


Chapter 1

Fundamentals on digital signal processing

Cosmo Trestino

Copyright c© 2006 by Cosmo Trestino. All rights reserved.

1.1 Discrete-Time Signal and Systems

Signals play an important role in our daily life. Examples of signals that we encounter frequently are
speech, music, picture and video signals. A signal is a function of independent variables such as time,
distance, position, temperature and pressure. For examples, speech and music signals represent air
pressure as a function of time at a point in space.

Most signals we encounter are generated by natural means. However, a signal can also generated
synthetically or by computer simulation. Later we will see how to generate simple signal using the
simulation environmentMATLAB.

In this chapter we will focus our attention on a particulary class of signals: The so calleddiscrete-
time signals. This class of signals is the most important way to describe/model the sound signals with
the aid of the calculator.

1.1.1 Characterization and Classification of Signals

Depending on the nature of the independent variables and the value of the function defining the signal,
various type of signals can be defined. For example, independent variables can be continuous or
discrete. Likewise, the signal can either be a continuous or a discrete function of the independent
variables. Moreover, the signal can be either a real-valued function or a complex-valued function.

If we denote a function as follow:

x(t) : t ∈ D → x(t) ∈ C (1.1)

where D is the set of value of the independent variablet and C is the set of value of the function
defining the signal,x(t), is possible to classify the signal with respect the nature of the sets D and C.
On the basis of nature of D we have:

• D= R: continuous-timesignalx(t), t ∈ R
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• D= I: discrete-timesignalx(t), t ∈ I whereI is a countable set{. . . , t−1, t0, t1, . . .} The most
common and important example is whentn = nT , thereforetn ∈ Z(T ).

On the basis of the nature of C we have:

• C= R: continuous-amplitudesignal

• C= I: discrete-amplitudesignal. CommonlyI is a countable and finite set of value{x1, x2, . . . , xM}.
The most common examples are the quantized samples with uniform quantization lawx = kq,
with q the quantization step andk integer.

Finally combining the various domains we obtains the following class of signals, depicted if
Fig.1.1:

1. D= R, C= R: “analog” signal.

2. D= R, C= I: “quantized analog” signal.

3. D= I, C= R: “sampled” signal or “discrete-time” signal.

4. D= I, C= I: “numerical” signal or “digital” signal. This is the common kind of signal analyzed
with the aid of the calculator.
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Figure 1.1: (a) Analog signal, (b) Quantized analog signal, (c) discrete-time signal, (d) numerical
signal.
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1.1.2 Discrete-Time signals: Sequences

In this section we will present the mathematical representation of discrete-time signals, also it will be
introduced the mathematical formalism used in the rest of this book.

Discrete-Time signals are represented mathematically as sequences of numbers. A sequence of
numbersx, in witch thenth number in the sequence is denoted x[n], is formally written as

x = {x[n]}, −∞ < n < ∞, (1.2)

where n is an integer. The graphical representation of a sequence{x[n]} with real-valued samples is
illustrated in Fig.1.2.

-9   -8   -7   -6   -5    -4   -3   -2    -1    0    1     2  

3    4     5    6     7     8    9    10 n

x[n]

x[3]

x[-7]

Figure 1.2:Graphical representation of a discrete-time sequence{x[n]}.

In a practical setting, such sequences can arise fromperiodic sampling of an analog signal. In
this case, the numeric value of thenth number in the sequence is equal to the value of the analog signal
xa(t) at timenT ; i.e.,

x[n] = xa(nT ) −∞ < n < ∞, (1.3)

as illustrated in Fig.1.3. The quantityT is calledsampling periodand its reciprocal is thesampling
frequency.

1.1.3 Operation on sequences

A single-input, single output discrete-time system operate on a sequence, called theinput sequence,
according to some prescribed rules and develops another sequence, called theoutput sequence, usu-
ally with more desiderable properties. In most cases, the operation defining a particular discrete-time
system is composed of some basic operation that we describe next.

Product
Let x[n] andy[n] be two known sequences. By forming theproductof the sample values of these two
sequences at each instant, we form a sequencew1[n]:

w[n] = x[n]y[n]. (1.4)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
www.creativecommons.org.c©2006 by the authors
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Figure 1.3:Sequence generated by sampling a continuous-time signalxa(t).

This operation is also know asmodulation. Furthermore this operation is very useful when we
want to obtain a finite-length sequence from an infinite-length sequence. This operation is performed
by the product of the infinite-length sequence with a finite-length sequence calledwindow sequence.
This process is calledwindowing.

Time shifting
Another important operation is thetime shiftingor thetranslation:

w[n] = x[n−N ], (1.5)

with N integer. WhenN > 0, it is adelayingoperation and ifN < 0 it is anadvancingoperation.

Time reversal
Thetime-reversaloperation is another useful scheme to develop a new sequence. An example is:

w[n] = x[−n], (1.6)

which is the time-reversed version of the sequencex[n].

1.1.4 Properties of discrete-time signals

In this section we will see some basic properties of the discrete-time signals.

Periodicity
A sequencex[n] satisfying

x[n] = x[n + kN ] −∞ < n < ∞ (1.7)

is called aperiodicsequence with aperiodN whereN is a positive integer andk is any integer. The
fundamental periodNf of a periodic signal is the smallest value ofN for wich Eq.(1.7) holds.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
www.creativecommons.org.c©2006 by the authors
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Energy
The totalenergyof a sequencex[n] is defined by:

Ex =
∞∑

n=−∞
|x[n]|2. (1.8)

Note that an infinite-length sequence with finite sample values may or not have finite energy. The
average powerof an aperiodic-sequencex[n] is defined by

Px = lim
K→∞

1
2K + 1

K∑

n=−K

|x[n]|2. (1.9)

Finally is possible to define the average power of a periodic-sequencex[n] with a periodN by means

Px =
1
N

N−1∑

n=0

|x[n]|2. (1.10)

Other type of Classification
A sequencex[n] is said to beboundedif each of its samples is of magnitude less than or equal to a
finite positive numberBx,i.e.,

|x[n]| ≤ Bx > ∞ (1.11)

1.1.5 Some Basic Sequences

The most common basic sequences are the unit sample sequence, the unit step sequence, the sinusoid
sequence and the exponential sequence. These sequences are defined next.

Unit Sample Sequence
The simplest and the most useful sequence is theunit sample sequence, often calledunit impulse, as
shown in Fig.1.4(a). It is denoted byδ[n] and defined by

δ[n] =
{

1, n = 0,
0, n 6= 0.

(1.12)

The unit sample sequence plays the same role for the discrete-time signals and systems that the
impulse function (Dirac Delta function) does for continuous-time signal and systems.
One important aspects of this sequence is that an arbitrary sequence can be represented as a sum of
scaled (linear combination), delayed impulses as expressed by:

x[n] =
∞∑

k=−∞
x[k]δ[n− k]. (1.13)

Unit Step Sequence
A second basic sequence is theunit step sequenceshown in Fig.1.4(b). It is denoted byu[n] and is
defined by

u[n] =
{

1, n ≥ 0,
0, n < 0.

(1.14)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
www.creativecommons.org.c©2006 by the authors
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Figure 1.4:(a)The unite sample sequenceδ[n], (b) The unit step sequenceu[n].

An alternative representation of the unit step in terms of the impulse is obtained by interpreting
the unit step in Fig.1.4(b) in terms of a sum od delayed impulses. This is expressed as

u[n] =
∞∑

k=0

δ[n− k]. (1.15)

Conversely, the impulse sequence can be expressed as thefirst backward differenceof the unit step
sequence,i.e.,

δ[n] = u[n]− u[n− 1]. (1.16)

Sinusoidal and Exponential Sequence
Exponential and sinusoidal sequences are extremely important in representing and analyzing linear
discrete-time systems.

The general form of thereal sinusoidal sequencewith constant amplitude is

x[n] = A cos(ω0n + φ), −∞ < n < ∞, (1.17)

whereA, ω0 andφ are real numbers. Different types of sinusoidal sequences are depicted in Fig.1.5.
Another set of basic sequences is formed by taking thenth sample value to be thenth power of a

real or complex constant. Such sequences are termedexponential sequencesand their general form is

x[n] = Aαn, −∞ < n < ∞, (1.18)

whereA andα are real or complex constant.
The exponential sequenceAαn with complexα has real and imaginary part that are exponentially
weighted sinusoid. Specifically, ifα = |α|ejω0 andA = |A|ejφ,the sequenceAαn can be expressed
as

x[n] = |A||α|nej(ω0n+φ)

= |A||α|n cos(ω0n + φ) + j|A||α|n sin(ω0n + φ)
(1.19)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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Figure 1.5:A family os sinusoidal sequences given byx[n] = 1.5 cos(ω0n): (a) ω0 = 0, (b) ω0 =
0.1π, (c) ω0 = 0.8π, (d) ω0 = π, (e)ω0 = 1.1π and (f)ω0 = 1.2π.

If we write x[n] = xre[n] + jxim[n], then from Eq.1.19:

xre[n] = |A||α|n cos(ω0n + φ), (1.20)

xim[n] = |A||α|n sin(ω0n + φ). (1.21)

These sequences oscillates with an exponential growing envelope if|α| > 1 or with exponentially
decay envelope if|α| < 1.

When|α| = 1, the sequence is referred to as acomplex exponential sequenceand has the form

x[n] = |A|ejω0n+φ = |A| cos(ω0n + φ) + j|A| sin(ω0n + φ), (1.22)

where now the real and imaginary parts are real sinusoidal sequences with constant amplitude.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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1.2 Discrete-Time Systems

A discrete-time system is defined mathematically as a transformation that maps an input sequence
with valuex[n] into an output sequence with valuesy[n] and can be denoted by

y[n] = T {x[n]} (1.23)

and is showed if Fig.1.6. Classes of systems are defined by placing constraints on the properties of the
transformationT {·}. Doing so often leads to very general mathematical representation, as we will
see.

x[n] y[n]
T{ }

Figure 1.6:Representation of a discrete-time system,i.e., a transformation that maps an input sequencex[n]
into a unique output sequencey[n].

1.2.1 Linear Systems

The class oflinear systemsis defined by the principle of superposition. Ify1[n] andy2[n] are the
responses of a system whenx1[n] andx2[n] are the respective inputs, then the system is linear if and
only if

T {x1[n] + x2[n]} = T {x1[n]}+ T {x2[n]} = y1[n] + y2[n] (1.24)

and

T {ax[n]} = aT {x[n]} = ay[n]. (1.25)

wherea is an arbitrary constants. The two properties can be combined into theprinciple of superpo-
sition, stated as

T {a1x1[n] + a2x2[n]} = a1T {x1[n]}+ a2T {x2[n]} (1.26)

for an arbitrary constantsa1 anda2.

1.2.2 Time-Invariant Systems

A time-invariant system is one for which a time shift or delay of the input sequence causes a corre-
sponding shift in the output sequence. Specifically, suppose that a system transform the input sequence
with valuesx[n] into the output sequencey[n]. The system is said to be time-invariant if for alln0 the
input sequence with values

x1[n] = x[n− n0]

produces the output sequences with values

y1[n] = y[n− n0].

This relation between the input and the output must hold for any arbitrary input sequence and its
corresponding output.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
www.creativecommons.org.c©2006 by the authors
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1.2.3 Causal Systems

A system is causal if for every choice ofn0 the output sequence value at indexn = n0 depends only
on the input sequence values forn ≤ n0 and does non depend on input samples forn > n0. That
is the system isnot anticipative. Thus if y1[n] andy2[n] are the responses os a causal discrete-time
system to the inputsx1[n] andx2[n], respectively, then

x1[n] = x2[n] for n < N

implies also that
y1[n] = y2[n] for n < N

1.2.4 Stable Systems

A system is stable in the bounded-input bounded-output (BIBO) sense if and only if every bounded
input sequence produces a bounded output sequence. The inputx[n] is bounded if there exist a fixed
positive valueBx such that

|x[n]| ≤ Bx < ∞ foralln.

Stability requires that for every bounded input there exists a fixed positive finite valueBy such that

|y[n]| ≤ By < ∞ foralln.

1.3 Linear Time-Invariant Systems (LTI)

A linear-time invariant(LTI) discrete-time system satisfies both the linearity and the time-invariance
properties. Such systems are mathematically easy to analyze, and characterize.
If the linearity property is combined with the representation of a general sequence as a linear combina-
tion of delayed impulses as in Eq.(1.13), it follow that a linear system can be completely characterized
by its impulse response. Specifically, lethk[n] be the response of the system toδ[n − k], an impulse
occurring atn = k. Then from Eq.(1.13),

y[n] = T
{ ∞∑

k=−∞
x[k]δ[n− k]

}
. (1.27)

From the principle of superposition in Eq.(1.26), is possible to write

y[n] =
∞∑

k=−∞
x[n]T {δ[n− k]} =

∞∑

k=−∞
x[n]hk[n]. (1.28)

According to this last equation, the system response to any input cam be expressed in terms of the
response of the system toδ[n− k].

The property of time invariance implies that ifh[n] is the response toδ[n], then the response to
δ[n− k] is h[n− k]. With this constraint, Eq.(1.28) becomes

y[n] =
∞∑

k=−∞
x[k]h[n− k]. (1.29)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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As a consequence of Eq.(1.29), an LTI system is completely characterized by its impulse response
h[n], in the sense that, it is possible to use Eq.(1.29) to compute the outputy[n] due toany inputx[n].
The above sum in Eq.(1.29) is calledconvolution sumof the sequencex[n] andh[n], and represented
by

y[n] = x[n] ~ h[n], (1.30)

where the convolution sum is represented by~.
Is important to state that the convolutional sum is a linear operator that satisfies thecommutative,
associativeanddistributiveproperties.

1.4 Spectral Analysis of Discrete-Time signals

The spectral analysis is one of the powerful analysis tool in several fields of engineering. The fact that
we can decompose complex signals with the superposition of other simplex signals, commonly sinu-
soid or complex exponentials, highlight some signal features that sometimes are very hard to discover
with some other kind of analysis. For example, acoustical features such aspitchandtimbre, are com-
monly obtained with algorithm that works in the frequency domain. Furthermore, the decomposition
with simplex function is very useful when we want to modify a signal. In the frequency domain, the
possibility to manipulate single spectral component give us the possibility to modify some fundamen-
tal feature of the sound, such as the timbre, that are hard, and sometimes impossible, to manipulate
operating on the sound waveform.

A rigorous mathematical approach of the huge field of spectral analysis is out the scope of this
book. In the next chapters we focus our attention on the most common and used spectral analysis
tool: theShort Time Fourier Transform (STFT).Sounds are time-varying signals in the real world
and, indeed, all of their meaning is related to such time variability. Therefore, it is interesting to
develop sound analysis techniques that allow to grasp at least some of the distinguished features
of time-varying sounds, in order to ease the tasks of understanding, comparison, modification, and
resynthesis. With STFT, often defined as the time-dependent Fourier Transform, we intend the joint
analysis of the temporal and frequency features of the sound. In other word with this tool is possible
to follow the temporal evolution of the spectral parameters of a sound.
The concept of STFT is based on the concept of theDiscrete-Time Fourier Transform, DTFT, that
is the fundamental tool used to analyze a signal in the frequency domain. This is the discrete time
version of the classical Fourier Transform commonly used for continuous-time signals. After a brief
introduction on the DTFT, we will se how the DTFT on a periodic discrete-time signal specializes in
the so called DFT that is at the bases of the STFT.

1.4.1 The Discrete-Time Fourier Transform: DTFT

First of all we will clarify the meaning of the variables which are commonly associated to the word
“frequency” for signals defined in both the continuous and the discrete-time domain. The various sym-
bols are collected in table1.1, where the limits imposed by the Nyquist frequency are also indicated.
With the term “digital frequencies” we indicate the frequencies of discrete-time signals.

Recalling that for a continuous-time signalx(t) the Fourier Transform is defined as:

F (ω) =
∫ +∞

−∞
x(t)e−jωtdt (1.31)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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Nyquist Domain Symbol Unit
[−Fs/2 . . . 0 . . . Fs/2] f [Hz] = [cycles/s]
[−1/2 . . . 0 . . . 1/2] f/Fs [cycles/sample] digital
[−π . . . 0 . . . π] ω = 2πf/Fs [radians/sample] freqs.
[−πFs . . . 0 . . . πFs] Ω = 2πf [radians/s]

Table 1.1:Frequency variables

whereω = 2πf is the continuous-frequency expressed in radians, we can try to re-express this ex-
pression in the case of a discrete-time signalx[n].
If we think about a discrete-time signal as the sampled version of a continuous-time signal,x(t), with
a sampling intervalT = 1

Fs
, x[n] = x(nT ), we can define the DTFT starting from the Eq.1.31where

the integral is substituted by a summation:

X(f) =
+∞∑

n=−∞
x(nT )e−j2π f

Fs
n . (1.32)

As we will see later,X(f) is a periodic function of the continuous-frequency variablef , with period
Fs. Now if we use the variableω = 2π f

Fs
, a more compact expression arise from the Eq:1.32:

X(ω) =
+∞∑

n=−∞
x(nT )e−jωn . (1.33)

where the variableω is called normalized frequency,and is expressed in radians.Eq.1.33is the general
expression used to compute the DTFT.
In generalX(ω) is a complex function of the real variableω and can be written in rectangular form as

X(ω) = Xre(ω) + jXim(ω) , (1.34)

whereXre(ω) and Xim(ω) are, respectively, the real and imaginary parts ofX(ω), and are real
function ofω. X(ω) can alternately be expressed in the polar form as

X(ω) = |X(ω)|eθ(ω) (1.35)

and
θ(ω) = arg[X(ω)] (1.36)

The quantity|X(ω)| is called themagnitude functionand the quantityθ(ω) is called thephase function
with both function again being real function ofω.
As can be seen from the definition Eq.1.33, the Fourier TransformX(ω) of a discrete-time sequence
is a periodic function inω with a period2π. Note that the periodicity, with period2π in the domain of
the normalized-frequencyω = 2π f

Fs
, is equivalent to a periodicity ofFs in the domain of absolute-

frequencyf .
It therefore follows that Eq.1.33represent the Fourier series representation of the periodic function
X(ω). As a result, the Fourier coefficientsx[n] can be computed fromx(ω) using the Fourier Integral
given by

x[n] =
1
2π

∫ π

−π
X(ω)ejωndω , (1.37)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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called theinverse discrete-time Fourier transform. Equations1.33and1.37together form a Fourier
representation for the sequencex[n]. Equation1.37, the Inverse Fourier Transform, is asynthesis
formula. That is, it representx[n] as a superposition of infinitesimally small complex sinusoid of the
form

1
2π

X(ω)ejωndω (1.38)

with ω ranging in the interval of length2π and withX(ω) determining the relative amount of each
complex sinusoidal component. Although in writing1.37we have chosen the range of values forω
between−π andπ, any interval of length2π can be used. Equation1.33, the Fourier Transform, is
an expression for computingX(ω) from the sequencex[n], i.e., for analyzingthe sequencex[n] to
determine how much of each component is required to synthesizex[n] using Eq.1.37.

1.4.2 The Discrete Fourier Transform: DFT

In the case of a finite-length sequencex[n], 0 ≤ n ≤ N − 1, there is a simpler relation between
the sequence and its discrete-time Fourier tranformX(ω). In fact, for a lenght-N sequence, only N
values ofX(ω), calledfrequency samples, atN distinct frequency points,ω =
omegak, 0 ≤ k ≤ N − 1, are sufficient to determinex[n], and henceX(ω), uniquely. This lead
to the concept of the discrete Fourier Transform, a second transform-domain representation that is
applicable only to a finite-length sequence.
The DFT is at the heart of digital signal processing, because it is acomputable transformation. Al-
though the Fourier, Laplace andz-transform are the analytical tools of signal processing as well as
many other disciplines, it is the DFT that we must use in a computer program such as Matlab.

1.4.2.1 Definition

The simplest relation between a finite-length sequencex[n], defined for0 ≤ n ≤ N−1, and its DTFT
X(ω) is obtained by uniformly samplingX(ω) on theω-axis between0 ≤ ω ≤ 2π atωk = 2nk/N ,
0 ≤ k ≤ N − 1. From Eq.1.33,

X[k] = X(ω)|ω=2πk/N =
N−1∑

n=0

x[n]e−j 2π
N

kn, 0 ≤ k ≤ N − 1 (1.39)

Note thatX[k] is also a finite-length sequence in the frequency domain and is of lengthN . The
sequenceX[k] is called theDiscrete Fourier transform (DFT)of the sequencex[n]. Using the com-
monly used notation

WN = e−j 2π
N (1.40)

we can rewrite Eq.1.39as

X[k] =
N−1∑

k=0

x[n]W kn
N , 0 ≤ k ≤ (1.41)

The inverse discrete Fourier Transform(IDFT) is given by

x[n] =
1
N

N−1∑

k=0

X[k]W−kn
N , 0 ≤ n ≤ . (1.42)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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1.5 The z-Transform

The discrete-time Fourier transform provides a frequency-domain representation of discrete-time sig-
nals and LTI systems. In this section, we consider a generalization of the Fourier transform referred
to as thez-transform. This transformation for discrete-time signals is the counterpart of the Laplace
transform for continuous-time signals. A principal motivation for introducing this generalization is
that the Fourier Transform does not converge for all sequences and it is useful to have a generalization
of the Fourier transform that encompasses a broader class of signals.

1.5.1 Definition

for a given sequenceg[n], its z-transformG(z) is defined as:

G(z) = Z{g[n]} =
∞∑

n=−∞
g[n]z−n, (1.43)

wherez = Re(z)+Im(z) is a complex variable. If we letz = rejω, then the right-hand side of the
above expression reduces to

G(rejω) =
∞∑

n=−∞
g[n]r−ne−jωn,

witch can be interpreted as the discrete-time Fourier transform of the modified sequence{g[n]r−n}.
For r = 1 (i.e., |z| = 1), the z-transform ofg[n] reduces to its discrete-time Fourier transform,
provided that the latter exists.

Like the discrete-time Fourier transform, there are condition on the convergence of the infinite
series of Eq.(1.43). For a given sequence, the setR of values ofz for witch its z-transform converges
is called theregione of convergence(ROC).

In general, the regione of convergenceR of a z-transform of a sequenceg[n] is an annular region
of thez-plane:

Rg− < |z| < Rg+

where0 ≤ Rg− < Rg+ ≤ ∞.
Some commonly usedz-transform pairs are listed in Table (1.2).

Sequence z-Transform ROC

δ[n] 1 All values ofz

u[n] 1
1−z−1 |z| > 1

αnu[n] 1
1−αz−1 |z| > |α|

(rn cosω0n)u[n] 1−(r cos ω0)z−1

1−(2r cos ω0)z−1+r2z−2 |z| > r

(rn sinω0n)u[n] (r sin ω0)z−1

1−(2r cos ω0)z−1+r2z−2 |z| > r

Table 1.2:Some commonly usedz-transform pairs.
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1.5.2 Rational z-Transform

In the case of LTI discrete-time systems all pertinentz-transforms are rational function ofz−1, i.e.,
are ratios of two polynomials inz−1:

G(z) =
P (z)
D(z)

=
p0 + p1z

−1 + · · ·+ +pM−1z
−(M−1) + pMz−M

d0 + d1z−1 + · · ·+ +dM−1z−(N−1) + dMz−N

where thedegreeof the numerator polynomialP (z) is M and that of the denominator polynomial
D(z) is N .

The above equation can be alternately written in factored form as

G(z) =
p0

d0

∏M
l=1(1− ξlz

−1)∏N
l=1(1− λlz−1)

= zN−M p0

d0

∏M
l=1(z − ξl)∏N
l=1(z − λl)

.

At a rootz = ξl of the numerator polynomial,G(ξl) = 0, and as a result, these values ofz are known
as thezerosof G(z). Likewise, at a rootz = λl of the denominator polynomial,G(λl) → ∞, and
these points in thez-plane are called thepolesof G(z).

A physical interpretation of the concept of poles and zeros can be given by plotting the log-
magnitude20 log10 |G(z)|. This last expression is a two-dimensional function of Re(z) and Im(z).
Hence its plot will describe a surface in the complexz-plane as illustrated in Figure1.7for the rational
z-transform

G(z) =
1− 2.4z−1 + 2.88z−2

1− 0.8z−1 + 0.64z−2
.
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Figure 1.7:The 3-D plot of20 log10 |G(z)| as a function of Re(z) and Im(z)
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1.5.3 Inverse z-Transform

The inversez-transform relation is given by the contour integral

g[n] =
∮

C
G(z)zn−1dz, (1.44)

whereC is a counterclockwise closed contour in the region of convergence (ROC) ofG(z).
Equation (1.44) is the formal inversez-transform expression. If the region of convergence includes

the unit circle and if the contour of integration is taken to be the unit circle, then on this contour,G(z)
reduces to the Fourier transform and Eq.(1.44) reduces to the inverse Fourier transform expression

g[n] =
1
2π

∫ π

−π
X(ejω)ejωndω,

where we have used the fact that integrating inz counterclockwise arount the unit circle is equivalent
to integrating inω from−π to π and thatdz = jejωdω.

1.5.4 z-Transform Properties

In Table1.3are summarized some specific properties of thez-transform.
It should be noted that the convolution property plays a particularly important role in the analysis

of LTI systems. Specifically, as a consequence of this property, thez-transform of the output of an
LTI system is the product of thez-transform of the input and thez-transform of the system impulse
response.

Property Sequence z-Transform ROC

g[n] G(z) Rg

h[n] H(z) Rh

Conjugation g∗[n] G∗(z∗) Rg

Time-reversal g[−n] G(1/z) 1/Rg

Linearity αg[n] + βh[n] αG(z) + βH(z) IncludesRg ∩Rh

Time-shifting g[n− n0] z−n0G(z) Rg, except possibly the
pointz = 0 or∞

Convolution g[n] ~ h[n] G(z)H(z) IncludesRg ∩Rh

Table 1.3:Some useful properties of thez-transform.
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