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1.1 Discrete-Time Signal and Systems

Signals play an important role in our daily life. Examples of signals that we encounter frequently are
speech, music, picture and video signals. A signal is a function of independent variables such as time,
distance, position, temperature and pressure. For examples, speech and music signals represent air
pressure as a function of time at a point in space.

Most signals we encounter are generated by natural means. However, a signal can also generated
synthetically or by computer simulation. Later we will see how to generate simple signal using the
simulation environmenlATLAB

In this chapter we will focus our attention on a particulary class of signals: The so datzdte-
time signals This class of signals is the most important way to describe/model the sound signals with
the aid of the calculator.

1.1.1 Characterization and Classification of Signals

Depending on the nature of the independent variables and the value of the function defining the signal,
various type of signals can be defined. For example, independent variables can be continuous or
discrete. Likewise, the signal can either be a continuous or a discrete function of the independent
variables. Moreover, the signal can be either a real-valued function or a complex-valued function.

If we denote a function as follow:

z(t):teD —ua(t)eC (1.1)

where D is the set of value of the independent varigtded C is the set of value of the function
defining the signak:(t), is possible to classify the signal with respect the nature of the sets D and C.
On the basis of nature of D we have:

e D= R: continuous-timesignalx(t), t € R
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e D= I discrete-timesignalx(¢), t € I wherel is a countable set .. ,¢_;, %o, ¢1,...} The most
common and important example is whigh= nT, thereforet,, € Z(T).

On the basis of the nature of C we have:

e C= R: continuous-amplitudsignal

e C= I discrete-amplitudsignal. Commonly is a countable and finite set of val{ie; , xo, . . .

a‘TM}-

The most common examples are the quantized samples with uniform quantizatior-auy,

with ¢ the quantization step aridinteger.

Finally combining the various domains we obtains the following class of signals, depicted if

Figl.-
1. D= R, C=R: “analod signal.
2. D= R, C=[: “quantized analdgsignal.

3. D=1, C= R: “sampled signal or “discrete-tim&signal.

4, D=1, C=I. “numerical signal or “digital” signal. This is the common kind of signal analyzed

with the aid of the calculator.
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Figure 1.1:(a) Analog signal, (b) Quantized analog signal, (c) discrete-time signal, (d) numerical

signal.
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1.1.2 Discrete-Time signals: Sequences

In this section we will present the mathematical representation of discrete-time signals, also it will be
introduced the mathematical formalism used in the rest of this book.

Discrete-Time signals are represented mathematically as sequences of numbers. A sequence of
numberse, in witch thenth number in the sequence is denoted x[n], is formally written as

r ={z[n]}, —oo<n < oo, (1.2)

where n is an integer. The graphical representation of a seqdefpci with real-valued samples is
illustrated in Figl.2.

x[-7] ©

x[n]

4 56 7 .89 10 ,

Figure 1.2:Graphical representation of a discrete-time sequénpe }.

In a practical setting, such sequences can arise freriodic sampling of an analog signal. In
this case, the numeric value of thien number in the sequence is equal to the value of the analog signal
xq(t) attimenT;i.e.,
z[n] = x4(nT) — o0 <n < oo, (1.3)

as illustrated in Fid..2 The quantityl is calledsampling periodand its reciprocal is theampling
frequency

1.1.3 Operation on sequences

A single-input, single output discrete-time system operate on a sequence, calieduth®equence
according to some prescribed rules and develops another sequence, catletpthesequenceisu-

ally with more desiderable properties. In most cases, the operation defining a particular discrete-time
system is composed of some basic operation that we describe next.

Product
Let z[n] andy[n] be two known sequences. By forming gm®ductof the sample values of these two
sequences at each instant, we form a sequenpg:

wln] = x[nyln]. (1.4)
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x(-2T)

x, (1)

3T 4T
2T -T 0 T 2T

x(3T)

Figure 1.3:Sequence generated by sampling a continuous-time sigfgl

This operation is also know amodulation Furthermore this operation is very useful when we
want to obtain a finite-length sequence from an infinite-length sequence. This operation is performed
by the product of the infinite-length sequence with a finite-length sequence eafiddw sequence
This process is calledindowing

Time shifting
Another important operation is thiene shiftingor thetranslation

wln] = z[n — NJ, (1.5)
with NV integer. WhenV > 0, it is adelayingoperation and ifV < 0 it is anadvancingoperation.

Time reversal
Thetime-reversabperation is another useful scheme to develop a new sequence. An example is:

wln] = x[—n), (1.6)

which is the time-reversed version of the sequericg.

1.1.4 Properties of discrete-time signals

In this section we will see some basic properties of the discrete-time signals.

Periodicity
A sequence:|n] satisfying

zn] =xn+kN] —oco<n<oo 1.7)

is called aperiodicsequence with geriod N whereN is a positive integer ankl is any integer. The
fundamental perioadV, of a periodic signal is the smallest valueéffor wich Eq.{1.7) holds.
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Energy
The totalenergyof a sequence|n]| is defined by:

Ex= Y la[n]]”. (1.8)

n=—oo

Note that an infinite-length sequence with finite sample values may or not have finite energy. The
average poweof an aperiodic-sequenagn] is defined by

K
. 1 )
Po= lim oo nZEKIfE[n]I : (1.9)

Finally is possible to define the average power of a periodic-sequéngwith a periodV by means
| Nl
_ 2
Pr =5 T;) |z[n]|2. (1.10)

Other type of Classification
A sequencex|n| is said to beboundedf each of its samples is of magnitude less than or equal to a
finite positive numbefs,.,i.e.,

|z[n]| < By > o0 (1.11)

1.1.5 Some Basic Sequences

The most common basic sequences are the unit sample sequence, the unit step sequence, the sinusoid
sequence and the exponential sequence. These sequences are defined next.

Unit Sample Sequence
The simplest and the most useful sequence igithiesample sequengeften calledunit impulse as
shown in Figl.4(a). It is denoted by[n| and defined by

1, n=0,

0[n] _{ 0. no0. (1.12)
The unit sample sequence plays the same role for the discrete-time signals and systems that the

impulse function (Dirac Delta function) does for continuous-time signal and systems.

One important aspects of this sequence is that an arbitrary sequence can be represented as a sum of

scaled (linear combination), delayed impulses as expressed by:

z[n] = > z[k][n — k. (1.13)

Unit Step Sequence
A second basic sequence is tingit step sequencghown in Figl.4(b). It is denoted by:[n] and is
defined by

1, n>0,
u[n] = { 0 n<0 (1.14)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike lid @ ]
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Figure 1.4:(a)The unite sample sequenge], (b) The unit step sequenagn|.

An alternative representation of the unit step in terms of the impulse is obtained by interpreting
the unit step in Fid..4(b) in terms of a sum od delayed impulses. This is expressed as

uln] =Y én — kJ. (1.15)
k=0

Conversely, the impulse sequence can be expressed fissthmckward differencef the unit step
sequence,i.e.,
d[n] = uln] —uln —1]. (1.16)

Sinusoidal and Exponential Sequence
Exponential and sinusoidal sequences are extremely important in representing and analyzing linear
discrete-time systems.

The general form of theeal sinusoidal sequenaeith constant amplitude is
z[n] = Acos(won + ¢), —oo <n < oo, (1.17)

whereA, wy and¢ are real numbers. Different types of sinusoidal sequences are depictedli&.Fig.
Another set of basic sequences is formed by takingithesample value to be th#h power of a
real or complex constant. Such sequences are teexpmhential sequenceasd their general form is

z[n] = Aa", —oo<n < oo, (1.18)

whereA anda are real or complex constant.
The exponential sequenckx™ with complexa has real and imaginary part that are exponentially
weighted sinusoid. Specifically, if = |a|e/“0 and A = |A|e’? the sequencéa” can be expressed
as

zln] = |A||a| el on+e)

. ) 1.19
— |Alla]" cos(won + ) + j|Alla]" sin(won + ¢) (1.19)
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Figure 1.5:A family os sinusoidal sequences given bjyr] = 1.5 cos(won): (@)wo = 0, (b) wy =
0.17, (C)wo = 0.87, (d)wy = 7, (€)wy = 1.17 and (Nwy = 1.27.

If we write x[n] = x,e[n] + jzim[n], then from Eql.12

zre[n] = |Alla|™ cos(won + @), (1.20)
rim[n] = |A||a|" sin(wen + ¢). (1.21)

These sequences oscillates with an exponential growing enveldpg i 1 or with exponentially
decay envelope ifor| < 1.

When|a| = 1, the sequence is referred to asamplex exponential sequeraed has the form
z[n] = |Ale?*" ¢ = | A| cos(won + ¢) + j|A| sin(won + ¢), (1.22)

where now the real and imaginary parts are real sinusoidal sequences with constant amplitude.
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1.2 Discrete-Time Systems

A discrete-time system is defined mathematically as a transformation that maps an input sequence
with valuer[n] into an output sequence with valugis| and can be denoted by

yln] = T{=z[n]} (1.23)

and is showed if Fid..6. Classes of systems are defined by placing constraints on the properties of the
transformationZ {-}. Doing so often leads to very general mathematical representation, as we will
see.

—> T >
x[n] yln]

Figure 1.6:Representation of a discrete-time system,i.e., a transformation that maps an input sedgujence
into a unique output sequengg.|.

1.2.1 Linear Systems

The class ofinear systemss defined by the principle of superposition. if[n] andys[n| are the
responses of a system whern] andzy[n] are the respective inputs, then the system is linear if and
only if

T{ar[n] + @2[n]} = T{z1[n]} + T{z2[nl} = p1[n] + y2[n] (1.24)

and
T{az[n|} = aT{z[n]} = ayln]. (1.25)

wherea is an arbitrary constants. The two properties can be combined infwiti@ple of superpo-
sition, stated as

T{alxl[n} + agazg[n]} = al’T{xl[n]} + CLQT{JZQ [n]} (126)

for an arbitrary constants; andas.

1.2.2 Time-Invariant Systems

A time-invariant system is one for which a time shift or delay of the input sequence causes a corre-
sponding shift in the output sequence. Specifically, suppose that a system transform the input sequence
with valuesz|[n] into the output sequenggn]|. The system is said to be time-invariant if for ajj the

input sequence with values

x1[n] = x[n — ny)
produces the output sequences with values
y1[n] = y[n — no).

This relation between the input and the output must hold for any arbitrary input sequence and its
corresponding output.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
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1.2.3 Causal Systems

A system is causal if for every choice of the output sequence value at index= ny depends only

on the input sequence values for< ny and does non depend on input samplesrifas ny. That

is the system isiot anticipative Thus ify;[n] andy,[n] are the responses os a causal discrete-time
system to the inputs; [n] andzy[n], respectively, then

z1[n] = x2ln] for n< N

implies also that
yi[n] = y2[n] for n< N

1.2.4 Stable Systems

A system is stable in the bounded-input bounded-output (BIBO) sense if and only if every bounded
input sequence produces a bounded output sequence. The:jnpig bounded if there exist a fixed
positive valueB, such that

|z[n]| < By < oo foralln.

Stability requires that for every bounded input there exists a fixed positive finite Xglsach that

ly[n]| < By, < oo foralln.

1.3 Linear Time-Invariant Systems (LTI)

A linear-time invariant(LTI) discrete-time system satisfies both the linearity and the time-invariance
properties. Such systems are mathematically easy to analyze, and characterize.

If the linearity property is combined with the representation of a general sequence as a linear combina-
tion of delayed impulses as in Ef1.L3), it follow that a linear system can be completely characterized

by itsimpulse responseSpecifically, leth,[n] be the response of the systemyfe — k|, an impulse
occurring atn = k. Then from Eq/1.13),

y[n] :7{ > x[k]é[n—k}}. (1.27)

k=—00

From the principle of superposition in E#1.26), is possible to write

[e.9] [e.9]

sl = 3 TSl — K} = Y alnlhulnl, (1.28)

k=—o00 k=—o00

According to this last equation, the system response to any input cam be expressed in terms of the
response of the systemdf — k].

The property of time invariance implies thatlifn| is the response té[n], then the response to
0[n — k] is h[n — k]. With this constraint, E¢1(28 becomes

[e.9]

yln] = Y a[k]h[n - K]. (1.29)

k=—oc0
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As a consequence of E@.29, an LTI system is completely characterized by its impulse response
h[n], in the sense that, it is possible to use E®€) to compute the output[n| due toanyinputz|n].
The above sum in EdL(29 is calledconvolution sunof the sequence[n] andh[n], and represented
by
y[n] = z[n] ® h[n], (1.30)

where the convolution sum is representedzy
Is important to state that the convolutional sum is a linear operator that satisfiesrtimutative
associativeanddistributiveproperties.

1.4 Spectral Analysis of Discrete-Time signals

The spectral analysis is one of the powerful analysis tool in several fields of engineering. The fact that
we can decompose complex signals with the superposition of other simplex signals, commonly sinu-
soid or complex exponentials, highlight some signal features that sometimes are very hard to discover
with some other kind of analysis. For example, acoustical features syuitclaandtimbre, are com-

monly obtained with algorithm that works in the frequency domain. Furthermore, the decomposition
with simplex function is very useful when we want to modify a signal. In the frequency domain, the
possibility to manipulate single spectral component give us the possibility to modify some fundamen-
tal feature of the sound, such as the timbre, that are hard, and sometimes impossible, to manipulate
operating on the sound waveform.

A rigorous mathematical approach of the huge field of spectral analysis is out the scope of this
book. In the next chapters we focus our attention on the most common and used spectral analysis
tool: the Short Time Fourier Transform (STFT).Sounds are time-varying signals in the real world
and, indeed, all of their meaning is related to such time variability. Therefore, it is interesting to
develop sound analysis techniques that allow to grasp at least some of the distinguished features
of time-varying sounds, in order to ease the tasks of understanding, comparison, modification, and
resynthesis. With STFT, often defined as the time-dependent Fourier Transform, we intend the joint
analysis of the temporal and frequency features of the sound. In other word with this tool is possible
to follow the temporal evolution of the spectral parameters of a sound.

The concept of STFT is based on the concept ofDisereteTime Fourier Transform, DTFT, that

is the fundamental tool used to analyze a signal in the frequency domain. This is the discrete time
version of the classical Fourier Transform commonly used for continuous-time signals. After a brief
introduction on the DTFT, we will se how the DTFT on a periodic discrete-time signal specializes in
the so called DFT that is at the bases of the STFT.

1.4.1 The Discrete-Time Fourier Transform: DTFT

First of all we will clarify the meaning of the variables which are commonly associated to the word
“frequency” for signals defined in both the continuous and the discrete-time domain. The various sym-
bols are collected in table.1, where the limits imposed by the Nyquist frequency are also indicated.
With the term “digital frequencies” we indicate the frequencies of discrete-time signals.

Recalling that for a continuous-time signdl) the Fourier Transform is defined as:

F(w) = /+OO x(t)e @t (1.31)

—00
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Nyquist Domain Symbol Unit
[—Fs/2 ... 0 ... Fg2]|f [Hz] = [cycles/s]
[—1/2 0 1/2] | f/Fs [cycles/sample] | digital
[ ... 0 7] | w=2nf/F, | [radians/sample] fregs.
[—7F 0 wFs] | Q=2nf [radians/s]

Table 1.1:Frequency variables

wherew = 27 f is the continuous-frequency expressed in radians, we can try to re-express this ex-
pression in the case of a discrete-time sigrial.

If we think about a discrete-time signal as the sampled version of a continuous-time sighakith

a sampling intervall’ = Fi z[n] = z(nT), we can define the DTFT starting from the E@1where

the integral is substituted by a summation:

—+00

X(f)= Y amr)eiEn, (1.32)

n=—0oo

As we will see later,X (f) is a periodic function of the continuous-frequency varighlevith period
F,. Now if we use the variable = 27rFiS, a more compact expression arise from thelER¥:

+oo
X(w) = Z x(nT)e em (1.33)

n=—oo

where the variable is called normalized frequency,and is expressed in radiaiis¥ELs the general
expression used to compute the DTFT.
In generalX (w) is a complex function of the real variahleand can be written in rectangular form as

X(w) = Xre(w) + ]sz(w) ) (1.34)

where X,..(w) and X;,,(w) are, respectively, the real and imaginary partsXafv), and are real
function ofw. X (w) can alternately be expressed in the polar form as

X(w) = | X (w)]e?’@ (1.35)

and
O(w) = arg[X (w)] (1.36)

The quantity X (w)| is called themagnitude functioand the quantity(w) is called thephase function
with both function again being real function ©of
As can be seen from the definition EB3 the Fourier TransfornX (w) of a discrete-time sequence
is a periodic function irv with a period27. Note that the periodicity, with peridzir in the domain of
the normalized-frequenay = 27‘(’%, is equivalent to a periodicity of; in the domain of absolute-
frequencyf.
It therefore follows that EA.33 represent the Fourier series representation of the periodic function
X (w). As aresult, the Fourier coefficient§:| can be computed from(w) using the Fourier Integral
given by _

x[n] S X(w)e'"dw (1.37)

T o o
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16 Sound and Music Computing

called theinverse discrete-time Fourier transfornEquationsl.33and1.37together form a Fourier
representation for the sequenck:|. Equation1.37 the Inverse Fourier Transform, issgnthesis
formula. That is, it representin] as a superposition of infinitesimally small complex sinusoid of the
form

iX(w)ejwndw (1.38)
27

with w ranging in the interval of lengtBr and with X (w) determining the relative amount of each
complex sinusoidal component. Although in writihd37 we have chosen the range of valuesdor
between—m andm, any interval of lengtl27r can be used. Equatidh33 the Fourier Transform, is
an expression for computing (w) from the sequence|n], i.e., foranalyzingthe sequence[n] to
determine how much of each component is required to syntheBizeising Eq1.37.

1.4.2 The Discrete Fourier Transform: DFT

In the case of a finite-length sequende], 0 < n < N — 1, there is a simpler relation between

the sequence and its discrete-time Fourier tranfarw). In fact, for a lenghty sequence, only N
values ofX (w), calledfrequency samplesat NV distinct frequency points,) =

omega, 0 <k < N — 1, are sufficient to determine[n|, and henceX (w), uniquely. This lead

to the concept of the discrete Fourier Transform, a second transform-domain representation that is
applicable only to a finite-length sequence.

The DFT is at the heart of digital signal processing, because it@vputable transformation. Al-

though the Fourier, Laplace andtransform are the analytical tools of signal processing as well as
many other disciplines, it is the DFT that we must use in a computer program such as Matlab.

1.4.2.1 Definition

The simplest relation between a finite-length sequetheg defined fol0 < n < N—1,and its DTFT
X (w) is obtained by uniformly sampling (w) on thew-axis betweei) < w < 27 atwy, = 2nk/N,
0<k<N-—1.FromEQl.33
N-1
X[k] = X(@)|wmzmyy = D alnle ¥ 0<k <N -1 (1.39)

n=0

Note thatX[k] is also a finite-length sequence in the frequency domain and is of Ie¥igtiThe
sequenceX [k] is called theDiscrete Fourier transform (DFTf the sequence|n]. Using the com-
monly used notation

Wy =e¢% (1.40)
we can rewrite E4.39as
N-1
X[k =) alnWir, 0<k< (1.41)
k=0

Theinverse discrete Fourier TransfotDFT) is given by

N-1
1
zn] = ~ Z XKWy, 0<n<. (1.42)
k=0
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1.5 The z-Transform

The discrete-time Fourier transform provides a frequency-domain representation of discrete-time sig-
nals and LTI systems. In this section, we consider a generalization of the Fourier transform referred
to as thez-transform This transformation for discrete-time signals is the counterpart of the Laplace
transform for continuous-time signals. A principal motivation for introducing this generalization is
that the Fourier Transform does not converge for all sequences and it is useful to have a generalization
of the Fourier transform that encompasses a broader class of signals.

1.5.1 Definition

for a given sequencgn], its ztransformG(z) is defined as:

o0

G(z) = Z{gln} = ) glnlz"", (1.43)

n=—oo

wherez = Re(z)+Im(z) is a complex variable. If we let = re/*, then the right-hand side of the
above expression reduces to

o
G(re/¥) = Z g[n]r—"emIwn
n=-—00
witch can be interpreted as the discrete-time Fourier transform of the modified sedyérice™}.
Forr = 1 (i.e., |z] = 1), the ztransform ofg[n| reduces to its discrete-time Fourier transform,
provided that the latter exists.

Like the discrete-time Fourier transform, there are condition on the convergence of the infinite
series of Eq1.43. For a given sequence, the gebf values ofz for witch its ztransform converges
is called theregione of convergend®OC).

In general, the regione of convergeriReof a z-transform of a sequenggn] is an annular region
of thez-plane:

R, <|z| < Ryy

where0 < R, < Ry < 0.
Some commonly usedtransform pairs are listed in Tabl&.£).

Sequence z-Transform ROC
d[n] 1 All values ofz
uln] 17;1 |z| > 1
a"uln) 12 > o
(" coswon)uln]  preneeof 2| > r
(r™ sinwon)u[n| 17(27”(;?2:;02),2:7,272 |z| >

Table 1.2:Some commonly userdtransform pairs.
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1.5.2 Rational z-Transform

In the case of LTI discrete-time systems all pertinettansforms are rational function of !, i.e.,
are ratios of two polynomials ig—!:

P(z)  po+pizt+ 4 4pyuo1z MY 4ppM
D(z)  do+diz7 4+ dy 127D pdy N

G(z) =

where thedegreeof the numerator polynomiaP(z) is M and that of the denominator polynomial
D(z)is N.
The above equation can be alternately written in factored form as

_Po [T, (1= &= _ ,N-MPO %, (z-&)
do Hi\;(l — N2 do Hi\;(z — )

G(2)

At arootz = & of the numerator polynomiady (§;) = 0, and as a result, these values:afre known
as thezerosof G(z). Likewise, at a root = ); of the denominator polynomiady(\;) — oo, and
these points in the-plane are called thpolesof G(z).

A physical interpretation of the concept of poles and zeros can be given by plotting the log-
magnitude20 log,, |G(z)|. This last expression is a two-dimensional function ofZRafd Im@).
Hence its plot will describe a surface in the comptgpiane as illustrated in Figuie 7 for the rational
z-transform
_1—24z714+2.88272

G(2)

1 —-0.827140.64272"
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Figure 1.7:The 3-D plot 0f20 log,, |G(z)| as a function of Rej and Im@)
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1.5.3 Inverse z-Transform

The inverse-transform relation is given by the contour integral

gln] = éG(z)zn_ldz, (1.44)

whereC' is a counterclockwise closed contour in the region of convergence (RO&):0f
Equation|L.44) is the formal inverse-transform expression. If the region of convergence includes

the unit circle and if the contour of integration is taken to be the unit circle, then on this ca@iayr,

reduces to the Fourier transform and A4 reduces to the inverse Fourier transform expression

1 ™

= — X (e?)el“"duw,
2 J_,

gln]
where we have used the fact that integrating tmunterclockwise arount the unit circle is equivalent
to integrating inw from — to 7 and thatdz = je/“dw.

1.5.4 z-Transform Properties

In Tablel.3are summarized some specific properties ofzttransform.

It should be noted that the convolution property plays a particularly important role in the analysis
of LTI systems. Specifically, as a consequence of this property-ttensform of the output of an
LTI system is the product of thetransform of the input and thetransform of the system impulse
response.

Property Sequence z-Transform ROC
gln] G(2) Ry
h[n] H(z) Rhn
Conjugation g*[n] G*(z%) Ry
Time-reversal gl—n] G(1/z) 1/R,

Linearity  ag[n]+ Sh[n] aG(z)+ BH(z) IncludesR,NRy,

Time-shifting gln — no] 27 "MG(2) Ry, except possibly the
pointz = 0 or co

Convolution  g[n] ® h[n] G(2)H(z) IncludesR, N Ry,

Table 1.3:Some useful properties of tlzeransform.
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