Fundamentals of digital signal processing

Sound modeling

- sound
- symbols

aims

- analysis
- synthesis
- processing

classification:

- signal models
- source models
- abstract models

Digital signals

sampling interval T

sampling frequency f_s= 1/T

Digital signals: time representations

- 8000 samples
- 100 samples
- line with dots

integer
 e.g. -32768 .. 32767

normalized
 e.g. -1 .. (1-Q)
 Q = quantization step

Spectrum: analog vs. digital signal

sampling leads to a replication of the baseband spectrum

Spectrum: analog vs. digital signal

- Sampling leads to a replication of the analog signal spectrum
- Reconstruction of the analog signal:
 - Iow pass filtering the digital signal

Discrete Fourier Transform

$$X(k) = \mathrm{DFT}[x(n)] = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N} \quad k = 0, 1, \dots, N-1.$$

X=abs(fft(x,N))/N;

Magnitude

$$X(k)| = \sqrt{X_R^2(k) + X_I^2(k)}$$
 $k = 0, 1, ..., N-1$

$$arphi(k) = rctan rac{X_I(k)}{X_R(k)} \quad k=0,1,\ldots,N-1$$

7

Discrete Fourier Transform (example)

- FFT with 16 points
 - cosine (16 points)
 - magnitude (16 points)
 - normalization:
 0 dB for sinusoid ±1
 - magnitude (frequency points)
 - kf_s / N
 - step f_s/N

▶ magnitude dB vs. Hz $20 \log_{10} \left(\frac{X(k)}{N/2} \right)$

Inverse Discrete Fourier Transform (DFT)

$$x(n) = IDFT[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi nk/N}$$

if X(k) = X*(N-k) then IDFT gives N discrete-time real values x(n)

Frequency resolution

Zero padding: to increase frequency resolution

Window functions

Blackman window $w_B(n) = 0.42 - 0.5\cos(2\pi n/N) + 0.08(4\pi n/N)$

Window

Reduction of the leakage effect by window functions:

- (a) the original signal,
- (b) the Blackman window function of length N = 8,
- (c) product x(n)w(n) with $0 \le n \le N-i$,
- (d) zero-padding applied to z(n)w(n) up to length N = 16

The corresponding spectra are shown on the right side.

Digital systems

Definitions

Unit impulse

$$\delta(n) = \begin{cases} 1 & \text{for} \quad n = 0 \\ 0 & \text{for} \quad n \neq 0, \end{cases}$$

Impulse reponse h(n) = output to a unit impulse h(n) describes the digital sistem

Discrete convolution: y(n)=x(n)*h(n)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k) = x(n) * h(n),$$

y=conv(x,h)

Algorithms and signal graphs

Simple digital system

weighted sum over several input samples

Transforms

Frequency domain desciption of the digital system

- Z transform
- Discrete time Fourier transform

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(n) \cdot e^{-j\Omega n},$$

with $\Omega = \omega T = 2\pi f/f_s$

 $z \leftrightarrow$

Transfer function *H(z)*:
 Z transform of *h(n)*

$$H(z) = \sum_{n=-\infty}^{\infty} h(n) \cdot z^{-n}$$

 $X(z) = \sum_{n=1}^{\infty} x(n) \cdot z^{-n}$

Frequency response: Discrete time Fourier transform of h(n)

$$H(f) = \sum_{n=-\infty}^{\infty} h(n) \cdot e^{-j2\pi f/f_s n}$$

Causal and stable systems

- Causality: a discrete-time system is causal
 - if the output signal y(n) = 0 for n <0 for a given input signal u(n) = 0 for n <0.</p>
 - This means that the system cannot react to an input before the input is applied to the system
- Stability: a digital system is stable if

$$\sum_{n=-\infty}^{\infty} |h(n)| < M_2 < \infty$$

stability implies that transfer function *H(z)* and frequency response are related by $z \leftrightarrow e^{j\Omega}$

Signal	Z-transform	Discrete-time Fourier transform
x(n)	X(z)	$X(e^{j\Omega})$
x(n-M)	$z^{-M} \cdot X(z)$	$e^{-j\Omega M}\cdot X(e^{j\Omega})$
$\delta(n)$	1 ~-M	1
$\left \begin{array}{c} o(n-M) \\ x(n) \cdot e^{-j\Omega_0 n} \end{array}\right $	$X(e^{-j\Omega_0}\cdot z)$	$X(e^{j(\Omega-\Omega_0)})$

IIR systems

= system with infinte impulse response

e.g. second order IIR system

Difference equation

$$y(n) = x(n) - a_1y(n-1) - a_2y(n-2)$$

$$Y(z) = X(z) - a_1 z^{-1} Y(z) - a_2 z^{-2} Y(z)$$

X(z)

0-

Transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

y(n)

 $y(n-1) = x_{H1}(n)$

 $y(n-2) = x_{H2}(n)$

z-1

z⁻¹

-81

-82

Y(z)

 $X_{H1}(z)=z^{-1}Y(z)$

 $X_{H2}(z)=z^{-2}Y(z)$

z-1

z-1

-8-

-a2

FIR systems

= system with finite impulse response h(n)

e.g. second order FIR system

- Z transform of diff. eq.
- Transfer function

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$

$$Y(z) = b_0 X(z) + b_1 z^{-1} X(z) + b_2 z^{-2} X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + b_2 z^{-2}$$

Fir example

computation of frequency response

- impulse response
- magnitude resp.
- pole/zero plot
- phase resp.

