parameter with a generic expressive intention represented by the expres-
sive parameters k and m that constitute the fourth level representation and that can be put in relation
to the position (x, y) of the control space.

3.9.3 The control space

The control space level controls the expressive content and the interaction between the user and the
final audio performance. In order to realize a morphing among different expressive intentions we de-
veloped an abstract control space, called perceptual parametric space (PPS), that is a two-dimensional
space derived by multidimensional analysis (Principal Component Analysis) of perceptual tests on
various professionally performed pieces ranging from western classical to popular music. This space
reflects how the musical performances are organized in the listener’s mind. It was found that the axes
of PPS are correlated to acoustical and musical values perceived by the listeners themselves. To tie
the fifth level to the underlying ones, we make the hypothesis that a linear relation exists between the
PPS axes and every couple of expressive parameters {k,m}:

k(x, y) = ak,0 + ak,1x + ak,2y
m(x, y) = am,0 + am,1x + am,2y

(3.15)

where x and y are the coordinates of the PPS.

3.9.4 Parameter estimation

Figure 3.22: Computation of the parameters of the model.

Event, expressive and the control levels are related by equations 3.13 and 3.15. We will now get
into the estimation process of the model parameters (see Fig. 3.22); more details about the relation
between x, y and audio and musical values will be given in Sec. 3.9.5.

The estimation is based on a set of musical performances, each characterized by a different ex-
pressive intention. Such recordings are made by asking a professional musician to perform the same
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musical piece, each time being inspired by a different expressive intention (see in Sec. 3.9.5 for de-
tails). Moreover, a neutral version of the same piece is recorded. Recordings are first judged by a
group of listeners, who assign different scores to the performances with respect to a scoring table in
which the selectable intentions are reported for more details). Results are then processed by a fac-
tor analysis. In our case, this analysis allowed to recognize two principal axes explaining at least
the 75% of the total variance. The choice of only two principal factors, instead than three or four,
is not mandatory. However, this choice results in a good compromise between the completeness of
the model and the compactness of the parameter control space (PPS). The visual interface, being the
two-dimensional control space, is effective and easy to realize. Every performance can be projected
in the PPS by using its factor loading as x and y coordinates. Let’s call (xe, ye) the coordinates of the
performance e in the PPS. Table 3.9 in Section 3.9.5 shows the factor loadings obtained from factor
analysis. These factor loadings are assumed as coordinates of the expressive performances in the PPS.

An acoustical analysis is then carried out on the expressive performances, in order to measure the
deviations’ profiles of the P-parameters. For each expressive intention, the profiles are used to perform
a linear regression with respect to the corresponding profiles evaluated in the neutral performance, in
order to obtain ke and me in the model in eq. 3.13. The result is a set of expressive parameters E, for
each expressive intention and each of the P-parameters. Given xe, ye and ke, me estimated as above,
for every P-parameter the corresponding coefficients ak,i and am,i (i = 1, 2, 3) of equation 3.15 are
estimated by multiple linear regression, over expressive intentions.

Up to this point, the schema of Fig. 3.3 has been covered bottom-up, computing the model pa-
rameters from a set of sample performances. Therefore, it is possible to change the expressiveness of
the neutral performance by selecting an arbitrary point in the PPS, and computing the deviations of
the low-level acoustical parameters. Let us call xp and yp the coordinates of a (possibly time varying)
point in the PPS. From eq. 3.15, for every P-parameter, k(x, y) and m(x, y) values are computed.
Then, using equation 3.14, the profiles of event-layer cues are obtained. These profiles are used for
the MIDI synthesis and as input to the post-processing engine acting at levels one and two, according
to the description in the next section.

3.9.5 Results and Applications

We applied the proposed methodology on a variety of digitally recorded monophonic melodies from
classic and popular music pieces. Professional musicians were asked to perform excerpts from various
musical scores, inspired by the following adjectives: light, heavy, soft, hard, bright, and dark. The
neutral performance was also added and used as a reference in the acoustic analysis of the various
interpretations. Un-coded adjectives in the musical field were deliberately chosen to give the per-
former the greatest possible freedom of expression. The recordings were carried out in three sessions,
each session consisting of the seven different interpretations. The musician then chose the perfor-
mances that, in his opinion, best corresponded to the proposed adjectives. This procedure is intended
to minimize the influence that the order of execution might have on the performer. The performances
were recorded at the CSC-DEI of Padua University in monophonic digital format at 16 bits and 44.1
kHz. In total, twelve score were considered, played with different instruments (violin, clarinet, piano,
flute, voice, saxophone) and by various musicians (up to five for each melody). Only short melodies
(between 10 and 20 seconds) were selected, allowing us to assume that the underlying process is
stationary (the musician doesn’t change the expressive content in a so short time window).

Semi-automatic acoustic analyses where then performed in order to estimate the expressive time-
and timbre-related cues IOI, L, AD, I, EC, BR. Figure 3.23 shows the time evolution of one of the
considered cues, the intensity level I, normalized in respect to maximum Key Velocity, for the neutral
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Table 3.8: Expressive parameters estimated from performances of Mozart’s sonata K545

IOI L AD I EC BR
k m k m k m k m k m k m

Bright 0.87 0.98 0.68 0.95 0.76 0.96 1.07 1.06 0.90 0.79 1.13 0.80
Dark 1.05 1.01 1.09 1.02 0.93 1.12 0.87 1.05 1.12 1.06 0.67 0.72
Hard 0.95 0.86 0.92 1.06 0.73 0.84 1.06 0.76 0.98 1.04 1.17 0.96
Soft 1.03 1.08 1.43 0.89 1.06 1.02 0.92 1.03 1.18 1.11 0.74 1.05

Heavy 1.16 0.91 1.35 0.98 0.97 1.05 1.06 0.70 0.98 1.06 1.10 0.99
Light 0.90 0.96 0.79 1.12 1.13 1.10 0.97 1.12 0.84 0.84 0.82 1.03

performance of an excerpt of Mozart’s sonata K545 (piano solo). The score was shown in fig. 3.2.

Figure 3.23: Analysis: normalized intensity level of neutral performance of Mozart’s sonata K545.

Table 3.8 reports the values of the k and m parameters computed for the Mozart’s sonata K545,
using the procedure described in Section 3.9.4. For example, it can be noticed that the k-value of the
Legato (L) parameter is important for distinguishing hard (k = 0,92 means quite staccato) and soft (k
= 1,43 means very legato) expressive intentions; considering the Intensity (I) parameter, heavy and
bright have a very similar k-value, but a different m-value, that is in heavy each note is played with
a high Intensity (m = 0,70), on the contrary bright is played with a high variance of Intensity (m =
1,06).

The factor loadings obtained from factor analysis carried out on the results of the perceptual
test are shown in Table 3.9. These factor loadings are assumed as coordinates of the expressive
performances in the PPS. It can be noticed that factor 1 distinguishes bright (0.8) from dark (-0.8)
and heavy (-0.75), factor 2 differentiates hard (0.6) and heavy (0.5) from soft (-0.7) and light (-0.5).
From the data such as the ones in Table 3.8 and the positions in the PPS, the parameters of Eq. (3.15)
are estimated. Then the model of expressiveness can be used to change interactively the expressive
cues of the neutral performance by moving in the two-dimensional control space. The user is allowed
to draw any trajectory which fits his own feeling of the changing of expressiveness as time evolves,
morphing among expressive intentions (figure 3.24).



3.48 CHAPTER 3. MODELING EXPRESSIVENESS IN MUSIC PERFORMANCE

Table 3.9: Factor loadings are assumed as coordinates of the expressive performances in the PPS

Factor 1 Factor 2

Bright 0.8 0.1
Dark -0.8 0.28
Hard -0.4 0.6
Soft -0.35 -0.7

Heavy -0.75 0.5
Light 0.6 -0.5

Figure 3.24: Control: trajectories in the PPS space corresponding to different time-evolution of the
expressive intention of the performance. Solid line: the trajectory used on the Mozart’s theme; dashed
line: trajectory used on the Corelli’s theme.

As an example, Fig. 3.25 shows the effect of the control action described by the trajectory (solid
line) in Fig. 3.24 on the intensity level I (to be compared with the neutral intensity profile show in
Fig. 3.23). It can be seen how the intensity level varies according to the trajectory: for instance hard
and heavy intentions are played louder than the soft one. In fact, from the Table 3.8, the k values
are 1.06 (hard), 1.06 (heavy) and 0.92 (soft). On the other hand, we can observe a much wider range
of variation for light performance (m = 1.12) than for heavy performance (m = 0.70). The new
intensity level curve is used, in its turn, to control the audio processing engine in the final rendering
step.

As a further example, an excerpt from the Corelli’s sonata op. V is considered (Fig. 3.26). Figures
3.27, 3.28, show the energy envelope and the pitch contour of the original neutral, heavy and soft
performances (violin solo). The model is used to obtain a smooth transition from heavy to soft (dashed
trajectory in Fig. 3.24) by applying the appropriate transformations on the sinusoidal representation
of the neutral version. The result of this transformation is shown in Fig. 3.29. It can be noticed that
the energy envelope changes from high to low values, according to the original performances (heavy
and soft). The pitch contour shows the different behavior of the IOI parameter: the soft performance
(k = 1.03) is played faster than heavy performance (k = 1.16). This behaviour is preserved in our
synthesis example.

We developed an application, released as an applet, for the fruition of fairy-tales in a remote
multimedia environment. In these kinds of applications, an expressive identity can be assigned to
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Figure 3.25: Synthesis: normalized intensity level corresponding to the trajectory in Fig. 3.24.

Figure 3.26: Score of the theme of Corelli’s sonata op. V.

each character in the tale and to the different multimedia objects of the virtual environment (fig.
3.30). Starting from the storyboard of the tale, the different expressive intentions are located in a
control spaces defined for the specific contexts of the tale. By suitable interpolation of the expressive
parameters, the expressive content of audio is gradually modified in real time with respect to the
position and movements of the mouse pointer, using the model describe above.

This application allows a strong interaction between the user and the audio-visual events. More-
over, the possibility to have a smoothly varying musical comment, augments the user emotional in-
volvement, in comparison with the participation reachable using rigid concatenation of different sound
comments.

3.9.6 Conclusions

We presented a system to modify the expressive content of a recorded performance in a gradual way
both at symbolic and signal level. To this purpose our model applies a smooth morphing among
different expressive intentions in music performances, adapting the expressive character of the au-
dio/music/sound to the user desires. Morphing can be realized with a wide range of graduality (from
abrupt to very smooth), allowing to adapt the system to different situations. The analyses of many
performances allowed us to design a multi-level representation, robust with respect to morphing and
rendering of different expressive intentions. The sound rendering is obtained by interfacing the expres-
siveness model with a dedicated post-processing environment, which allows for the transformation of
the event cues. The processing is based on the organized control of basic audio effects. Among
the basic effects used, an original method for the spectral processing of audio is introduced. The
system provided interesting results for both the understanding and focusing of topics related to the
communication of expressiveness, and the evaluation of new paradigms of interaction in the fruition
of multimedia systems.
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Figure 3.27: Analysis: Energy envelope and pitch contour of neutral performance of Corelli’s sonata
op. V.
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Figure 3.28: Analysis: Energy envelope and pitch contour of heavy (a) and soft (b) performance of
Corelli’s sonata op. V.
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Figure 3.29: Synthesis (loop of the 16 notes excerpt): energy envelope and pitch contour of an expres-
sive morphing. The expressive intention changes smoothly from heavy to soft. The final rendering is
the result of the audio transformations controlled by the model and performed on the neutral perfor-
mance.

Figure 3.30: Once upon a time, an applet for the fruition of fairy-tales in a remote multimedia environ-
ment. Different expressive intentions are located in a control spaces defined for the specific contexts
of the tale and the expressive content of audio is gradually modified in real time according mouse
position.



3.52 CHAPTER 3. MODELING EXPRESSIVENESS IN MUSIC PERFORMANCE

3.10 Music and emotions

3.10.1 Introduction

In general in human communication, two channels can be distinguished: one transmits explicit mes-
sages, which may be about anything or nothing; the other transmits implicit messages about the hu-
mans themselves. A lot of research is conducted in understanding the first, explicit channel, but less
attention is paid to the second is not as well understood. Understanding the other party emotions is
one of the key tasks associated with the second, implicit channel. Aim of the psychology study of
music and emotion is understanding the mechanisms that intervene between music reaching a listener
and an emotion being perceived, or experienced, by that person as a result of hearing that music. Aim
of the scientific and technological study of music and emotion, is to develop models able to describe
such phenomena and systems for expression and emotion rendering and recognizing in multimodal
communication.

The importance of emotional expression in music communication and its powerful impact on the
listener has been recognized throughout history. It is a popular conception, sometimes true, that the
composer express his present feelings in his composition. It is more likely that he uses various struc-
tural factors for coding and transmitting intended expressions, not directly associated to his present
feeling. Moreover the listener usually judge perceived expression of composed music, as realized in
performance. Thus both the composed structure and the actual performance jointly contribute to ex-
pression communication. In this section, first the concept of emotion will be discussed; then we will
briefly review the main topics on emotion and musical structure, followed by a discussion of emotion
communication in music performance.

3.10.2 Approaches to conceptualizing emotion in psychology

The two theoretical traditions that have most strongly determined past research in this area are discrete
(also called categorical) and dimensional emotion theories.

Categorical approach The assumption of this approach is that people experiences emotions as cat-
egories that are distinct from each other. Theorists in this tradition propose the existence of a
small number, between 6 and 14, of basic or fundamental emotions that are characterized by
very specific response patterns. From these basic emotions, all other emotional states can be
derived. The focus is on characteristics that distinguish emotion from one another. There is a
reasonable agreement on five basic emotions: happiness, sadness, anger, fear, disgust, surprise.

A problem with this approach is that different researchers propose different sets of basic emo-
tions and the small number of primary basic emotions seems ill adapted to describe the ex-
traordinary richness of the emotional effects of music reported in both fictional and scientific
accounts.

Dimensional approach The use of two-dimensional valence-activation models has become very widespread
in the affective sciences and is well represented in research on emotional effects of music. This
approach has some obvious advantages. It is simple, easily understood by participants in exper-
iments, and highly reliable.

mainly on the characteristics that distinguish emotions from one another Focus

The focus of this approach is on identifying emotions based on their placement on a space
with a small number of dimensions. This space is derived from similarity judgments, analyzed
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using factor analysis or multidimensional scaling. Since the third dimension has been difficult
to establish reliably in an empirical fashion via factor analyses, emotions are often defined in
terms of a two-dimensional space.

The two major dimensions consist of the valence dimension (pleasant-unpleasant, agreeable-
disagreeable) and an activity dimension (active-passive) sometimes also called arousal dimen-
sion. If a third dimension is used, it often represents either power or control. The most used
representation is the Circumplex model of Russel (see fig. 3.31). It presents a circular struc-
ture with activation and valence dimensions. It organize emotions in term of affect appraisal
(pleasant - unpleasant) and physiological reaction (high - low arousal).

This approach provides a way of describing emotional states which is more tractable than using
words, but which can be translated into and out of verbal descriptions. Translation is possible
because emotion-related words can be understood, at least to a first approximation, as referring
to positions in activation-emotion space. Moreover this representation is useful for capturing
the continuous change in emotional expression during a piece of music.

Identifying the centre as a natural origin has several implications. Emotional strength can be
measured as the distance from the origin to a given point in activation-evaluation space. The
concept of a full-blown emotion can then be translated roughly as a state where emotional
strength has passed a certain limit. An interesting implication is that strong emotions are more
sharply distinct from each other than weaker emotions with the same emotional orientation.

Figure 3.31: Dimensional representation of emotions: the circumplex model of Russel (1980).

A problem with this approach is that specifying the quality of a feeling only in terms of va-
lence and activation does not allow a very high degree of differentiation - qualitatively rather
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different states can be close neighbours in valence-activation space (e.g., panic fear and hot
anger). This is particularly important in research on music, where one may expect a somewhat
reduced range of both the unpleasantness and the activation of the states produced by music. In
consequence, adopting a valence by activation approach, asking listeners to rate their state on
these two dimensions, may not allow a very fine-grained separation of the emotional effects of
different pieces of music.

Membership in a particular category is determined by resemblance to prototype exemplars

3.10.3 Sources of emotions in music

It is possible consider two primary sources of emotion in music, namely intrinsic and extrinsic sources.

Intrinsic Intrinsic sources are those that are non-arbitrarily embedded in structural characteristics
of the music and that contribute to the creation, maintenance, confirmation, or disruption of
schematic expectations. Musical events become more or less expected with reference to other
musical events or structures. Expectations may reflect learning or operate at the level of prim-
itive perceptual process, as gestalt laws of perception, where for example the movement in
a particular direction creates expectation for further movement in that direction (law of good
continuation).

Expectation may be created by the knowledge of (or exposition to) a large body of music,
sharing a set of structural regularities, as tonal music. Moreover specific musical style (e.g.
AABA song form) may create expectation. For example most compositional styles, as tonal
system, have stability points. Approaching these points, tension decrease (e.g. strong beats,
tonic); departures increase tension (e.g. weak beats, non-diatonic notes). On the other hand the
intrinsic sources do not explain why people experience different emotions listening to the same
piece.

Extrinsic. Extrinsic sources refers to causes that are not related to musical facts. Extrinsic sources
are of two kinds:

• iconic sources which come about through some formal resemblance between a musical
structure and some event or agent carrying emotional tone; E.g. motion, beauty, faith,
tension, human character, political conditions. The word iconic evidence that the resem-
blance of the musical event and the non-musical referent is obvious to anyone familiar
with the referent. Notice that this source is embedded in specific structural characteristic
of the piece. Changing these characteristics, also the iconic meaning changes.

• associative sources which are premised on arbitrary and contingent relationships between
the music being experienced and a range of non-musical factors, which also carry emo-
tional messages of their own. For example the well known effect: Darling, they are
playing our song.

In general it results that different sources interact in emotion communication.

3.10.4 Emotions and musical structure

There are different factors influencing the perceived emotional expression in music. When we listen
to music, we evaluate the expression of a musical piece, as actually realized by the performer. Thus



3.10. MUSIC AND EMOTIONS 3.55

we have a combination of factors deriving by the composer, and coded in the score, and by the per-
former. In this section the main factors related to the musical structure will be presented; the factors
deriving from musical performance will be presented in the next section 3.10.5. Notice that it different
the emotional expression perceived, and recognized, by a listener, from his own emotional reaction,
produced by the music.

The principal methods used by the researchers in studying expression in music are based on two
main paradigms.

• The first one uses real music and study the reported or measured perceived expression by the lis-
tener. This approach has good ecological validity, but has the drawback of a difficult separation
of possible causes.

• The second approach instead the researcher systematically varies one or more structural factors
(e.g. pitch, melodic contour) in short tone sequence without musical context. In this way it is
easier to separate the various factors, but ecological validity becomes problematic.

• A third strategy, trying to combine the two approaches, manipulates some structural factors (e.g.
tempo, rhythm, mode) in real pieces of music. In this way the musical context is maintained,
provided that the alterations do not hamper the musicality of the stimulus.

The listener evaluation of the stimuli is then analysed by multivariate techniques as factor analysis,
cluster analysis in order to find a limited number of descriptive dimensions, as seen for the dimen-
sional approach to emotion description (see section 3.10.1). The same different approaches in stimuli
selection is used also for the study of expression in music performance.

3.10.4.1 Effects of structural factor

The principal structural factors affecting emotional communication are here briefly summarized.

Tempo Tempo is considered the most important. Fast tempo is associated to activity/excitement,
happiness/joy, potency, surprise, anger, fear, while slow tempo to calmness, solemness, sadness,
tenderness, boredom, disgust. Tempo usually refers to perceived pulse rate. Perceived speed is
affected by note density, density of melodic or harmonic changes.

Mode Major mode is often associated to happiness/joy, graceful, serene, solemn, while minor mode
to sadness, dreamy, dignified, tension, disgust, anger.

Loudness Loud music is associated to intensity, power, tension, anger, joy, while soft music to soft-
ness, tenderness, sadness, solemnity, fear. Large variations are associated to fear, while small
variations to happiness, activity; rapid changes to playful, pleading, while few changes: sad-
ness, peace, dignity

Pitch High pitch: happy, serene, dreamy, exciting, surprise, potency, anger, fear, activity; while low
pitch: sad, dignity, vigorous; boredom pleasantness. Large variations: happiness, pleasantness,
activity, surprise; while small variations: disgust, anger, fear, boredom.

Melody • Melody range: Wide range: joy, whimsicality, uneasiness. Narrow range: das, digni-
fied, sentimental, tranquil, delicate, triumphant.

• Melodic direction (pitch contour): Ascending melody: dignity, serenity, tension, happi-
ness; fear, surprise, anger, potency. Descending melody: exciting, graceful, vigorous,
sadness.
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• Melodic motion: Stepwise motion: dullness. Intervallic leaps: excitement.

Harmony Simple, consonant harmony: happy, relaxed, graceful, serene, dreamy. Complex, disso-
nant harmony: excitement, tension, vigour, anger, sadness, unpleasantness.

Tonality Chromatic harmony: sad, angry. Tonal harmony: joyful, dull, peaceful. Atonal harmony:
angry.

Rhythm Regular/smooth rhythm: happiness, dignity, majesty, peace. Irregular/rough rhythm: amuse-
ment, uneasiness, anger. Varied rhythm: joy. Firm rhythm: sadness, dignity, vigour. Flow-
ing/fluent rhythm: happy, graceful, dreamy, serene

Timbre Tones with many harmonics: potency, anger, disgust, fear, activity, surprise. Tones with am-
plified higher harmonics: anger. Tones with few harmonics: pleasantness, boredom, happiness,
sadness. Tones with suppressed higher harmonics: tenderness, sadness. String instruments:
anger. Flute: peace.

Articulation Staccato: gaiety, energy, activity, fear, anger. Legato: sadness, tenderness, solemnity,
softness. Amplitude envelope: Sharp envelope: anger, happiness, surprise, activity; Round
envelope: tenderness, sadness, fear, disgust, boredom.

As a conclusion it can be noticed that Perceived emotional expression is a function of many factors,
often interacting among them, and it not easy to separate, in analysis their effect. Actually music
abounds of such kinds of interactions that make it so interesting to listen to. Expressive qualities
are also related to structural changes, and transitions are seldom investigated. Moreover most studies
are on western (classical or popular) music. Not much is known of non western or of contemporary
music. Nor the expression appreciation by different cultures. Connections with studies of emotional
expression in other areas, e.g. speech, body language would be very useful. Finally we can observe
that good composers succeed in communicating expression, without an explicit, rational knowledge
of how to code their message. Often their art is based on intuition and implicit knowledge. Thus, may
we learn from implicit or explicit knowledge of the composer?

3.10.5 Emotions and musical performance

The musical message is partially coded in the musical structure, as codified in the score. When we
listen to a piece of music, we are exposed to the contribution of both the composer and the performer.
When a performer plays a piece of music, he aims to communicate the musical structure and his in-
terpretation of the musical message. But he can add his own interpretation of the musical message as
discussed in section 3.3.3. Thus expression is communicated not only by the structure of the music,
but also by the way it is performed. The process can be schematized as in fig. 3.32. The performer
encodes his expressive intention in musical sound, by controlling some specific cues as tempo, loud-
ness, timbre, articulation etc.. The listener combines these cues to decode the expressive intention
and arrive to a reliable judgement. While some cues are related to how the sound is produced on the
instrument, they are also related to how the performer uses cues to communicate his expressive inten-
tion. The redundancy of the cues reduces the uncertainty of the judgement, partially compensating for
the fact that a single cue is used for different purposes.

In the following the main expressive cues used by performers to convey some specific emotional
(basic) expression are here summarized. The cues are related to tempo and timing, intensity, articula-
tion, timbre characteristics.
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Figure 3.32: Communication of the expressive intention of the performer.

Anger: fast tempo, small tempo variability, no ritardando, high intensity, staccato articulation, sharp
duration contrast, sharp timbre, spectral noise, abrupt tone attack, accents on unstable notes,
large vibrato extent

Sadness: slow tempo, large timing variations, final ritardando, low intensity, legato articulation, small
articulation variability, soft duration contrasts, dull timbre, slow time attacks, slow vibrato

Happyness: fast tempo, small tempo variability, small timing variations, high intensity, little intensity
variability, staccato, large articulation variability, bright timbre, fast tone attacks, sharp duration
contrasts

Fear: fast tempo, large tempo variability, staccato, very low intensity, large intensity variations, soft
spectrum, irregular vibrato

Tenderness: slow tempo, large timing articulations, final ritardando, low intensity, small intensity
variability, legato, soft duration contrasts, soft timbre, slow attacks, accents on stable notes.

By interpreting the positions of emotions in the valence activation dimensional space, it is pos-
sible to hypothesize that some cues have more influence on one dimension than the other. For ex-
ample, tempo, intensity and articulation seems to have more influence on activation (arousal) dimen-
sion, while timbre (possibly combined with intensity) seems to more influent on valence dimension.
Medium intensity and high frequency energy are associated to positive emotions, while extreme (low
or high) intensity level are associated to negative emotions.

It was studied also which cue is more effective in communicating the perceived expressiveness
of the performance. The single cue combination that was most expressive, according listeners, had
the following characteristics (in order of predictive strength): legato articulation, soft spectrum, slow
tempo, high intensity, slow attacks. It can be noticed that such combination is similar to the cues
that express tenderness and sadness. this seems to suggest that there is a close connection between
sadness/tenderness and expressiveness.

3.11 Commented bibliography

The affective computing approach is presented in [14] The KANSEI information processing approach
is presented in [8]

A good overview on musc performance research from a psychological point of view is presented
in [7] and [12]. A good example of analysis by measurement is [16]. Models based on machine
learning approach are used by Widmer (see e.g. [18] and later literature of OFAI group). Models
based on Case based reasoning were first proposed by Arcos and Manrtaras (see e.g. [1]).
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The most widespread computer environment for realizing live electronic music are the Max paradigm
based languages Max/MSP, jmax, and Pd (see e.g. [15]) (Puckette 1997, 2002) and Eyesweb platform
([4] ). Many new input devices for music expression have been proposed (see e.g. [13], Wanderley
and Orio 2002).

The dynamic model of musical expression was presented in [17]. KTH music performance rules
are described in detail in [6]. The Caro system is presented in [5]. The reference book on music and
emotion is [9].
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