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2.1 Introduction

The sound produced by acoustic musical instruments is caused by the physical vibration of a certain
resonating structure. This vibration can be described by signals that correspond to the time-evolution
of the acoustic pressure associated to it. The fact that the sound can be characterized by a set of
signals suggests quite naturally that some computing equipment could be successfully employed for
generating sounds, for either the imitation of acoustic instruments or the creation of new sounds with
novel timbral properties.

A wide variety of sound synthesis algorithms is currently available either commercially or in the
literature. Each one of them exhibits some peculiar characteristics that could make it preferable to
others, depending on goals and needs. Technological progress has made enormous steps forward
in the past few years as far as the computational power that can be made available at low cost is
concerned. At the same time, sound synthesis methods have become more and more computationally
efficient and the user interface has become friendlier and friendlier. As a consequence, musicians
can nowadays access a wide collection of synthesis techniques (all available at low cost in their full
functionality), and concentrate on their timbral properties.

Each sound synthesis algorithm can be thought of as a digital model for the sound itself. Though
this observation may seem quite obvious, its meaning for sound synthesis is not so straightforward.
As a matter of fact, modeling sounds is much more than just generating them, as a digital model
can be used for representing and generating a whole class of sounds, depending on the choice of
control parameters. The idea of associating a class of sounds to a digital sound model is in complete
accordance with the way we tend to classify natural musical instruments according to their sound
generation mechanism. For example, strings and woodwinds are normally seen as timbral classes of
acoustic instruments characterized by their sound generation mechanism. It should be quite clear that
the degree of compactness of a class of sounds is determined, on one hand, by the sensitivity of the
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digital model to parameter variations and, on the other hand, on the amount of control that is necessary
for obtaining a certain desired sound. As an extreme example we may think of a situation in which a
musician is required to generate sounds sample by sample, while the task of the computing equipment
is just that of playing the samples. In this case the control signal is represented by the sound itself,
therefore the class of sounds that can be produced is unlimited but the instrument is impossible for a
musician to control and play. An opposite extremal situation is that in which the synthesis technique
is actually the model of an acoustic musical instrument. In this case the class of sounds that can be
produced is much more limited (it is characteristic of the mechanism that is being modeled by the
algorithm), but the degree of difficulty involved in generating the control parameters is quite modest,
as it corresponds to physical parameters that have an intuitive counterpart in the experience of the
musician.

An interested conclusion that could be already drawn in the light of what stated above is that the
compactness of the class of sounds associated to a sound synthesis algorithm is somehow in contrast
with the “playability” of the algorithm itself. One should remember that the ”playability” is of crucial
importance for the success of a specific sound synthesis algorithm as, in order for a sound synthesis
algorithm to be suitable for musical purposes, the musician needs an intuitive and easy access to its
control parameters during both the sound design process and the performance. Such requirements
often represents the reason why a certain synthesis technique is preferred to others.

Some considerations on control parameters are now in order. Varying the control parameters of
a sound synthesis algorithm can serve several purposes, the first one of which is certainly that of
exploring a sound space, i.e. producing all the different sounds that belong to the class characterized
by the algorithm itself. This very traditional way of using control parameters would nowadays be
largely insufficient by itself. As a matter of fact, with the progress in the computational devices
that are currently being employed for musical purposes, the musician’s needs have turned more and
more toward problems of timbral dynamics. For example, timbral differences between soft (dark) and
loud (brilliant) tones are usually obtained through appropriate parameter control. Timbral expression
parameters tend to operate at a note-level time-scale. As such, they can be suitably treated as signals
characterized by a rather slow rate.

Another reason for the importance of time-variations in the algorithm parameters is that the musi-
cian needs to control the musical expression while playing. For example, staccato, legato, vibrato etc.
need to be obtained through parameter control. Such parameter variations operate at a phrase-level
time-scale. Because of that, they can be suitably treated as sequences of symbols events characterized
by a very slow rate.

In conclusion, control parameters are signals characterized by their own time-scales. Controls
signals for timbral dynamics are best described as discrete-time signals with a slow sampling rate,
while controls for musical expression are best described by streams of asynchronous symbols events.
As a consequence, the generation of control signals can once again be seen as a problem of signal
synthesis.

2.2 Signal generators

In this category we find methods that directly generate the signal. We will see periodic waveform
generators and noise generators.
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2.2.1 Waveform generators

2.2.1.1 Digital oscillators

In many musical sounds, pitch is a characteristic to which we are quite sensitive. In examining the
temporal waveform of pitched sounds, we see a periodic repetition of the waveform without great vari-
ations. The simplest synthesis method attempts to reproduce this characteristic, generating a periodic
signal through a continuous repetition of a waveform. An algorithm that implements this method is
called oscillator. A first method consists in computing the appropriate value of the function for every
sample. Often function, as sinusoids are approximated by polynomial or rational truncated series. For
example a sinusoid of frequency f can be computed by

s[n] = sin(ωn) = p(ω(n mod Fs))

where ω = 2πf/Fs. More efficient algorithms will be presented in the next sections.

2.2.1.2 Table lookup oscillator

A very efficient approach is to precompute the samples of the waveform, store them in a table which
is usually implemented as a circular buffer, and access them from the table whenever needed. If we
store in the table a copy of one period of the desired waveform, when we cycle over the wavetable
with the aid of a circular pointer, we generate a periodic waveform. When the pointer reach the end
of the table, it wraps around and points again at the beginning of the table. Given a table of length
L, the period of the generated waveform is given by TL = LT , and its fundamental frequency by
f0 = Fs/L. If we want to change the frequency, we would need the same waveform stored in tables
of different lengths. A better solution is to store many equidistant points of the (continuous) waveform
in the table, and then read the value in correspondence of the desired abscissa. Obviously, the more
numerous are the points in the table, the better the approximation will be. The oscillator cyclically
searches the table to get the point nearest to the required one. In this way, the oscillator resample the
table to generate a waveform with different frequency. The distance in the table between two samples
at subsequent instants is called SI (sampling increment) and is proportional to the frequency f of the
generated sound:

f =
SI · Fs

L
(2.1)

If the sampling increment SI is greater than 1, it can happen that the highest frequencies of the
waveform overcome the Nyquist frequency FN = Fs/2 giving rise to foldover.

M-2.1
Implement in Matlab a circular look-up from a table of length L and with sampling increment SI.

M-2.1 Solution

phi=mod(phi +SI,L);
s=tab[phi];

where phi is a state variable indicating the reading point in the table, A is a scaling parameter, s
is the output signal sample. The function mod(x,y) computes the remainder of the division x/y
and is used here to implement circular reading of the table. Notice that phi can be a non integer
value. In order to use it as array index, it can be truncated, or rounded to the nearest integer. A
more accurate output can be obtained by linear interpolation between adjacent table values.
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2.4 Algorithms for Sound and Music Computing

2.2.1.3 Recurrent sinusoidal signal generators

Sinusoidal signal can be generated also by recurrent methods. A first method is base don the second
order resonator filter (that we will introduce in Sec. 2.5.1) with the poles lying on the unit circle . The
equation is

y[n + 1] = 2 cos(ω)y[n]− y[n− 1] (2.2)

where ω = 2πf/Fs. With initial values y[0] = 1 and y[−1] = cosω the generator produces

y[n] = cos nω = cos(2πfTn)

With y[0] = 0 and y[−1] = − sinω the generator produces y[n] = sinnω. In general if y[0] = cosφ
and y[−1] = cos(φ− ω) the generator produces y[n] = cos(nω + φ). This property can be justified
remembering the trigonometric relation cosω · cosφ = 0.5[cos(φ + ω) + cos(φ− ω)].

Another method that combine both the sinusoidal and cosinusoidal generators is the so called
coupled form described by the equations

x[n + 1] = cosω · x[n]− sinω · y[n] (2.3)

y[n + 1] = sinω · x[n] + cosω · y[n] (2.4)

With x[0] = 1 and y[0] = 0 we have x[n] = cos(nω) and y[n] = sin(nω). This property can be
verified considering that if we define a complex variable α[n] = x[n] + jy[n] = exp(jnω), it results
α[n + 1] = exp(jω) · α[n]. The real and imaginary parts of this relation give equations 2.4 and 2.4
respectively.

Both methods have the drawback that coefficient quantization can give rise to numerical instability,
i.e. poles outside the unitary circle. The waveform will then tend to grow exponentially or to decay
rapidly into silence. To avoid this problem, a periodic re-initialization is advisable. It is possible to
use a slightly different set of coefficients to produce absolutley stable sinusoidal waveforms

x[n + 1] = x[n]− c · y[n] (2.5)

y[n + 1] = c · x[n + 1] + y[n] (2.6)

where c = 2 sin(ω/2). With x[0] = 1 and y[0] = c/2 we have x[n] = cos(nω).

2.2.1.4 Amplitude/frequency controlled oscillators

The amplitude and frequency of a sound are usually required to be time-varying parameters. Am-
plitude control is needed in order to define suitable sound envelopes, or to create tremolo effects
(quasi-periodic amplitude variations around an average value). Frequency control is needed to simu-
late portamento between two tones, or subtle pitch variations in the sound attack/release, or vibrato
effects (quasi-periodic pitch variations around an average value), and so on.

We then want to have at our disposal a digital oscillator of the form

s[n] = A[n] · tab[φ[n]], (2.7)

where A[n] scales the amplitude of the signal, and the phase φ[n] does not in general increase linearly
in time and is computed as a function of the instantaneous frequency. Figure 2.1 shows the symbol
usually adopted to depict an oscillator with fixed waveform and varying amplitude and frequency

Many sound synthesis languages (e.g., the well known Csound) define control signals at frame
rate: a frame is a time window with pre-defined length (typically 5 to 50 ms), in which the control
signals can be reasonably assumed to be approximately constant. This approximation clearly helps to
reduce computational loads significantly.
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A(t) f(t)
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Figure 2.1: Symbol of the fixed waveform oscillator, with varying amplitude and frequency.

M-2.2
Assume that a function sinosc(t0,a,f,ph0) realizes a sinusoidal oscillator (t0 is the initial time, a,f are
the frame-rate amplitude and frequency vectors, and ph0 is the initial phase). Then generate a sinusoid of
length 2 s, with constant amplitude and frequency.

M-2.2 Solution

%%% headers %%%
global Fs; %sample rate
global SpF; %samples per Frame
Fs=22050;
ControlW=0.01; %control window (in sec): 10 ms
SpF=round(Fs*ControlW);
Fc=Fs/SpF; %control rate

%%% define controls %%%
slength=2; %soundlength in seconds
nframes=slength*Fc; %total number of frames
a=ones(1,nframes); %constant amplitude
f=50*ones(1,nframes); %constant frequency

%%% compute sound %%%
s=sinosc(0,a,f,0); %sound signal

Note the structure of this simple example: in the “headers” section some global parameters are
defined, that need to be known also to auxiliary functions; a second section defines the control
parameters, and finally the audio signal is computed.

M-2.3
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2.6 Algorithms for Sound and Music Computing

When the oscillator frequency is constant the phase is a linear function of time, φ(t) = 2πft, therefore in
the digital domain φ can be computed as φ[n + 1] = φ[n] + 2πf/Fs. In the more general case in which the
frequency varies at frame rate, we have to understand how to compute the phase of the oscillator. The starting
point is the equation

f(t) =
1

2π

dφ

dt
(t), (2.8)

which simply says that the radian frequency ω(t) = 2πf(t) is the instantaneous angular velocity of the time-
varying phase φ(t). If f(t) is varying slowly enough (i.e. it is varying at frame rate), we can say that in the K-th
frame the first-order approximation

1

2π

dφ

dt
(t) = f(t) ∼ f(TK) + Fc [f(TK+1)− f(TK)] · (t− TK) (2.9)

holds, where TK , TK+1 are the initial instants of frames K and K + 1, respectively. The term
Fc [f(TK+1)− f(TK)] approximates the derivative df/dt inside the Kth frame. We can then find the phase by
integrating equation (2.9):

φ(t) = φ(Tk) + 2πf(Tk)(t− Tk) + 2πFc[f(TK+1)− f(TK)]
(t− TK)2

2
,

φ((K − 1) · SpF + n) = φ(K) + 2π
f(K)n

Fs
+ π

f(K + 1)− f(K)

SpF · Fs
n2, (2.10)

where n = 0 . . . (SpF− 1) spans the frame. In summary, equation (2.10) computes φ at sample rate, given the
frame rate frequencies. The key ingredient of this derivation is the linear interpolation (2.9).
Realize the sinosc(t0,a,f,ph0) function that we have used in M-2.2. Use equation (2.10) to compute the
phase given the frequency vector f.

M-2.3 Solution

function s = sinosc(t0,a,f,ph0);

global SpF; %samples per frame
global Fs; %sampling rate

nframes=length(a); %total number of frames
if (length(f)==1) f=f*ones(1,nframes); end
if (length(f)˜=nframes) %check

error(’f and a must have the same length!’);
end

s=zeros(1,nframes*SpF); %signal vector (initialized to 0)
lastampl=a(1);
lastfreq=f(1);
lastphase=ph0;
for i=1:nframes %cycle on the frames

naux=1:SpF; %counts samples within frame
ampl=lastampl +... %compute amplitudes within frame

(a(i)-lastampl)/SpF.*naux;
phase=lastphase+pi/Fs.*naux.* ... %compute phases within frame

(2*lastfreq +(1/SpF)*(f(i)-lastfreq).*naux);
s(((i-1)*SpF+1):i*SpF)=ampl.*cos(phase); %read from table
lastampl=a(i); %save last values
lastfreq=f(i); %of amplitude,
lastphase=phase(SpF); %frequency, phase

end

s=[zeros(1,round(t0*Fs+1)) s]; %add initial silence of t0 sec.
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Figure 2.2: The four phases of an ADSR envelope over time.

Both the amplitude a and frequency f envelopes are defined at frame rate and are interpolated at
sample rate inside the function body. Note in particular the computation of the phase vector within
each frame.

2.2.1.5 Envelope generators

It is possible to use the same algorithm of table look-up oscillator to produce time envelopes. In
this case, to generate a time envelope of d sec and scan only once the table, a sampling increment
SI = L/(Fsd) should be used. Often in sound synthesis, the amplitude envelope is described by
a linearly varying function. A typical schema is the ADSR envelope (Fig. 2.2). The time envelope
is described by four phases of Attack, Decay, Sustain e Release. When we want to change the tone
duration, it is advisable to only slightly modify the attack and release, that marks the identity of the
sound, while the sustain can be lengthened more freely. So the oscillator table will be read once with
different sampling increments for the different parts of the generated envelope.

The use of waveform and envelope generators allows to generate quasi periodic sounds with very
limited hardware and constitutes the building block of many more sophisticated algorithms.

M-2.4
Write a function that realizes a line-segment envelope generator. The input to the function are a vector of time
instants and a corresponding vector of envelope values.

M-2.4 Solution

function env = envgen(t,a,method); %t vector of time instants
%a vector of envelope values

global SpF; %samples per frame
global Fs; %sampling rate

if (nargin<3)
method=’linear’;

end

frt=floor(t*Fs/SpF+1); %times instants as frame numbers
nframes=frt(length(frt)); %total number of frames
env=interp1(frt,a,[1:nframes],method); %linear interpolation
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Figure 2.3: Amplitude (a) and frequency (b) control signals

The envelope shape is specified by break-points, described as couples (time instant (sec) and am-
plitude). The function generates the envelope at frame rate. Notice that the interpolation function
interp1 allows to easily use cubic of spline interpolations.

M-2.5
Synthesize a modulated sinusoid using the functions sinosc and envgen.

M-2.5 Solution

%%% headers %%%
%[...]

%%% define controls %%%
a=envgen([0,.2,1,1.5,2],[0,1,.8,.5,0],’linear’); %ADSR amp. envelope
f=envgen([0,.2,1,2],[200,250,250,200],’linear’); %pitch envelope
f=f+max(f)*0.05*... %pitch envelope with vibrato added

sin(2*pi*5*(SpF/Fs)*[0:length(f)-1]).*hanning(length(f))’;

%%% compute sound %%%
s=sinosc(0,a,f,0);

In fig. 2.3 amplitude a and frequency f control signals are shown.

2.2.2 Noise generators

Up to now, we have considered signals whose behavior at any instant is supposed to be perfectly
knowable. These signals are called deterministic signals. Besides these signals, random signals of
unknown or only partly known behavior may be considered. For random signals, only some general
characteristics, called statistical properties, are known or are of interest. The statistical properties
are characteristic of an entire signal class rather than of a single signal. A set of random signals
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Chapter 2. Sound modeling: signal-based approaches 2.9

is represented by a random process. Particular numerical procedures simulate random processes,
producing sequences of random (or more precisely, pseudorandom) numbers.

Random sequences can be used both as signals (i.e., to produce white or colored noise used as in-
put to a filter) and a control functions to provide a variety in the synthesis parameters most perceptible
by the listener. In the analysis of natural sounds, some characteristics vary in an unpredictable way;
their mean statistical properties are perceptibly more significant than their exact behavior. Hence, the
addition of a random component to the deterministic functions controlling the synthesis parameters
is often desirable. In general, a combination of random processes is used because the temporal orga-
nization of the musical parameters often has a hierarchical aspect. It cannot be well described by a
single random process, but rather by a combination of random processes evolving at different rates.
For example this technique is employed to generate 1/f noise.

2.2.2.1 Random noise models

White noise generators The spread part of the spectrum is perceived as random noise. In order
to generate a random sequence, we need a random number generator. There are many algorithms
that generate random numbers, typically uniformly distributed over the standardized interval [0, 1).
However it is hard to find good random number generators, i.e. that pass all or most criteria of
randomness. The most common is the so called linear congruential generator. It can produce fairly
long sequences of independent random numbers, typically of the order of two billion numbers before
repeating periodically. Given an initial number (seed) I[0] inn the interval 0 ≤ I[0] < M , the
algorithm is described by the recursive equations

I[n] = ( aI[n− 1] + c ) mod M (2.11)

u[n] = I[n]/M

where a and c are two constants that should be chosen very carefully in order to have a maximal
length sequence, i.e. long M samples before repetition. The actual generated sequence depends on
the initial value I[0]; that is way the sequence is called pseudorandom. The numbers are uniformly
distributed over the interval 0 ≤ u[n] < 1. The mean is E[u] = 1/2 and the variance is σ2

u = 1/12.
The transformation s[n] = 2u[n] − 1 generates a zero-mean uniformly distributed random sequence
over the interval [−1, 1). This sequence corresponds to a white noise signal because the generated
numbers are mutually independent. The power spectral density is given by S(f) = σ2

u. Thus the
sequence contains all the frequencies in equal proportion and exhibits equally slow and rapid variation
in time.

With a suitable choice of the coefficients a and b, it produces pseudorandom sequences with flat
spectral density magnitude (white noise). Different spectral shapes ca be obtained using white noise
as input to a filter.

M-2.6
A method of generating a Gaussian distributed random sequence is based on the central limit theorem, which
states that the sum of a large number of independent random variables is Gaussian. As exercise, implement
a very good approximation of a Gaussian noise, by summing 12 independent uniform noise generators.

Pink noise generators If we desire that the numbers vary at a slower rate, we can generate a new
random number every d sampling instants and hold the previous value in the interval (holder) or
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Figure 2.4: Spectral envelope |H(f)| of low frequency noise generators where a new random number
is generated every d = 10 samples: (a) hold generator; (b) linear interpolator.

interpolate between two successive random numbers (interpolator). In this case the power spectrum
is given by

S(f) = |H(f)|2 σ2
u

d

with

|H(f)| =
∣∣∣∣
sin(πfd/Fs)
sin(πf/Fs)

∣∣∣∣
for the holder (fig. 2.4(a)) and

|H(f)| = 1
d

[
sin(πfd/Fs)
sin(πf/Fs)

]2

for linear interpolation (fig. 2.4(b)).

1/f noise generators A 1/f noise, also called pink noise, is characterized by a power spectrum
that fall in frequency like 1/f

S(f) =
A

f
(2.12)

To avoid the infinity at f = 0, this behaviour is assumed valid for f ≥ fmin, where fmin is a desired
minimum frequency. The spectrum is characterized by a 3 db per octave drop, i.e. S(2f) = S(f)/2.
The amount of power contained within a frequency interval [f1, f2] is

∫ f2

f1

S(f)df = A ln
(

f1

f2

)

This implies that the amount of power in any octave is the same. 1/f noise is ubiquitous in nature
and is related to fractal phenomena. In audio domain it is known as pink noise. It represents the
psychoacoustic equivalent of the white noise because he approximately excites uniformly the critical
bands. The physical interpretation is a phenomenon that depends on many processes that evolve on

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�


Chapter 2. Sound modeling: signal-based approaches 2.11

different time scales. So a 1/f signal can be generated by the sum of several white noise generators
that are filtered through first¡order filters having the time constants that are successively larger and
larger, forming a geometric progression.

M-2.7
In the Voss 1/f noise generation algorithm, the role of the low pass filters is played by the hold filter seen in the
previous paragraph. The 1/f noise is generated by taking the average of several periodically held generators
yi[n], with periods forming a geometric progression di = 2i, i.e.

y[n] =
1

M

MX
i=1

yi[n] (2.13)

The power spectrum does not have an exact 1/f shape, but it is close to it for frequencies f ≥ Fs/2M . As
exercise, implement a 1/f noise generator and use it to assign the pitches to a melody.

M-2.8
The music derived from the 1/f noise is closed to the human music: it does not have the unpredictability and
randomness of white noise nor the predictability of brown noise. 1/f processes correlate logarithmically with
the past. Thus the averaged activity of the last ten events has as much influence on the current value as the
last hundred events, and the last thousand. Thus they have a relatively long-term memory.
1/f noise is a fractal one; it exhibits self-similarity, one property of the fractal objects. In a self-similar se-
quence, the pattern of the small details matches the pattern of the larger forms, but on a different scale. In
this case, is used to say that 1/f fractional noise exhibits statistical self-similarity. The pink noise algorithm for
generating pitches has become a standard in algorithmic music. Use the 1/f generator developed in M-2.7 to
produce a fractal melody.

2.3 Time-segment based models

2.3.1 Wavetable synthesis

2.3.1.1 Definitions and applications

Finding a mathematical model that faithfully imitates a real sound is an extremely difficult task. If an
existing reference sound is available, however, it is always possible to reproduce it through recording.
Such a method, though simple in its principle, is widely adopted by digital sampling instruments or
samplers and is called wavetable synthesis or sampling. Samplers store a large quantity of examples
of complete sounds, usually produced by other musical instruments. When we wish to synthesize a
sound we just need to directly play one sound of the stored repertoire.

The possibility of modification is rather limited, as it would be for the sound recorded by a tape
deck. The most common modification is that of somewhat varying the sampling rate (speed) when
reproducing the sound, which results in a pitch deviation. On the other hand, what makes the method
interesting the most is certainly the variety of sounds available.

From the implementation viewpoint, computational simplicity and limited amount of information
to be stored are two contrasting needs for samplers. In fact, in order to reduce the data to be stored, it
is possible to adopt looping techniques with almost any stationary portion of sounds. One method of
improving the expressive possibilities of samplers is store multiple of the sounds at different pitches,
and switching or interpolating between these upon synthesis. This method, called multisampling, also
might include the storage of separate samples for loud and soft sounds. During synthesis a linear
interpolation between these sampled is performed as function of the desired loudness. Infact most
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2.12 Algorithms for Sound and Music Computing

instruments exibit richer spectra for louder sounds. Sometime a filter are used to control the spectral
variation llowing to obtain softer sounds from a stored loud sound.

In most cases sampling techniques are presented as a method for reproducing natural sounds and is
evaluated in comparison with the original instruments. This is the main reason why the most popular
commercial digital keyboards, such as electronic pianos and organs, adopt this synthesis technique.
Of course, sampling cannot feature all the expressive possibilities of the original instrument. Notice
that sampled sounds can also be obtained synthetically or through the modification of other sounds,
which is a way of widening the range of possibilities of application of samplers. From the composer’s
viewpoint, the use of samplers represents a practical approach to the so-called musique concrète. This
kind of music, begun in Paris in late Forties by the main effort of Pierre Schaeffer, started to use, as
basic sonic material of its musical compositions, any kind of sound, recorded by a microphone and
eventually processed.

2.3.1.2 Tranformations: pitch shift, looping

The most common modification is that of varying the sampling rate (speed) when reproducing the
sound, which results in a pitch deviation. In digital domain this effect is obtained by resampling the
stored waveform scanning the table with a sampling increment different than 1. The algorithm is
similar to the digital oscillator by table look-up (see Sect.2.2.1.1. In this case if we want to change the
frequency fstored of the stored sound to a new frequency fnew, we will read the table with a sampling
increment

SI =
fnew

fstored

However, substantial pitch variations are generally not very satisfactory as a temporal waveform
compression or expansion results in unnatural timbral modifications, which is exactly what happens
with an accelerated tape recorder. It is thus necessary to allow only pitch variations of few semitones
to take place for the synthetic sound to be similar to the original one. This is expecially true for
sounds characterized by formants in the spectrum. For a good sampling synthesis of the whole pitch
extension, many samples should be stored (e.g. three for each octave). Moreover special care should
be payed to assure that adjacent sounds be similar.

M-2.9
Import a .wav file of a single instrument tone. Scale it (compress and expand) to different extents and listen to
the new sounds. Up to what scaling ratio are the results acceptable?

Often it is desired to vary the sound also in function of other parameters, the most important being
the intensity. To this purpose it not sufficient to change the sound amplitude by a multiplication, by it
is necessary to modify the timbre of the sound. In general louder sounds are characterized by a sharper
attack and by a brighter spectrum. In this case a technique could be to use a unique sound prototype
(e.g. a tone played fortissimo) and then obtaining the other intensity by simple spectral processing, as
low pass filtering. A different and more effective solution, is to use a set of different sound prototype,
recorder with different intensity (e.g. tones played fortissimo, mezzo forte, pianissimo) and then
obtaining the other dynamic values by interpolations and further processing.

This technique is thus characterized by high computational efficiency and high imitation quality,
but by low flexibility for sounds not initially included in the repertoire or not easily obtainable with
simple transformations. There is a trade-off of memory size with sound fidelity.

In order to employ efficiently the memory, often the sustain part of the tone is not entirely stored
but only a part (or few significant parts) and in the synthesis this part is repeated (looping). Naturally
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the repeated part should not be to short, to avoid a static character of the resulting sound. For example
to lengthen the duration of a note, first the attack is reproduced without modification, then the sustain
part is cyclically repeated, with possible cross interpolation among the different selected parts, and
finally the sound release stored part is reproduced. Notice that if we want to avoid artefacts in cycling,
particular care should be devoted to choosing the points of the beginning and ending of the loop. Nor-
mally an integer number of periods is used for looping starting with a null value, to avoid amplitude
or phase discontinuities. In fact these discontinuities are very annoying. To this purpose it may be
necessary to process the recorded samples by slightly changing the phases of the partials.

M-2.10
Import a .wav file of a single instrument tone. Find the stationary (sustain) part, isolate a section, and perform
the looping operation. Listen to the results, and listen to the artifacts when the looped section does not
start/end at zero-crossings.

If we want a less static sustain, it is possible to individuate some different and significant sound
segments, and during the synthesis interpolate (cross-fade) among subsequent segments. In this case
the temporal evolution of the tone can be more faithfully reproduced.

2.3.2 Granular synthesis

Granular synthesis, together with additive synthesis, shares the idea of building complex sounds from
simpler ones. Granular synthesis assumes that a sound can be considered as a sequence, possibly with
overlaps, of elementary acoustic elements called grains. Granular synthesis constructs complex and
dynamic acoustic events starting from a large quantity of grains. The features of the grains and their
temporal location determine the sounds timbre. We can see it as being similar to the cinema, where a
rapid sequence of static images gives the impression of objects in movement.

The initial idea of granular synthesis dates back to Gabor’s work aimed at pinpointing the physical
and mathematical ideas needed to understand what a time-frequency spectrum is. He considered
sound as a sum of elementary Gaussian functions that have been shifted in time and frequency. Gabor
considered these elementary functions as acoustic quanta, the basic constituents of a sound. In the
scientific field these works have been rich in implications and have been the starting point for studying
time-frequency representations. The usual Gabor expansion on a rectangular time-frequency lattice
of a signal x(t) can be expressed as a linear combination of properly shifted and modulated versions
gmk(t) of a synthesis window g(t)

x(t) =
∑
m

∑

k

amk gmk(t)

with
gmk = g(t−mαT )ejkβΩt

The time step αT and the frequency step βΩ satisfy the relationship ΩT = 2π and αβ ≤ 1.
In music, granular synthesis arises from the experiences of taped electronic music. In the begin-

ning musicians had tools that did not allow a great variation of timbre, for example fixed waveform
oscillators and filters. They obtained dynamic sounds by cutting tapes into short sections and the
putting together again. The rapid alternation of acoustic elements give a certain variety to the sound.
The source of the sound could be electronic or live recorded sounds that were sometimes electroni-
cally processed. Iannis Xenakis developed this method in the field of analog electronic music. Starting
from Gabors theory, Xenakis considers the grains as being music quanta and suggested a method of
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2.14 Algorithms for Sound and Music Computing

composition that is based on the organization of the grains by means of screen sequences, which
specify the frequency and amplitude parameters of the grains at discrete points in time. In this way a
common conceptual approach is used both for micro and macro musical structure.

2.3.2.1 Sound granulation

Two main approaches to granular synthesis can be identified: the former based on sampled sounds
and the latter based on abstract synthesis. In the first case, sound granulation, complex waveforms,
extracted from real sounds or described by spectra, occurs in succession with partial overlap with the
method called Overlap And Add (OLA). In this way, it is possible both to reproduce accurately real
sounds and modify then in their dynamic characteristics.

Let x[n] and y[n] be the input and output signals. The grains gk[i] are extracted from the input
signal with the help of a window function wk[i] of length Lk by

gk[i] = x[i + ik] wk[i]

with i = 0 . . . Lk−1. The time instant ik indicates the point where the segment is extracted; the length
Lk determines the amount of signal extracted; the window waveform wk[i] should ensure fade-in and
fade-out at the border of the grain and affects the frequency content of the grain. Long grains tend to
maintain the timbre identity of the portion of the input signal, while short ones acquire a pulse-like
quality. When the grain is long, the window has a flat top and it used only to fade-in and fade-out the
borders of the segment.

As in additive synthesis the organization of the choice of the frequencies is very important, so in
granular synthesis the proper timing organization of the grain is essential to avoid artifacts produced
by discontinuities. This problem makes often the control quite difficult. An example of use is the
synthesis of a time varying stochastic component of a signal. In this case it is only necessary to control
the spectral envelope. To this purpose, it is convenient to employ the inverse Fourier transform of a
spectrum, whose magnitude is defined by the spectral envelope and the phase are generated randomly.
Every frame is multiplied by a suitable window before the overlap-and-add, i.e. the sum of the various
frames partially overlapped. It is possible also to use this approach for transforming sampled sounds
(sound granulation). In this case grains are built selecting short segments of a sound, previously
or directly recorded, and then are shaped by an amplitude envelope. These grains are used by the
composer with a different order and time location or a different velocity. Notice that it is possible to
extract grains from different sound files to create hybrid textures, e.g. evolving from one texture to
another (fig. 2.5).

2.3.2.2 Synthetic grains

In abstract granular synthesis (second case), grains consist of arbitrary waveforms whose amplitude
envelope is a short Gaussian function. Often frequency modulated Gaussian functions are used in
order to localize the energy both in frequency and time domain. Grains are scattered on the frequency-
time plane in the form of clouds. Notice that it is possible to recognize a certain similarity between this
type of granular synthesis and the technique of mosaics, where the grains are single monochromatic
tesseras and their juxtaposition produces a complex image.

In this case the waveform of the i-th grain (fig. 2.6) is given by

gi[n] = wi[n] · cos
(

2π
fi

Fs
n + φi

)
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Figure 2.5: Representation of granular synthesis where grains derived from different sources are ran-
domly mixed.

where wi[n] is a window of duration Ni samples. The synthesis expression is given by

s[n] =
∑

i

ai · gi[n− ni] (2.14)

where ai is the amplitude coefficient of the i-th grain and ni is its time instant. Every grain contributes
to the total energy around the point (ni, fi) of the time frequency plane.

The most important and classic type of granular synthesis, (asynchronous granular synthesis),
is when simple grains are irregularly distributed in the time-frequency plane, e.g. they are scattered
onto a mask that delimitate a particular area of the time-frequency-amplitude space. It results a cloud
of micro-sounds or a sonic texture that is time-varying. Moreover the grain density inside the mask
can be controlled. In this way many sound textures and natural noisy sounds can be modelled where
general statistical properties are more important than the exact sound evolution. These kind of sounds
can be defined as the accumulation of more or less complex sonic grains, with their proper temporal
and spectral variability. For example, the sound of rice falling onto a metal plate is composed of
thousands of elementary ticks; the rain produces, in the same way, the accumulation of a large amount
of water droplet micro-sounds. Scratching or cracking sounds made by the accumulation of thousands
of complex micro-sounds not necessarily deterministic. In fact, in the real world, when multiple
realizations of a same event, of a same phenomenon occur, we can expect these types of sounds.

Grain duration affects the sonic texture: short duration (few samples) produces a noisy, particulate
disintegration effect; medium duration (tents of ms) produces fluttering, warbling, gurgling; longer
durations (hundreds of ms) produce aperiodic tremolo, jittering spatial position. When the grains
are distributed on a large frequency region, the texture has a massive character, while when the band
is quite narrow, it result a pitched sound. Sparse densities (e.g. 5 grains per second) give rise to a
pointillistic texture.
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Figure 2.6: Example of a synthetic grain waveform.

2.3.3 Overlap-Add (OLA) methods

2.3.3.1 Time-domain OLA

The definition Overlap-Add (OLA) refers in general to a family of algorithms that produce a sig-
nal by properly assembling a number of signal segments. OLA methods are developed both in the
time domain and in the frequency domain, here we are interested in reviewing briefly time-domain
approaches.

Consider a sound signal x[n]. A time-frequency representation of x[n] can be seen as a series
of overlapping DFTs, typically obtained by windowing x in the desired frame. More precisely, we
have that a frame Xm(ejωk) of the STFT is the DFT of the signal windowed segment xm[n] =
x[n]wa[n − mSa], where wa[n] is the chosen analysis window and Sa is the analysis hop-size, i.e.
the time-lag (in samples) between one analysis frame and the following one. If the window wa is N
samples long, then the block size, i.e. the length of each frame Xm, will be N . In order for the signal
segments to actually overlap, the inequality Sa ≤ N must be verified. When Sa = N the segments
are exactly juxtaposed with no overlap.

Given the above signal segmentation, Overlap-Add (OLA) methods are typically used to modify
and reconstruct the signal in two main steps:

1. Any desired modication is applied to the spectra (e.g. multiplying by a lter frequency response
function), and modified frame spectra Ym(ejωk) are obtained.

2. Windowed segments ym[n] of the modified signal y[n] are obtained by computing the inverse
DFT (IDFT) of the frames Ym.

3. The output is reconstructed by overlapping-adding the windowed segments: y[n] =
∑

m ym[n].

Figure 2.7 illustrates the procedure.
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Figure 2.7: An example of Overlap-Add signal reconstruction, with triangular windowing.

In the absence of spectral modifications, this procedure reduces to an identity (y[n] ≡ x[n]) if the
overlapped and added analysis windows wa sum to unity:

∑
m

xm[n] =
∑
m

x[n]wa[n−mSa] = x[n] ⇔ Awa [n] ,
∑
m

wa[n−mSa] ≡ 1. (2.15)

If this condition does not hold, then the function Awa acts on the reconstructed signal as a periodic
amplitude modulation envelope, with period Sa. This kind of frame rate distortion can be seen in the
frequency domain as a series of sidebands with spacing Fs/Sa in a spectrogram of the output signal.
In fact, one may prove that the condition Awa ≡ 1 is equivalent to the condition W (ejωk) = 0 at all
harmonics of the frame rate Fs/Sa.

In their most general formulation OLA methods utilize a synthesis window ws that can in general
be different from the analysis window wa. In this case the second step of the procedure outlined above
is modified as follows:

2. Windowed segments ym[n] of the modified signal y[n] are obtained by (a) computing the inverse
DFT (IDFT) of the frames Ym, (b) dividing by the analysis window wa (assuming that it is non-
zero for all samples), and (c) multiplying by the synthesis window.

This approach provides greater flexibility than the previous one: the analysis window wa can be
chosen only on the basis of its time-frequency resolution properties, but needs not to satisfy the “sum-
to-unity” condition Awa ≡ 1. On the other hand, the synthesis window ws is only used to cross-fade
between signal segments, therefore one should only ensure that Aws ≡ 1. We will see in section 2.4.2
an application of this technique to frequency-domain implementation of additive synthesis.

Many digital sound effects can be obtained by empolying OLA techniques. As an example, a
robotization effect can be obtained by putting zero phase values on every FFT before reconstruction:
the effect applies a fixed pitch onto a sound and moreover, as it forces the sound to be periodic,
many erratic and random variations are converted into “robotic” sounds. Other effects are obtained
by imposing a random phase on a time-frequency representation, with different behaviors depending
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Figure 2.8: The generic SOLA algorithmic step

on the block length N : if N is large (e.g. N = 2048 with Fs = 44.1 kHz), the magnitude will
represent the behavior of the partials quite well and changes in phase will produce an uncertainty
over the frequency; if N is small (e.g. N = 64 with Fs = 44.1 kHz), the spectral envelope will be
enhanced and this will lead to a whispering effect.

A widely studied effect is time-stretching, i.e. contraction or expansion of the duration of an audio
signal. Time-stretching algorithms can be used in a number of applications: think about wavetable
synthesis, post-synchonization of audio and video, speech technology at large, and so on. A time-
stretching algorithm should ideally shorten or lengthen a sound file composed of Ntot samples to a
new desired length N ′

tot = αNtot, where α is the stretching factor. Note that a mere resampling of the
sound signal does not provide the desired result, since it has the side-effect of transposing the sound:
in this context resampling is the digital equivalent of playing the tape at a different speed.

What we really want is a scaling of the perceived timing attributes without affecting the per-
ceived frequency attributes. More precisely, we want the time-scaled version of the audio signal to be
perceived as the same sequence of acoustic events as the original signal, only distributed on a com-
pressed/expanded time pattern. As an example, a time-stretching algorithm applied to a speech signal
should change the speaking rate without altering the pitch.

Time-segment processing techniques described in this section are one possible approach to time-
stretching effects. The simple OLA algorithm described above can be adapted to this problem by
defining an analysis hop size) Sa and a synthesis hop size Ss = αSa, where α is the stretching factor
that will be applied to the output. An input signal x[n] is then segmented into frames xk[n], each
taken every Sa samples. The output signal y[n] is produced by reassembling the same frames xk[n],
each added to the preceding one every Ss samples. However this repositioning of the input segments
with respect to each other destroys the original phase relationships, and constructs the output signal
by interpolating between these misaligned segments. This cause pitch period discontinuities and
distortions that can produce heavily audible artifacts in the output signal.

2.3.3.2 Syncronous and pitch-syncronous OLA

In order to avoid phase discontinuities at the boundaries between frames, a proper time alignment of
the blocks has to be chosen. The SOLA (Synchronous OverLap and Add) algorithm realizes such a
proper alignement, and provides a good sound quality (at least for values of α not too far from 1) while
remaining computationally simple, which makes it suitable even for real-time applications. Most of
commercial time-stretching software packets adopt the SOLA algorithm.
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Let N be the analysis block length. In the initialization phase the SOLA algorithm copies the first
N samples from x1[n] to the output y[n], to obtain a minimum set of samples to work on:

y[j] = x1[j] = x[j] for j = 0 . . . N − 1. (2.16)

Then, during the generic kth step the algorithm tries to find the optimal overlap between the last
portion of the output signal y[n] and the incoming analysis frame xk+1[n]. More precisely, xk+1[n] is
pasted to the output y[n] starting from sample kSs + mk, where mk is a small discrete time-lag that
optimizes the alignement between y and xk (see Fig. 2.8). Note that mk can in general be positive or
negative, although for clarity we have used a positive mk in Fig. 2.8.

When the optimal time-lag mk is found, a linear crossfade is used within the overlap window, in
order to obtain a gradual transition from the last portion of y to the first portion of xk. Then the last
samples of xk are pasted into y. If we assume that the overlap window at the kth SOLA step is Lk

samples long, then the algorithmic step computes the new frame of the input y as

y[kSs + j] =
{

(1− v[j])y[kSs + j] + v[j]xk[j] for mk ≤ j ≤ Lk

xk[j] for Lk + 1 ≤ j ≤ N
(2.17)

where v[j] is a linear smoothing function that realizes the crossfade between the two segments. The
effect of Eq. (2.17) is a local replication or suppression of waveform periods (depending on the value
of α), that eventually results in an output signal y[n] with approximately the same spectral properties
of the input x[n], and an altered temporal evolution.

At least three techniques are commonly used in order to find the optimal value for the discrete
time lag mk at each algorithmic step k:

1. Computation of the minimum vectorial inter-frame distance in an L1 sense (cross-AMDF)

2. Computation of the maximum cross-correlation rk(m) in a neighborhood of the sample kSs.
Let M be the width of such neighborhood, and let yMk

[i] = y[kSs + i] for i = 1 . . . M − 1,
and xMk

[i] = xk+1[i] for i = 1 . . . M − 1. Then the cross-correlation rk(m) is computed as

rk[m] ,
M−m−1∑

i=0

yMk
[i] · xMk

[i + m], m = −M + 1, . . . , M − 1. (2.18)

Then mk is chosen to be the index of maximal cross-correlation: rk[mk] = maxm rk[m].

3. Computation of the maximum normalized cross-correlation, where every value taken from the
cross-correlation signal is normalized by dividing it by the product of the frame energies.

The latter technique is conceptually preferable, but the second one is often used for efficiency reasons.

M-2.11
Write a function sola timestretch(x,N,Sa,alpha,L) that realizes the time-stretching SOLA algorithm
through segment cross-correlation.

M-2.11 Solution

function y = sola_timestretch(x,N,Sa,alpha,L)

% Params: block length N; analysis hop-size Sa;
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% stretching factor alpha; overlap interval L

Ss = round(Sa*alpha); %synthesis hop-size
if (Sa > N) disp(’Sa must be less than N !!!’); end
if (Ss >= N) disp(’alpha is not correct, Ss is >= N’);
elseif (Ss > N-L) disp(’alpha is not correct, Ss is > N-L’); end
if (rem(L,2)˜= 0) L = L+1; end

M = ceil(length(x)/Sa); %number of frames
x(M*Sa+N)=0; %now x is exactly M*Sa samples
y(1:N) = x(1:N); %first frame of x is written into y;

for m=1:M-1 %%loop over frames
frame=x(m*Sa+1:N+m*Sa); %current analysis frame
framecorr=xcorr(frame(1:L),y(1,m*Ss:m*Ss+(L-1)));
[corrmax,imax]=max(framecorr); %find point of max xcorrelation

imax = L;
xfadewin = (m*Ss-(L-1)+imax-1):length(y);
fadein = (0:length(xfadewin)-1)/length(xfadewin); %from 0 to 1
fadeout = 1 - fadein; %from 1 to 0

y=[y(1,1:(xfadewin(1)-1)) ...
(y(1,xfadewin).*fadeout +frame(1:length(xfadewin)).*fadein) ...
frame(length(xfadewin)+1:N)];

end

A variation of the SOLA algorithm for time stretching is the Pitch Synchronous Overlap-Add (PSOLA)
algorithm, which is especially used for voice processing. PSOLA assumes that the input sound is
pitched, and exploits the pitch information to correctly align the segments and avoid pitch disconti-
nuities. Here we only provide a qualitative descripition of the algorithm, which is composed of two
phases: analysis/segmentation of the input sound, and resynthesis of the time-stretched output signal.
The analysis phase works in two main steps:

1. Determination of the pitch period of the input signal x[n] and determination of time instants
(“pitch marks”) between which the pitch can be considered constant. This step is clearly the
most critical and computationally expensive one of the whole algorithm.

2. Segmentation of the input signal, where the segments xm[n] have a block length N of two pitch
periods and are centered at every “pitch mark”. Proper windowing has also to be used in order
to ensure fade-in and fade-out. This procedure implies that the analysis hop-size is Sa = N/2.

The synthesis also uses a hop-size Ss = N/2. However, the segments xm are re-assembled using a
different approach with respect to SOLA. With a stretching factor α > 1 (time expansion) some seg-
ments will repeated, while in the case of α < 1 (time compression) some segments will be discarded
in the resynthesis.

2.4 Spectrum based models

Since the human ear acts as a particular spectrum analyser, a first class of synthesis models aims at
modeling and generating sound spectra. The Short Time Fourier Transform and other time-frequency
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representations provide powerful sound analysis tools for computing the time-varying spectrum of a
given sound. In this section models that can be interpreted in the frequency domain will be presented.

2.4.1 Sinusoidal model

When we analyze a pitched sound, we find that its spectral energy is mainly concentrated at a few dis-
crete (slowly time-varying) frequencies fk. These frequency lines correspond to different sinusoidal
components called partials. If the sound is almost periodic, the frequencies of partials are approx-
imately multiple of the fundamental frequency f0, ie. fk(t) ' k f0(t). The amplitude ak of each
partial is not constant and its time-variation is critical for timbre characterization. If there is a good
degree of correlation among the frequency and amplitude variations of different partials, these are
perceived as fused to give a unique sound with its timbre identity.

The sinusoidal model assumes that the sound can be modeled as a sum of sinusoidal oscillators
whose amplitude ak(t) and frequency fk(t) are slowly time-varying

ss(t) =
∑

k

ak(t) cos(φk(t)) , (2.19)

φk(t) = 2π

∫ t

0
fk(τ)dτ + φk(0) , (2.20)

or, digitally,

ss[n] =
∑

k

ak[n] cos(φk[n]) , (2.21)

φk[n] = 2π fk[n]Ts + φk[n− 1] , (2.22)

where Ts is the sampling period. Notice that eq. 2.22 can also be written as

φk(n) = φ0k + 2πTs

n∑

j=1

fk(n)

. Equations (2.19) and (2.20) are a generalization of the Fourier theorem, that states that a periodic
sound of frequency f0 can be decomposed as a sum of harmonically related sinusoids of frequency
fi = if0

ss(t) =
∑

k

ak cos(2πkf0t + φk) .

This model is also capable of representing aperiodic and inharmonic sounds, as long as their spectral
energy is concentrated near discrete frequencies (spectral lines).

In computer music this model is called additive synthesis and is widely used in music composi-
tion. Notice that the idea behind this method is not new. As a matter of fact, additive synthesis has
been used for centuries in some traditional instruments such as organs. Organ pipes, in fact, produce
relatively simple sounds that, combined together, contribute to the richer spectrum of some registers.
Particularly rich registers are created by using many pipes of different pitch at the same time. More-
over this method, developed for simulating natural sounds, has become the “metaphorical” foundation
of a compositional methodology based on the expansion of the time scale and the reinterpretation of
the spectrum in harmonic structures.
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2.22 Algorithms for Sound and Music Computing

2.4.2 Spectral modeling

Spectral analysis of the sounds produced by musical instruments, or by any physical system, shows
that the spectral energy of the sound signals can be interpreted as the sum of two main components:
a deterministic component that is concentrated on a discrete set of frequencies, and a stochastic com-
ponent that has a broadband characteristics. The deterministic –or sinusoidal– component normally
corresponds to the main modes of vibration of the system. The stochastic residual accounts for the
energy produced by the excitation mechanism which is not turned into stationary vibrations by the
system, and for any other energy component that is not sinusoidal.

As an example, consider the sound of a wind instrument: the deterministic signal results from self-
sustained oscillations inside the bore, while the residual noisy signal is generated by the turbulent flow
components due to air passing through narrow apertures inside the instrument. Similar considerations
apply to other classes of instruments, as well as to voice sounds, and even to non-musical sounds.

In the remainder of this section we discuss the modeling of the deterministic sound signal and
introduce the main concepts of additive synthesis. Later on, in section 2.4.4 we will address the
problem of including the stochastic component into the additive model.

2.4.2.1 Deterministic signal component

The term deterministic signal means in general any signal that is not noise. The class of deterministic
signals that we consider here is restricted to sums of sinusoidal components with varying amplitude
and frequency. Amplitude and frequency variations can be noticed e.g. in sound attacks: some partials
that are relevant in the attack can disappear in the stationary part. In general, the frequencies can
have arbitrary distributions: for quasi-periodic sounds the frequencies are approximately harmonic
components (integer multiples of a common fundamental frequency), while for non-harmonic sounds
(such as that of a bell) they have non-integer ratios.

The deterministic part of a discrete-time sound signal can be represented by the sinusoidal model
of sect. 2.4.1. The equation is

ss[n] =
∑

k

ak[n] cos(φk[n]) φk[n] = 2π fk[n]Ts + φk[n− 1] . (2.23)

This equation has a great generality and can be used to faithfully reproduce many types of sound,
especially in a “synthesis-by-analysis” framework (that we discuss in section 2.4.3 below). However,
as already noted, it discards completely the noisy components that are always present in real signals.
Another drawback of equation (2.23) is that it needs an extremely large number of control parameters:
for each note that we want to reproduce, we need to provide the amplitude and frequency envelopes
for all the partials. Moreover, the envelopes for a single note are not fixed, but depend in general on
the intensity.

On the other hand, additive synthesis provides a very intuitive sound representation, and this is one
of the reasons why it has been one of the earliest popular synthesis techniques in computer music.1

Moreover, sound transformations performed on the parameters of the additive representation (e.g.,
time-scale modifications) are perceptually very robust.

1Some composers have even used additive synthesis as a compositional metaphor, in which sound spectra are reinter-
preted as harmonic structures.
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Figure 2.9: Sum of sinusoidal oscillators with time-varying amplitudes and frequencies.

2.4.2.2 Time- and frequency-domain implementations

Additive synthesis with equation (2.23) can be implemented either in the time domain or in the fre-
quency domain. The more traditional time-domain implementation uses the digital sinusoidal oscil-
lator in wavetable or recursive form, as discussed in section 2.2.1.1. The instantaneous amplitude
and the instantaneous radian frequency of a particular partial are obtained by linear interpolation, as
discussed previously. Figure 2.9 provides a block diagram of such a time-domain implementation.

M-2.12
Use the sinusoidal oscillator realized in M-2.3 to synthesize a sum of two sinusoids.

M-2.12 Solution

%%% headers %%%
%[...]

%%% define controls %%%
a=envgen([0,.5,5,10,15,19.5,20],[0,1,1,1,1,1,0]); %fade in/out
f1=envgen([0,20],[200,200]); %constant freq. envelope
f2=envgen([0,1,5,10,15,20],... %increasing freq. envelope

[200,200,205,220,270,300]);

%%% compute sound %%%
s=sinosc(0,a,f1,0)+sinosc(0,a,f2,0);

The sinusoidal oscillator controlled in frequency and amplitude is the fundamental building block
for time-domain implementations of additive synthesis. Here we employ it to look at the beating
phenomenon. We use two oscillators, of which one has constant frequency while the second is
given a slowly increasing frequency envelope. Figure 2.10 shows the f1, f2 control signals and
the amplitude envelope of the resulting sound signal: note the beating effect.

In alternative to the time-domain approach, a very efficient implementation of additive synthesis
can be developed in the frequency domain, using the inverse FFT. Consider a sinusoid in the time-
domain: its STFT is obtained by first multiplying it for a time window w[n] and then performing the
Fourier transform. Therefore the transform of the windowed sinusoid is the transform of the window,
centered on the frequency of the sinusoid, and multiplied by a complex number whose magnitude and
phase are the magnitude and phase of the sine wave:

s[n] = A cos(2πf0n/Fs + φ) ⇒ F [w · s](f) = AeiφW (f − f0). (2.24)
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Figure 2.10: Beating effect: (a) frequency envelopes (f1 dashed line, f2 solid line) and (b) envelope
of the resulting signal.

If the window W (f) has a sufficiently high sidelobe attenuation, the sinusoid can be generated in
the spectral domain by calculating the samples in the main lobe of the window transform, with the
appropriate magnitude, frequency and phase values. One can then synthesize as many sinusoids as
desired, by adding a corresponding number of main lobes in the Fourier domain and performing an
IFFT to obtain the resulting time-domain signal in a frame.

By an overlap-and-add process one then obtains the time-varying characteristics of the sound.
Note however that, in order for the signal reconstruction to be free of artifacts, the overlap-and-add
procedure must be carried out using a window with the property that its shifted copies overlap and
add to give a constant. A particularly simple and effective window that satisfies this property is the
triangular window.

The FFT-based approach can be convenient with respect to time-domain techniques when a very
high number of sinusoidal components must be reproduced: the reason is that the computational costs
of this implementation are largely dominated by the cost of the FFT, which does not depend on the
number of components. On the other hand, this approach is less flexible than the traditional oscillator
bank implementation, especially for the instantaneous control of frequency and magnitude. Note also
that the instantaneous phases are not preserved using this method. A final remark concerns the FFT
size: in general one wants to have a high frame rate, so that frequencies and magnitudes need not to
be interpolated inside a frame. At the same time, large FFT sizes are desirable in order to achieve
good frequency resolution and separation of the sinusoidal components. As in every short-time based
processes, one has to find a trade-off between time and frequency resolution.

2.4.3 Synthesis by analysis

As already remarked, additive synthesis allows high quality sound reproduction if the amplitude and
frequency control envelopes are extracted from Fourier analysis of real sounds. Figure 2.11 shows the
result of this kind of analysis, in the case of a saxophone tone. Using these data, additive resynthesis
is straightforward.
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Figure 2.11: Fourier analysis of a saxophone tone: (a) frequency envelopes and (b) amplitude en-
velopes of the sinusoidal partials, as functions of time.

M-2.13
Assume that the script sinan imports two matrices sinan freqs and sinan amps with the partial frequency
and amplitude envelopes of an analyzed sound. Resynthesize the sound.

M-2.13 Solution

%%% headers %%%
% [...]

%%% define controls %%%
readsan; %import analysis matrices sinan_freqs and sinan_amps
npart=size(sinan_amps,1); %number of analyzed partials

%%% compute sound %%%
s=sinosc(... %generate first partial

0.5,sinan_amps(1,:),sinan_freqs(1,:),0);
for (i=2:npart) %generate higher partials and sum

s=s+sinosc(0.5,sinan_amps(i,:),sinan_freqs(i,:),0);
end

2.4.3.1 Magnitude and Phase Spectra Computation

The first step of any analysis procedure that tracks frequencies and amplitudes of the sinusoidal com-
ponents is the frame-by-frame computation of the sound magnitude and phase spectra. This is carried
out through short-time Fourier transform. The subsequent tracking procedure will be performed in this
spectral domain. The control parameters for the STFT are the window-type and size, the FFT-size,
and the frame-rate. These must be set depending on the sound to be processed.

Note that the analysis step is completely independent from the synthesis, therefore the observa-
tions made in section 2.4.2.2 about FFT-based implementations (the window must overlap and add to
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Figure 2.12: Block diagram of the sinusoid tracking process, where s[n] is the analyzed sound signal
and Ak, fk are the estimated amplitude and frequency of the kth partial in the current analysis frame.

a constant) do not apply here. Good resolution of the spectrum is needed in order to correctly resolve,
identify, and track the peaks which correspond to the deterministic component.

If the analyzed sound is almost stationary, long windows (i.e. windows that cover several periods)
that have good side-lobe rejection can be used, with a consequent good frequency resolution. Unfortu-
nately most interesting sounds are not stationary and a compromise is required. For harmonic sounds
one can scale the actual window size as a function of pitch, thus achieving a constant time-frequency
trade-off. For inharmonic sounds the size should be set according to the minimum frequency differ-
ence that exists between partials.

The question is now how to perform automatic detection and tracking of the spectral peaks that
correspond to sinusoidal components. In section 2.4.3.2 below we present the main guidelines of a
general analysis framework, which is summarized in figure 2.12. First, the FFT of a sound frame
is computed according to the above discussion. Next, the prominent spectral peaks are detected and
incorporated into partial trajectories. If the sound is pseudo-harmonic, a pitch detection step can
improve the analysis by providing information about the fundamental frequency information, and can
also be used to choose the size of the analysis window.

Such a scheme is only one of the possible approaches that can be used to attack the problem.
Hidden Markov Models (HMMs) are another one: a HMM can optimize groups of peaks trajectories
according to given criteria, such as frequency continuity. This type of approach might be very valuable
for tracking partials in polyphonic sounds and complex inharmonic tones.

2.4.3.2 A sinusoid tracking procedure

We now discuss in more detail the analysis steps depicted in figure 2.12.

Peak detection. The first one is detection of the most prominent frequency peaks (i.e., local maxima
in the magnitude spectrum) in the current analysis frame. Real sounds are not periodic, do
not have clearly spaced and defined spectral peaks, exhibit interactions between components.
Therefore, the best one can do at this point is to detect as many peaks as possible and postpone
to later analysis steps the decision of which ones actually correspond to sinusoidal components.
The peaks are then searched by only imposing two minimal constraints: they have to lie within
a given frequency range, and above a given magnitude threshold. The detection of very soft
peaks is hard: they have little resolution, and measurements are very sensitive to transformations
because as soon as modifications are applied to the analysis data, parts of the sound that could
not be heard in the original can become audible. Having a very clean sound with the maximum
dynamic range, the magnitude threshold can be set to the amplitude of the background noise
floor. In order to gain better resolution in the high frequency range, the sound may be pre-
processed to introduce preemphasis, which has then to be compensated later on before the
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resynthesis.

Pitch detection. After peak detection, many procedures can be used to decide whether a peak belongs
to a sinusoidal partial or not. One possible strategy is to measure how close the peak shape is
to the ideal sinusoidal peak (recall what we said about the transform of a windowed sinusoid
and in particular equation (2.24). A second valuable source of additional information is pitch.
If a fundamental frequency is actually present, it can be exploited in two ways. First, it helps
the tracking of partials. Second, the size of the analysis window can be set according to the
estimated pitch in order to keep the number of periods-per-frame constant, therefore achieving
the best possible time-frequency trade-off (this is an example of a pitch-synchronous analysis).
There are many possible pitch detection strategies, which will be presented in the next chapter.

Peak continuation. A third and fundamental strategy for peak selection is to implement some sort
of peak continuation algorithm. The basic idea is that a set of “guides” advance in time and
follow appropriate frequency peaks (according to specified constraints that we discuss in the
next paragraph) forming trajectories out of them. A guide is therefore an abstract entity which
is used by the algorithm to create the trajectories, and the trajectories are the actual result of the
peak continuation process. The guides are turned on, advanced, and finally turned off during the
continuation algorithm, and their instantaneous state (frequency and magnitude) is continuously
updated during the process. If the analyzed sound is harmonic and a fundamental has been
estimated, then the guides are created at the beginning of the analysis, with frequencies set
according to the estimated harmonic series. When no harmonic structure can be estimated,
each guide is created when the first available peak is found. In the successive analysis frames,
the guides modify their status depending on the last peak values. This past information is
particularly relevant when the sound is not harmonic, or when the harmonics are not locked to
each other and we cannot rely on the fundamental as a strong reference for all the harmonics.

The main constraints used to assign guides to spectral peaks are as follows. A peak is assigned
to the guide that is closest to it and that is within an assigned frequency deviation. If a guide
does not find a match, the corresponding trajectory can be turned off, and if a continuation peak
is not found for a given amount of time the guide is killed. New guides and trajectories can be
created starting from peaks of the current frame that have high magnitude and are not “claimed”
by any of the existing trajectories. After a certain number of analysis frames, the algorithm can
look at the trajectories created so far and adopt corrections: in particular, short trajectories can
be deleted, and small gaps in longer trajectories can be filled by interpolating between the values
of the gap edges.

One final refinement to this process can be added by noting that the sound attack is usually highly
non-stationary and noisy, and the peak search is consequently difficult in this part. Therefore it is
customary to perform the whole procedure backwards in time, starting from the end of the sound
(which is usually a more stable part). When the attack is reached, a lot of relevant information has
already been gained and non-relevant peaks can be evaluated and/or rejected.

2.4.4 “Sines-plus-noise” models

At the beginning of our discussion on additive modeling, we remarked that the spectral energy of the
sound signals has a deterministic component that is concentrated on a discrete set of frequencies, and
a stochastic component that has a broadband characteritics. So far we have discussed the problem
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Figure 2.13: Block diagram of the stochastic analysis and modeling process, where s[n] is the ana-
lyzed sound signal and Ak, fk, φk are the estimated amplitude, frequency, and phase of the kth partial
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of modeling the deterministic –or sinusoidal– component. Now we have to include the stochastic
component into the model.

A sinusoidal representation may in principle be used also to simulate noise, since noise consists
of sinusoids at every frequency within the band limits. It is clear however that such a representation
would be computationally very demanding. Moreover it would not be a flexible sound representation.
Therefore the most convenient sound model is of the form

s[n] = ss[n] + e[n] (2.25)

where ss[n] represent the deterministic part (eq. 2.23 and e[n] represents the stochastic component
and is modeled separately from the deterministic part.

2.4.4.1 Stochastic analysis

The most straightforward approach to estimation of the stochastic component is through subtraction
of the deterministic component from the original signal. Subtraction can be performed either in the
time domain or in the frequency domain. Time domain subtraction must be done while preserving
the phases of the original sound, and instantaneous phase preservation can be computationally very
expensive. One the other hand, frequency-domain subtraction does not require phase preservation.
However, time-domain subtraction provides much better results, and is usually favored despite the
higher computational costs. For this reason we choose to examine time-domain subtraction in the
remainder of this section. Figure 2.13 provides a block diagram.

Suppose that the deterministic component has been estimated in a given analysis frame, using for
instance the general scheme described in section 2.4.3 (note however that in this case the analysis
should be improved in order to provide estimates of the instantaneous phases as well). Then the first
step in the subtraction process is the time-domain resynthesis of the deterministic component with the
estimated parameters. This should be done by properly interpolating amplitude, frequency, and phase
values in order to avoid artifacts in the resynthesized signal. The actual subtraction can be performed
as

e[n] = w[n] · [s[n]− d[n]], n = 0, 1, . . . , N − 1, (2.26)

where s[n] is the original sound signal and d[n] is the re-synthesized deterministic part. The difference
(s− d) is multiplied by an analysis window w of size N , which deserves some discussion.
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Figure 2.14: Example of residual magnitude spectrum (solid line) and its line-segment approximation
(dashed line), in an analysis frame. The analyzed sound signal is the same saxophone tone used in
figure 2.11.

We have seen in 2.4.3 that high frequency resolution is needed for the deterministic part, and for
this reason long analysis windows are used for its estimation. On the other hand, good time resolution
is more important for the stochastic part of the signal, especially in sound attacks, while frequency
resolution is not a major issue for noise analysis. A way to obtain good resolutions for both the
components is to use two different analysis windows. Therefore w in equation (2.26) is not in general
the same window used to estimate d[n], and the size N is in general small.

Once the subtraction has been performed, there is one more step than can be used to improve
the analysis, namely, test can be performed on the estimated residual in order to assess how good
the analysis was. If the spectrum of the residual still contains some partials, then the analysis of the
deterministic component has not been performed accurately and the sound should be re-analyzed until
the residual is free of deterministic components. Ideally the residual should be as close as possible to
a stochastic signal, therefore one possible test is a measure of correlation of the residual samples.2

2.4.4.2 Stochastic modeling

The assumption that the residual is a stochastic signal implies that it is fully described by its ampli-
tude and its spectral envelope characteristics. Information on the instantaneous phase is not necessary.
Based on these considerations, a frame of the stochastic residual can be completely characterized by
a filter that models the amplitude and general frequency characteristics of the residual. The represen-
tation of the residual for the overall sound will then be a time-varying filter.

Within a given frame we therefore assume that e(t) can be modeled as

E(f) = H(t) · U(f), (2.27)

where U is white noise and H is the frequency response of filter whose coefficients vary on a frame-
by-frame basis. The stochastic modeling step is summarized in the last block of figure 2.13.

2 Note that if the analyzed sound has not been recorded in silent and anechoic settings the residual will contain not only
the stochastic part of the sound, but also reverberation and/or background noise.
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The filter design problem can be solved using different strategies. One approach that is often
adopted uses some sort of curve fitting (line-segment approximation, spline interpolation, least squares
approximation, and so on) of the magnitude spectrum of e in an analysis frame. As an example, line-
segment approximation can be obtained by stepping through the magnitude spectrum, finding local
maxima at each step, and connecting the maxima with straight lines. This procedure can approximate
the spectral envelope with reasonable accuracy, depending on the number of points, which in turn can
be set depending on the sound complexity. See figure 2.14 for an example.

Another possible approach to the filter design problem is Linear Prediction (LP) analysis, which
is a popular technique in speech processing. In this context, however, curve fitting on the noise
spectrum (e.g., line-segment approximation) is usually considered to a be more flexible approach and
is preferred to LP analysis. We will return on Linear Prediction techniques in section 2.5.3.

The next question is how to implement the estimated time-varying filter in the resynthesis step.

2.4.4.3 Resynthesis and modifications

Figure 2.15 shows the block diagram of the synthesis process. The deterministic signal, i.e., the
sinusoidal component, results from the magnitude and frequency trajectories, or their transformation,
by generating a sine wave for each trajectory (additive synthesis). As we have seen, this can either
be implemented in the time domain with the traditional oscillator bank method or in the frequency
domain using the inverse-FFT approach.

Concerning the stochastic component, a frequency-domain implementation is usually preferred to
a direct implementation of the time-domain convolution (2.27), due to its computational efficiency3

and flexibility. In each frame, the stochastic signal is generated by an inverse-FFT of the spectral
envelopes. Similarly to what we have seen for the deterministic synthesis in section 2.4.2.2, the time-
varying characteristics of the stochastic signal is then obtained using an overlap-and-add process.

In order to perform the IFFT, a magnitude and a phase responses have to be generated starting
from the estimated frequency envelope. Generation of the magnitude spectrum is straightforwadly
obtained by first linearly interpolating the spectral envelope to a curve with half the length of the
FFT-size, and then multiplying it by a gain that corresponds to the average magnitude extracted in
the analysis. The estimated spectral envelope gives no information on the phase response. However,
since the phase response of noise is noise, a phase response can be created from scratch using a
random signal generator. In order to avoid periodicities at the frame rate, new random values should
be generated at every frame.

The sines-plus-noise representation is well suited for modification purposes.

• By only working on the deterministic representation and modifying the amplitude-frequency
pairs or the original sound partials, many kinds of frequency and magnitude transformations
can be obtained. As an example, partials can be transposed in frequency. It is also possible
to decouple the sinusoidal frequencies from their amplitude, obtaining pitch-shift effects that
preserve the formant structure.

• Time-stretching transformations can obtained by resampling the analysis points in time, thus
slowing down or speeding up the sound while maintaining pitch and formant structure. Given
the stochastic model that we are using, the noise remains noise and faithful signal resynthesis is
possible even with extreme stretching parameters.

3 In fact, by using a frequency-domain implementation for both the deterministic and the stochastic synthesis one can
add the two spectra and resynthesize both the components at the cost of a sigle IFFT per frame.
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Figure 2.15: Block diagram of the sines-plus-noise synthesis process.

• By acting on the relative amplitude of the two components, interesting effects can be obtained
in which either the deterministic or the stochastic parts are emphasized. As an example, the
amount of “breathiness” of a voiced sound or a wind instrument tone can be adjusted in this
way. One must keep in mind however that, when different transformations are applied to the
two representations, the deterministic and stochastic components in the resulting signal may not
be perceived as a single sound event anymore.

• Sound morphing (or cross-synthesis transformations can be obtained by interpolating data from
two or more analysis files. This transformations are particularly effective in the case of quasi-
harmonic sounds with smooth parameter curves.

2.4.5 Sinusoidal description of transients

So far we have seen how to extend the sinusoidal model by using a “sines-plus-noise” approach that
explicitly describes the residual as slowly varying filtered white noise. Although this technique is very
powerful, transients do not fit well into a filtered noise description, because they lose sharpness and
are smeared. This consideration motivates us to handle transients separately.

One straightforward approach, that is sometimes used, is removing transient regions from the
residual, performing the sines-plus-noise analysis, and adding the transients back into the signal.
This approach obviously requires memory where the sampled transients must be stored, but since the
transient residuals remain largely invariant throughout most of the range of an instrument, only a few
residuals are needed in order to cover all the sounds of a single instrument. Although this approach
works well, it is not flexible because there is no model for the transients. In addition, identifying
transients as everything that is neither sinusoidal nor transient is not entirely correct. Therefore we
look for a suitable transient model, that can be embedded in the additive description to obtain a “sines-
plus-transients-plus-noise” representation.

2.4.5.1 The DCT domain

In the following we adopt a further modified version of the additive sound representation (2.23), in
which the sound transients are explicitly modeled by an additional signal:

s[n] = ss[n] + et[n] + er[n], (2.28)
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Figure 2.16: Example of DCT mapping: (a) an impulsive transient (an exponentially decaying sinu-
soid) and (b) its DCT as a slowly varying sinusoid.

where ss[n] is the sinusoidal component, et[n] is the signal associated to transients and er[n] is the
noisy residual. The transient model is based on a main undelying idea: we have seen that a slowly
varying sinusoidal signal is impulsive in the frequency domain, and sinusoidal models perform short-
time Fourier analysis in order to track slowly varying spectral peaks (the tips of the impulsive signals)
over time. Transients are very much dual to sinusoidal components: they are impulsive in the time
domain, and consequently they must be oscillatory in the frequency domain. Therefore, although
transient cannot be tracked by a short-time analysis (because their STFT will not contain meaningful
peaks), we can track them by performing sinusoidal modeling in a properly chosen frequency domain.
The mapping that we choose to use is the one provided by the discrete cosine transform (DCT):

S[k] = β[k]
N−1∑

n=0

s[n] cos
[
(2n− 1)kπ

2N

]
, for n, k = 0, 1, . . . , N − 1, (2.29)

where β[1] =
√

1/N and β[k] =
√

2/N otherwise. From equation (2.29) one can see that an
ideal impulse δ[n − n0] (i.e., a Kronecker delta function centered in n0) is transformed into a cosine
whose frequency increases with n0. Figure 2.16(a) shows a more realistic transient signal, a one-
sided exponentially decaying sine wave. Figure 2.16(b) shows the DCT of the transient signal: a
slowly varying sinusoid. This considerations suggest that the time-frequency duality can be exploited
to develop a transient model: the same kind of parameters that characterize the sinusoidal components
of a signal can also characterize the transient components of a signal, although in a different domain.

2.4.5.2 Transient analysis and modeling

Having transformed the transient into the DCT domain, the most natural way to proceed is performing
sinusoidal modeling in this domain: STFT analysis of the DCT-domain signal can be used to find
meaningful peaks, and then the signal can be resynthesized in the DCT domain and back-transformed
to the time domain with an inverse DCT transform (IDCT). This process is shown in figure 2.17. We
now discuss the main steps involved in this block diagram.
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Figure 2.17: Block diagram of the transient analysis and modeling process, where s[n] is the analyzed
sound signal and Ak, fk, φk are the estimated amplitude, frequency, and phase of the kth DCT-
transformed transient in the current analysis frame.

First the input signal s[n] is divided into non-overlapping blocks in which DCT analysis will
be performed. The block length should be chosen so that a transient appears as “short”, therefore
large block sizes (e.g., 1 s) are usually chosen. The block DCT is followed by a sinusoidal analy-
sis/modeling process which is identical to what we have seen is section 2.4.3. The analysis can op-
tionally embed some information about transient location withing the block: there are many possible
transient detection strategies, which we do not want to discuss here. Also, the analysis can perform
better if the sinusoid tracking procedure starts from the end of the DCT-domain signal and moves
backwards toward the beginning, because the beginning of a DCT frame is usually spectrally rich and
this can deteriorate the performance of the analysis (similar considerations were done in section 2.4.3
when discussing sinusoid tracking in the time domain).

The analysis yields parameters that correspond to slowly varying sinusoids in the DCT domain:
each transient is associated to a triplet {Ak, fk, φk}, amplitude, frequency, and phase of the kth “par-
tial” in each STFT analysis frame within a DCT block. By recalling the properties of the DCT one
can see that fk correspond to onset locations, Ak is the amplitude of the time-domain signal also, and
φk is related to the time direction (positive or negative) in which the transient evolves. Resynthesis
of the transients is then performed using these parameters to reconstruct the sinusoids in the DCT
domain. Finally an inverse discrete cosine transform (IDCT) on each of the reconstructed signals is
used to obtain the transients in each time-domain block, and the blocks are concatenated to obtain the
transients for the entire signal.

It is relatively straightforward to implement a “fast transient reconstruction” algorithm. Without
entering the details, we just note that the whole procedure can be reformulated using FFT transforma-
tions only: in fact one could verify that the DCT can be implemented using an FFT block plus some
post-processing (multiplication of the real and imaginary parts of the FFT by appropriate cosinu-
soidal and sinusoidal signals followed by a sum of the two parts). Furthermore, this kind of approach
naturally leads to a FFT-based implementation of the additive synthesis step (see section 2.4.2.2).

One nice property of this transient modeling approach is that it fits well within the sines-plus-
noise analysis that we have examined in the previous sections. The processing block depicted in
figure 2.17 returns an output signal s̃[n] in which the transient components et have been removed by
subtraction: this signal can be used as the input to the sines-plus-noise analysis, in which the remaining
components (deterministic and stochastic) will be analyzed and modeled. From the implementation
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Figure 2.18: Source-filter model.

viewpoint, one advantage is that the core components of the transient-modeling algorithm (sinusoid
tracking and additive resynthesis) are identical to those used for the deterministic model. Therefore
the same processing blocks can be used in the two stages, although working on different domains.

2.5 Source-filter models

2.5.1 Source-filter decompositions

Some sound signals can be effectively modeled through a feed-forward source-filter structure, in
which the source is in general a spectrally rich excitation signal, and the filter is a linear system
that acts as a resonator and shapes the spectrum of the excitation. A typical example is the voice,
where the periodic pulses or random fluctuations produced by the vocal folds are filtered by the vocal
tract, that shapes the spectral envelope. The vowel quality and the voice color greatly depends on the
resonance regions of the filter, usually called formants.

Source-filter models are typically used in an analysis-synthesis framework, in which both the
source signal and the filter parameters are estimated from a target sound signal, that can be subse-
quently resynthesized through the identified model. Moreover, transformations can be applied to the
filter and/or the excitation before the reconstruction (see Fig. 2.18). One of the most common analysis
techniques is Linear Prediction, that we will address in Sec. 2.5.3.

In computer music, source-filter models are traditionally grouped under the label subtractive syn-
thesis. A number of analog voltage controlled synthesizers in the ’70s, e.g. Moog, made use of sub-
tractive synthesis techniques in which audio filters are applied to spectrally rich waveforms (square
waves, sawtooth waves, triangle waves, and so on).

We will assume the filter block to be linear and time-invariant (at least on a short-time scale), so
that the excitation signal x[n] and the output signal s[n] are related through the difference equation

s[n] =
∑

i

biu[n− i]−
∑

k

aks[n− k] , (2.30)

or, in the Z-domain,

S(z) = H(z)X(z) , with H(z) =
B(z)
A(z)

=
∑

i biz
−i

∑
k akz−k

. (2.31)

Equation (2.31) shows how the features of the source and of the filter are combined: the spectral
fine structure of the excitation signal (spectral lines, broadband or narrowband noise, etc.) is multi-
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plied by the spectral envelope of the filter, which therefore has a shaping effect on the source spectrum.
Therefore, it is possible to control and modify separately different features of the signal: as an exam-
ple, the pitch of a speech sound depends on the excitation and can be controlled separately from the
formant structure, which instead depends on the filter. When the filter coefficients are (slowly) varied
over time, the frequency response changes. As a consequence, the output will be a combination of
temporal variations of the input and of the filter (cross-synthesis).

2.5.1.1 Sources and filters

One of the simplest waveforms is the impulse train generator, which produces a sequence of unit
impulses spaced by the desired fundamental period. Another simple generator for stochastic sources
is the random noise generator, which produces a flat spectrum noise. We will be making use of these
generators in Sec. 2.5.2.

M-2.14
Write a function noisegen(t0,amp) that realizes the noise generator, and a function buzz(t0,amp,f)

that realizes the impulse generator. The parameters (t0,amp,f) are initial time, amplitude envelope, and
frequency envelope, respectively.

M-2.14 Solution

Hint for the noise generator: simply use the function rand().

Hint for the impulse generator: use additive synthesis, and sum up all the harmonic components
cos(2kπf0t) (k ∈ N) of the fundamental frequency f0, up to the Nyquist frequency Fs/2.

An important filter is the second order IIR filter that is very often used for modeling resonances.
It is described by:

H(z) =
b0

1 + a1z−1 + a2z−2
(2.32)

The filter coefficient can be derived by these (approximate) equations:

a1 = −2r cos(ωc), a2 = r2, b0 = (1− r)
√

1− 2r cos(2ωc) + r2, (2.33)

where the auxiliary parameters r and ωc are defined as r = e
−πB
Fs e ωc = 2πfc/Fs and correspond to

the magnitude and phase of the complex conjugate poles of the transfer function. The parameter fc is
the center frequency of the resonant filter, and B is the bandwidth. The gain normalization factor b0

is computed by normalizing the magnitude at the resonance frequency, i.e. |H(ωc)| = 1. The impulse
response is a sinusoidal function with exponentially decreasing amplitude

h[n] =
b0

sinωc
rn sin (ωc(n + 1)) . (2.34)

Then the 40-dB time constant τ40dB (i.e. the time required for the oscillation to decay by 40 dB) is
given by τ40dB = log(10−2)/Fs log(r) = −2 log(r)/Fs.

M-2.15
Write a function baIIR2(fc,B) that computes the coefficients of N 2nd order resonant filters, given the
vectors of length N fc (center frequencies) and B (bandwidths).

M-2.15 Solution
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2.36 Algorithms for Sound and Music Computing

function [b,a]=baIIR2(fc,B); %computes coeff. a,b of II order cells

global Fs; global Fc;
nfilters=length(fc); %no. of cells to be computed

r=exp(-(pi.*B)/Fs);
a0=ones(nfilters,1);
a1=-(2*r.*cos(2*pi*fc/Fs))’;
a2=r’.ˆ2;

b0=(1-r).*sqrt(1-2.*r.*cos(2*2*pi.*fc/Fs)+r.*r);
a=[a0 a1 a2];
b=[b0’ zeros(nfilters,1) zeros(nfilters,1)];

Note that we have followed the Octave/Matlab convention in defining the coefficients b,a. See the
help for the function filter(b,a,in)

2.5.1.2 An example: modal synthesis of percussive sounds

A set of N second order resonant filters Ri (i = 1 . . . N ) of the form (2.32) can be grouped into a
filterbank, where the same excitation signal x is fed to all the Ri’s, as depicted in Fig. 2.19. This
specific source-filter structure is well suited to simulate percussive sounds.

In this case the excitation signal has an impulsive characteristics and represents a “striker” that a
hammer or a mallet impart to a resonating object. Suitable “striker” excitation signals are e.g. a square
impulse or a noise burst. The filter block represents the resonating object hit by the hammer: the center
frequencies fci (i = 1 . . . N ) of the resonant filters can be chosen to match a desired spectrum. As
an example, a string will have a harmonic spectrum in which partials are regularly spaced on the
frequency axis, therefore fci = ifc1 (i = 2 . . . N ), where fc1 acts as the fundamental frequency. On
the other hand, the partial distribution of a bar, or a bell, or the circular membrane of a drum, will
be inharmonic. As an example, it is known that the partials of an ideal bar clamped at one end are
approximately fc2 ∼ (2.998/1.994)2fc1, fci ∼ [(2i + 1)/1.994]2fc1 (i = 3 . . . N ).

The bandwidths Bi of the Ri’s determine the decay characteristics of each partial, according to
Eq. (2.34). A first possible choice is setting the same B (i.e. the same parameter r) for every filter.
An alternative choice, that better describes the behavior of such resonant objects as strings, bars, and
so on, amounts to setting the same quality factor Q = Bi/fci for all the filters.

The structure depicted in Fig. 2.19 is also an example of modal synthesis. We will return on
modal synthesis in Chapter Sound modeling: source based approaches, and will provide more physically sound
foundations to this sound synthesis technique.

M-2.16
Write a function modalosc(t0,tau,amp,fc,B) that realizes the structure of Fig. 2.19. The parameter t0
is the total duration of the sound signal, tau,amp define duration and max. amplitude of the striker signal (e.g.
a noise burst), and the vectors fc,B are defined as in Example M-2.15.

2.5.2 Speech modeling

2.5.2.1 Speech production mechanism and models

Speech is an acoustic sound pressure wave created when air is expelled from the lungs through the
trachea and vocal tract (fig. fig. 2.20). This tract is composed of vocal fold opening (glottis), throat,
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Figure 2.19: Parallel structure of digital resonators for the simulation of struck objects – the Ri’s have
transfer functions of the form (2.32).
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Figure 2.20: A schematic view of the phonatory system. Solid arrows indicates the direction of the
airflow generated by lung pressure.

nose, mouth and lips. As the acoustic wave passes through the vocal tract, its frequency content
(spectrum) is altered by the resonances of the vocal tract; vocal tract resonances are called formants.
Two types of sounds characterize speech, namely voiced and unvoiced). Voiced sounds result from a
periodic excitation of the vocal tract causing oscillation of the vocal chords in a quasi-periodic manner.
Technically, it is useful to think voiced speech as the response of an acoustic filter, modeling the vocal
tract, to a passing pressure wave. The vocal chords oscillate in a very non-sinusoidal manner at a
rate that is approximately 100Hz for adult males and 120Hz for adult females (the frequency varies
from speaker to speaker as well). The periodic nature of the oscillations gives rise to harmonics and
the period associated with the fundamental frequency is commonly termed its pitch1. The range of
potential pitch frequencies varies from 50Hz to 250Hz for men, and from 120 to 500Hz for women.
Everyone has a ”habitual pitch level”, which is a sort of ”preferred” pitch that will be used naturally
on the average. Pitch is shifted up and down in speaking in response to factors relating to stress,
intonation, and emotion. Intonation is associated with the pitch contour over time and performs several
functions in a language, the most important being to signal grammatical structure.

Synthesized speech can be produced by several different methods. All of these have some benefits
and deficiencies. The methods are usually classified into three groups.
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• Concatenative synthesis uses different length prerecorded samples derived from natural speech.
This techique is based on the methods seen in sect. 2.3. Connecting prerecorded natural utter-
ances is probably the easiest way to produce intelligible and natural sounding synthetic speech.
However, concatenative synthesizers are usually limited to one speaker and one voice and usu-
ally require more memory capacity than other methods. The concatenative approach is becom-
ing more and more popular in speech synthesis systems.

• Formant synthesis models the pole frequencies of speech signal or transfer function of vocal
tract based on source-filter-model. This was the most widely used synthesis method during
last decades, before the development of concatenative methods. It is based on the source-filter-
model of speech described in sect. 2.5. Formant synthesis also provides infinite number of
sounds which makes it more flexible than for example concatenation methods. We discuss
formant synthesis in Sec. 2.5.2.2 below

• Articulatory synthesis attempts to model the human speech production system directly. Ar-
ticulatory synthesis typically involves models of the human articulators and vocal cords. The
articulators are usually modeled with a set of area functions between glottis and mouth. The ar-
ticulatory control parameters may be for example lip aperture, lip protrusion, tongue tip height,
tongue tip position, tongue height, tongue position and velic aperture. Phonatory or excitation
parameters may be glottal aperture, cord tension, and lung pressure. The models are developed
with the methods which will be seen in Chapter Sound modeling: source based approaches. Advantages
of articulatory synthesis are that the vocal tract models allow accurate modeling of transients
due to abrupt area changes, whereas formant synthesis models only spectral behavior. The ar-
ticulatory method is still too complicated for high quality implementations, but may arise as a
potential method in the future.

2.5.2.2 Formant synthesis

Formant synthesis of speech realizes a source-filter model in which a broadband source signal under-
goes multiple filtering transformations that are associated to the action of different elements of the
phonatory system. Depending on whether voiced or unvoiced speech (see above) has to be simulated,
two different models are used.

If s[n] is a voiced speech signal, it can be expressed in the Z-domain by the following cascaded
spectral factors:

S(z) = gvX(z) · [F (z) · V (z) ·R(z)] (2.35)

where the source signal X(z) is in this case a periodic pulse train whose period coincides with the
pitch of the signal, gv is a constant gain term, F (z) is a filter associated to the response of the vocal
folds to pitch pulses, V (z) is the vocal tract filter, R(z) simulates the output radiation effect of the
lips.

If s[n] is a voiced speech signal, vocal folds do not vibrate and turbulences is produced by the pas-
sage of air through a narrow constriction (such as the teeth). The turbulence is traditionally modeled
as white noise. In this case, the model is expressed in the Z-domain as

S(z) = guX(z) · [V (z) ·R(z)] (2.36)

where the source signal X(z) is in this case a driving noise sequence, while the gain term gu is in
general different from the voiced configuration gain, gv. Note that the vocal fold response F (z) is not
included in the model in this case.
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Figure 2.21: A general model for formant synthesis of speech.

Any voiced or unvoiced sound can be characterized by either Eq. (2.35) or (2.36); the complete
transfer function characterizing the speech apparatus is defined as

H(z) =
S(z)
X(z)

(2.37)

which may or may not include vocal fold response to pitch depending on whether the sound is voiced
or unvoiced. Such a general discrete-time model for speech is shown in Fig. 2.21.

The filter F (z) that shapes the glottal pulses can be modeled as

F (z) =
1

[1− exp(−c/Fs)z−1]2
.

The radiation filter R(z) can be thought of as a load that converts the airflow signal at the lips into
an outgoing pressure wave (the signal s[n]). Under very idealized hypothesis, R(z) can be approxi-
mated by a differentiator:

R(z) = 1− z−1.

We now focus on the filter V (z) that models the vocal tract formants. A single frequency formant
associated to vocal tract can be modeled with a two-pole resonator, (see Sec. 2.5.1) which enables
both the formant frequency (pole-pair frequency) and its bandwidth to be specified. We will denote
the filter associated to the ith formant as Vi(z), having center frequency fi and bandwidth Bi (see
Eq. (2.32)). At least three vocal tract formants are generally required to produce intelligible speech
and up to five formants are needed to produce high quality speech.

Two basic structures, parallel and cascade, can be used in general, but for better performance some
kind of combination of these is usually adopted. A cascade formant synthesizer consists of band-pass
resonators connected in series, i.e. the output of each formant resonator is applied to the input of the
following one. The cascade vocal tract model is given by

V (z) = g

K∏

i=1

Vi(z).

The cascade structure needs only formant frequencies as control information. The main advantage
of this structure is that the relative formant amplitudes for vowels do not need individual controls. A
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cascade model of the vocal tract is considered to provide good quality in the synthesis of vowels, but
is not flexible enough for the synthesis of nasals.

A parallel formant synthesizer consists of resonators connected in parallel, i.e. the same input is
applied to each formant filter. The resulting vocal tract model is then given by

V (z) =
K∑

i=1

ai · Vi(z).

Sometimes extra resonators for nasals are used. The excitation signal is applied to all formants si-
multaneously and their outputs are summed. The parallel structure enables controlling of bandwidth
and gain for each formant individually and thus needs also more control information. The parallel
structure has been found to be better for nasals, fricatives, and stop-consonants, but some vowels can
not be modeled with parallel formant synthesizer as well as with the cascade one.

M-2.17
Using the functions buzz and baIIR2, realize a parallel formant synthesizer. Use 3 2nd order IIR cells,
corresponding to the first 3 vowel formant frequencies.

M-2.17 Solution

global Fs; global SpF;
Fs=22050;
ControlW=0.01; %control window (in sec): 10 ms
SpF=round(Fs*ControlW);

%%% define controls %%%
amp=envgen([0,.2,1,1.8,2],[0,1,.8,1,0],’linear’); % amp. envelope
f=envgen([0,.2,1.8,2],[200,250,250,200],’linear’); % pitch envelope
f=f+max(f)*0.05*... % add vibrato

sin(2*pi*5*(SpF/Fs)*[0:length(f)-1]).*hanning(length(f))’;%’

[b_i,a_i]=baIIR2([300 2400 3000],[200 200 500]); %spec. envelope /i/
[b_a,a_a]=baIIR2([700 1200 2500],[200 300 500]); %spec. envelope /a/
[b_e,a_e]=baIIR2([570 1950 3000],[100 100 800]); %spec. envelope /e/

%%% compute sound %%%
s=buzz(0,amp,f); %impulse source
si=filter(b_i(1,:),a_i(1,:),s)+... %synthesize /i/

filter(b_i(2,:),a_i(2,:),s)+filter(b_i(3,:),a_i(3,:),s);
sa=filter(b_a(1,:),a_a(1,:),s)+... %synthesize /a/

filter(b_a(2,:),a_a(2,:),s)+filter(b_a(3,:),a_a(3,:),s);
se=filter(b_e(1,:),a_e(1,:),s)+... %synthesize /e/

filter(b_e(2,:),a_e(2,:),s)+filter(b_e(3,:),a_e(3,:),s);

Note the use of the filter function. Figure 2.22 shows the spectrum of the original source signal,
the spectral envelope defined by the filtering elements, and the spectrum of the final signal for two
different pitches

2.5.3 Linear prediction

The problem of extracting a spectral envelope from a signal spectrum is generally an ill-posed prob-
lem. If the signal contains harmonic partials only, one could state that the spectral envelope is the
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Figure 2.22: Spectrum of the original source signal, the spectral envelope defined by the filtering
elements, and the spectrum of the final signal for two different pitches when a paralled synthesis
structure is used.

curve that passes through the partial peaks. This implies that 1) the peak values have to be retrieved,
and 2) an interpolation scheme should be (arbitrarily) chosen for the completion of the curve in be-
tween the peaks. If the sound contains inharmonic partials or a noisy part, then the notion of a spectral
envelope becomes completely dependent on the definition of what belongs to the “source” and what
belongs to the “filter”.

Three techniques with many variants can be used for the estimation of the spectral envelope:

• The channel vocoder uses frequency bands and performs estimations of the amplitude of the
signal inside these bands and thus the spectral envelope.

• Linear prediction estimates an all-pole filter that matches the spectral content of a sound. When
the order of this filter is low, only the formants are taken, hence the spectral envelope.

• Cepstrum techniques perform smoothing of the logarithm of the FFT spectrum(in decibels) in
order to separate this curve into its slow varying part (the spectral envelope) and its quickly
varying part (the source signal).

In this section we present the basics of Linear Prediction (LP) techniques. We will return on cepstral
analysis in Chapter From sound to content.
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2.5.3.1 Linear prediction equations

Consider a general linear system that describes a source-filter model:

S(z) = gH(z)X(z), with H(z) =
1 +

∑q
k=1 bkz

−k

1−∑p
k=1 akz−k

, (2.38)

where g is a gain scaling factor and X(z) and S(z) are the Z-transforms of the source signal x[n] and
the output signal s[n], respectively. This is often termed an ARMA(p, q) (Auto-Regressive Moving
Average) model, in which the output is expressed as a linear combination of p past samples and q + 1
input values. LP analysis works on an approximation of this system, namely on an all-pole model:

S(z) = gHLP (z)X(z), with HLP (z) =
1

1−∑p
k=1 akz−k

. (2.39)

The time-domain version of this equation reads s[n] = gx[n] +
∑p

k=1 aks(n − k). Therefore the
output s[n] can be predicted using a linear combination of its p past values, plus a weighted input
term. In statistical terminology, the output regresses on itself, therefore system (2.39) is often termed
an AR(p) (Auto-Regressive) model

One justification of this approximation is that the input signal x[n] is generally unknown together
with the filter H(z). A second more substantial reason is that any filter H(z) of the form (2.38)
can be written as H(z) = h0Hmin(z)Hap(z), where h0 is a constant gain, Hmin(z) is a minimum-
phase filter, and Hap is an all-pass filter (i.e. |Hap(e2πjf )| = 1, ∀f ). Moreover, the minimum-phase
filter Hmin(z) can be expressed as an all-pole system of the form (2.39). Therefore we can say that
LP analysis ideally represents the all-pole minumum-phase portion of the general system (2.38), and
therefore yelds at least a correct estimate of the magnitude spectrum.

Given an output signal s[n], Linear Prediction analysis provides a method for deteriming the
“best” estimate {ãi} (k = 1, . . . , p) for the coefficients {ai} of the filter (2.39). The method can
be interpreted and derived in many ways, here we propose the most straightforward one. Given
an estimate {ãi} of the filter coefficients, we define the linear prediction s̃[n] of the output s[n] as
s̃[n] =

∑p
k=1 ãks(n− k). In the Z-domain we can write

S̃(z) = P (z)S(z), with P (z) =
p∑

k=1

akz
−k, (2.40)

and we call the FIR filter P (z) a prediction filter. We then define the prediction error or residual
e[n] as the difference between the output s[n] and the linear prediction s̃[n]. In the Z-domain, the
prediction error e[n] is expressed as

E(z) = A(z)S(z), with A(z) = 1−
p∑

k=1

akz
−k. (2.41)

Comparison of Eqs. (2.39) and (2.41) shows that, if the speech signal obeys the model (2.39)
exactly, and if ãk = ak, then the residual e[n] coincides with the unknown input x[n] times the gain
factor g, and A(z) is the inverse filter of HLP (z). Therefore LP analysis provides an estimate of the
inverse system of (2.39):

e[n] = gx[n], A(z) = [HLP (z)]−1. (2.42)
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Figure 2.23: LP analysis: (a) the inverse filter A(z), and (b) the prediction error e[n] interpreted as
the unknown input gx[n].

This interpretation is illustrated in Fig. 2.23.
A(z) is also called a whitening filter, because it produces a residual eith a flat power spectrum.

Two kinds of residuals, both having a flat spectrum, can be identified: the pulse train and the white
noise. If LP is applied to speech signals, the pulse train represent the idealized vocal-fold excitation
for voiced speech, while white noise represents the idealized excitation for unvoiced speech.

The roots of A(z) (i.e., the poles of HLP (z)) are representative of the formant peak frequencies.
In other words, the angles of the roots, expressed in terms of analog frequencies can be used as an
estimate of the formant frequencies. The frequencies fi and bandwidths Bi of the poles are extracted
from complex conjugate roots ri of the corresponding polynomial as:

fi = Fs
arg(ri)

2π
, Bi = Fs

log(|ri|)
π

. (2.43)

We now describe the heart of LP analysis and derive the equations that determine the “best”
estimate {ãi} (k = 1, . . . , p). In this context “best” means best in a least-square sense: we seek the
{ãi}s that minimize the energy E{e} =

∑+∞
m=−∞ e2[m] of the residual, i.e. we set to zero the partial

derivatives of E{e} with respect to the ais:

0 =
∂E{e}

∂ai
= 2

+∞∑
m=−∞

e[m]
∂e[m]
∂ai

= −2
+∞∑

m=−∞

{[
s[m]−

p∑

k=1

aks(m− k)

]
s[m− i]

}
, (2.44)

for i = 1 . . . p. If one defines the temporal autocorrelation of the signal s[n] as the function rs[i] =∑+∞
m=−∞ s[m]s[m− i], then the above equation can be written as

p∑

k=1

akrs[i− k] = rs[i], for i = 1 . . . p. (2.45)

The system (2.45) is often referred to as the normal equations. Solving this system in the p unknowns
ai yelds the desired estimates ãi.

2.5.3.2 Short-time LP analysis

In many applications of interest, and in particular analysis and resynthesis of speech signals, the
coefficients ak are not constant but slowly time-varying. Therefore the description (2.39) is only valid
in a short-time sense, i.e. the aks can be assumed constant during an analysis frame. Therefore short-
time analysis has to be used, in which the coefficients and the residual are determined from windowed
sections, or frames, of the signal.
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There are various efficient methods to compute the filter coefficients, the most common ones being
the autocorrelation method, the covariance method, and the Burg algorithm. In this section we briefly
describe the autocorrelation method, that simply amounts to substitute the autocorrelation function rs

of Eq. (2.45) with its short-time approximation:

rs[i] ∼
N∑

m=1

u[m]u[m− i], where u[m] = s[m]w[m] (2.46)

is a windowed version of s[m] in the considered frame (w[m] is typically a Hamming window), and N
is the length of the frame. Then the system (2.45) is solved within each frame. An efficient solution is
provided by the so-called Levinson-Durbin recursion, an algorithm for solving the problem Ax = b,
with A Toepliz, symmetric, and positive definite, and b arbitrary. System (2.45) is an instance of this
general problem.

M-2.18
Write a function lp coeffs that computes the LP coefficients of a signal s[n] given the desired prediction
order p.

M-2.18 Solution

% Compute LP coeffs using the autocorrelation method
% s is the signal, p is the prediction order
% a are the computed LP coefficients, g is the gain (sqrt of residual variance)

function [a,g] = lpc_coeffs(s,p)

R=xcorr (s,p) ; % autocorrelation sequence R(k) with k=-p,..,p
R(1:p)=[]; % delete the first p samples
if norm(R) ˜= 0

[a,v] = levinson(R,p); % Levinson-Durbin recursion
% a=[1,-a1,-a2,...,-ap], v = variance of the residual

else
a=[1, zeros(1,p)];

end
g=sqrt(sum(a’.*R’)); % gain factor (= sqrt(v))

Note that we are using the native function levinson, that computes the filter coefficients (as well
as the variance of the residual) given the autocorrelation sequence and the prediction order.

Figure 2.24 shows an example of LP analysis and resynthesis of a single frame of a speech signal.
As shown in Fig. 2.24(a), the analyzed frame is a portion of voiced speech and s[n] is pseudo-periodic.
Correspondingly, the estimated source signal x[n] is a pulse train. Figure 2.24(b) shows the magnitude
responses of the target signal and the estimated transfer function gHLP (z). A typical feature of LP
spectral modeling can also be observed from this figure: the LP spectrum matches the signal spectrum
much more closely in the region of large signal energy (i.e. near the spectrum peaks) than near the
regions of low energy (spectrum valley).

M-2.19
Write an example script that analyzes and resynthesizes a frame of speech using the LP model (2.39).

M-2.19 Solution
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Figure 2.24: Example of LP analysis/synthesis, with prediction order p = 50; (a) target signal s[n]
(dotted line) and unit variance residual x[n] (solid line); (b) magnitude spectra |S(f)| (thin line) and
|gHLP (f)| (thick line).

fname = ’la.wav’; %file to be processed

%% analysis parameters
N=1024; %block length
Nfft=1024; % FFT length
p=28 ; %prediction order
pre=p; %filter order= no. of samples required before n0

n0=5000; %start index
n1=n0+N-1; %end index

[s, Fs] = wavread(fname);
s=s(n0-pre:n1,1)’; %’ row vector of left channel
win=hamming(N)’ ; %’ window for input block

[a,g]=lp_coeffs(s((1:N)+pre).*win, p); % compute LP coeffs

x=filter(a,g,s); % X(z)=A(z)/g * S(z), i.e. x[n] = e[n]/g
s_new=filter(g,a,x); %resynthesized signal

Note that we have used the function lp coeffs written in example M-2.18. The signals plotted in
Fig. 2.24 have been computed from this script.

When formant parameters are extrected on a frame-by-frame basis, a lot of discontinuities and
local estimation observation errors are found. Therefore, proper techniques have to be used in or-
der to determine smooth formant trajectories over analysis frames. We have already encountered a
conceptually similar problem in Sec. 2.4.3, when we have discussed a “sinusoid tracking” procedure.

M-2.20
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Figure 2.25: General scheme of a simple LP based codec.

Plot the formant frequencies as a function of the frame number, i.e., of time, in order to observe the time-
evolution of the vocal tract filter. To this purpose, segment a speech signal s[n] into M Hamming windowed
frames sm[n], with a block length N and a hop-size Sa = N/2. Then, for each frame: a) compute the LP
coefficients; b) find the formant frequencies using Eq. (2.43); c) discard roots whose magnitude is less than
0.8, as these are unlikely to be formants.

2.5.3.3 Linear Predictive Coding (LPC)

One of the most successful applications of LP analysis is in speech coding and synthesis, in particular
for mobile phone communication. Figure 2.25 depicts a synthetic block diagram of a simple encoder-
decoder system based on LP analysis. Speech is segmented in frames (typical frame lengths can
range from 10 to 20 ms). In this phase a pre-emphasis processing can also be applied: since the lower
formants contain more energy, they are preferentially modeled with respect to higher formants, and a
pre-emphasis filter can compensate for this by boosting the higher frequencies (when reconstructing
the signal the inverse filter should be used).

In its simplest formulation the encoder provides, for every frame, the coefficients ak of the predic-
tion filter, the gain g, a flag that indicates whether the frame corresponds to voiced or unvoiced speech,
and the pitch (only in the case of voiced speech). The decoder uses this information to re-synthesize
the speech signal. In the case of unvoiced speech , the excitation signal is simply white noise, while
in the case of voiced speech the excitation signal is a pulse train whose period is determined by the
encoded pitch information.

It is clear that most of the bits of the encoded signal are used for the ak parameters. Therefore
the degree of compression is strongly dependent on the order p of the LP analysis, which in turn has
a strong influence on the degree of smoothness of the estimated spectral envelope, and consequently
on the quality of the resynthesis (see fig 2.26). A commonly accepted operational rule for achieving
reasonable intelligibility of the resynthesized speech is

p =
{

Fs + 4 for voiced speech
Fs for unvoiced speech

(2.47)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�


Chapter 2. Sound modeling: signal-based approaches 2.47

0 1000 2000 3000 4000 5000 6000 7000 8000

−100

−80

−60

−40

−20

0

20

40

60

80

p=10

p=20

p=30

p=50

p=70

p=100

f (Hz)

m
ag

ni
tu

de
 (

dB
)

Figure 2.26: Example of LP spectra for increasing prediction orders p (the target signal is a frame of
voiced speech). For the sake of clarity each spectrum is plotted with a different offset.

LPC-10 is an example of a standard that basically implements the scheme of Fig. 2.25. This
standard uses an order p = 10 (hence the name), a sample rate Fs = 8 kHz (which is a common
choice in telephone speech applications since most of the energy in a speech signal is the range
[300, 3400 Hz), and a frame length of about 22.5 ms. With these values, intelligible speech can be
resinthesized.

Howerer LPC-10, and in general similar early codecs, produced speech with very poor quality
due to many artifacts: “buzzy” noise through parameter updates, jitter in the excitation signal, wide
formant bandwiths, and so on. More recent and commonly used codecs are able to provide natural
sounding speech at relatively low bit rates, thanks to an improved description of the excitation signal.
Instead of applying a simple two-state voiced/unvoiced model, these codecs estimate the excitation
signal through an analysis-by-synthesis approach: excitation waveforms are passed through the for-
mant filter, and the excitation which gives the minimum weighted error between the original and the
reconstructed speech is then chosen by the encoder and used to drive the synthesis filter at the de-
coder. It is this ‘closed-loop’ determination of the excitation which allows these codecs to produce
good quality speech at low bit rates, at the expense of a much higher complexity of the coding stage.

Whitin this family of analysis-by-synthesis codecs, many different techniques have been devel-
oped for the estimation of the excitation signal. Historically, the first one is the Multi-Pulse Excited
(MPE) codec. Later the Regular-Pulse Excited (RPE), and the Code-Excited Linear Predictive (CELP)
codecs were introduced. The “Global System for Mobile communications” (GSM), a digital mobile
radio system which is extensively used throughout Europe, and also in many other parts of the world,
makes use of a RPE codec.

2.5.3.4 LP based audio effects

There are many LP based audio effects which use a synthesis filter calculated from a speech input
signal. The LP filter represents the time-varying properties of the vocal tract by modelling its formant
frequencies. For a proper vocal tract model the prediction order should be slightly higher than the
sampling rate in kHz which is equivalent to modelling one resonance frequency each kHz since each
resonance frequency requires two conjugate complex poles. Zeros in the spectral model may be
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approximated by a small number of poles. Thus for a good model the prediction order should be a
small amount higher than the sampling rate in kHz.

Some effects are based on the LP of one sound. Thus the standard LP analysis/synthesis is used,
but modifications are applied either to the excitation or to the synthesis filter or to both of them.

The excitation for ideal signal recovery can be modelled as a signal consisting of pulses plus noise,
as used in the speech production model. For voiced sounds the periodicity of the pulses determine
the pitch of the sound while for unvoiced sounds the excitation is noise-like. The modelling of the
excitation requires an algorithm for voiced/unvoiced separation, which can crudely be a switch be-
tween pulses and random noise. Such decisions are not so easy to make automatically and a good
pitch detector should be used. But then all manipulations are possible.

The synthesis filter can be modified by taking a warped version of the initial filter which moves
the formants and will give a donald duck voice without altering its pitch. The time duration of a sound
can be modified by time-stretching the excitation and updating the synthesis filter at a different rate.
This preserves the formant structure. To modify the pitch of the resulting signal, for voiced parts the
pitch of the modelled excitation can be changed. This effect can also be combined with the frequency
warping to independently change the formants induced by the synthesis filter.

An frequently used effect is cross-ssyntehsis betwenn two sounds. It uses two different sounds
(x1[n] and x2[n]) and take the residual of x2[n] as the excitation to the LP filter of x1[n]. The cross-
synthesis gives good results if a speech signal is used to compute the synthesis filter which results
for example in the talking orchestra. For musical satisfactory results the two used sounds have to
be synchronized. Thus, for the case of mixing speech and music, the played instrument must fit to
the rhythm of the syllables of the speech. The performance is improved if either speech or music is
coming from a prerecorded source and the other sound is produced to match to the recording.

2.6 Non linear processing models

The transformations seen in sect. 2.5, since they are linear, cannot change the frequency of the com-
ponents that are present. Instead, when non linear transformations are used, frequencies can be even
drastically changed and new components are created. Thus, it is possible to vary substantially the
nature of the input sounds.

There are two main effects related to nonlinear transformations: spectrum enrichment and spec-
trum shift. The first effect is due to non linear distortion of the signal and allows for controlling the
brightness of a sound, while the second is due to its multiplication by a sinusoid and moves the spec-
trum to the vicinity of the carrier signal, altering the harmonic relationship between the modulating
signal lines. The possibility of shifting the spectrum is very intriguing in when applied to music.
From simple components, harmonic and inharmonic sounds can be created, and various harmonic
relations among the partials can be established. The first effect try to reproduce the nonlinearities and
saturations found on real systems e.g. analog amplifiers, electronic valves. The second one instead
derives from abstract mathematical properties of trigonometric functions as used in modulation theory
applied to music signal. Therefore, it inherits, in part, the analogic interpretation as used in electronic
music and is a new metaphor for computer musicians.

2.6.1 Memoryless non linear modelling

When a sinusoidal input sound x[n] = cos(2πf1Tn) passes through a linear system (filter) with
transfer function H(f), the output signal y[n] is still a sinusoid with the same frequency f1 and
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amplitude and phase depending on the transfer function, i.e. y[n] = |H(f1)| cos(2πf1Tn+∠H(f1)).
Instead if it passes though a non linear amplifier, the waveform is modified and various harmonics are
created. Normally we want to avoid distortions in amplifiers, but sometimes, as in amplifiers for
electric guitars, we may be interested in emulating the warm sound of valves. In general the output
value if a non linear system, depends on present and past values of the input and can be described by
the Volterra series expansion. This kind of system are used to compensate the non linear behaviour
found in real system, e.g. to linearize the loudspeakers. But is quite to complicate to use and to
control. Thus is not suitable for musicians. For this reason in music signal processing often non
linearities without memory, i.e. that depends only on the present input value and not on the past
values, are used. In this case the system is described by a non linear curve F (x), called distortion
function, and the output is given by

y[n] = F ( x[n] ) (2.48)

In analog domain it is difficult to have an amplifier with a precise and variable distortion characteristic.
In digital domain the distortion function can be previously computed and stored in a table. During
the processing, all that is necessary is to look up the desired value in the table, with an eventual
interpolation between adjacent points, as for the table lok up oscillator. In general the distortion
function produces infinite partials giving rise to annoying foldover. If F (x) is a polinomial or its
Taylor series expansion can be truncated, the bandwidth remains limitated. However, non linear
distortions in digital signals can easily surpass Fs/2. In this case or x[n] is suitably low pass filtered
before the non linear processing, or the non linear computation is done on a oversampled version of
the signal.

For example in order to simulate the overdrive effect of guitar amplifiers, we can use the function

F (x) =





2x for 0 ≤ x ≤ 1/3
3−(2−3x)2

3 for 1/3 ≤ x ≤ 2/3
1 for 2/3 ≤ x ≤ 1

that produces a symmetrical soft clipping of the input and realizes a smooth transition of the linear
behaviour for low level signal to a high saturation for high level sounds. Overdrive has a warm and
smooth sound. Asymmetric functions are used for tube simulations. More nonlinear functions are
employed for distortion simulation producing tones starting beyond tube warmth to buzz saw effects.

The same technique was used for sound synthesis. In this case we have a sinusoidal input and rich
harmonic sound is produced using a distortion function

F (x) = p(a · x + b)

where p(x) is a polinomial (or a rational) function, a and b are parameters that are used to scale and
shift the distortion function.

2.6.2 Synthesis by frequency modulation

This technique does not derive from models of sound signals or sound production; instead it is based
on an abstract mathematical description. The definition of “FM synthesis” denotes an entire family
of techniques in which the instantaneous frequency of a periodic signal (carrier) is itself a signal that
varies at sample rate (modulating).
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Figure 2.27: Sintesi per distorsione non lineare

M-2.21
We have already seen in section 2.2.1.4 how to compute the signal phase when the frequency is varying at
frame rate. We now face the problem of computing φ[n] when the frequency varies at audio rate. A way of
approximating φ[n] is through a first-order expansion:

φ[n] = φ[n− 1] +
dφ

dt
(n− 1) · 1

Fs
. (2.49)

Recalling equation (2.8), that relates phase and instantaneous frequency, we can approximate it as

dφ

dt
(n− 1) = 2π

»
f [n] + f [n− 1]

2

–
, (2.50)

where the frequency f(t) has been approximated as the average of f [n] at two consecutive instants. Using
the two equations above, φ[n] is finally written as

φ[n] = φ[n− 1] +
π

Fs
(f [n] + f [n− 1]). (2.51)

Write a function FMosc(t0,a,f,ph0) that realizes a FM sinusoidal oscillator (the parameters (t0,a,ph0)
are defined as in M-2.3, while f is now the sample-rate frequency vector).

M-2.21 Solution

function s=FMosc(t0,a,f,ph0)

global SpF; %samples per frame
global Fs; %sampling rate

nframes=length(a); %total number of frames

s=zeros(1,nframes*SpF); %signal vector (initialized to 0)

lastfreq=f(1);
lastphase=ph0;
for (i=1:nframes) %cycle on the frames

phase=zeros(1,SpF); %phase vector in a frame
for(k=1:SpF) %cycle through samples in a frame

phase(k)=lastphase+... %compute phase at sample rate
pi/Fs*(f((i-1)*SpF+k)+lastfreq);
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Figure 2.28: FM basic computing module

lastphase=phase(k);
lastfreq=f((i-1)*SpF+k);

end
s(((i-1)*SpF+1):i*SpF)=a(i).*cos(phase);

end

s=[zeros(1,round(t0*Fs+1)) s]; %add initial silence of t0 sec.

Compare this function with the sinosc function in M-2.3. The only difference is that in this case
the frequency is given at audio rate. Consequently the phase computation differs.

Although early realizations of FM synthesis were implemented in this fashion, in the next sections
we will follow an equivalent “phase-modulation” formulation. According to such formulation, the FM
oscillator is written as:

s(t) = sin[2πfct + φ(t)], (2.52)

where φ(t) is the input modulating signal and fc is the carrier frequency.
For sound synthesis, an amplitude envelope a(t) should be applied. Thus we define a basic FM

module that computes

y(t) = FMmodule [a(t), fc(t), φ(t)]) = a(t) · sin[2πfc(t)t + φ(t)] (2.53)

and is often represented as in fig. 2.28. The algorithm is given by

ϕ[n] = ϕ[n− 1] +
2π

Fs
fc[n] + φ[n] (2.54)

y[n] = a[n] · sin(ϕ[n]) (2.55)

where ϕ[n] is a state variable representing the instantaneous phase of the oscillator. Notice that when
the oscillator is implemented by a wavetable, the phases ϕ and φ vary in the interval 0 . . . (L− 1) and
the algorithm becomes

ϕL[n] = ϕL[n− 1] +
L

Fs
fc[n] + φL[n] (2.56)

y[n] = a[n] · tabsin(ϕL[n] mod L) (2.57)

2.6.2.1 Simple modulation

When the modulating signal φ(t) is a sinusoid with amplitude I (modulation index) and frequency
fm, i.e.

φ(t) = I sin(2πfmt)
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the simple modulation gives

s(t) = sin [2πfct + I sin(2πfmt)] (2.58)

=
∞∑

k=−∞
Jk(I) sin [2π(fc + kfm)t] (2.59)

where Jk(I) is the Bessel function of first kind and k-th order computed in I . From equation 2.59 we
can see that the resulting spectrum is composed of partials at frequencies |fc ± kfm| with amplitude
given by Jk(I). Notice that negative frequencies, being sine waves, are folded changing the sign.
Apparently there are infinite partials, so theorically the signal bandwidth is not limited. However it
is practically limited. In the Bessel function behaviour, only few low-order functions are significant
for small index values. When the index increases, the number and the order of significant function
increase too. Usually in the bandwidth definition of the FM signal, The number M of lateral spectral
lines (sidebands) greater than 1/100 of the nonmodulated signal is given by M(I) = I + 2.4 · I0.27,
that can be approximates as M(I) = 1.5∗I . In this way, varying I it is possible to directly control the
bandwidth around fc. The resulting effect is similar to a low pass filter with varying cut-off frequency.
Moreover the amplitude of the partials varies in a smooth way, maintaining constant the overall signal
energy.

For the synthesis we can use two basic FM modules in cascade

y(t) = FMmodule [ a(t), fc(t), FMmodule [I(t), fm(t), 0] ] (2.60)

2.6.2.2 Spectra |fc ± kfm|
Equation 2.59 shows a spectrum with lines at frequencies |fc ± kfm|, with k = 0, 1, . . .. This kind
of spectra are characterized by the ratio fc/fm, sometimes also called c/m ratio. When this ratio is
rational, it can be expressed as an irreducible fraction fc/fm = N1/N2 with N1 and N2 as integers
that are prime between themselves. In this case the resulting sound is periodic, since all the partials
are a multiple of a fundamental frequency f0 according to integer factors

f0 =
fc

N1
=

fm

N2
, (2.61)

and fc, fm coincides with the N1-th and N2-th harmonic:

fc = N1f0, fm = N2f0. (2.62)

If N2 = 1, all the harmonics are present and the sideband components with k < −N1, i.e. with
negative frequency, overlap some components with positive k. If N2 = 2, only odd harmonics are
present, and sidebands superimpose, after foldunder. coincide. If N2 = 3, the harmonics that are
multiple of 3 are missing. In general the N1/N2 ratio can be considered as an index of the harmonicity
of the spectrum. The sound is more harmonious intuitively, when the N1/N2 ratio is simple anf
formally when the N1 ·N2 is smaller.

The ratios can be grouped in families. All ratios of the type |fc ± kfm|/fm can produce the same
components that fc/fm produces. Only the partial coinciding with the carrier fc changes. Remember
that fc = N1f0. For example the ratios 2/3, 5/3, 1/3, 4/3, 7/3 and so on belong to the same family.
Only the harmonics that are multiple of 3 are missing (see N2 = 3) and the carrier is respectively the
second, fifth, first, fourth, seventh harmonic. The ratio that distinguish a family is defined in normal
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form when it is ≤ 1/2. In the previous example, it is 1/3. Each family is characterized by a ratio in
normal form. Similar spectra can be produced using ratios from the same family. We can notice that
the denominator N2 characterizes the spectrum.

When the fc/fm quotient is irrational, the resulting sound is aperiodic and hence inharmonic.
This possibility is used to easily create inharmonic sounds as bells. For example if fc/fm = 1/

√
2,

the sound contains partials with frequency fc ± k
√

2. No implied fundamental pitch is audible. A
similar behaviour can be obtained with complex ratios as fc/fm = 5/7.

Of particular interest is the case of an fc/fm ratio approximating a simple rational value, that is,

fc

fm
=

N1

N2
+ ε. (2.63)

Here the sound is no longer rigorously periodic. The fundamental frequency is still f0 = fm/N2 and
the harmonics are shifted from their exact value by ±εfm. Thus a small shift of the carrier frequency,
does not change the pitch, even if it slightly spread the partials and makes the sound more lively.
Notice that the same shift of fm changes the pitch.

M-2.22
Synthesize a frequency modulated sinusoid, in the case of sinusoidal modulation. Plot the signal spectrum for
increasing values of the modulation index.

M-2.22 Solution

%%% headers %%%
Fs=22050; % sampling frequency

%%% define controls %%%
fc=700; %carrier freq.
fm=100; %modulating freq.
I=2; %modulation index
t=0:(1/Fs):3; %time vector (in s)

%%% compute sound %%%
s=sin(2*pi*fc*t+I*sin(2*pi*fm*t));

Figure 2.6.2.2 shows the signal spectrum for 3 values of the modulation index. Note that as the
index increases the energy of the carrier frequency is progressively transferred to the lateral bands,
according to the predicted behaviour.

2.6.2.3 Compound modulation

There are many variation of the basic scheme. If the modulating signal is composed of N sinusoids,
the following relation hold:

s(t) = sin

[
2πfct +

N∑

i=1

Ii sin(2πfit)

]
(2.64)

=
∞∑

k=−∞

N∏

i=1

Jk(Ii) sin


2π(fc +

∑

ki

kifi)t


 (2.65)
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Figure 2.29: Spectrum of a simple modulation with fc = 700 Hz, fm = 100 Hz modulation index I
varying from 1 to 3

The generated sound will have componets of frequency |fc ± k1f1 ± · · · ± kNfN | with amplitudes
given by the product of N Bessel functions. A very complex spectrum results. If the relations among
the frequencies fi are simple, that is, if the sum of the modulating waves is periodic with frequency
fm, then the spectrum is of the type |fc ± kfm|. The frequency fm can be computed as the greatest
common divisor among the modulating frequencies fi (i = 1, . . . , N ). Otherwise the sonorities are
definitely inharmonic and particularly noisy for high indexes.

For example Schottstaedt uses two modulators to simulate the piano tones, setting f1 ' fc and
f2 ' 4fc. It results that we can compute fm ' fc and it results a picht f0 = fm ' fc. In this way
the small inharmonicity of the piano strings is simulated. Moreover modulation indexes decrease for
higher f0 values In this way the lower tones are richer in harmonics that higher ones.

M-2.23
Synthesize a frequency modulated sinusoid in the case of composite modulation. Plot the signal spectrum.

M-2.23 Solution

%%% headers %%%
%[...]

%%% define controls %%%
fc1=700; %carrier freq.
fm=700; %modulating freq. 1
fm=2800; %modulating freq. 2
I1=1; %modulation index 1
I2=1; %modulation index 2
t=0:(1/Fs):3;%time vector (in s)

%%% compute sound %%%
s=sin(2*pi*fc*t+... %sound signal

I1*sin(2*pi*fm1*t)+I2*sin(2*pi*fm2*t));

Figure 2.30 shows the spectrum of an FM oscillator with sinusoidal carrier and a composite mod-
ulation made of two sinusoids. Note that in the first case the simple ratio between fm1 and fm2

produces a spectrum of the form |fc ± kfm| (in which fm = 100 Hz, max. common divisor between
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Figure 2.30: Two examples of compound modulation made of two sinusoids.
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Figure 2.31: Quasi harmonic sounds produced by double modulators with f1 ' fc and f2 ' 4fc.

fm1 and fm2, is the fundamental). In the second case, the values fm1 = fc and fm2 = 4fc are cho-
sen in such a way that the fundamental coincides with fc and that upper partials are harmonic (since
fm1 = fc coincides with the max. common divisor between fm1 and fm2).

Figure 2.31 shows a double modulator with f1 ' fc and f2 ' 4fc, with increasing deviations
from the exact values multiple of fc.

2.6.2.4 Nested and feedback modulation

When a sinusoidal modulator is phase modulated by another sinusoids we have

φ(t) = I1sin(2πf1t + I2 sin(2πf2t))

and the resulating signal is thus defined by:

s(t) = sin[2πfct + I1 sin(2πf1t + I2 sin(2πf2t))]

=
∑

k

Jk(I1) sin[2π(fc + kf1)t + kI2 sin(2πf2t)]

=
∑

k

∑
n

Jk(I1) · Jn(kI2) sin[2π(fc + kf1 + nf2)t]
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The result can be interpreted as if each partial produced by the modulator f1 were modulated in his
turn by f2 with modulation index kI2. The spectral structure is similar to that produced by two
sinusoidal modulators, but with larger bandwidth.

As final variation of the basic technique let us consider the case that the past output value is used
as modulating signal. This is the so called feedback modulation. This method is described by

φ[n] = βs[n− 1]

s[n] = sin
[
2π

fc

Fs
n + φ[n]

]

where β is the feedback factor and acts as scale factor or feedback modulation index. For increasing
values of β the resulting signal is periodic of frequency fc and chages, in a continuous way, from a
sinusoid to a saw-tooth waveform. The resulting spectrum has a increasing number of harmonics and
it results

s(t) =
∑

k

2
kβ

Jk(kβ) sin(2πkfct)

2.6.2.5 Discussion

Basically FM synthesis is a versatile method for producing many types of sounds. As of yet, however,
no algorithm has been found for deriving the parameters of an FM model from the analysis of a
given sound, and no intuitive interpretation can be given to the parameter choice as this synthesis
technique does not evoke any previous musical experience of the performer. Its main qualities, i.e.
great timbral dynamics with just a few parameters to control and to low computational costs, are
progressively losing popularity when compared with other synthesis techniques which, though more
expensive, can be controlled in a more natural and intuitive fashion. The FM synthesis, however, still
preserves the attractiveness of its own peculiar timbral space and, though it is not particularly suitable
for the simulation of natural sounds, it offers a wide range of original synthetic sounds that are of
considerable interest for computer musicians.

2.6.3 Multiplicative synthesis

The simplest nonlinear transformation consists of the multiplication of two signals. In analog domain
it is often called ring modulation (RM) and it is quite difficult to produce in a precise way. Let x1(t)
e x2(t) be two input signals, the resulting signal is

s(t) = x1(t) · x2(t) (2.66)

and its spectrum Sf) is obtained from the convolution of the two input signal spectra, i.e. Y (f) =
X1(f) ∗X2(f).

Usually one of the two input signals is sinusoidal with frequency fc and is called carrier

c(t) = cos(2πfct + φc) (2.67)

and the other input is the transformed signal and is called modulating signal m(t) (or modulator).
Equation 2.66 can be rewritten as

s(t) = m(t) · c(t) = m(t) · cos(2πfct + φc) (2.68)
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and the resulting spectrum is

S(f) =
1
2

[
M(f − fc)ejφc + M(f + fc)e−jφc

]
(2.69)

The spectrum of s(t) is composed of two copies of the spectrum of m(t): a lower sideband (LSB),
reversed in frequency and an upper sideband(USB). The two sidebands are symmetric around fc.
When the bandwidth of m(t) is greater that fc, part of the LSB extends to the negative region of the
frequency axis, and this part is folded around the origin (foldunder). Notice that the phase has to be
taken into account while summing components of identical frequencies.

Let consider a sinusoidal carrier (2.67) and a periodic modulating signal of frequency fm with N
harmonics

m(t) =
N∑

k=1

bk cos(2πkfmt + φ)

We obtain

s(t) =
N∑

k=1

bk

2
[cos [2π(fc + kfm)t + φk]− cos [2π(fc − kfm)t + φk]] (2.70)

The multiplicative synthesis causes every harmonic spectral line kfm to be replaced by two spectral
lines, one in the LSB and the other in the USB, with frequency fc − kfm e fc + kfm. Notice that
the spectral lines of LSB with frequency kfm > fc, i.e. with fc/fm < k ≤ N , are folded around
zero. The resulting spectrum has components of frequency |fc ± kfm| with k = 1, . . . , N , where
the absolute value is used to take into account the possible foldunder. The acoustic and perceptual
properties of this kind of spectra will be discussed in sect. 2.6.2.2. If the carrier has many sinusoidal
components, we will obtain two sidebands around each component and the resulting audio effect is
less intuitive.

A variant of this method is amplitude modulation

s(t) = [1 + δ m(t)] · c(t) (2.71)

where δ is the amplitude modulation index, that control the amplitude of the sidebands. The spectrum
is as in eq. 2.69 plus the carrier spectral line

S(f) = C(f) +
δ

2

[
M(f − fc)ejφc + M(f + fc)e−jφc

]

2.7 Key concepts

Ã Sound models
Definition of sound model. Sound synthesis algorithms as instrument families. Control param-
eters and playability of a model. Approaches to sound model classification: structure (direct
generation, feed-forward models, feed-back models), or level of representation (signal models,
source models).

Ã Signal generators
Table look-up oscillators, resampling and sampling increment. Recursive generators of sinu-
soidal signals. Definition of control-rate, and oscillators controlled in amplitude/frequency; in
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particular, computation of the signal phase from the frame-rate frequency. Envelope genera-
tors and the ADSR amplitude envelope. Noise generators: definitions of white noise and pink
(1/f ) noise.
Sampling techniques: advantages and limitations. Sample processing: pitch shifting and loop-
ing.

Ã Granular synthesis
Definition of “grain”. Granulation of real signals, and the Overlap and Add (OLA) method.
Related problems (discontinuities, control). Synthetic grains: frequency modulated gaussian
grains, and visualization in the time-frequency plane. Synchronous and asyncronous granular
synthesis, time-frequency masks.

Ã Additive synthesis
Basic formulation (equation (2.23)) and its relation to Fourier analysis. The problem of con-
trol signals. Additive synthesis by analysis: extraction of frequency and amplitude envelopes
through STFT, sinusoid tracking procedure (figure 2.12.
“Sines-plus-noise” models: analysis and modeling of the stochastic component, resynthesis
and transformations. “Sines-plus-transients-plus-noise” models: DCT representation, analysis
and modeling of transients.

Ã Source-filter models
Basic block scheme (figure 2.18), and characteristics of the two blocks. Possible (physical) in-
terpretations of this structure. Notable source blocks: noise generators and pulse generators.
Notable filtering blocks: 2nd order resonators (equation (2.32)), center frequency and band-
width. Time-varying filters and related problems.

Ã LP voice modeling
Functioning of the vocal system, schematization as a source-filter system. Vocalized versus
non-vocalized sounds, and corresponding source signals. A simple subtractive model for the
voice (equation (2.35, glottis, vocal tract, and lip radiation blocks. LP analysis, equivalence
between extraction of the residual and reconstruction of the source signal.

Ã FM synthesis
Definition of carrier and modulating signals. Computation of the signal phase from the sample-
rate frequency. Equivalent formulations: frequency modulation and phase modulation. The
simplest case: sinusoidal carrier and sinusoidal modulation. Analysis of fc ± kfm spectrums
(equation 2.59), classification in terms of the ratio fc/fm. Other FM structures: composite mod-
ulation, composite carrier, cascade and feedback modulation.
Advantages (compact structure, low number of control parameters) and drawbacks (non-intuitive
control, lack of general model identification techniques) of FM.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�


Chapter 2. Sound modeling: signal-based approaches 2.59

2.8 Commented bibliography

Among the plethora of available sound synthesis languages, one of the most widely used (and one of
the most important historically) is Csound, developed by Barry Vercoe at the Massachusetts Institute
of Technology. Csound descends from the family of Music-N languages created by Max Mathews at
Bell Laboratories. See [Vercoe, 1993].

A second influential sound synthesis programming paradigm was developed starting from the
early 1980’s, mainly by Miller Puckette, and is today represented in three main software implemen-
tation: Max/MSP, jmax, and Pd. The “Max paradigm” (so named in honor of Max Mathews) is
described by Puckette [Puckette, 2002] as a way of combining pre-designed building blocks into
sound-processing “patches”, to be used in real-time settings. This includes a scheduling protocol for
both control- and audio-rate computations, modularization and component intercommunication, and
a graphical environment to represent and edit patches.

A discussion on recursive generators of sinusoidal signals is found e.g. in [Orfanidis, 1996].
Models for fractal signals are also partially discussed in [Orfanidis, 1996].

About granular synthesis: the most widely treated case is (asynchronous granular synthesis),
where simple grains are distributed irregularly. A classic introduction to the topic is [Roads, 1991].
In particular, figure 2.5 in this chapter is based on an analogous figure in [Roads, 1991]. In another
classic work, Truax [Truax, 1988] describe the granulation of recorded waveforms.

Additive synthesis was one of the first sound modeling techniques adopted in computer music and
has been extensively used in speech applications as well. The main ideas of the synthesis by analysis
techniques that we have reviewed date back to the work by McAulay and Quatieri [McAulay and
Quatieri, 1986]. In the same period, Smith and Serra started working on “sines-plus-noise” represen-
tations, usually termed SMS (Spectral Modeling Synthesis) by Serra. A very complete coverage of the
topic is provided in [Serra, 1997]. The extension of the additive approach to a “sines-plus-transients-
plus-noise” representation is more recent, and has been proposed by Verma and Meng [Verma and
Meng, 2000].

About source-filter models: a tutorial about filter design techniques, including normalization ap-
proaches that use L1, L2, and L∞ norms of the amplitude response, is [Dutilleux, 1998] Introductions
to LP analysis techniques and their applications in speech technology can be found in many textbook.
See e.g. [Rabiner and Schafer, 1978].

The first paper about applications of FM techniques to sound synthesis was [Chowning, 1973]. It
was later reprinted in [Roads and Strawn, 1985].
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