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7.1 Introduction: sounds, sources

It was 1971 when Hiller and Ruiz envisioned the possibility of using numerical simulations of the
wave equation for sound synthesis applications.

[. . . ] This is a completely new approach to electronic sound synthesis insofar as the starting point
is the physical description of the vibrating object [. . . ]

A decade later McIntyre, Schumacher, and Woodhouse published their classic study on the use of
non-linear maps for modeling the generation of self-sustained oscillations in musical instruments.

[. . . ] a fast minicomputer could produce results at a cycle rate in the audible range. The result
would perhaps have some novelty: an electronic musical instrument based on a mathematical
model of an acoustic instrument [. . . ]

Today the algorithms described by these authors can be easily implemented in real-time on general-
purpose hardware, and it is common practice to use the termphysical modelingto refer to sound
modeling techniques in which the synthesis algorithms are designed based on a description of the
physical phenomena involved in sound generation.

Direct sound representations, that are merely based on a description of the sound waveform, do
not contain information about the way the sound has been generated and processed by the surrounding
environment before arriving to the listener’s ear. Sampling in time the sound signal does not assume
any underlying structure, or process, or generative model, in sound representation. The symbolic de-
scription is extremely poor, and as a consequence very little interaction with the sound representations
is allowed. Although signal processing techniques can provide meaningful modifications (e.g. pitch
shift, time stretching), sampling is basically astatic, low-level description of sound.

7.1
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High level representations of sound signals are necessarily associated with some abstract para-
digms that underlie sound production. As we have seen previously, when trying to develop a taxon-
omy of sound synthesis methods a first distinction can be traced betweensignal modelsandsource
models. Any algorithm which is based on a description of the sound pressure signal and makes no
assumptions on the generation mechanisms belongs to the class of signal models. Additive synthesis
is a good example of a signal model: as already mentioned, one major drawback of this technique is
its enormous number of control parameters: at least one amplitude and one pitch envelopes have to be
specified for each partial. Moreover, the sound representation has not a strongsemanticinterpretation,
since these parameters do not have a high-level meaning. Subtractive synthesis with its source-filter
structure provides in a sense a more semantic description of sound: in certain cases the two blocks
can be given a physical interpretation in terms of an exciting action and a resonating object, respec-
tively. As an example, in the case of LPC based speech synthesis the broadband input signal can be
interpreted as a glottal source signal, and the shaping filter represents the action of the vocal tract.
However, in many other cases this interpretation does not hold, and the control parameters in the
model (e.g., the filter coefficients) do not have a high-level meaning.

Source models aim at describing the physical objects and interactions that have generated an
acoustic event rather than the acoustic signal itself. This modeling approach often gives rise to rather
complex descriptions, that can lead to computationally expensive numerical algorithms. Several mod-
eling paradigms and techniques are available in the literature for deriving efficient implementations
of such descriptions, including lumped/distributed modeling, waveguide structures, finite difference
methods, and so on. The following sections describe in detail a few of these approaches. Here it is
worth discussing another aspect, i.e. that of control. A direct consequence of assuming a source-based
approach is that the resulting control parameters have a straightforward physical interpretation: typ-
ical parameters in the models are associated with masses, hardness/softness characteristics, blowing
pressures, lengths: such a semantic representation can in principle allow more intuitive interaction.

7.2 Structures, functions, models

7.2.1 Functional blocks

7.2.1.1 Excitations and resonators

Musical oscillators are often strongly non-linear. A typical example is found in woodwind and brass
instruments, where self-sustained oscillations in an acoustical bore can only be explained in terms
of a non-linear, persistent excitation mechanism. More precisely, the valve (a single or double-reed,
or the player’s lips) at the bore termination acts as a non-linear element that injects energy into the
system. A very similar description holds for bowed string instruments, where the bow is the exciting
element. In other cases the instrument is non-linearly excited only for a limited amount of time: a
struck string or bar interacts with the hammer or mallet through a non-linear contact force. Values for
the contact time are typically a few milliseconds, and after this short excitation the system evolution
is linear. There are also examples where non-linearities are negligible: plucked string instruments can
be conveniently treated as linear systems (strings and instrument body), where the “pluck” is simply
described as a non-equilibrium initial condition (i.e., the pluck gives a string a non-zero displacement
distribution and a null velocity distribution).

In all of these cases, the musical instrument can be schematized by means of two main functional
blocks, as depicted in Fig.7.1. The resonatoris the part of the instrument where the oscillations
actually take place. Depending on the instrument, this can be the acoustical bore, the string, the bar.
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Figure 7.1:Exciter-resonator interaction scheme for a musical instrument (compare to Fig.7.2(b)).

It is therefore related to such sound attributes as pitch and spectral envelope, and in general tosound
quality. Theexcitercontrols the way energy is injected into the system, thus initiating and possibly
sustaining the oscillations. It relates to properties of the transient attack, which is known to have a
primary role in defining timbre andsound identity.

The interaction between blocks can be feedforward or feedback, depending on the instrument. Per-
sistently excited instruments –such as winds– are described by a feedback structure, while for plucked
string instruments a feedforward scheme can be assumed without significant loss in accuracy of the
description. A very simple yet striking demonstration of the effectiveness of the exciter/resonator
schematization is provided by mounting a clarinet mouthpiece on a flute.1 The bore boundary condi-
tions are changed from open-open to closed-open so that it plays one octave lower, and the resulting
instrument is perceived as a bad sounding clarinet. In other words, the excitation mechanism defines
sound identity (“it’s a clarinet”), the resonator merely controls sound quality (“it’s abadclarinet”).

Outlining such functional blocks helps the modeling process; each of them can, to a certain extent,
be modeled separately and with different representation strategies. Moreover, the block decomposition
can be refined, i.e. both the exciter and the resonator can be described by simpler and more elementary
constitutive elements. As an example, the resonating block of a wind instrument is made of a bore,
a number of tone holes and a radiating bell, and each of these can be described by their own models.
Both “white-box” and “black-box” approaches can be taken. The term white-box indicates that the
block is modeled by further decompositions in finer physical elements. The black-box approach
amounts to describe a given block according to its input-output behavior, without further assumptions
on its internal structure. As an example, the radiating bell in a wind instrument is often modeled using
a black-box approach: since the bell acts as a filtering element which reflects low frequencies and
radiates high frequencies pressure waves, the modeling problem reduces to filter design.

7.2.1.2 Analogies with speech synthesis

The functional blocks outlined so far can be defined even when we look at speech synthesis tech-
niques. Consider Linear Prediction Coefficients (LPC) synthesis: As already discussed before, the
assumption underlying this method is that the phonatory system can be schematized as a feedforward
source-filter model, as depicted in Fig.7.2(a). According to such a schematization, the source block

1The author has enjoyed a live demonstration with such a “flarinet”, performed by Joe Wolfe while giving a seminar in
Venice, 2000.
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Figure 7.2:Speech synthesizers; (a) feedforward source-filter block scheme associated to LPC based
speech synthesis, (b) block scheme of an articulatory speech synthesizer (compare to Fig.7.1).

represents the airflow at the glottis, while the linear filter accounts for the combined effects of the
vocal (and possibly nasal) tract and lip radiation.

Under this interpretation, LPC synthesis is to a certain extent a physically-based technique, since
the main blocks depicted in Fig.7.2(a) can be given a physical and physiological interpretation. How-
ever its major assumption, i.e. a feedforward interaction between glottal source and vocal tract, holds
only as a first order approximation and is imprecise. In a real phonatory system, the vocal tract
behaves as an acoustical air column, thus providing feedback to the vocal source through its input
impedance. Detailed modeling has to take into account this acoustical interaction in order to allow for
more natural sounding output.

Speech synthesizers that are based on acoustical models are commonly referred to asarticulatory
synthesizers. Figure7.2(b) depicts a typical block scheme of an articulatory synthesizer. When com-
pared to the scheme in Fig.7.2(a), it appears to have a very similar structure. However in this case
the two main blocks interact in a feedback configuration. On the other hand, this scheme exhibits a
striking similarity to the exciter-resonator decomposition outlined above for musical instruments (see
Fig. 7.1). The modeling approaches adopted in articulatory speech synthesis are indeed very similar
to those used for musical instruments. The vocal tract is a non-uniform, time-varying resonator. As
a first approximation, it is described by its cross-sectional area functionA(x, t) (x being the position
along the tract).

Several approaches are possible for providing excitation signals to an articulatory vocal tract.



7.2. STRUCTURES, FUNCTIONS, MODELS 7.5

Parametric models are one option. These fit a given glottal flow waveform using piecewise analytical
functions, and are therefore signal models. Alternatively, the vocal tract can be excited by a time
varying section that represents the glottis, and driving this additional section using synthesized or
measured glottal area signals. However a fully physical description has to account for the interaction
between the glottal source and the resonating vocal tract. Physical models exists that describe the
vocal folds by means of one or more masses and viscoelastic elements. Such lumped models can be
easily coupled to an articulatory vocal tract and give rise to “natural” interaction effects, that cannot
be obtained using simpler feedforward source-filter schemes.

7.2.2 Modeling approaches

As far as modeling paradigms are concerned, these are often grouped into two broad categories,
namely lumpedanddistributedmodels. Lumped models are used when a physical system can be
conveniently described in terms of ideal masses or rigid bodies, connected to each other with spring
and dampers, and possibly non-linear elements. The resulting systems are naturally described in the
time domain, in terms of Ordinary Differential Equations (ODEs).

Pressure-controlled valves, such as single, double or lip reeds, are typically described using the
lumped modeling paradigm. Indeed, these systems are quite complicated: a clarinet reed is a non
uniform bar clamped at one termination and free at the other one, and has many vibrational modes.
Similarly, a lip reed is made of non-homogeneous tissue and exhibits horizontal and vertical modes
of vibration. Nonetheless, these systems have been successfully modeled using lumped elements,
and it is widely accepted that such a simplified mechanical description captures the basic behavior
of pressure controlled valves. Similar remarks hold for hammers and mallets: during collision, they
are deformed and subject to internal losses and non-linear restoring forces. However, interactions
with strings and bars have been modeled and efficiently implemented in sound synthesis algorithms
by assuming the hammer/mallet to be a lumped mass and deriving empirically the corresponding
expression for the contact force.

Distributed models, as opposed to lumped ones, are more often used for describing vibrating bod-
ies or air volumes where forces and matter depend on both time and space. These bodies are not easily
decomposed into systems of discrete masses. One-, two- and three-dimensional resonators (such as
strings, bars, acoustical bores, membranes, plates, rooms, etc.) are usually treated as distributed sys-
tems and mathematically described by means of Partial Differential Equations (PDEs). Among the
sound synthesis community, however, the most popular approach for dealing with many distributed
systems iswaveguide modeling.

Section7.3 discusses waveguide models in detail. In its simplest form the method exploits the
existence of an analytical solution to the D’Alembert wave equation, which can be seen as a superpo-
sition of traveling waves (rigidly translating waveforms). Such a solution can be simulated in the dis-
crete space-temporal domain using delay lines, and the resulting numerical algorithms are extremely
efficient and accurate. Moreover, physical phenomena such as frequency dependent losses and dis-
persion can be included in the models by incorporating low-pass and all-pass filters in the delay line
scheme. Again, careful design of such filters allows for very accurate and relatively low-cost simu-
lations. Some sound synthesis algorithms based on the waveguide approach have been successfully
implemented on commercial integrated circuit.

Although waveguides are extremely successful in modeling nearly elastic mediums (where the
D’Alembert equation or some of its generalizations hold), they are not equally good in dealing with
systems where rigidity has a major role and bending forces are the main source of oscillation. As an
example, oscillations in a bar are governed by the so called Euler-Bernoulli equation. No analytical
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general solution is given for this fourth order PDE, and no traveling-waves schematization can be
assumed. In order to deal with such systems,finite differenceor finite elementsmethods are the
most suitable techniques. These time-domain techniques are sometimes referred to as “brute force”
methods, since they are based on direct discretization of the PDEs and have high computational costs.
On the other hand, when properly used they provide stable and very accurate numerical systems.

Other approaches are available, though less popular, for dealing with distributed systems: cellular
models decompose a resonating body into a multitude of interacting particles whose dynamics is
discretized and quantized, thus giving rise to a cellular automaton. In the early nineties, Cadoz and
his coworkers have introduced CORDIS-ANIMA systems, that describe vibrating bodies as a set of
interconnected mass-spring-damper cells. Extremely high computational costs are a major drawback
of this approach. Furthermore, no analytical tools are available for assessing stability properties of the
discretized systems.

7.3 Distributed models: the waveguide approach

This section introduces the basic concepts of waveguide modeling. Discussion is focused on one-
dimensional resonators. No attention is devoted here to higher dimensional waveguide structures.

7.3.1 The origins: the Karplus-Strong algorithm

We start this section on waveguide models with an example which is relevant from many viewpoints.
First, the Karplus-Strong (KS hereafter) sound synthesis algorithm is a famous one and deserves to
be studied. Second, it contains many of the basic elements that are needed to provide a clear picture
of what waveguide modeling is all about, and yet it is structurally simple enough to be discussed in a
limited amount of pages. Finally, from a historical perspective it can be regarded as the first prototype
of a waveguide approach: it is true that the original formulation of the algorithm did not contain
any physical interpretation. What is unquestionable, however, is that the KS algorithm is structurally
identical to the simplest waveguide models that we are going to examine in the next sections.

7.3.1.1 The comb filter

The basic computational structure underlying the KS algorithm is thecombfilter:

y(n) = x(n) + RLy(n− L), ⇒ H(z) =
1

1−RLz−L
(7.1)

The block structure of the filter is given in figure7.3(a). The poles ofH(z) are found fromzL = RL.
Therefore the filter hasL polesz = Rei2lπ/L for l = 0, . . . L− 1, equally spaced around the circle of
radius R. The corresponding frequency response is given is figure7.3(b). Note that the filter produces a
harmonic spectrum in which the frequency peaks are integer multiples of the “fundamental” frequency
ω0 = 2πFs/L rad.

M-7.1
Find the frequency response of the comb filter (7.1) and plot magnitude and phase responses for
various values of R and L.

Figure7.3(a) already provides us with an intuitive proto-physical interpretation: a perturbation
(a wave, as we shall see) propagates through a medium, is confined within a lengthL, bounces back
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Figure 7.3:A comb filter; (a) block scheme and (b) frequency response.

and forth due to some boundary conditions, has some energy dissipated at each bounce through the
coefficientRL. Note that if the sign of the wave is inverted at each reflection, the resulting filter
spectrum is affected:

y(n) = x(n)−RLy(n− L), ⇒ H(z) =
1

1 + RLz−L
(7.2)

In this case the poles arez = Rei(2l+1)π/L for l = 0, . . . L − 1. This means that the corresponding
frequency peaks have all been shifted by an angleπ/L with respect to the previous case: now the
frequency peaks areodd integer multiples of the “fundamental” frequencyω0 = πFs/L rad. Sec-
tion 7.3.5will show that choosing a sign or another corresponds to describing two different boundary
conditions (e.g., an open termination versus a closed termination in an acoustical bore).

7.3.1.2 Refining the structure

The above observations suggest that the comb structure (7.1) may be employed to synthesize harmonic
sounds, such as those produces by a plucked guitar string. However, in order to obtain something
convincing we still have to add some refinements to the structure. Specifically, what it is missing is a
mean to control the spectral tilt of the response and to account for different decay rates for the sound
partials. Figure7.4 shows the spectrogram of a guitar sound, from which a frequency-dependent
decay pattern can be clearly observed.

In order to account for such a frequency-dependent decay, one can insert a low-pass filterHlp

into the feedback loop, as shown in figure7.5(a): intuitively, at each passage the high-frequency
component are attenuated more strongly than low-frequencies component. The simplest low-pass
filter that can be employed is a1st order FIR:

y(n) =
1
2

[x(n) + x(n− 1)] ⇒ Hlp(z) =
1
2

[
1 + z−1

]
. (7.3)

The corresponding frequency response isHlp(ω) = cos(ω/2)e−iω/2, from which two remarks can be
made: first, the low-pass characteristics of this filter is easily recognized by noting that|Hlp(ω)| =



7.8 CHAPTER 7. SOUND MODELING: SOURCE-BASED APPROACHES

t (s)

f (
H

z)

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 7.4:. Spectrogram of a plucked A2 guitar string. Note the harmonic structure and the decay
rates, which increases with increasing frequency.

cos(ω/2). Second, the filter phase shows thatHlp introduces an additional half-sample delay in
the loop. As a consequence, the fundamental frequency generated by this structure is nowω0 =
2πFs/(L + 1/2) rad. Moreover, a closer analysis would also show that the upper partials are not
anymore integer multiples ofω0 = 2πFs/(L + 1/2), due to the insertion ofHlp in the loop. These
deviations are however very small, especially for the lower partials and for values ofR that are close
to 1. Figure7.5(a) shows the frequency response of the comb structure after the insertion ofHlp: the
(small) deviations from the harmonic series can also be noticed from this plot.

M-7.2
Find the frequency response of the low-pass filter (7.3). Then find the response of the complete
system given in figure 7.5 and plot magnitude and phase responses for various values of R and L.

The structure depicted so far is the core of the KS algorithm. On final remark concerns the
initial conditions (filter state) to be imposed in order to obtain satisfactory sound output. The choice
originally suggested by Karplus and Strong is that of a random initial excitation: although this choice
has hardly any physical interpretation,2 it has the benefit of providing significant initial excitation in
the high-frequency region, with a consequent perceptual effect of an initial noisy transient followed
by a harmonic steady-state signal.

M-7.3
Implement the KS algorithm: using the structure given in figure 7.5 and the filter found in M-7.2,
write an audio cycle in which the filter is initialized with random excitation and evolves freely. Plot
the signal and its spectrogram.

7.3.2 One-dimensional wave propagation

In order to provide a physical interpretation to the KS algorithm, and to fully understand the waveg-
uide approach, we need to review some fundamentals of sound wave propagation in an idealelastic
medium. Vibrational phenomena in such a medium are described by the D’Alembert equation, whose

2It would be like imposing initial random displacements to points of a string, as we shall see in the next sections.
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Figure 7.5: Insertion of a low-pass element into the comb structure; (a) block scheme and (b) fre-
quency response (the triangles mark the harmonic serieslπ/L, l ∈ N).

one-dimensional version is written as

∂2y

∂x2
(x, t) =

1
c2

∂2y

∂t2
(x, t). (7.4)

This equation holds, for instance, in an ideal string of lengthL, linear mass densityµ and tensionT .
In this case the variablex ∈ [0, L] stands for position along string length andy stands fortransversal
displacement of the string. The constantc has the value

√
T/µ and has the dimensions m/s of a

velocity. A full derivation of Eq. (7.4) for the ideal string can be found in many textbooks: roughly
speaking, the two main assumptions are that (i) the infinitesimal string segmentdx moves only in the
vertical direction, so that its acceleration can be computed using only the transverse component of the
tension as the acting force; and (ii) the amplitude of the vibrations is very small.

7.3.2.1 Traveling wave solution

A fundamental property of Eq. (7.4) is that it describespropagationphenomena. This statement can
by proved by factoring the equation as follows:

(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1
c

∂

∂t

)
y = 0. (7.5)

From this factorization it is easily seen that generic solutions take the form

y(x, t) = y+(ct− x) + y−(ct + x). (7.6)

The two functionsy± describe waveforms that translate rigidly with velocityc, in the right-going and
left-going directions, respectively. Their shape is determined by the boundary conditions (in space)
and the initial conditions (in time).

Another general solution to equation (7.4) is found by noting that the complex sinusoidsej(ωt±kx),
with k = ω/c, are particular solutions of the D’Alembert equation. Depending on boundary con-
ditions, only certain values are allowed fork (and thus forω = kc). For fixed boundaries (i.e.
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y(0, t) = y(L, t) = 0) these turn out to bekl = lπ/L with l ∈ N, i.e. the only allowed frequen-
cies form a harmonic series. Then the Fourier theorem tells us that the general solution is a linear
combination of these sinusoids.

A n-dimensional generalization of Eq. (7.4) is found to be

∇2y(x, t) =
1
c2

∂2y

∂t2
(x, t), (7.7)

where the symbol∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . .+ ∂2

∂x2
n

stands for then-dimensional Laplacian operator. With

n = 2, Eq. (7.7) describes for instance mechanical vibrations in an ideal membrane, whilen = 3
is well suited for describing acoustic disturbances in an air volume. In this latter casex represents
Euclidean coordinates in space andy stands for the acoustic pressurep. As opposed to mechanical
vibrations in a string or membrane, acoustic vibrations arelongitudinal rather than transversal, i.e.
the air particles are displaced in the same direction of the wave propagation. Again, simplifying
assumptions have been made for deriving Eq. (7.7) in the acoustic case. Namely, disturbances are
considered to be small so that the acoustic pressurep is related to densityρ via a linear relation:
p = B(ρ−ρair)/ρair, whereB is the linearized adiabatic bulk modulus andρair is the air equilibrium
density. The constantc is then given the value

√
B/ρair, and again has the dimensions m/s of a

velocity.

7.3.2.2 One-dimensional propagation

There are interesting cases where acoustic disturbances can be assumed to be one-dimensional up to a
reasonable approximation. Propagation in a cylindrical tube of radiusr0 is an example: by exploiting
boundary conditions and symmetries, and looking for harmonic solutions (those with time dependence
exp(jωt)), the acoustic pressure can be written in cylindrical coordinates asp(r, φ, z, t) = exp(jωt) ·
R(r)Z(z) and the equation is separable (see Fig.7.6 for an illustration of cylindrical coordinates).
This leads to the coupled spatial solutions

R(r) = I0(βr), Z(z) = e±j(k2−β2)1/2
z, (7.8)

whereI0 is the Bessel function of the first kind and zero order. The boundary condition on the
cylindrical surface isd/dr[I0(βr0)] = 0, or equivalentlyI1(βr0) = 0. Therefore, only theβ values
for which I1(βr0) = 0 are allowed. The first allowed value is obviouslyβ = 0: this corresponds
to the zero-th order modes withZ(z) = exp(±jkz) andR(r) ≡ 0, i.e. plane wave propagation
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alongz. The next allowed value corresponds to the first zero ofI1, i.e. βr0 = 3.83171. If r0 =
8 · 10−3 m (the approximate radius of a clarinet bore), thenβ = 479 m−1 and the first corresponding
mode in thez direction has a cutoff frequencyfc = βc/2π = 26.15 kHz. Only frequencies higher
thanfc do propagate, and they are well out of the range of human hearing. Therefore, for audio
applications higher order non-planar modes can be neglected and one-dimensional wave propagation
in thez direction can be conveniently described using Eq. (7.4).

Conical geometries are a second example where one-dimensional propagation can be approxi-
mately assumed. Again, by exploiting boundary conditions and symmetries and looking for harmonic
solutions, pressure can be written in spherical coordinates asp(r, θ, t) = exp(jωt) · Θ(θ)R(r) and
the equation is separable (see Fig.7.6 for an illustration of spherical coordinates). Without going
into details, analysis analogous to that outlined for cylindrical geometries shows that higher-order
modes can also be neglected in this case, and propagation in ther direction is conveniently de-
scribed with zero-th order modes. Since the Laplacian operator is expressed in spherical coordinates
as∇2 = 1

r2
∂
∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

r2 sin2 θ
∂2

∂φ2 , the one-dimensional equation for spherical
wave propagation is

1
r2

∂

∂r

(
r2 ∂R

∂r

)
(r, t) =

1
c2

∂2R

∂t2
(r, t). (7.9)

Using the substitutionR = R̃/r, it is easily seen that Eq. (7.9) reduces to the one dimensional
D’Alembert equation (7.4). ThereforeR̃ is the sum of two traveling waves̃R±, and the general
solution for the zero-th order radial modes is

R(r, t) =
1
r
[R̃+(ct− r) + R̃−(ct + r)]. (7.10)

7.3.2.3 Wave variables

So far, only displacementy and acoustic pressurep have been considered in the wave equation. How-
ever, alternative wave variables can be used in strings and acoustical bores. As an example, the force
acting on a string sectiondx is defined as

f(x, t) = −T
∂y

∂x
(x, t) = −T

[
∂y+

∂x
(ct− x) +

∂y−

∂x
(ct + x)

]
=

T

c
ẏ+(ct− x)− T

c
ẏ−(ct + x).

Therefore, using this equation force wavesf± can be defined asf± := ∓T
c ẏ±. On the other hand,

the transversal velocity wave variable in the same string is given by

v(x, t) =
∂y

∂t
(x, t) = ẏ+(ct− x) + ẏ−(ct + x).

From this, velocity wavesv± are defined asv± := ẏ±. The pair of force and velocity variables is
sometimes referred to asKirchhoff variables, in analogy with voltage and current in electrical sys-
tems (Sec.7.4provides a detailed discussion of Kirchhoff variables and analogies between electrical,
mechanical and acoustic systems). From the previous equations it immediately follows that

f±(ct∓ x) = ±Z0v
±(ct∓ x), with Z0 = T/c =

√
Tµ. (7.11)

The quantityZ0 takes the name ofwave(or characteristic) impedanceof the string, and its reciprocal
Γ0 = Z−1

0 is termedwave admittance. Note that usingZ0 both the forcef and the velocityv can be



7.12 CHAPTER 7. SOUND MODELING: SOURCE-BASED APPROACHES

related to the force wavesf±. Namely, the following relations hold:

f = f+ + f−, v =
1
Z0

[
f+ − f−

]
,

f+ =
f + Z0v

2
, f− =

f − Z0v

2
,

(7.12)

that transform the pair(f, v) into the pair(f+, f−), and vice versa. Wave impedance can be defined
also in a cylindrical bore. In this case the Kirchhoff variables are taken to be pressurep and flowu
(volume velocity). These can be related through the wave impedanceZ0: p±(ct± x) = ±Z0u

±(ct±
x), whereZ0 = ρairc/S andS is the constant cross-sectional area of the bore. For conical geometries,
the cross-sectionS is not constant and the definition ofZ0 has to be generalized. The wave impedance
is then defined as a functionZ0(s) such that the relationsP±(r, s) = ±Z0(s)U±(r, s) hold in the
Laplace domain. It can be seen thatZ0(s) = ρairc/S · [rs/(rs + c)].

Summarizing, this section has shown that vibrational phenomena in many elastic media can be
described as one-dimensional wave propagations. Furthermore, Kirchhoff and wave variables in these
media are related through wave impedance. This results provide the basis for developing 1-D waveg-
uide structures.

7.3.3 Basic waveguide structures

7.3.3.1 Delay lines

Waveguide models exploit the existence of the solution (7.6) to the D’Alembert equation and discretize
this solution instead of the differential equation itself. This remark explains to a large extent why
waveguide structures are much more efficient than finite difference methods in simulating vibrations
of elastic media, at least in the 1-D case.

Consider a pressure distributionp = p+ + p− inside an ideal lossless cylindrical bore. IfTs is
the sampling period, a suitable choice for the spatial sampling step isXs = cTs. Thus, a discretized
version ofp is obtained through the variable substitutionx 7→ mXs andt 7→ nTs (with m,n ∈ N),
and leads to

p(mXs, nTs) = p+(ncTs −mXs) + p−(ncTs + mXs) = p+[(n−m)cTs] + p−[(n + m)cTs].

Removing the constant sampling steps yields:

p(m,n) = p+(n−m) + p−(n + m). (7.13)

The termp+(n−m) in Eq. (7.13) can be thought of as the output from a digital delay line of length
m, whose input isp+(n). Analogously, the termp−(n + m) can be thought of as the input of a
digital delay line with the same lenght, whose output isp−(n). This remark leads to the definition of
a waveguide sectionas a bidirectional delay line, as depicted in Fig.7.7(a). Note that the horizontal
direction of this structure has a straightforward physical interpretation: it corresponds to the position
x along the axis of the cylindrical bore. In the example depicted in Fig.7.7, two “observation points”
have been chosen atx = 0 andx = mXs = L. At these points, the pressure signal at timen
is reconstructed by summing the corresponding pressure wavesp±. A very similar structure can be
outlined for numerically simulating a pressure distribution in an ideal lossless conical bore. In this
case, propagation is described by the one-dimensional equation (7.9), whose general solution is given
by Eq. (7.10). The conical waveguide is therefore defined as in Fig.7.7(b). Observation points can be
chosen analogously to the cylindrical case.



7.3. DISTRIBUTED MODELS: THE WAVEGUIDE APPROACH 7.13

L

z - m

z - m

p+(n) p+(n-m)

p- (n+m)p- (n)

p (0,n) p (m,n)

(a)

r

L

o

z - m

z - m

ro
 -1

(L+r o) -1

p (m,n)p (0,n)

(b)

Figure 7.7:Lossless waveguide sections with observation points at positionx = 0 andx = mXs = L;
(a) cylindrical section; (b) conical section.

7.3.3.2 Boundary conditions

Looking at figure7.7 we immediately realize that we still need a final step in order to come out
with a computational structure that describes e.g. a string with fixed ends or a cylindrical section
with open ends: boundary conditions. Ideal conditions can be immediately derived by observing
equation (7.12). Take as an example a string of lengthL with fixed end: these boundary conditions
mean thatv(0) = v(L) = 0, from which the reflection rulesf+(0) = f−(0) andf−(L) = f+(L)
are derived.3

Analogously, take a cylindrical bore of lengthL, with a closed end atx = 0 and an open end at
x = L: the first condition impliesu(0) = 0 (no flow through a closed end), which in turn implies the
reflection conditionp ∗ (0) = p−(0); the second one impliesp(L) = 0 (p matches the atmospheric
pressure at the open boundary), which in turn implies the reflection conditionp−(L) = p+(L).

M-7.4
Write the WG filter of a string of length L (in meters), using a sample rate Fs = 44.1 kHz. Assume
the string is fixed at both ends.

3Now go back to figure7.3(b): the comb filter can be viewed as a pair of waveguide sections of lengthL/2 samples,
with reflection rules that correspond to fixed end conditions.
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7.3.4 Modeling real world phenomena

As already mentioned, the waveguide structures introduced above describeideal systems, i.e. ideally
elastic media, where the D’Alembert equation (7.4) or its spherical version (7.9) hold. Real systems
exhibit more complex behaviors.

7.3.4.1 Dissipation

Energydissipationoccurs in any real vibrating medium. In an acoustical bore this is due to air
viscosity, thermal conduction and wall losses. Dissipation in a string comes from internal losses
related to elastic properties of the material, energy transfer through terminations, and friction with
air. For clarity, consider the pressure distribution in a cylindrical bore. In the simplest approximation,
all of the dissipation phenomena can be incorporated in the D’Alembert equation by including an
additional term proportional to the first time derivative:

∂2p

∂t2
(x, t) = c2 ∂2p

∂x2
(x, t)− ε

∂p

∂t
(x, t). (7.14)

In the limit of smallε, Eq. (7.14) still admits a traveling wave solution, which can be digitized with
the same procedure described in the ideal case:

p(x, t) = e−
εx
2c p+(ct− x) + e

εx
2c p−(ct + x), then

p(m,n) = gmp+(n−m) + g−mp−(n + m), with g = e−
εTs
2 < 1.

(7.15)

Thus the traveling waves are exponentially damped along the propagation direction, and this phe-
nomenon can be easily incorporated in the waveguide structure. This is shown in Fig.7.8(a), where
losses have been consolidated, orlumped, in a single multiplier cascaded to the delay line. The loss
factorgm summarizes the distributed losses occurring in the spatial interval[0,mXs]. In most of real
phenomena, however, losses increase with frequency. A better approximation of dissipation phenom-
ena can account for this frequency dependence by substituting the constant factorg with a lowpass
filter G(z). Moreover, in order to avoid frequency dependent delay,G(z) must be a zero-phase FIR
filter. Alternatively, a linear-phase filter can be used; in this case the length of the delay line has to be
reduced correspondingly, in order to obtain the desired overall delay.4

M-7.5
Add loss factors g and a low-pass dissipation filter to the WG filter of a string developed in M-7.4
(use e.g. the low-pass FIR (7.3)). Study the frequency response of this system.

7.3.4.2 Dispersion

A second important phenomenon in natural wave propagation is that ofdispersion. In a string, dis-
persion is introduced by string stiffness. This is usually modeled in the D’Alembert equation (7.4) by
introducing an additional term proportional to the fourth spatial derivative:

1
c2

∂2p

∂t2
(x, t) =

∂2p

∂x2
(x, t)− ε

∂4p

∂4x
(x, t), (7.16)

4Now go back to figures7.3(b) and7.5(b): the parameterRL plays the role of the loss factorgm, while the linear-phase
FIR filter Hlp plays the role ofG(z) and introduces frequency-dependent dissipation.
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where the dispersive correction termε is proportional to the string Young’s modulus. Ifε is small, its
first order effect is to increase the wave propagation speed with frequency:

c(ω) = c0

(
1 +

εω2

2c2
0

)
, (7.17)

wherec0 is now the wave travel velocity in the absence of dispersion. Equation (7.17) states that
a traveling wave is no longer a rigid shape that translate at constant speed. Instead, frequencies
“disperse” as they propagate with different velocities. As a consequence, the frequenciesωk of the
allowed partials are not harmonic, instead they are stretched onto an inharmonic series according to
the equation

ωk = kω0Ik, where Ik ≈
√

1 + Bk2,

and whereB = π2ε/L2. The quantityIk is usually termedindex of inharmonicity. Dispersion is
particularly important in piano strings, where the lower tones exhibit significant inharmonicity.

Having a non-uniform wave velocityc(ω) implies that it is not possible to define a sampling step
asXs = c0Ts. Instead, it can be said that a component with frequencyω travels a distancec0Ts in
the time intervalc0Ts/c(ω). As a consequence, the unitary delayz−1 has to be substituted with the
all-pass filterHa(z) = z−c0/c(ω), which has a unitary magnitude response but non-constant phase
delay. Similarly to dissipative low-pass filters,m all-pass delays can belumpedin a single filterHm

a .
Moreover, the linear and non-linear parts of the phase response can be treated separately.Hm

a can
thus be written asHm

a (z) = z−m ·HA(z), whereHA(z) is another all-pass filter approximating the
non-linear part of the phase response. In summary, a dispersive resonator is modeled as in Fig.7.8(b).

7.3.4.3 Length tuning

One last improvement to the basic waveguide structure of Fig.7.7is provided byfractional delay lines.
It is easily verified that with a sampling rateFs = 44.1 kHz and with a wave velocityc = 347 m/s
(sound velocity in air at20 C◦), the resulting spatial step isXs = 7.8 ·10−3 m. This distance produces
perceivable pitch variations in a wind instrument. It is therefore necessary to design fractional delays
in order to provide fine tuning of the length of a waveguide section. Without going into details, this can
be ideally achieved by including an additional filter in the structure, with flat magnitude response (that
does not affect the overall magnitude response of the waveguide structure) and linear phase response
(that adds the desired fractional delay). Both interpolation filters (FIR) and all-pass filters (IIR) can
be used for approximating such characteristics.

7.3.5 Junctions and networks

The last section has introduced the main concepts of waveguide modeling for a signal propagating in
a uniform medium. When discontinuities are encountered, the wave impedance changes and signal
scatteringoccurs, i.e. a traveling wave is partially reflected and partially transmitted. Examples of
non-uniform media are a cylindrical bore where the cross-sectional area changes abruptly, or a string
where the value of the linear mass density jumps changes discontinuously. In order to model these
discontinuities, appropriate junctions have to be developed, that connect two (or more) waveguide
sections. The boundary reflection conditions that we have examined at the end of section7.3.3can be
regarded as special cases of junctions, as discussed in the following paragraphs.
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Figure 7.8: Waveguide simulation of non-ideal media; (a) frequency independent dissipation; (b)
dispersion.

7.3.5.1 The Kelly-Lochbaum junction

Consider two cylindrical bores, with cross-sectional areasS1,2 and wave admittancesΓ1,2 = Z−1
1,2 =

S1,2/ρairc, connected to each other. Analysis of this problem leads to the derivation of the well
knownKelly-Lochbaumjunction. First of all, physical constraints have to be imposed on the Kirchhoff
variablesp, u at the junction, namely pressuresp1,2 must have the same valuepJ and the flowsu1,2

from the two sides must sum to zero:

u1 + u2 = 0, p1 = p2 = pJ . (7.18)

Using the Kirchhoff analogyp ↔ v (voltage) andu ↔ i (current), Eqs. (7.18) can be regarded as
describing a parallel junction. If pressure wave variables are introduced as in Eq. (7.12) (with p+ and
p− denoting incoming and outgoing waves, respectively), and the junction pressurepJ is used, then
the relationp−l = pJ − p+

l (for l = 1, 2) holds. Substitution in the first of Eqs. (7.18) yields

0 = (u+
1 + u−1 ) + (u+

2 + u−2 ) = Γ1(p+
1 − p−1 ) + Γ2(p+

2 − p−2 ) =

= Γ1(2p+
1 − pJ) + Γ2(2p+

2 − pJ).

From this, the junction pressurepJ can be expressed in terms of the incoming pressure wavesp+
1,2 as

pJ = 2
Γ1p

+
1 + Γ2p

+
2

Γ1 + Γ2
.
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Figure 7.9:Kelly-Lochbaum junction for two cylindrical bores with different areas.

Using this latter expression, the outgoing pressure wavesp−1,2 can be written as

p−1 = pJ − p+
1 = −Γ2 − Γ1

Γ2 + Γ1
p+
1 +

2Γ2

Γ2 + Γ1
p+
2 ,

p−2 = pJ − p+
2 =

2Γ1

Γ2 + Γ1
p+
1 +

Γ2 − Γ1

Γ2 + Γ1
p+
2 .

(7.19)

If the reflection coefficientρ is defined as

ρ :=
Γ2 − Γ1

Γ2 + Γ1
,

then Eqs. (7.19) become
p−1 = −ρ p+

1 + (1 + ρ)p+
2 ,

p−2 = (1− ρ)p+
1 + ρ p+

2 .
(7.20)

These equations describe the Kelly-Lochbaum junction. A scattering diagram is depicted in Fig.7.9.
This junction has been extensively used in what are often termed “multitube lossless models” of

the vocal tract. These are basically articulatory models where the vocal tract shape is approximated
as a series of concatenated cylindrical sections. Pressure wave propagation in each section is then
described using digital waveguides, and interconnections are treated as Kelly-Lochbaum junctions.
Remarkably, the same junction can be used to describe not only acoustic, but also mechanical struc-
tures. As an example, consider two strings with different densities, connected at one point: this can be
thought of as a series junction, since the physical constraints impose that velocity (i.e., “current”) has
to be the same on the left and right sides, and the sum of forces (i.e., “voltages”) from the two sides
must be zero. Analogously to the above analysis, a series Kelly-Lochbaum junction can be derived in
this case.

Terminationsof a waveguide model are an interesting particular case of junctions. Consider an
ideal cylindrical bore, closed at one end: this boundary condition corresponds to an infinite impedance
Z2 = ∞ (i.e., S2 = 0), and thus to a reflection coefficientρ = −1. In other words, complete
reflection occurs and the relationp−1 (0, t) = p+

1 (0, t) holds. Similarly, an ideally open end can be
seen to correspond toZ2 = 0 (i.e.,S2 = ∞), and thus toρ = 1: this is a second case where complete
reflection occurs, namely the relationp−1 (0, t) = −p+

1 (0, t) holds. These reflection conditions are
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Figure 7.10:Example of an acoustic model implemented with waveguide sections an junctions.

identical to the ones that we have derived in section7.3.3(analogous considerations hold for string
terminations).

Figure 7.10 shows an example where different junctions have been used and combined into a
waveguide model. Note that in this example the scattering junction between the two cylindrical sec-
tions is not in the Kelly-Lochbaum form; instead, aone-multiply scattering junctionis used, which
allows more efficient implementation of Eqs. (7.20). Open- and closed-tube terminations are modeled
according to the above remarks.

M-7.6
Realize the structure of figure 7.10. Add loss factors g and a low-pass dissipation filter to each WG
section, as done in M-7.5. Study the frequency response of this system.

7.3.5.2 N-dimensional junctions

The result expressed in Eq. (7.20) can be easily extended to higher dimensions. Consider parallel
junction of N acoustical bores. In this case ascattering matrixcan be found, and Eq. (7.20) is
generalized to

p− = A · p+, (7.21)

wherep± aren-dimensional vectors whose elements are the incoming and outgoing pressure waves
in the n bores. The physical constraints expressed in Eq. (7.18) are also generalized in an obvious
way, and calculations analogous to those outlined for the Kelly-Lochbaum junction lead to the result

A =




2Γ1
ΓJ

− 1, 2Γ2
ΓJ

, · · · 2ΓN
ΓJ

2Γ1
ΓJ

, 2Γ2
ΓJ

− 1, · · · 2ΓN
ΓJ

...
...

...
2Γ1
ΓJ

, 2Γ2
ΓJ

, · · · 2ΓN
ΓJ

− 1




, where ΓJ =
N∑

l=1

Γl. (7.22)

Note that whenN = 2 Eq. (7.21) reduces to the Kelly-Lochbaum equations.

7.3.5.3 Non-cylindrical geometries

A final remark is concerned with junctions of conical elements. Generalizing the cylindrical case
is not straightforward, since the derivation of Kelly-Lochbaum equations is based on the implicit
assumption of plane wave propagation. This assumption permits imposition of the constraints (7.18)
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Figure 7.11:Boundary regions for (a) non-convex and (b) convex conical junctions.

on a flat scattering boundary, which is a wavefront for bothp1 andp2. But wavefronts in conical
sections are spherical and this circumstance makes it impossible to define a unique surface on which
boundary conditions can be applied: Fig.7.11(a) shows that there is a region between the two spherical
wavefronts which is within neither conical segment. This ambiguity in the definition of the scattering
boundary is usually overcome by assuming that the transition volume is small and thus pressure is
constant inside the volume. Under this assumption, continuity conditions analogous to (7.18) are
imposed and the reflection coefficientρ is generalized to a first order filterR(s).

However, a second and more serious problem arises when one looks at the nature ofR(s). This
filter turns out to be unstable (non-causal growing exponential) in the case of the convex configuration
depicted in Fig.7.11(b). While this circumstance is physically consistent (in the continuous-time
domain the scattered waves can grow exponentially only for a limited time because they are cancelled
out by subsequent multiple reflections), in a numerical simulation the system can turn out unstable,
due to the approximations introduced by the discretization process and to round-off errors introduced
by finite-precision.

7.4 Lumped models

7.4.1 Building blocks and analogies

In a large class of systems it is possible to construct pairs of variables (hereafter defined asKirchoff
variables) with the property that their product has the dimensions of power (Kg m2/s3). In elec-
trical systems such a pair of variables is given by(v, i), voltage and current. Integro-differential
relations can be found that relate these two variables, in particular three elementary relations define
the fundamental quantities resistanceR, inductanceL and capacitanceC. In the Laplace domain, the
integro-differential equations are turned into simple algebraic relations:

V (s) = R · I(s), V (s) = sL · I(s), V (s) =
1

sC
I(s). (7.23)

These are particular examples of a more general relation in linear electric circuits:

V (s) = Z(s)I(s), (7.24)
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where the quantityZ(s) is called impedanceof the circuit and is defined as the ratio between the
Laplace transforms of voltage and current intensity. The inverse ofZ(s) is calledadmittance, and it
is usually denoted asΓ(s) = Z(s)−1.

7.4.1.1 Mechanical systems

An pair of variables analogous to voltage and current are found in mechanical systems: forcef
(Kg m/s2) and velocityv (m/s) satisfy the same condition of voltage and current, i.e. their product
is a power. Therefore,f and v are taken as mechanical Kirchhoff variables. Again, the ratio of
these two variables in the Laplace domain is defined as (mechanical)impedance, and its inverse is the
(mechanical) admittance. Using three notable relations betweenf andv, it is possible to introduce
mechanical equivalents of resistance, capacitance and inductance.

The simplest relation is direct proportionality:f(t) = rv(t). This is used to define ideal linear
viscous forces, and comparison with the first of Eqs. (7.23) permitsr to be regarded as a mechanical
resistance. Newton’s second law of classical dynamics provides a second relation: the inertial massm
of a non-relativistic body is defined as the ratio between the total force acting on it and its acceleration,
i.e. f(t) = ma(t) = mv̇(t). In the Laplace domain this is turned intoF (s) = msV (s), and from
comparison with the second equation in (7.23) m is seen to be equivalent to an inductance. Finally,
Hooke’s law provide an analogy to electrical capacitance: in an ideal linear spring the elastic force
is proportional to the elongation of the spring:f(t) = kx(t) = k

∫ t
0 v(τ)dτ . Again, in the Laplace

domain this is turned intoF (s) = k/s V (s), and comparison with the third of Eqs. (7.23) shows that
the stiffness constantk of the spring corresponds to the reciprocal of a capacitance. Summarizing, the
analogies between mechanical and electrical elements are as follows:

F (s) = r · V (s), F (s) =
k

s
V (s), F (s) = ms · V (s),

⇓ ⇓ ⇓
r ∼ R,

1
k
∼ C, m ∼ L.

(7.25)

Figure7.12(a) shows the simplest example of a “series” junction between these mechanical el-
ements: a mass attached to an ideal linear spring and driven by an external force. The system’s
dynamics are described by the equation

mẍ(t) = −kx(t) + f(t), ⇒ F (s) =
(

ms +
k

s

)
V (s). (7.26)

The second equation (7.26) shows that the aggregate impedanceZ(s) of the system is the sum of the
two elementary impedancesZ1(s) = ms andZ2(s) = k/s.

The above discussion is the starting point for developing one-port network theory for mechanical
systems. The one port is defined as a black-box with a single pair of input/output terminals, as in
Fig. 7.12(b). A force is applied at the terminals, analogously to an electrical potential, and velocity
“flows” as electrical current. Instantaneous power and energy can be defined and used to characterize
passiveand losslessone-ports. Connections through ports can be made using Kirchhoff’s Laws, so
that series and parallel junctions are defined analogously to circuit theory. In circuit theory terminol-
ogy, the two one-ports in Fig.7.12(b) share a common velocity, thus they are connected in series.
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Figure 7.12:A mass pulled by a linear spring; (a) mechanical system and (b) combination of one-ports
in series.

7.4.1.2 Acoustic systems

Acoustic systems can also be described in terms of lumped elements only, in certain situations. In
particular, when the dimensions of an acoustical element are much less than the sound wavelength,
then the acoustical pressure,p can be assumed constant. In this case, the acoustic behavior of the
element is, at least at low frequencies, very simple. Note that the acoustic pressurep (Kg/ms2) and
the volume velocityu (m3/s) are such that their product is a power, and can therefore be used as a pair
of Kirchhoff variables.

Resistive phenomena are observed during the passage of acoustic airflow through a small opening.
In this case the flow behavior is dominated by viscous and thermal losses and it is reasonably assumed
to be in phase with the acoustic pressure, therefore the relationp(t) = Ru(t) holds at the opening
where the constantR is termedfluid-dynamic resistance. Fluid-dynamic inductance is defined in a
short, open tube having cross-sectional areaS and lengthL. The air mass inside the bore is then
m = ρairSL (ρair being the air density). Suppose that an acoustic pressurep(t) is applied to one end
of the tube; then the enclosed air behaves like a lumped mass driven by the forceSp, and Newton’s
law implies

Sp(t) = ρairSL · v̇(t), ⇔ P (s) =
ρairL

S
· sU(s),

where the relationu(t) = Sv(t) has been used, andv(t) indicates particle velocity. Finally, capaci-
tance is associated with air volumes. Consider the volumeV (t) of air inside a cavity; the contraction
dV (t) caused by an acoustic pressurep(t) is such that−ρairc

2 · dV/V = p, whereρairc
2 is the

bulk modulus of air at atmospheric pressure. As a consequence, a new air volume−dV can enter the
cavity. By definition, this equals the integral ofu(t) over time, therefore

−dV (t) =
∫ t

0
u(t′)dt′ =

V

ρairc2
p(t), ⇔ P (s) =

ρairc
2

V s
U(s).

Comparison of this relation with the last of Eqs. (7.23) is then straightforward: it is immediately seen
that the quantityρairc

2/V s is the acoustical equivalent of a capacitive impedance.
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Figure 7.13:A Helmholtz resonator driven by an external acoustic wave; (a) acoustic system and (b)
circuit representation.

Electrical Mechanical Acoustical

Currenti (A) Velocity v (m/s) Flow u (m3/s)

Voltagev (V) Forcef (N) Pressurep (Pa)

(Resistance)R (Damping)r (Opening)R

(Capacitance)1sC

(
Kg·m2

s

)
(Spring) k

s

(
Kg
s

)
(Cavity) ρairc2

V s

(
Kg

m4·s
)

(Inductance)sL (Mass)m · s (Bore) ρairLs
S

Table 7.1:Summary of analogies in electrical, mechanical and acoustical systems.

Analogously to the mechanical case, simple acoustic systems can be described as combinations of
these elementary impedances. Consider a Helmholtz resonator driven by an external sound wave, as
in Fig. 7.13(a). Both the inductive impedance associated with the tube and the resistance associated
with the opening impede the same flowu, and are therefore in series. This flowu enters the cavity, so
that the capacitance associated with the volume is in series with the other two. The resulting acoustic
circuit is depicted in Fig.7.13(b).

Table7.1 summarizes the main analogies between electrical, mechanical, and acoustic systems,
that we have discussed throughout this section.

7.4.1.3 Non-linearities

As mentioned previously, musical oscillators are typically non-linear: non-linearities must be present
for a system to reach stable self-sustained oscillations, as in the case of persistently excited instruments
(e.g., winds and strings). Non-linear elements may also be present in other systems in order to account
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Figure 7.14:Non-linear behavior of (a) capacitanceC(v) and (b) chargeq(v) in the Chua-Felderhoff
circuit.

for accurate modeling of interaction mechanisms. As an example, collisions between lumped masses
are often described through a non-linear contact force.

The previous section has outlined the formal analogies between linear mechanical and electrical
systems. It is possible to extend the analogy to the non-linear case. Consider the well knownChua-
Felderhoffelectrical circuit: this is aRLC circuit, made of a series connection of a resistorR, an
inductorL and a capacitorC. The elementsR andL are constant, while this is not the case forC.
More precisely, the characteristic of the capacitance is a function of the voltagev, so that the system
is described as follows:

v(q) =
1

2v0C0

(
q2 + q

√
q2 + 4C2

0v2
0

)
, ⇔ C(v) =

C0√
1 +

v

v0

,

v(q) + Rq̇(t) + Lq̈(t) = ve(t), (v > v0).

(7.27)

The variableq(t) stands for the charge on the capacitor, andve(t) is an applied voltage. It is easily
verified thatC(v) ∼ C0 whenv → 0, i.e. the system is a linearRLC circuit in the limit of small
oscillations. However, for larger voltagev this approximation does not hold, andC(v), q(v) behave
as depicted in Fig.7.14(a) and (b), respectively. Note that there is no easy way to translate the non-
linear relation (7.27) into the Laplace domain, because the definition of impedance given in Sec.7.4.1
assumes linearity of the circuit elements. The Chua-Felderhoff circuit has been extensively studied
and is one of the classical systems used for exemplifying transition to chaotic behavior: when the
peak of the voltage generator is increased, the behavior of the chargeq(t) on the capacitor undergoes
successive bifurcations.

The Chua-Felderhoff circuit finds some analogous counterparts in mechanical and acoustic sys-
tems. An example of non-linear elements is provided by an idealized contact model. In this model the



7.24 CHAPTER 7. SOUND MODELING: SOURCE-BASED APPROACHES

contact restoring force is a non-linear5 elastic force of the form

f(x(t)) =





kx(t)α, x > 0,

0, x ≤ 0,

(7.28)

wherex is the penetration andk is an elastic constant. This model has been used for describing the
compression characteristics of a piano hammer felt. The exponentα depends on the local geometry
around the contact surface and typically takes values higher than1. If the hammer is regarded as a
lumped massm and linear dissipationr is taken into account, then the complete model is described
by the equation of motion

mẍ(t) + rẋ(t) + kx(t)α = fext(t), (7.29)

wherefext is any external force acting on the hammer. This is formally identical to Eq. (7.27): the
non-linear hammer is a series connection of a mechanical resistancer and inductancem with a non-
linear capacitance. One obvious structural difference with the Chua-Felderhoff circuit is given by the
different shape of the non-linearities.

7.4.2 Modal synthesis

7.4.2.1 The second-order mechanical oscillator

The simplest possible resonating mechanical system that we can obtain using the lumped elements
described in the last section is a second-order linear oscillator of the form

ẍ(r)(t) + g(r)ẋ(r)(t) +
[
ω(r)

]2
x(r)(t) =

1
m(r)

fext(t), (7.30)

wherex(r) is the oscillator displacement andfext represents any external driving force, while the
parametersω(r) = k/m(r) andg(r) = r/m(r) are the oscillator center frequency and damping coef-
ficient, respectively. With the analogies introduced in section7.4.1, one can think of Eq. (7.30) as a
series connection of the impedancesm, r, k.

The resonating properties of such a one-dimensional model are summarized by its pitchω(r) and
quality factorq(r) = ω(r)/g(r). The parameterg(r) relates to the decay properties of the impulse
response of system (7.30): specifically, the relationte = 2/g(r) holds, wherete is the1/e decay time
of the impulse response.

M-7.7
Find the transfer function H(s) between the driving force Fext(s) (input) and the displacement X(s)
(output) in equation (7.30). Study the frequency response and the impulse response.

If we want to produce more realistic and spectrally-rich sounds, a slightly more sophisticated
model is obtained by parallel connection ofN oscillators such as that of equation (7.30). By choosing
a different center frequencyω(r)

l (l = 1 . . . N ) for each oscillator, it is possible to account for a set

{ω(r)
l }N

l=1 of partials of the resonator spectrum. A set ofN decoupled modal resonators excited by

5 Note that the non-linear nature of Eq.(7.28) comes not only from the exponentα, but also from the conditional
formulations forx > 0 andx > 0. In other words,f is non-linear even whenα = 1.
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the same external force can be described by means of a multivariable generalization of Eq. (7.30). In
matrix form, this can be written as




ẍ
(r)
1 (t)

...

ẍ
(r)
N (t)


 + G(r)




ẋ
(r)
1 (t)

...

ẋ
(r)
N (t)


 +

[
Ω(r)]2




x
(r)
1 (t)

...

x
(r)
N (t)


 = m(r)fext(t), (7.31)

where the matrices are given by

Ω(r) =




ω
(r)
1 0

...

0 ω
(r)
N


 , G(r) =




g
(r)
1 0

...

0 g
(r)
N


 , m(r) =




1/m
(r)
1

...

1/m
(r)
N


 . (7.32)

7.4.2.2 The modal description

When a distributed resonating object is modeled as a chain ofN masses connected with springs
and dampers, the resulting system is composed ofN coupled equations. However, the theory of
modal analysis shows that it is generally possible find a transformation matrixT = {tjl}N

j,l=1 which
diagonalizes the system and turns it into a set of decoupled equations. The transformed variables
{x(r)

l }N
l=1 are generally referred to asmodal displacements. The displacementxj and velocityvj of

the resonating object at a given pointj = 1 . . . N are then given by

xj =
N∑

l=1

tjlx
(r)
l and ẋj =

N∑

l=1

tjlẋ
(r)
l (7.33)

The modal description given by Eqs. (7.31), (7.33) provides a high degree of controllability. The
damping coefficientsg(r)

l control the decay times of each exponentially-decaying mode of the res-

onator. The frequenciesω(r)
l can be chosen to reproduce spectra corresponding to various geometries

of one-, two- and three-dimensional resonators. As an example, the firstN resonances of a cavity can
be mapped into the modal frequencies of theN oscillators, and morphing between different shapes
can be obtained by designing appropriate trajectories for each of these resonances.

In this context the quantitiesm(r)
l are often referred to asmodal masses, while the quantities

1/m
(r)
l are referred to asmodal weights. Note that by allowing the modal masses to vary for each

oscillator, the matrixm(r) can be generalized to give control on the amounts of energy provided to
each oscillator. This permits simulation of position-dependent interaction, in that different interaction
points excite the resonator modes in different ways.

Figure7.15shows a membrane which is displaced from its rest position in such a way that only
one single mode is set into vibration. The distance of each point of the membrane from the “rest plane”
is proportional to the weighting factor1/m(r) of the mode at this position. Note that the intersections
of the mode–shape with the rest plane (i.e., thenodal lines) remain fixed during the entire cycle of the
modal vibration. Therefore, the modal weights at these positions are0 (equivalently, the modal masses
tend to infinity). Correspondingly, an external force applied at these node lines does not excite the
mode at all. In order for the resonator model (7.31) to account for such a situation, the weights1/m

(r)
l

must be made position-dependent. In other words, the(N × 1) matrix m(r) must be generalized by
defining a(N ×N) matrix M (r), whose element(l, j) is the modal weight of model at interaction
point j.
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(a) (b)

Figure 7.15:A circular membrane displaced from its rest position according to the spatial shape of
mode(1,1) (left) and mode(1,2) (right).

In the case of a system ofN point masses with linear interaction forces, modal parameters are
exactly found through standard matrix calculations. Most systems of interest of course do not fit
these assumptions. In some cases the differential equations of distributed systems can be solved
analytically, giving the modal parameters; this holds for several symmetrical problems as circular or
rectangular membranes. Alternatively, either accurate numerical simulations (e.g. wave-guide mesh
methods) or “real” physical measurements can be used. Impulse responses computed (or recorded)
at various interaction points then form a basis for the extraction of modal parameters. The acoustic
“robustness” of the modal description allows convincing approximations on the basis of microphone-
recorded signals of e.g. an object struck at different points, despite all the involved inaccuracies:
spatially distributed interaction, as well as wave distribution through air, provide signals that are quite
far from impulse/frequency responses at single points.

7.4.3 Numerical methods

Unlike waveguide structures, the lumped models described so far are developed in the continuous-time
domain, and are in general described through sets of ODEs. In order to be implemented as numerical
algorithms for sound synthesis, the differential equations have to be discretized in an efficient and
effective manner. In most cases, a trade-off has to be found between accuracy of the discretization
technique and efficiency of the resulting algorithms.

7.4.3.1 Impulse invariant method

When dealing with linear systems, such as the lumped elements of Sec.7.4.1, the most elementary nu-
merical technique is sampling. Given the admittanceΓ(s) of a linear system (in a mechanical lumped
system, this corresponds to defining the input as the driving force and the output as the resulting ve-
locity), its inverse Laplace transformγ(t) is the continuous-time impulse response. The linear system
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can thus be digitized by defining the discrete response asγd(n) := Tsγ(nTs), i.e. by samplingγ(t).
This technique is widely used in the context of digital filter design, and it is usually termed theImpulse
Invariant Method. One quality of the method is that stability is guaranteed at any sampling rate: if
pc is a pole of the continuous-time response, the corresponding pole of the discrete-time response is
given bypd = epcTs . This implies that if Re(pc) < 0, then|pd| < 1, i.e. the discrete-time pole lies
inside the unit circle. On the other hand, a drawback of the method isaliasing. It is known that the
discrete-time responseΓd is obtained as a periodization of the continuous one:

Γd(ejω) =
+∞∑

k=−∞
Γ

(
jω

Ts
+ j

2kπ

Ts

)
. (7.34)

As a consequence, anyΓ whose bandwidth is wider thanFs/2 introduces spurious components in
Γd.

7.4.3.2 Mappings “s-to-z”

An approach alternative to sampling amounts to replacing time derivatives with finite differences,
thus turning the differential equations directly into difference equations. Since in the Laplace domain
the derivation operator is turned to a multiplication bys, and since in the Z domain the unit delay is
turned into a multiplication byz−1, approximating derivatives with finite differences corresponds in
the frequency domain to finding appropriates-to-z mappings. Let s = g(z) be such a mapping, then
the discrete-time response is found asΓd(z) = Γ (g(z)).

The simplest possible mapping is obtained by replacing the derivative with an incremental ratio.
Let x(t) be a smooth function of time, then

d

dt
x(tn) := lim

h→0+

x(tn)− x(tn − h)
h

≈ x(tn)− x(tn−1)
Ts

:= δtx(n),

⇒ s ≈ 1− z−1

Ts
:= g1(z).

(7.35)

wheretn = nTs. The mappingg1(z) is known in numerical analysis as thebackward Euler method.
The adjective “backward” is used because the first derivative ofx at time n is estimated through
the values ofx at time n and n − 1. Note that the method isimplicit, since it turns a generic
first-order differential equatioṅx(t) = f(x(t), t) into a difference equation of the formx(n) =
fd(x(n), x(n − 1), n), in which x(n) depends implicitly on itself throughfd. Higher-order deriva-
tives can be estimated through iterate application of Eq. (7.35). The second derivative is computed
as

d2

dt2
x(tn) ≈ 1

Ts
[δtx(n)− δtx(n− 1)] =

x(tn)− 2x(tn−1) + x(tn−2)
T 2

s

. (7.36)

M-7.8
Take the mechanical oscillator (7.30) and discretize it with the Euler method g1(z). Study the fre-
quency response and the impulse response, compare them with those found in M-7.7.

A centered estimate is also often used in combination with the backward Euler method. In this
case the second derivative is computed as:

d2

dt2
x(tn) ≈ x(tn+1)− 2x(tn) + x(tn−1)

T 2
s

. (7.37)
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One can verify that using this estimate on a second-order ODE leads to anexplicitdifference equation.
A second, widely useds-to-z mapping is provided by thebilinear transform. Like the backward

Euler method, it can be seen as a finite approximation of the time derivative, but in this case the
incremental ratio is assumed to approximate the mean value ofẋ at time instantstn andtn−1:

x(tn)− x(tn−1)
Ts

≈ ẋ(tn) + ẋ(tn−1)
2

,

⇒ s ≈ 2Fs
1− z−1

1 + z−1
:= g2(z).

(7.38)

The mappingg2(z) is known in numerical analysis as the one-stepAdams-Moulton method. Like the
backward Euler method, it is implicit.

M-7.9
Take the mechanical oscillator (7.30) and discretize it with the bilinear transform g2(z). Study the
frequency response and the impulse response, compare them with those found in M-7.7 and M-7.8.

7.4.3.3 Accuracy, stability

A comparison between the first estimate in Eq. (7.38) and the first in Eq. (7.35), gives the intuition
that the bilinear transform provides a more accurate approximation than the Euler method. A rigorous
analysis would show that the order of accuracy of the bilinear transform is two, while that of the
backward Euler method is one.

Another way of comparing the two techniques consists in studying how the frequency axiss = jω
and the left-half plane Im(s) < 0 are mapped byg1,2 into the discrete domain. This gives information
on the stability and accuracy properties ofg1,2. Figure7.16provides an illustration, from which two
remarks can be made. First, both the methods define one-to-one mappings froms = jω, onto the two
circles plotted in Fig.7.16(solid lines): therefore no frequency aliasing is introduced. Second, both
the methods are stable, since the left-halfs-plane is mapped inside the unit circle by bothg1 andg2.

However we also see that both the mappings introduce frequency warping, i.e. the frequency axis
is distorted. One can verify that the bilinear transformg2 maps thes = jω axis exactly onto the unit
circle z = ejωd , and the direct mappingωd = 2 · arctan(ω) can be defined between the continuous
frequenciesω and the discrete frequenciesωd. At low frequencies,ωd increases almost linearly with
ω, while higher frequencies are progressively compressed (warped) and the Nyquist frequencyπFs is
mapped to the pointz = −1. Warping is the main drawback of the bilinear transform.

The Euler method maps thes = jω axis onto the circle of radius1/2 centered atz = 1/2.
Therefore no direct mapping is found fromω to ωd. The functiong1 can be said to “doubly” warp
the frequency axis: there is a progressive warping in the direction of increasing frequency (similarly
to the bilinear transform), but there is also warping normal to the frequency axis. As far as stability
is concerned, Fig.7.16shows that the poles of the discrete-time system obtained withg1 are more
“squeezed” inside the unit circle than the ones obtained withg2. Furthermore, it can happen that
continuous-time poles with positive real-part are turned byg1 into discrete-time poles with modulus
less than unity: in other wordsg1 can turn unstable continuous systems into stable discrete systems.
This numerical dampingis a second major drawback of the Euler method. An example of such a
damping property of the Euler method is provided in Sec.7.5(see in particular figure7.21).
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Figure 7.16:Images of the vertical axiss = jω (solid lines) and of the left-halfs-plane (gray regions)
using the backward Euler methodg1 and the bilinear transformg2.

7.4.3.4 Wave digital filters

The bilinear transform finds application in Wave Digital Filters (WDF) theory. These structures are the
digital equivalent of the lumped circuits described in Sec.7.4. Wave digital filters are constructed in
two steps. The first step amounts to converting the continuous-time lumped circuits in wave variables.
In this context, the definition of wave variables is identical to that used for waveguides models (see
Eq. (7.12) in Sec.7.3), namely:

f+ =
f + Z0v

2
, f− =

f − Z0v

2
, (7.39)

where the mechanical Kirchhoff variables forcef and velocityv have been used for clarity. The only
and fundamental difference with Eq. (7.12) is that in this contextZ0 is a reference impedance that can
be given any value and has no direct physical interpretation. The variablesf± themselves do not have
a clear physical interpretation since in a lumped model they cannot be easily interpreted as traveling
waves. Therefore in this context the Eqs. (7.39) have to be regarded as a mere change of coordinates.

Consider one of the elementary lumped elements analyzed in Sec.7.4and its associated impedance
Z(s). Then the new continuous-time variablesf± are related to each other through areflectanceR(s):

F (s) = Z(s)V (s), ⇒ F−(s) = R(s)F+(s), with R(s) :=
Z(s)− Z0

Z(s) + Z0
. (7.40)

The second step in WDF design is the discretization ofR(s). The equivalent wave digital filter
Rd(z) is then obtained using the bilinear transform:Rd(z) = R(g2(z)). Note that since the reference
impedanceZ0 can be given any value, this provides an additional degree of freedom for the design of
Rd. In particular,Z0 can be chosen such thatRd has no delay-free paths from input to output. This is
an essential requirement for guaranteeing computability when connecting more than one element. A
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Figure 7.17:A linear system; (a) delay-free path, (b) equivalent realization with no delay-free paths.

simple example will help clarify this concept: consider a mass massm and its associated impedance
Z(s) = ms, as found in Sec.7.4. Then, from Eq. (7.40) the corresponding reflectance isR(s) =
(ms− Z0)/(ms + Z0). ChoosingZ0 = 2Fsm leads to the interesting result

R(s) =
s− 2Fs

s + 2Fs
, ⇒ Rd(z) = −z−1, (7.41)

so that no delay-free path is present in the wave digital filterRd. This simple example gives us the
intuition that lumped elements can be described using wave digital filters, and connected to each other
by adaptingimpedances in order to avoid the occurrence of delay-free computational loops.

7.4.4 Computability issues

The discussion of wave digital filters in the last section has addressed the problem of non-computable
loops in that particular context: wave variables rather than Kirchhoff variables are used to describe
the components of the equivalent circuit, every component is treated as a scattering element with a
reference impedance, and different components are connected to create the complete computational
structure. Wave methods can be said to belocal, since non-computable paths are avoided by adapting
the reference impedances of each element. However, more severe computability problems can arise
when simulating dynamic exciters, since the linear equations used to describe the system dynamics
are tightly coupled with some non-linear map.

7.4.4.1 The delay-free loop problem

Let us start with a trivial example in order to focus the problem that we want to deal with. Consider
the system depicted in Fig.7.17(a). It is easily verified that the discrete-time system can be written as





w(n) = w̃(n) + y(n), with w̃ = u2,

x(n) = x̃(n) + ay(n), with x̃ = u1 + au2,

y(n) = f(x(n)) = bx(n), ⇒ y(n) = b[u1(n) + au2(n) + ay(n)].

(7.42)
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Figure 7.18:Typical structure of a non-linear exciter.

where we have defined tilded variablesw̃ andx̃ than only depend on the external inputsu1,2, and are
therefore known at each timen. The functionf is a linear map (scaling by a constantb).

Note that a delay-free computational loop connectsy to x, in particular the last of Eqs. (7.42)
shows thaty depends implicitly on itself. It is easy, however, to rearrange the computation in order to
solve this problem: the last of Eqs. (7.42) can be inverted, yielding

y(n) = f(x(n)), 7−→ y(n) = h(x̃(n)) =
b

1− ab
[u1(n) + au2(n)]. (7.43)

The new maph relatesy to the computable vector̃x. Therefore, an equivalent realization of the
system is obtained as shown in Fig.7.17(b). The key point in this example is thatf is linear, which
allows explicit inversion of the last equation in (7.42).

This simple example is an instance of the so-calleddelay-free loopproblem. In the linear case
the literature of digital signal processing provides techniques for the restoring computability by rear-
rangement of the structure. However we are here interested in the non-linear case, since non-linear
elements are almost always present in physical models. In section7.2.1we have stated that non-linear
elements are typically associated to excitation mechanisms. Figure7.18 depicts a typical structure
which is found when “zooming” inside the excitation block of a musical instrument (cfr. Fig.7.1).
The elements denoted byL andNL represent a linear and a non-linear block, respectively. More pre-
cisely,L contains a linear filter that accounts for the system dynamics in terms of lumped elements,
while NL contains a non-linear multiple-input, multiple-output (MIMO) mapf(·). Both of these
blocks take exciting actionsu2 and the resonator variablesu1 as inputs, and they are connected to
each other in a feedback loop. This representation does not seem to be restrictive for acoustic models.

Without any loss in generality, we assume in the following that the non-linear mapf depends on
a linear combinationx of its inputs(w, u1,u2). Thus, the continuous-time system of Fig.7.18 is
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described through the equations




ẇ(t) = Aw(t) + Bu(t) + Cy(t),

x(t) = Dw(t) + Eu(t) + Fy(t),

y(t) = f (x(t)) ,

(7.44)

where the vectoru = [u1, u2]T collects all the external inputs to the exciter.
When equations (7.44) are discretized using a linear numerical method (e.g. those described in

the previous section), the discrete-time system takes the form




w(n) = w̃(n) + C̃y(n),

x(n) = x̃(n) + Ky(n),

y(n) = f (x(n)) = f (x̃(n) + Ky(n)) ,

(7.45)

where the vectors̃w andx̃ are computable vectors, i.e. they are linear combinations ofu and past
values ofw andy. Note that this system generalizes the linear example (7.42).

Equations (7.45) show that ifK is non null, there is a delay-free path connectingy to x with
K “weighing” this path. Note that explicit expressions for the vectorsw̃, x̃ and the matrices̃C,
K depend on what discretization method is used, but the overall system structure (7.45) remains the
same. In particular, the matrixK is always non null when an implicit linear method is used.

7.4.4.2 Approaches

It should be clear that in the non-linear case one cannot perform a rearrangement such as in (7.42),
because the last equation in (7.45) is in general not analytically invertible. The question is then how
to deal with the delay-free loop problem in the non-linear case.

• One can use anexplicitnumerical method, that produces a system of difference equations (7.45)
in which C̃ andK are null. This choice solves the computational problem but can introduce
more severe artifacts in the numerical system: explicit methods have lower orders of accuracy
with respect to implicit methods, and more importantly are not unconditionally stable, i.e. are
not stable for any sampling frequencyFs and for any values of the system parameters. A sound
synthesis algorithms that explodes can be very unpleasant.

M-7.10
Take the mechanical oscillator (7.30) and discretize it with the Euler method g1(z) in conjunction
with the centered estimate (7.37). Verify that the difference equation is explicit, study the frequency
response and the impulse response, compare them with those found in M-7.7, M-7.8, and M-7.9.
Study the poles of the digital system and veify that it can become unstable.

• A rudimentary solution, that is nonetheless often met in the literature of physical modeling,
amounts to inserting a fictitious delay element in the feedback loop, or in other words to assume
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that on the right-hand side of the last equation in (7.45) the approximationy(n) ≈ y(n − 1)
holds. In practice this is a variant of the previous approach: instead of using an explicit method
from the beginning, one makes the computation explicita posteriori, throug the insertion of
a z−1 element. While this “trick” can be acceptable at significantly high sampling rates, the
insertion of such a delay element can again deteriorate the accuracy and stability properties of
the numerical system. Even worse, in this case one cannot determine analytically the stability
range of the system.

• Numerical analysis provides a plethora of iterative methods to find solutions of non-linear sys-
tems of algebraic equations: examples of such methods include fixed-point iteration and Newton
iteration, and each of them requires specific hypothesis on the non-linear system to hold. These
methods can be exploited for our problem: at each timen one knowsx̃(n) and can estimate
y(n) by finding a zero ofgx̃(y) = f(x̃ + Ky)−y. In other words, at each timen one can es-
timate numerically a (non-linear) functiony = h(x̃). If we go back and look at equation (7.43)
we see what we are doing here: since we cannot invertf analytically and findh globally (as
we did in the linear case) we estimate itlocally, around a given valuẽx(n).
Using an iterative solver is advantageous over the previous approaches in that we can exploit the
accuracy and stability properties of an implicit method without introducing additional numeri-
cal errors in the system. One major drawback, however, is that one does not know in advance
the number of iterations that are needed for the solver to converge to the solutiony(n): this can
be a problem for real-time applications, where one wants to know the time needed to compute
one sound sample.

• Predictor-correctormethods are a class of numerical schemes that are well suited for solving
non-linear implicit difference equations. The basic idea is rather simple to understand: if the
starting point of the search is close enough to the solution, fixed-point iteration (or any other
iterative solver) will converge quickly. Predictor-corrector schemes then use an explicit nu-
merical method (the predictor) to provide an initial guess of the new value; the true new value
is found using an implicit method (the corrector) and an iterative solver (typically fixed-point
iteration). Numerical analysis shows that normally a very low number of iterations provide
acceptable accuracy. These schemes are therefore a valid alternative to the previous approach,
especially because the number of iterations (usually 1 or 2) of the corrector are set in advance.
Note however that predictor-corrector schemes have been very rarely used in the literature of
physical modeling.

7.5 A full example: the clarinet

In this last section we apply the modeling approaches discussed so far to a concrete example of musical
instrument. There is a number of reasons for choosing the clarinet: it is a widely studied instrument
in the literature of musical acoustics, and much is known of its functioning; it provides a paradigmatic
example of self-sustained oscillations initiated by a non-linear persistent excitation mechanism; last
but not least, it can be modeled with relatively simple structures. All in all, the clarinet constitues
an ideal candidate for exemplifying the construction of a non-trivial physical model of a musical
instrument.

Table7.2summarizes the main variables and parameters used throughout this section. The instru-
ment can be decomposed according to the general scheme summarized in figure7.1. The exciter is
represented by the reed-mouthpiece system, that acts as a non-linear pressure-controlled valve, and
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quantity symbol unit

Reed tip displ. yL(t) m
Tip rest position y0 m

Max. tip displacement ym m
Reed tip opening h(t) = ym − yL(t) m

Reed mass/area µ Kg/m2

Effective reed area Sd m2

Reed resonance freq. ω0 rad/s
Reed damping g 3000 s−1

Mouth pressure pm Pa
Mouthpiece pressure p(t) Pa

Pressure drop ∆p(t) = pm − p(t) Pa
Mouthpiece flow u(t) m3/s

Flow through the slit uf m3/s
Sound speed in air c = 347 m/s

Air density ρair = 1.14 Kg/m3

Bore cross section S m2

Bore wave impedance Z0 = ρairc/S Kg/m4s
Bore length Lbore m

Press. wave from the bore p−(t) Pa
Press. wave to the bore p+(t) Pa

Table 7.2:Symbols used throughout the section.

determines the drop∆p between the pressurepm inside the player’s mouth and the pressurep in-
side the mouthpiece. The resonator coincides with the acoustical bore, and can be subdivided into
sub-blocks, such as bell and holes.

7.5.1 Functional blocks

7.5.1.1 Resonator: the bore

As a first approximation, the clarinet bore can be assumed to be cylindrical. Therefore the most
basic model for the bore can be obtained using a single waveguide section, that simulates plane wave
propagation, and a perfect reflection at the open end (bell). According to this oversimplified model,
the pressure wavep− entering the mouthpiece from the bore is given by

p−(n) = −p+(n− 2mbore) ⇔ P−(z) = −z−2mboreP+(z). (7.46)

The number2mbore of unit delays for the waveguide is related to the bore lengthLbore and to the
sampling frequencyFs through the equationLbore = c ·mbore/Fs.

A slightly more accurate model is obtained by taking into account the radiating properties of the
bell. The bell itself can be seen as a low-pass filter, that reflects low frequencies back inside the bore,
and radiates frequencies above its cutoff. Typical values for the cutoff frequency are around1500 Hz.
Let Rd(z) be the transfer function of such a low-pass filter: then the pressure wavep− that enters the
mouthpiece from the bore is given by

p−(n) = −(rd ∗ p+)(n− 2mbore) ⇔ P−(z) = −z−2mboreRd(z)P+(z). (7.47)
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Figure 7.19:Schematized representation of the reed-mouthpiece system.

The portion that is radiated from the bell is instead given by

pout(n) = p+(n−mbore)+(rd∗p+)(n−mbore) ⇔ Pout(z) = z−mbore [1+Rd(z)]P+(z).
(7.48)

M-7.11
Construct the WG bore model according to equation (7.47), as a function that takes a pressure
wave p+(n) from the mouthpiece and returns a pressure wave p−(n) back to the mouthpiece.

Further refinements to this model should include losses, that can be incorporated in the model
according to the techniques described in section7.3. Fractional-delay filters should also be incorpo-
rated in the model in order to allow for fine tuning of the bore lengthLbore (note that so far we have
assumed thatLboreFs/c = mbore with mbore integer, which clearly implies a crude quantization of
Lbore). Finally, holes can be incorporated into the model through scattering filters connected through
3-port junctions to the main waveguide structure.

7.5.1.2 Excitation: the reed

We turn now to the exciter block, which corresponds to the reed-mouthpiece system and is schemati-
cally represented in figure7.19.

The reed dimensions are small with respect to typical wavelengths in the resonator, thus pressure
can be thought of as constant along the reed internal surface; under normal playing conditions, the first
mode of the reed-mouthpiece-lip system is well above the main frequency component of the pressure
signal that drives it; oscillations occur mainly in the vertical direction, and as a first approximation a
single degree of freedom (i.e. the reed tip vertical displacementyL) can be assumed.

These considerations justify the choice of alumpedmodeling approach for the reed. Many authors
have approximated the reed as a lumped second-order mechanical oscillator, driven by the pressure
drop∆p between mouth and mouthpiece:

mÿL(t) + rẏL(t) + k[yL(t)− y0] = Sd∆p(t), (7.49)



7.36 CHAPTER 7. SOUND MODELING: SOURCE-BASED APPROACHES

wherem, r, k are the reed mass, damping, and spring constant, respectively. The parameterSd is an
effective driving surface on which the pressure∆p acts. In the Laplace domain, Eq. (7.49) can be
rewritten as

YL(s)− y0 = Hr(s)∆P (s), with Hr(s) =
1
µ

1
s2 + gs + ω2

0

. (7.50)

Therefore,Hr is the transfer function between∆p and the reed relative displacement. The parameter
µ = m/Sd is the effective mass/area ratio,g = r/m is the damping coefficient andω0 =

√
k/m is

the resonance of the oscillator.
The phenomenon of reed beating (i.e. complete closure of the reed) is usually incorporated in the

lumped model in a non-physical way, by imposing a “stop” when the reed tip reaches its maximum
allowed displacementym. Equation (7.49) is thus turned into





mÿL(t) + rẏL(t) + k(yL(t)− y0) = Sd∆p(t), for yL < ym,

yL(t) = ym and ẏL(t) = 0, for yL ≥ ym.

(7.51)

Once the mechanical part has been modeled, the relation between the reed opening and the airflow
through the slituf has to be found. As a first approximation, the pressure drop∆p can be assumed to
obey the equation

∆p(t) = f(uf (t), h(t)) = A−αsgn[uf (t)]
|uf (t)|α
h(t)2

, (7.52)

which is derived from the Bernoulli law.6

Equations (7.51) and (7.52) relate quantities at the reed slit. A third equation relates the flowuf

at the slit to the total flowu inside the instrument:

u(t) = uf (t) + ur(t), with

{
uf (t) = 1

Z0
(p+(t)− p−(t)),

ur(t) = SrẏL(t).
(7.53)

This equation states that the total flow inside the instrument is affected by an additional component
ur(t), induced by the reed motion and proportional to the reed tip velocity. The quantitySr is the
effective flow surface of the reed, and is not necessarily equal toSd.

7.5.2 The quasi-static approximation

In a single reed instrument the fundamental regime of oscillation is governed by the first resonance
frequency of the pipe, and typical values for the reed mechanical resonanceω0 are well above this
pipe resonance and the frequency band ofp(t).

It is therefore reasonable to assume aquasi-static approximationfor the reed response, in which
the exact relation(YL(s)− y0) = Hr(s)∆P (s) is substituted by the simpler

(YL(s)− y0) = Hr(0)∆P (s) :=
1

Ka
∆P (s) (7.54)

SinceHr(0) is a scalar rather than a filter, equation (7.54) assumes that the reed motion is in phase
and proportional to the pressure drop. The quantityKa is usually termed reedstiffness per unit area.
One can easily verify from equation (7.50) thatKa = muω0.

6The Bernoulli law, which holds for incompressible non-viscous fluids and in stationary conditions, states that the
relationuf = A · x · ∆p1/2sgn(∆p) holds through an aperture of widthx. Some authors adopt for the single reed the
generalized equationuf = [A · x∆p1/2sgn(∆p)]1/α, with an experimentally determined valueα = 3/2.
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Figure 7.20:Quasi-static approximation of a single reed; (a)uf versus∆p and (b) rotated mapping
p+ = Rnl(p−).

Using Eq. (7.54), the reed openingh is computed as

h(t) = ym − y0 − ∆p(t)
Ka

= h0 − ∆p(t)
Ka

,

whereh0 = ym − y0 is the rest opening of the reed tip. Substituting this relation into equation (7.52)
one finds

uf (t) =





A · sgn[∆p(t)] · |∆p|1/α

(
h0 − ∆p(t)

Ka

)2/α

for ∆p < h0Ka,

0, for ∆p ≥ h0Ka.

(7.55)

Equation (7.55) provides a relation betweenuf and∆p in which the reed dynamics has been
removed. Figure7.20(a) shows the plot of this relation. For low∆p values,uf increases until a
maximum at∆p = h0Ka/3. Then the flow starts to drop due to reed closure, and reaches the value
uf = 0 at∆p = h0Ka. Beyond this value the reed is completely closed.

The non-linear map (7.55can be used to construct a quasi-static reed model. If wave variablesp±

are introduced, the non-linearity can be turned in a new one in whichp+ depends onp− through a
non-linear reflection functionRnl, i.e. p+ = Rnl(p−). This is depicted in Fig.7.20(b).

M-7.12
Construct the quasi-static reed model according to equation (7.55), as a function that takes a pres-
sure wave p−(n) from the bore and returns a pressure wave p+(n) back to the bore.

Despite its simplicity, the quasi-static model is able to capture the basic non-linear mechanisms
of self-sustained oscillations in a single reed instrument. Due to its compactness and low number of
parameters, this model has been also used for sound synthesis purposes.
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M-7.13
Implement the complete quasi-static clarinet model: using the functions developed in M-7.11 and M-
7.12, write an audio cycle in which the system is initialized with a certain mouth pressure pm and
evolves freely. Plot the signal and its spectrogram.

7.5.3 The dynamic reed model

In order to obtain more realistic behavior from the clarinet model we want now to use the dynamic
lumped reed formulation described in section7.5.1. The continuous-time system described by equa-
tions (7.51, 7.52, 7.53) can be restated in vector formulation as





ẇ(t) = Aw(t) + Bu(t) + C∆p(t),

x(t) = Dw(t) + Eu(t) + F∆p(t),

∆p(t) = f (x(t)) ,

(7.56)

where the variables are given by

w =
[

h

ḣ

]
, u =




h0

pm

p−


 , x =

[
uf

h

]
,

wherew is the state vector of the reed,u collects the incoming pressure wavep− and external control
parameters such as mouth pressurepm and the rest openingh0.

The matrices are

A =
[

0 1
−ω2

0 −g

]
, B =

[
0 0 0
ω2

0 0 0

]
, C =

[
0

−1/µ

]
,

D =
[

0 −Sr

1 0

]
, E =

[
0 1/Z0 −2/Z0

0 0 0

]
, F =

[ −1/Z0

0

]
.

The beating condition in Eq. (7.51) is rewritten as

w = 0, for h ≤ 0.

Note that system (7.56) is formally identical to the general structure (7.44) that we have studied in
section7.4.4. Its first equation can be discretized with one of the techniques described in section7.4.3.
We choose here the bilinear transform, and the discrete-time system is obtained through applications
of the transformsLaplace→ Bilinear→ Z−1, whereZ−1 is the inverseZ transform:

s ·W (s) = AW (s) + BU(s) + C∆P (s) s = h
1− z−1

1 + z−1
, h = 2Fs

w(n) = [hI −A]−1{[hI + A]w(n− 1) + B[u(n) + u(n− 1)] + C[∆p(n) + ∆p(n− 1)]}
= w̃(n) + C̄∆p(n).

(7.57)
Here the vector̃w(n) is a linear combination of all the terms that are computable at timen (namely
u(n) and past values ofw, u and∆p) while the vectorC̄ weights the dependence ofw on∆p(n).
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M-7.14
Construct the dynamic reed model according to equation (7.57), as a functions that takes a pressure
wave p−(n) from the bore and returns the computable state vector w̃(n).

The second equation in system (7.56) can thus be written as

x(n) = x̃(n) + K∆p(n), with





K = (DC̄ + F )
x̃(n) = Eu(n) + D[hI −A]−1{(hI + A)w(n− 1)

+B[u(n) + u(n− 1)] + C∆p(n− 1)},
(7.58)

whereK = (DC̄ + F ) weights the delay-free loop connecting∆p to x, while the vector̃x(n) has
no instantaneous dependence on∆p(n) and is therefore computable at each step. The discrete-time
non-linear relation is

∆p(n) = f (x̃(n) + K∆p(n)) , (7.59)

Note that equations (7.57, 7.58, 7.59) are formally identical to the general structure (7.45) that we
have studied in section7.4.4. In particular, equation (7.59) emphasizes the occurrence of a delay-free
computational loop in the system, which ultimately causes∆p(n) to depend on itself through the
non-linear mapf . We choose to solve equation (7.59) using Newton iteration: at each timen we look
for a zero of the functiongx̃(∆p) = f(x̃ + K∆p) −∆p, using the value∆p(n − 1) as the starting
point for the iteration.

M-7.15
Construct the non-linear pressure model according to equation (7.59), as a function that takes the
computable input x̃ from the bore and the reed, and returns the pressure drop ∆p(n).

7.5.4 Properties of the model

7.5.4.1 The numerical reed

We are finally able to analyze the results provided by the discrete-time model developed so far. A first
evaluation criterion amounts to examine the reed frequency response. Consider the transfer function
Hr(s) in Eq. (7.50) and the corresponding frequency responseHr(jω). The transfer functionHdr(z)
of the digital reed is obtained by substitution:

Hdr(z) = Hr

(
h

1− z−1

1 + z−1

)
, (7.60)

and the corresponding frequency response is given byHdr (exp(jωd/Fs)).
Figure7.21 shows the two responsesHr andHdr in the caseFs = 22.05 kHz. The response

obtained by applying the Euler method is also plotted as a term of comparison. The Euler method is
easily seen to provide poor accuracy. In particular, a noticeable numerical dissipation is introduced,
so that the resonance is strongly attenuated. Results forHdr are in good agreement with theoretical
predictions. Both the magnitude and the phase responses exhibit frequency warping (see the discus-
sion in Sec.7.4.3). The original resonanceω0 has shifted from23250 rad/s to21300 rad/s (i.e. from
3700 Hz to3390 Hz) for Hdr.
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Figure 7.21:Reed response: comparison of the continuous-time system and the discrete-time systems
obtained using the bilinear transform and the Euler method, withFs = 22.05 kHz; (a) magnitude
responses and (b) phase responses.

7.5.4.2 Time-domain simulations

Besides frequency-domain analyis, we can also study the output of the simulations in the time domain
by capturing relevant signals (yL, ∆p, p±, uf , . . .) from each part of the model.

M-7.16
Implement the complete dynamic clarinet model: using the functions developed in M-7.11, M-7.14,
and M-7.15, write an audio cycle in which the system is initialized with a certain mouth pressure pm

and evolves freely. Plot the signal and its spectrogram.

Figure7.22shows the signalp(t) when a step mouth pressurepm = 1900 Pa is applied. A rich
attack transient can be noticed, which is not obtained using simpler models such as the quasi-static
one described previously. At steady state the signal resembles the square wave which is typically
associated to the clarinet. Note however that even during steady state the quasi-static approximation
does not hold: this is shown in figure7.23, which has been obtained by applying a step mouth pressure
pm = 2265 Pa that causes beating to initiate. The figure shows thatuf and∆p move along a hysteretic
path, due to the presence of memory in the equations.

Another significant difference between the quasi-static and the dynamic model is concerned with
transitions to high regimes of oscillation. Bothω0 and g play a role in helping transition to the
second register (clarion register), which can be produced without opening the register hole if the
reed resonance matches a low harmonic of the playing frequency and the damping is small enough.
Moreover, an extremely low damping causes the reed regime (“squeaks”) to be produced, i.e. the
oscillation is governed by the reed resonance. All these effects are seen to be well reproduced by
numerical simulations with the digital reed, while on the contrary the quasi-static approximation does
not allow control on such effects. Figure7.24(a) shows an example of transition to the clarion register.
This example has been obtained by matchingω0 to the seventh harmonic of the playing frequency and
by loweringg down to1400 rad/s. Figure7.24(b) shows a transition to the reed regime. This is
achieved by givingg a value as low as300 rad/s. Squeaks are more easily obtained in simulations by
driving the reed with low blowing pressures.
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Figure 7.22:Mouthpiece pressurep(t); (a) attack transient and (b) steady-state signal, withpm =
1900 Pa andFs = 22.05 kHz.

7.6 Key concepts

Ã Source models vs. signal models
Physical modeling techniques differ drastically from those examined in the previous chapter.
Signal-based techniques are derived and characterized by looking at the waveforms produced
by the algorithms and their features in the time-domain or in the frequency domain. Source-
based techniques try to describe sounds in terms of the physical objects and interactions that
are responsible for sound generation.
We have pointed out the implications of this approach in terms of sound representation: a
physical model provides a highly semantic description in which the control parameters of the
final synthesis algorithms have most of thes a clear physical interpretation (e.g. the length of
a string, the stiffness of a reed, and so on), and the algorithms react in a physically consistent
way to changes in such parameters.

Ã Structural aspects: exciters, resonators, non-linearities
In many cases an acoustic system can be represented as composed by resonating structures
connected to excitation elements. This distinction is important from the modeling point of view,
since the resonating structures (e.g. strings, membranes, bars, plates, acoustic bores, etc.)
can be assumed to be linear with good approximation. On the other hand the excitation mech-
anisms (e.g. impacts, frictions, pressure-controlled valves, air jets, etc.) are typically described
by non-linear equations, and determine the way energy is injected into the resonators.
Resonating and exciter blocks are typically connected in a feed-back fashion: as an example,
when a bow slides onto a violin string both the objects are subject to an interaction (friction)
force which is in turn determined by their relaTive velocity (and possibly other variables). Sim-
ilar consideration apply to the system composed by a resonating bore and a reed. One case
where the coupling can be assumed feed-forward to a goof approximation is that of a plucked
string: in ideal pluck simply imposed a non-equilibrium initial displacement to the string, which
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Figure 7.23:Quasi-static curve (solid line) and phase diagram obtained from simulations, withpm =
2265 Pa andFs = 22.05 kHz.

subsequently oscillates freely.

Ã Modeling approaches: distributed, lumped
A way of looking at physical modeling techniques is by classifying them into two main cat-
egories. Generally speaking, distributed approaches include all the modeling techniques in
which the mathematical description takes the spatial distribution of the physical system into ac-
count. A description based on a set of partial differential equations (PDEs), simulated through
finite difference/elements methods (FDM/FEM), is certainly a distributed modeling approach.
Waveguide structures are another example of distributed models: these can in general provide
more efficient algorithms with respect to FEM/FDM methods, but are less general.
The category of lumped models includes all of those modeling approaches that do not embed
a notion of spatial distribution: describing a piano hammer as an ideal point mass is a lumped
modeling approach; similarly, describing a single reed as a second order mechanical oscillator,
as we did in section 7.5 and in equation (7.49), is a lumped approach since it does not account
for the presence of higher modes of oscillation, for non even pressure distributions on the reed
surface, for propagation of vibrations inside the reed.

Ã The Karplus-Strong (KS) algorithm
We have examined the KS algorithm as a first elementary example of waveguide structure. Its
basic building block is a comb filter, whose block scheme and magnitude response are depicted
in figures 7.3(a) and (b), respectively: this show that the comb filter structure is well suited for
representing a resonant system with a harmonic spectrum, such as an ideal string with fixed
ends. If an additional low-pass filter is inserted into the structure, as in figure 7.5(a), a more
realistic response is obtained in which the higher harmonic partials are more damped than the
lower ones (see figure 7.5(b)). The original formulation of the KS algorithm assumes that the
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Figure 7.24:Transitions to high regimes of oscillation; (a) clarion register (ω0 = 2π · 2020 rad/s,
g = 1400 rad/s,pm = 1800 Pa); (b) reed regime (ω0 = 2π · 3150 rad/s,g = 300 rad/s,pm = 1900
Pa).

state of the comb filter is initialized with random values, after which the filter evolves freely: the
resulting sounds mimic quite closely those of a guitar string.
The KS filter can be given the following proto-physical interpretation: a displacement wave
travels into the string and is reflected back each time it reaches one of the fixed ends. At
each reflection the high-frequency components are smoothed away more strongly than the
low-frequency ones, because of dissipation phenomena occurring in the string. The theory of
1-D waveguide structures provides a more formal framework to this interpretation.

Ã 1-D waveguide (WG) structures
We have seen that the starting point in the construction of basic WG structures are the D’Alembert
equation and its traveling wave solution. A computational realization of such a solution can be
constructed using a pair of delay lines, which simulate wave propagation in the two directions
of a 1-D medium. The delay lines are terminated by reflection coefficients that simulate ideal
boundary conditions and. Refinements to this basic structures include the modling of dissipa-
tion and dispersion, as well as fine tuning elements. All of these are simulated by inserting addi-
tional filtering elements into the WG structure: low-pass filters account for frequency-dependent
dissipation, while all-pass filters are used to introduce frequency-dependent propagation veloc-
ity (an example where dispersion plays a relevant role are piano strings in the low register).
Fine tuning is realized through insertion of all-pass linear-phase filters: the phase character-
istics of the filter is responsible for an additional fractional delay, which is used to tune the
physical length of the modeled resonator (e.g. a string).

Ã WG networks
Waveguide sections can be connected to each other using juctions that account for impedance
discontinuities in the propagating medium (e.g., two cylindrical bore sections with different di-
ameters, or two pieces of string with different mass densities). When such discontinuities
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are encountered, scattering occurs, i.e. the incoming waves are partly transmitted and partly
reflected. The Kelly-Lochbaum junction is used to connect two waveguide section: its equa-
tions (7.20) are derived by imposing continuity conditions for the Kirchoff variables at the junc-
tion. We have drawn the block scheme of a KL junction in figure 7.9 and we have seen that a
reflection coefficient ρ determines the relative amounts of reflected and transmitted waves. We
have also seen that the KL junction can be extended to the n-dimensional case.

Ã Lumped modeling
We usually look at electrical systems using a lumped approach: current intensity i and voltage
v are measured punctually, withouth looking at propagation effects within the circuit. Circuit
elements are also described using punctual input-output relations: voltage and current through
an element are related via circuit impedances, as summarized in Eq. (7.24).
We have seen that mechanical and acoustic systems can be looked at using the same ap-
proach. Specifically, we have defined pair of variables (Kirchoff variables) that are analogous
to voltage and current: these are the pairs force-velocity and pressure-flow, in the case of
mechanical and acoustic systems, respectively. For the three classes of systems (electrical,
mechanical, acoustic) we have examined the basic impedance blocks and have pointed out
the analogies between them. These are summarized in the fundamental Table 7.1. We have
also introduced the concepts of parallel and series junctions of mechanical and acoustic ele-
ments, and have provided examples in figures 7.12 and 7.13. Finally, we have seen through an
example (the Chua-Felderhoff circuit and the non-linear hammer felt) that analogies between
classes of systems extend to the case of non-linear elements.

Ã Modal synthesis
The second-order oscillator (7.30) is the simplest possible resonating mechanical system that
we can construct using basic impedances blocks. Simple equations relate the impedances
m, r, k to the resonator parameters: center frequency, quality factor, 1/e decay time. A set of
N oscillators driven by the same force can be used to describe a set of N resonances of a
mechanical structure: the mass m of each oscillator determines the amount of the excitation
provided by the force to the corresponding resonance.
Up to this point, modal synthesis seems little more than a variant of additive synthesis. How-
ever, we have seen that this technique does have a profound physical foundation. Given a set
of N point-masses connected through springs and dampers, there exists in general a modal
decomposition of the system, i.e. a linear transformation that turns the system into a set of de-
coupled second-order equations. The relation between the mass displacements and the new
modal displacements are summarized by Eq. (7.33). Finally, we have observed that by giving
the modal masses different values at each of the N points of the physical structure, one can
simulate position-dependent interaction (in particular, nodal points correspond to infinite modal
masses).

Ã Discretization methods
WG are already in the discrete-time domain, but in general a physical model is developed in the
continuous-time domain. In particular, lumped modeling approaches describe a system as a
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set of ordinary differential equations (ODEs). We have briefly examined various approaches to
discretization, namely the impulse invariant method and s-to-z techniques such as the (back-
ward) Euler method and the bilinear transform. Each of these approaches carries its own
advantages and drawbacks: some of the features that we have analyzed include frequency
aliasing and frequency warping, stability, order of accuracy, and numerical damping. We have
also defined the concepts of explicit and implicit numerical methods, and looked at the general
form of the difference equations that they produce.
Wave digital filters (WDF) can be used to describe a lumped element in the digital domain:
first, the impedance of the element is turned into a reflectance through a variable transforma-
tion, from Kirchoff to wave (as we did in equation (7.40)). Second, the bilinear transform is used
to turn such reflectance filters into their digital counterparts. Third, filtering elements are con-
nected by adapting their reference impedances in order to avoid the occurrence of delay-free
computational loops.

Ã Computational aspects
The delay-free loop problem deserves some discussion, due to the fact that sound physical
models typically involve the presence of non-linear elements. We have first examined the prob-
lem by looking at a simple example of a linear system, in figure 7.17. In this case the compu-
tation can be rearranged into an equivalent structure, but it is clear that such a rearrangement
can only be performed under the hypothesis of linearity: when a non-linear element is involved
in the computation, we do not know in general whether it is invertible or not.
We have listed some of the approaches that can be taken to deal with the general non-linear
case: use of explicit numerical methods, artificial introduction of delay elements in the com-
putation, use of iterative solvers or predictor-corrector combinations. Again, each of these
approaches carries its own advantages and drawbacks.

7.7 Commented bibliography

Sound modeling techniques can be classified according to many criteria. Two general references that
address these issues are [4, 17]. Specifically, the taxonomy based onsignal modelsandsource models,
and their subclasses, proposed at the beginning of this chapter is based on [4].

Seminal ideas that eventually lead to the definition of physically-based sound modeling techniques
are to be found in research on musical instrument acoustics. Some classic papers in this area are [9,
10, 16, 14]. In particular, the two citations in section7.2.1are taken from [9, 14], respectively. A
book that covers the topic of musical acoustics exhaustively is [8].

A general overview on approaches and techniques used in physical modeling, with an emphasis
on structural and computational aspects, is [5]. Figure7.1 in this chapter (typical block scheme of a
musical instrument model) is based on an analogous scheme in [5]. On the other hand, figure7.2(b)
(typical block scheme of an articulatory synthesizer) is based on an analogous scheme in [19].

About distributed modeling approaches: finite difference schemes applied to PDE descriptions
have been used in the literature e.g. for modeling idiophones [3] and single reed systems [20]. The
theory of 1-D waveguide models is now well established. An exhaustive introduction to the topic
is [18], which provides full derivations of waveguide structures and examples of musical instrument
modeling, together with a vast bibliography. The Karplus-Strong algorithm, which we have regarded
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as the first step toward the development of digital waveguide structures, was originally presented
in [12].

Many textbooks on digital speech processing contain discussion about multitube lossless models
of the vocal tract, which are basically cylindrical waveguide sections connected by Kelly-Lochbaum
junctions: see e.g. [6]. We have not addressed the topic of higher dimensional (2- and 3-D) waveguide
structures: seminal ideas were presented in [21].

About lumped modeling approaches: a discussion of the analogies between electrical systems and
their acoustical counterparts is found in [8]. In particular, the circuit representation of a Helmoltz
resonator given in section7.4.1is based on an analogous discussion in [8]. A classic presentation of
modal synthesis techniques is [1]. We have examined in section7.5 an example of lumped element
physical model (the single reed): this model has been used extensively in the literature, see e.g. [16].
A classic example of a lumped physical model applied to voice synthesis is [11], in which the authors
describe the vocal folds by means of two lumped masses and viscoelastic elements.

About numerical and computational aspects: most of the techniques described in section7.4.3are
found in DSP textbooks: see e.g. [15]. A classic reference to the theory of Wave Digital Filters (WDF)
theory is [7]. In the field of numerical analysis, a comprehensive discussion on numerical methods for
ordinary differential equations is given in [13]. The example that we discussed in section7.4.4about
delay-free computational paths in linear systems (see figure7.17) is adapted from [15, section 6.1.3,
Fig. 6.5]. We have seen that new problems are encountered when non-linear elements are present in
the delay-free computational path: reference [2] provides a discussion of these issues, together with a
proposed non-iterative solution (in brief, a set of hypotheses and techniques to computea priori the
non-linear functionh that we have examined in section7.4.4), and applications to the simulation of
acoustic systems. We have followed the notation given in [2] for the matrices in equation (7.44) and
for theK matrix in equation (7.45).
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