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4.1 Introduction

In the previous chapters, Sound modeling: signal based approaches, and Sound modeling: source based approaches, we
have studied models for sounds and sound sources. We now move a step further and examine the
effects of the medium in which sound propagates: one of the most frequently encountered effect is
reverberation. We will see the physical and perceptual background of reverberation, as well as some
of the most known reverberation algorithms.

Then we turn to the receiver, and specifically examine a human receiver with two ears. We will
study how and to what extent such a receiver can gain information about the incoming direction and
distance of an emitted sound, and we will review some 3-D sound processing techniques by which a
virtual sound source can be positioned in some point of the space around a listener.

WARNING: this chapter is at a draft stage.



4.2 Algorithms for Sound and Music Computing

4.2 Reverberation: physical and perceptual background

4.2.1 Basics of room acoustics

4.2.1.1 Sound waves in a closed space

We have analyzed in Chapter Sound modeling: source based approachesthe D’Alembert equation which de-
scribes sound propagation within a perfectly elastic medium. While the 1-D D’Alembert equation can
be used to model strings or acoustic tubes, the 3-D equation describes sound propagation in space:

∇2p(x, t) =
1
c2
∂2p

∂t2
(x, t), (4.1)

where x represents Euclidean coordinates in space and p is the acoustic pressure. The symbol
∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 stands for the 3-dimensional Laplacian operator. As opposed to mechan-
ical vibrations in a string or membrane, acoustic vibrations are longitudinal rather than transversal,
i.e. the air particles are displaced in the same direction of the wave propagation. The constant c has
the dimensions m/s of a velocity and indeed is sound velocity in air.

By adding suitable boundary conditions we can gain a description of waves of particle velocity
within a three-dimensional enclosure. Let us start with the simplest possible 3-D enclosure, a rect-
angular room with perfectly smooth and rigid walls. More precisely, we define the domain D of the
problem to be a parallelepiped with edges of length Lx, Ly, Lz:

D = {x = (x, y, z); 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz} (4.2)

The boundary conditions on the rigid walls of this enclosure require the air velocity perpendicular to
each wall to be zero at the wall. Then one can provide analytically a solution of Eq. (4.1) in terms of
stationary modes:

p(x, t) = q(t)f(x) (4.3)

If we are working with acoustic pressure p then the conditions on the boundary B of the paral-
lelepiped are ∂p/∂x(B) = 0. Then

fn,m,l(x) =
√

2
Lx

√
2
Ly

√
2
Lz

cos
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k(x)

n x
)

cos
(
k(y)

m y
)

cos
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k

(z)
l z

)
(4.4)

where we can define the wavenumbers kn,m,l as

kn,m,l =
(
k(x)

n , k(y)
m , k

(z)
l

)
with k(x)

n =
nπ

Lx
, k(y)

m =
mπ

Ly
, k

(z)
l =

lπ

Lz
. (4.5)

Analogously to the 1-D case discussed for modal synthesis in Chapter Sound modeling: source based approaches,
these functions are a orthonormal basis for the space L2(D).

Then the temporal part is given by

qn,m,l(t) = cos (ωn,m,lt+ φn,m,l) , with ωn,m,l = cπ

√(
n

Lx

)2

+
(
m

Ly

)2

+
(
l

Lz

)2

(4.6)

The frequencies ωn,m,l clearly are a non-harmonic series. However each of the three spatial directions
(where only one of the three indexes (n,m, l) is varying) is associated to a harmonic subseries.
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Figure 4.1: Plane wave loops (1, 1, 0) and (3, 2, 0), as seen on the (x, y) plane.

Analogously to the 1-D case a mode (n,m, l) has nodal surfaces, which corresponds to the regions
where fn,m,l(x) = 0. It is easy to see that these are planes parallel to the walls of the rectangular
room.

A normal mode of the form (4.3) can be written as a superposition of waves traveling in different
directions. This can be easily seen through multiple application of Werner formulas1, which yelds

pn,m,l =
√

2
Lx

√
2
Ly

√
2
Lz

∑
cos

[
k±±±n,m,l · x± (ωn,m,lt+ φn,m,l)

]
, (4.7)

where we have defined k±±±n,m,l = (±k(x)
n ,±k(y)

m ,±k(z)
l ), and where the summation has to be extended

over the sixteen possible combinations of signs in the argument. This means that for each mode there
are eight directions of wave propagation, each one associated to one k±±±n,m,l vector.

Figure 4.1 visualizes the wavefronts for the modes (1, 1, 0) and (3, 2, 0): these result in plane
wave loops having constant length.

We now want to derive an estimate of the modal density, i.e. the average density of eigenfrequen-
cies on the frequency axis. From Eq. (4.5) one observes that the allowed values for the wave numbers
k are distributed on a regular point lattice in the 3-D space depicted in Fig. 4.2(a). The number Nf of
eigenfrequencies in the frequency range from 0 to f equals the number of lattice points contained in
the sphere octant of radius k depicted in Fig. 4.2(b). In other words, Nf = Vf/V0, where Vf is the
volume of the sphere octant of radius k and V0 is the average volume per lattice point. The former is
one octave of the sphere volume, Vf = πk3/6, while the latter can be estimated as the volume of the
cube depicted in Fig. 4.2(b), whose edges have lengths π/Lx, π/Ly, π/Lz , respectively. Therefore

12 cos α cos β = cos(α− β) + cos(α + β).
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Figure 4.2: Estimation of modal density; (a) distribution of wavenumbers on a regular point lattice,
(b) estimation of the amount of wavenumbers contained in a spherical octant of radius k.

V0 = π3/V , where V = LxLyLz is the room volume. One finally obtains

Nf =
πk3/6
π3/V

=
4π
3
V

(
f

c

)3

. (4.8)

. The modal density is estimated as the derivative of Nf with respect to frequency:

Df (f) =
dNf

df
=

4πV
c3

f2 (4.9)

4.2.1.2 Sound sources and room impulse responses

More realistic situation: within the parallelepiped we have a source, moreover we consider complex,
non-ideal, boundary conditions (wall absorption)

We want to find the solution of the wave equation in the parallelepiped, in the presence of a sound
source: the distribution in space of the source is described by a continuous density function f̄(x),
while the time-domain signal emitted by the source is described by a function q̄(t): this means that
q̄(t) · f̄(x)dV is the volume velocity of a volume element dV at time t.

Then

∇2p(x, t) =
1
c2
∂2p

∂t2
(x, t)− ρairf̄(x)

dq̄

dt
(t). (4.10)

Since the fn,m,l of Eq. (4.4) are a basis for L2(D), we can project both the source density function f̄
and the solution p of Eq. (4.10) on this basis:

f̄(x) =
∑

n,m,l

F̄n,m,lfn,m,l(x), P (x, s) =
∑

n,m,l

Pn,m,l(s)fn,m,l(x). (4.11)
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Note that in the second of the above equations we have implicitly assumed to work in the Laplace
domain instead of the time domain. If we can find the unknown coefficients Pn,m,l(s) as functions of
the known coefficients F̄n,m,l, then we have the solution P (x, s) or equivalently p(x, t). If one inserts
both series into Eq. (4.10) the result is

Pn,m,l(s) = sρairc
2Q(s)

F̄n,m,l

s2 + c2k2
n,m,l

. (4.12)

Now we consider the special case of a point source located at a certain point x0 of the room and
emitting an impulsive sound signal. Under this assumption one has f̄(x = δ(x − x0), where the
function δ(·) is the Dirac delta. This implies that the coefficients F̄n,m,l are in this case F̄n,m,l =
fn,m,l(x0). Moreover, if the sound source is emitting an impulse q̄(t) = δ(t), then the corresponding
spectrum is Q(s) = 1. If one substitutes the coefficients (4.12) into the second of Eqs. (4.11), the
result is

P (x, s) := Hx0,x(s) = sρairc
2

∑

n,m,l

fn,m,l(x)fn,m,l(x0)
s2 + c2k2

n,m,l

. (4.13)

This is the acoustic pressure generated in x by a point source located at x0 and emitting an impulse.
If we take the inverse Laplace transform, hx0,x(t) = L−1{Hx0,x}(t), this is what we call a Room
Impulse Response (RIR), measured at point x after an impulse emitted in x0.

Wall absorption: the normal modes have now complex eigenvalues kn,m,l:

kn,m,l = ωn,m,l/c+ jδn,m,l/c, δn,m,l ¿ ωn,m,l. (4.14)

Then Eq. (4.13) is telling us that the RIR is a superposition of numerous second-order resonant sys-
tems, each with center frequency very close to ωn,m,l and damping constant very close to δn,m,l.

hx0,x(t) =

{
0 t < 0∑

n,m,lAn,m,l(x0,x)e−δ′n,m,lt cos(ω′n,m,lt+ φn,m,l) t ≥ 0
(4.15)

The function hx0,x(t) completely describes the room response for a source in x0 and a receiver in x:
if the emitted sound is not an impulse but a generic signal q̄(t), then the response will be –as usual–
the convolution of the signal with the impulse response: s(t) = [q̄ ∗ hx0,x](t).

Now in normal rooms damping constants typically lie between 1 and 20 Hz: this justifies the
assumption of very small δ coefficients in Eq. (4.14), and moreover tells that hal-widths of these
resonant systems are of the order of 1 Hz. If we compare this finding to the modal density estimate
given in Eq. (4.9), we see that the average spacing of eigenfrequecies is smaller by several orders of
magnitude than half-widths. Therefore each single resonant peak always covers many others and it is
practically impossible to excite a single room resonance e.g. with a sinusoidal signal.

4.2.1.3 Reverberation time

From Eq. (4.15) we see that room reverberation add a decaying tail to a source signal. One of the most
important parameters derived from this equation is the reverberation time Tr, i.e. the time required
for the sound pressure to decay 60 dB. Clearly Tr is related to the absorption coefficients δn,m,l. An
approximate description of Tr can be derived as follows.

Given a source signal q̄(t), the resulting room response s(t) is

s(t) = [q̄∗hx0,x](t) = . . . =
∑

n,m,l

cn,m,le
−δ′n,m,lt cos(ω′n,m,lt+ψn,m,l) =

∑

n,m,l

cn,m,lsn,m,l(t) (4.16)
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Figure 4.3: Impulse response of a very reverberant environment (a cathedral).

where the cn,m,l’s and the ψn,m,l’s will vary depending on the signal q̄, and where we have introduced
the notation sn,m,l(t) = e−δ′n,m,lt cos(ω′n,m,lt + ψn,m,l for brevity. An expression proportional to the
energy density is obtained by squaring s(t):

w(t) = [s(t)]2 =
∑

n,m,l

∑

n′,m′,l′
sn,m,l(t)sn′,m′,l′(t). (4.17)

A simpler expression can be found by averaging w(t) over time and exploiting the circumstance that
the exponential terms vary slowly (as the δ’s are small). By averaging the cosine products only,
the products with (n,m, l) 6= (n′,m′, l′) cancel on the average, and the products with (n,m, l) =
(n′,m′, l′) give a value 1/2. If one makes the further assumption of nearly uniform damping, i.e.
δn,m,l ∼ δ0, then we obtain the following result:

〈w(t)〉 =
∑

n,m,l

c2n,m,le
−2δn,m,lt ∼ e−2δ0t

∑

n,m,l

c2n,m,l. (4.18)

This equation tells that for uniform damping the energy of the reverberation tail decays exponentially.
In particular the reverberation time Tr is in this case derived as

− 60 = 10 log
(
e−2δ0Tr

)
, ⇒ Tr =

6.91
δ0

. (4.19)

In general one cannot assume uniform damping, and as a consequence Tr is a function of fre-
quency. Fortunately, however, the reverberation level falls in many practical cases in a fairly expo-
nential fashion and therefore an overall reverberation time Tr can be defined and measured. We will
return on this concept in Section 4.2.2, where we will examine typical reverberation time for various
environments.

M-4.1
Write a function that computes the reverberation time Tr given a signal representing a RIR.
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Figure 4.4: Acoustic rays from a source to a receiver (a) in a vertical room section and (b) in a
horizontal room section. Solid lines represent the direct sound, dashed lines represent first-order
reflections, dotted lines represent second-order reflections.

Figure 4.3 shows an impulse response measured in a very reverberant environment, precisely a
chatedral. Note that, apart from the initial spikes, the overall decay is fairly exponential. One could
measure that the reverberation time is in this case Tr ∼ 3.82 s, which is a quite large value as one
would expect in a cathedral.

4.2.1.4 Geometrical room acoustics

Few results of practical use are obtained from manipulation of the D’Alembert equation as in the
previous sections, especially when we consider rooms of arbitrary shapes instead of parallelepipeds:
in that case even the computation of a single normal mode can become extremely difficult

An alternative description of the acoustical properties of a room can be employed if we consider
extremely high acoustic frequencies. In this limit situation, the concept of sound waves can be re-
placed by the concept of acoustic rays. By sound ray, we mean a vanishingly small portion of a
spherical wave emitted by a point source in a room. This ray has well-defined direction and velocity
of propagation, and conveys a total energy which remains constant (provided that it propagates within
an ideal medium with no losses).

This simplified description based on acoustic rays takes the name of geometrical acoustics and has
strict similarities with geometrical optics, although typical wavelengths and propagation velocities are
very different in the two cases. Note that the assumption of extremely high frequencies is practically
met in many cases of interest in room acoustics: a frequency of 1 kHz corresponds to a wavelength of
approximately 34 cm, which is one or two orders of magnitude smaller than typical linear dimensions
of rooms, as well as typical distances traveled by sound waves in a room.

Similarly to an optic ray, an acoustic ray that strikes a plane surface is reflected according to the
following principles: (a) the reflected ray remains in the plane identified by the incident ray and the
normal to the surface, and (b) the angles of the incident and reflected rays with the normal are equal.
Figure 4.4 shows a room with a non-trivial shape (something like an auditorium), in which we have
positioned a sound source and a receiver. There are many paths from the source to the receiver, that
can be characterized according to the number of reflections involved. The single source-receiver path
with 0 reflections is the direct sound, and is followed by a small number of first-order reflections that
involve one reflection on the room boundary, a larger number of second-order reflections that involve
two reflections on the boundary, and so on. In Fig. 4.4 we have drawn two examples of first- and
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Figure 4.5: Schematical room response to an ideal impulse: the time axis is relative to the direct
sound, which reaches the receiver at t = 0.

second-order reflections.
We now want to gain a qualitative description of a RIR using geometrical room acoustics. Assume

that an ideal impulse shot from a point source reaches a receiver at time t = 0. Each reflected ray
will then arrive with a certain time delay and also with a certain attenuation, which depends on the
path length (absorption in the medium) and on the number of reflections (wall asbsorption). The first
reflections are strong and sporadic, but the temporal density of reflections increases rapidly while the
average reflection energy decays accordingly. A schematical reflection diagram is given in Fig. 4.5.
Except for the first few isolated reflections, the weaker and densed reflections arriving at later times
merge into what is perceived as reverberation. This description of the reverberation of a room as
the temporal sum of reflected rays is complementary to the view of reverberation as the sum of free
decaying normal modes.

We now want to derive an estimate of the temporal structure of reflections. To this end we employ
the usual prototype room, i.e. the parallelepiped, and we introduce the concept of image sources.

If the reflecting surface is a plane the reflection of a sound ray can be simulated by constructing
an image source. This process is illustrated in Fig. 4.6(a). Given a sound source A and a receiver B,
the path of a reflected ray r from the wall to B is the same path of the direct ray r′ emitted by the
image source A′. The process can be iterated in order to take into account higher-order reflections,
and results in the construction of a grid of image sources that replace the wall altogether.

Now suppose that at time t = 0 all the sources emit generate an impulse. During the time in-
terval from t to t + dt, the impulses that reach a receiver located in the center of the room are those
emitted by image sources whose distance from the receiver lies between cdt and c(t + dt). These
sources are located within the spherical shell with radius ct, thickness cdt, and volume 4πc3t2dt il-
lustrated in Fig. 4.6(b). Therefore the volume V of an image room is contained in the spherical shell
is 4πc3t2dt/V times, and if t is large enough (i.e. the reflection density is high enough) we can as-
sume that this number coincides with the number dNr of image sources contained in the shell. In
conclusion, the temporal density of reflections arriving at time t is

Dr(t) =
dNr

dt
(t) = 4π

c3t2

V
. (4.20)

One could show that this result applies not only to a parallelepiped but to rooms of arbitrary shapes.
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Figure 4.6: Estimation of temporal reflection density through the image source method; (a) construc-
tion of two first-order and two second-order reflections, and (b) estimation of acoustic rays reaching
a receiver within the time interval (t, t+ dt).

4.2.2 Perceptual reverberation parameters

In the previous section we have analyzed reverberation from a purely physical point of view. However
in many applications it is important to correlate physical measurements to subjective judgements
of acoustical quality, obtained from psychophysical experimentation. This is especially true in the
domain of concert hall acoustics, where researchers have tried to isolate the objective parameters that
are most relevant in determining the perception of acoustical quality of a hall. Subjective attributes are
typically derived from perceptual experiments with musicians and listeners, who answer to detailed
interviews, and subsequent comparison of the results with measured objective parameters.

In this section we enter, for the time in this book, the domain of psychoacoustics, and review
some of the subjective attributes and objective measures most commonly used in establishing the
acoustical quality of reverberant environments. The literature on this topic is vast and the terminology
is not always fully consistent, thus we try to cluster together similar or equivalent concepts wherever
possible.

Clearly the perceptual attributes of reverberation are of great importance also for the design of
reverberation algorithms. The ultimate goal is to determine an orthogonal set of subjective attributes,
using e.g. multidimensional scaling techniques, and then providing a reverberation algorithm with a
set of knobs each of which controls a different perceptual attribute. A fundamental problem with this
kind of approach is that the number of perceptual dimensions is not known a priori, and moreover it
is hard to assign assign relevance to dimensions that are added.
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Figure 4.7: Waterfall representation of the impulse response of Fig. 4.3.

4.2.2.1 Reverberance

We have introduced the concept of reverberation time Tr in Sec. 4.2.1: it is the time required for the
sound pressure to decay 60 dB.2 The reverberation time is one of the most important parameters for
the perception of the reverberance of an environment, i.e. the property of the environment of adding
fullness and loudness to a dry sound, and of giving the listener a sense of being enveloped by the
sound. Some researchers and musicians use the term liveness to refer to a similar concept, and by
contrast call an environment that is not reverberant dry, or dead.

The time Tr defined in Eq. (4.19) is the overall decay time of a RIR, estimated assuming uniform
damping. However we have already mentioned that the reverberation time is in general a function of
frequency, because absorptive properties of materials vary with frequency and specifically absorption
is typically higher at higher frequencies. A confirmation of this is given in Figure 4.7, which shows
a waterfall representation of a RIR: one can see that each frequency bin decays with a different rate.
This dependence of Tr on frequency is also important perceptually. In general the mid-frequency
reverberation time can be considered to be the best measure of the overall reverberant characteristics
of a room.

Clearly the audibility of reverberation depends greatly on the sound source. If one thinks at music
or speech, the early portion of the reverberant decay contributes more to the perception of reverberance
than does late reverberation, because it is audible during pauses and gaps between notes, syllables,
and words. For this reason an early decay time (EDT) parameter is also used as a complementary
measure of reverberance. The EDT is defined as the time required for the sound pressure to decay
from 0 to −10 dB, multiplied by a factor of 6. The multiplicative factor merely serves to facilitate
comparison with Tr.

2An alternative and more precise definition commonly used in the domain of concert hall acoustics is the following: Tr

is the time required for the sound pressure to decay from −5 to −35 dB, multiplied by a factor of 2.
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One might wonder what is the “optimal” reverberation time for a reverberant environment. The
answer to this question depends first of all on the source signal: in the case of speech a relatively
short Tr is generally preferred, while longer values are suitable for music. This can be expected, since
when listening to speech we generally want to understand what the speaker is saying and thus we
need to perceive each element of the sound signal. This is not the case for music, on the contrary
reverberation can make a musical signal more pleasant by masking small imperfections and blending
musical sounds. Given this remark, it is not surprising that reverberation times in (good) concert halls
are usually in the range 1.8 to 2.2 s, while in opera houses values are usually in the range 0.9 to 1.5 s
because the listener has to be able to enjoy the music as well as to understand the text. Note however
that reverberation times of renowned opera theaters are more scattered than those of equally renowned
concert halls.

4.2.2.2 Early reflections and spatial impression

The subjective attribute of spatial impression refers to the sense of a listener of being in close com-
munication with the sound source and sorrounded by the sound. Other terms that are often found in
the literature and refer to a similar concept are spaciousness, envelopment, ambience, apparent source
width. Subjective judgements about this property appear to be strongly correlated to the structure of
the early reflections of the environment, with two elements being of pecific importance.

A first commonly accepted result is that the degree of spatial impression depends on the difference
in arrival times between the direct sound and the first reflection, which is called initial time-delay gap
and is often indicated as tI . A lack of early reflections (i.e. a long tI ) has the effect of making the
sound source perceived as remote and disconnected from the listener, while a short tI provides the
desired sense of envelopment. Some studies suggest that a parameter tI defined as above becomes
useless if the first reflection is much weaker than the following ones.

A second physical property that correlates to spatial impression is the fraction of lateral energy
to the total energy within the early reverberation: a significant amount of lateral early reflections, i.e.
reflections coming from the sidewalls, provides the listener with the impression of being enveloped
by the sound. A rough quantitative estimate of this property is the so-called lateral energy fraction
LF . defined as

LFt =

∫ t
0 h

2
lat(τ)dτ∫ t

0 h
2(τ)dτ

, (4.21)

where h(t) is the room impulse response measured with an omnidirectional microphone while hlat(t)
is the one measured with a dipole microphone (with null axis facing forward this captures lateral
energy in the ±20◦ ± 90◦ range). A typical integration time is t = 80 ms.

The LFt measure has been superceded by another parameter, called the early interaural cross-
correlation coefficient IACCE . Let us first define the interaural cross-correlation function IACF (t)
as

IACF (t) =

∫ t2
t1
hL(τ)hR(τ + t)dτ√∫ t2

t1
hL(τ)dτ

∫ t2
t1
hR(τ)dτ

, (4.22)

where hL,R(t) are the impulse responses measured at the entrance of the left and right ear canals,
respectively, with the listener facing the sound source. Such a measurement can be done using e.g.
a so-called “dummy-head” (such as those described later on in Sec. 4.6.1). Therefore the IACF (t)
function is a binaural attribute of reverberation, unlike all of the parameters previously examined in
this section which are monoural attributes.
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4.12 Algorithms for Sound and Music Computing

The interaural cross-correlation coefficient IACC is the maximum of this function over a range
±1 ms:

IACC = max
t∈(−1,1)·10−3

IACF (t). (4.23)

In particular, if the integration times t1 = 0, t2 = 80 ms are used then the above equations provide the
early interaural cross-correlation coefficient IACCE . This is a measure of the similarity of the sound
signals arriving at the two ears during the first 80 ms. If the sounds are equal then IACCE = 1, while
if they are two independent random signals then IACCE = 0. The IACCE parameter is a measure
of spatial impression because is scales with the fraction of lateral early reflections arriving at the ears:
as the number of reflections from outside the median plane increases, the IACF (t) function broadens
and consequently IACCE takes smaller values.

In concert halls initial time-delay gap tI and the amount of lateral energy are correlated parame-
ters. Measures of tI in real concert halls show a high correlation of this parameter with the hall width:
in a narrow hall it can be shorter than 30 ms, while in a wide hall it can be longer than 50 ms. On
the other hand, the hall width is clearly correlated with the fraction of lateral energy arriving at the
listener, which will increase as the hall narrows. It is a common finding in the literature of concert
hall acoustics that subjective rankings of the acoustic quality of halls scale with their width.

As a final remark, it has to be noted that the subjective attribute of spatial impression is largely
independent of the reverberation time: halls with similar Tr values but different tI and IACCE values
will be perceived to be very different from each other. This finding support the commonly accepted
assumption that early reflections and late reverberation play rather separate roles in the perception of
reverberant properties of an environment.

4.2.2.3 Clarity

The subjective attribute of clarity refers to the “transparency” of a reverberant environment. If the
source signal is music, then clarity is associated to the ability of a listener to perceive musical details,
while if the source signal is speech then clarity correlates to speech intelligibility. An alternative term
which is sometimes found in the literature is that of distinctness.

Single reflections of a reverberant environment are not perceived as individual events, except for
exceptional (and generally undesirable) cases. Roughly speaking, early reflections have the effect of
making the sound source appear more extended and to increase the apparent loudness of the direct
sound. On the contrary, reflections arriving with longer delays are considered to be detrimental for the
transmission of information, since they cause different portions of the direct sound signal to merge.

A quantitative measure of clarity is the clarity index, or ealy-to-reverberant energy ratio Ct:

Ct = 10 log10

( ∫ t
0 h

2(τ)dτ∫∞
t h2(τ)dτ

)
, (4.24)

measured in dB. The integration time t is ideally the time instant where late reverberation starts, and
is typically selected to be t = 80 ms. Thus Ct is a measure of early to late energy ratio.

It is sometimes reccomended that Ct|t=0.008 for concert halls takes values in the range of −2 to
+1 dB. Note however that this parameter is not an independent measurable quality, since it correlates
to the initial time-delay gap tI and also on the early decay time EDT . Therefore, subjectively “good”
values of the clarity index will also depend on tI and EDT values. In other words, the subjective
attribute of clarity is not orthogonal to reverberance and spaciousness.

Note also that Ct is strongly dependent on the distance between source and listener: the direct
sound falls off 6 dBs for each distance doubling, whereas the reverberant level remains approximately
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Chapter 4. Sound in space 4.13

constant throughout the room. For this reason, the ratio of direct to reverberated energy is one of the
most important cues for the perception of distance, as we will see in Sec. 4.5.

A second objective parameter that relates to the subjective attribute of clarity is the center time ts,
defined as the center of gravity time of the sound field:

ts =

∫∞
0 τ · h2(τ)dτ∫∞

0 h2(τ)dτ
. (4.25)

Obviously a single reflection with a given strength will contribute the more to ts the longer it is delayed
with respect to the direct sound. Therefore high clarity is associated to low values of ts. It has to be
noted however that many studies report a high correlation of ts with Ct, in the range 50 < t < 80 ms.
Therefore this parameter does not add new information with respect to the clarity index.

4.2.2.4 Other perceptually relevant parameters

The physical concept of diffusion, which we have examined previously, has a direct perceptual coun-
terpart. If one listen to music in a rectangular hall with perfectly flat sidewalls, the sound takes on an
undesirable harsh character. In order to produce the effect of a mellower sound and to increase spa-
ciousness during late reverberation, diffusion should be physically realized at fine and large scales. A
commonly accepted measure of diffusion is the late interaural cross-correlation coefficient IACCL.
This is defined from Eqs. (4.22, 4.23) using integration times t1 = 80 ms and t2 = 3 s, i.e. by estimat-
ing the IACF function in the late reverberation portion. Similarly to the IACCE parameter, IACCL

is a binaural attribute of reverberation. It provides a measure of the correlation of the signals at the
two ears during late reverberation.

Loudness (or strength) is often mentioned as a relevant subjective attribute. Of course the overall
loudness depends on the power output of the sound source and not only on the reverberation of the
environment. Nonetheless it is useful to introduce a measure of loudness of the environment, which is
normalized with respect to the the source power. Such a measure can be used e.g. as a complementary
parameter to the clarity index (see Eq. (4.24) above), since high clarity is of no use if the sound cannot
be heard at proper loudness.

A normalized measure of the environment loudness is achieved by the following quantity, some-
times called strength index G:

G = 10 log10

(∫∞
0 h2(τ)dτ∫∞
0 h2

0(τ)dτ

)
, (4.26)

where h(t) is as usual the room impulse response and h0(t) is the response to the same non-directional
impulse measured in an anechoic environment at a distance of 10 m. Note however that subjective
loudness increases with reverberation time and is affected by the structure of early reflections. There-
fore G is not an independent correlate of loudness.

Finally, the most elusive subjective attributes are those related to timbral qualities of a reverberant
environment. Roughly speaking, many of the attributes in this family are related to the frequency-
dependent shape of the reverberation time. One such attribute is warmth, or sometimes timbre, which
characterizes the musicians’ judjement of “richness in bass”. This attribute correlates with the vari-
ation of the reverberation time in the low- and mid-frequency range: as an example, a quantitative
measure of warmth can be the ratio of the average Tr in the range 250 − 500 Hz to that in the range
500 − 1000 Hz, or arternatively the slope of a linear interpolation of the EDT function in the range
125 − 2000 Hz. Other timbre-related attributes are heaviness and liveness, which roughly relate to
low-frequency and high-frequency variations of the reverberation time, respectively.
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4.14 Algorithms for Sound and Music Computing

A compact representation of the perceptually relevant features of a room impulse response is
the so-called Energy Decay Relief (EDR) function, which is a time-frequency representation of the
reverberation energy. Let us first define a new function called, Energy Decay Curve (EDC), as follows:

EDC(t) =
∫ ∞

t
h2(τ)dτ, (4.27)

where h(t), is a RIR. This integral is often called the Schroeder integral. The valueEDC(t) provides
a measure of the reverberation energy that is left in the RIR at time t. Using this function we can
introduce the Energy Decay Relief function as follows: given a RIR h(t), this is bandpass filtered into
a numberN of frequency bands, and the Schroeder integral of each of the bandpassed responses hi(t)
(i = 11ldotsN ) is computed. The resulting function EDR(t, ω) can be displayed as a surface in the
3-D space. The section EDR(0, ω) provides the power gain as a function of frequency. A section
EDR(t, ω0) shows the energy decay curve for a given frequency ω0.

M-4.2
Write a function that computes the EDR given a RIR.

The time-frequency EDR function can be parametrized through two functions of frequency only.
The first one is Tr(ω), the frequency-dependent reverberation time. The second one is the frequency
response envelope, G(ω). This latter function is constructed by backward interpolating up to t = 0
the exponential decay time. For an ideally diffuse reverberation that decays exponentially, one has the
equality G(ω) = EDR(0, ω) and G coincides with the power gain of the room. In non-ideal cases,
G(ω) only represent a “conceptual” EDR(0, ω) of the late reverberation, and the parametrization
through Tr(ω) and G(ω) is only valid for the late portion of EDR(t, ω).

The EDR function is sometimes regarded as a perceptual “signature” of a room impulse responses,
meaning with this that a large number of objective measures of independent perceptual factors can be
categorized as energy ratios or energy decay slopes computed within different time-frequency regions
of the EDR function.

4.3 Algorithms for synthetic reverberation: the perceptual approach

Even if we have enough computer power to compute convolutions by long impulse responses in real
time, there are still serious reasons to prefer reverberation algorithms based on feedback delay net-
works in many practical contexts. It is not easy to modify a room impulse response to reflect some of
the room attributes. If the impulse response has been synthesized with some spatial rendering algo-
rithm, such as ray tracing, these manipulations can be operated at the level of room description, and
the coefficients of the room impulse response transmitted to the real-time convolver. However, contin-
uous variations of the room impulse response are rendered more easily using a model of reverberation
operating on a sample-by-sample basis. In the second half of the twentieth century, several engineers
and acousticians tried to invent electronic devices capable of simulating the long-term effects of sound
propagation in enclosures.

Sticking to the terminology introduced in the previous chapters, we can say that these are signal-
based models, since they aim at reproducing realistic impulse response signals, with no attempt to
model the underlying physical phenomena. Often used terminology in this context: perceptual ap-
proach (add “ambience” in a dry recording) vs. physical approach (faithfully simulate the acoustics
of a room or hall).

In the remainder of this section we address the perceptual approach.
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Figure 4.8: Block scheme of a reverberator based on comb filters (the Hi blocks) and all-pass comb
filters (the Ai blocks). The internal structure of the Ai filters is shown in the grey box.

4.3.1 Approximating late reverberation

We have previously seen that a RIR can be seen as made of two components, early reflections and late
reverberation. In this section we address the modeling of late reverberation, and we postpone early
reflection modeling to a Sec. 4.3.2.

4.3.1.1 Recirculating delays

The two main computational structures that can be used for the inexpensive simulation of complex
patterns of echoes associated to late reverberation are the recursive comb filter H(z) (see Karplus-
Strong in Ch. Sound modeling: source based approaches) and the so-called all-pass comb filter A(z)

H(z) =
z−m

1− gz−m
, A(z) =

z−m − g

1− gz−m
. (4.28)

It is easily seen that A(z) is an all-pass structure, since each of the m poles is the reciprocal of one of
the m zeros and the amplitude response |A(z) | is therefore flat. For m = 1 the structure reduces to
the first-order all-pass filter examined in Ch. Sound modeling: source based approaches. The (positive) gain g in
A(z) has to be less than unity in order to ensure stability.

Figure 4.8 depicts a reverberator constructed using comb-filters and all-pass comb filters, together
with a realization of the all-pass comb (see the grey box). The general idea behind this structure is
the following. First, the parallel combination of comb filters generates a frequency response than
contains peaks contributed by each comb. In theory we can obtain an arbitrary modal density by
using a sufficiently large number N of comb filters. Second, the series combination of all-pass combs
that receives the output of the parallel combination of combs has the effect of dramatically increasing
the temporal density of reflections, because each echo generated by Ai(z) will create a set of echoes
in Ai+1(z). Again, an arbitrarily high reflection density can be in principle obtained by using a
sufficiently large number M of all-pass combs.

4.3.1.2 Tuning the parameters

The choice of a proper set of parameter values is critical in order to obtain convincing results. In the
remainder of this section we provide a list of commonly accepted guidelines. The sample delaysmi of
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4.16 Algorithms for Sound and Music Computing

the combs should be mutually coprime (or incommensurate), in order to reduce the superimposition of
echoes in the impulse response, thus maximizing the modal density and reducing the so-called flutter
echoes. The gains gi of the combs can be chosen as functions of the sample delaysmi, given a desired
reverberation time Tr. It is easy to prove that the following equation holds for the reverberation time
of a single comb:

Fs · 20 log1 0(gi)
mi

= −60
Tr

⇒ gi = 10−3
mi

FsTr . (4.29)

Note that this choice ensures that the pole moduli mi
√
gi = 10−3 1

FsTr have the same value for all the
combs. If this condition was not verified, then the poles with largest moduli would resonate longer
and would add an undesired tonal coloration in the late decay.

A quantitative estimate of the modal density provided by the parallel comb structure can be easily
obtained. If themi’s of the combs are mutually coprime, then the modal densityDf (which is number
of frequency peaks per Hz) can be estimated as

Df =
N∑

i=1

mi

Fs
=
Nm̄

Fs
, (4.30)

where m̄ is the mean sample delay length. Note that this modal density is constant for all frequencies,
unlike in real rooms (see Eq. (4.9)). A too low Df can introduce audible beating between two neigh-
boring modes, especially in response to narrowband signals. In order to avoid this effect, a good rule
of thumb is to choose the mi’s such that Df ≥ Tr: this ensures that the average beat period is at least
equal to the reverberation time.

In a similar way we can estimate quantitatively the temporal reflection density provided by the
parallel combination of combs: each filter outputs one echo every mi/Fs seconds, therefore the com-
bined reflection density (number of reflections per second) is

Dr =
N∑

i=1

Fs

mi
≈ NFs

m̄
, (4.31)

where the last approximation only holds when the mi are similar. Again, the reflection density is
constant as a function of time, unlike real rooms (see Eq. (4.20)). A value Dr = 103 is sometimes
considered to be sufficient to sound indistinguishable from diffuse reverberation, although higher
values (e.g. Dr = 104) are preferable.

From the two estimates (4.30) and (4.31) provide an estimate of the number of comb filters needed
in order to achieve desired modal and reflection densities:

N =
√
DfDr. (4.32)

Note however that this estimate does not consider the effect of the cascaded series of all-pass comb
filtersAi: as already mentioned, theAi provide a dramatic increase of the reflection density and allow
to a number N of comb filters that is smaller than the one estimated from Eq. (4.32).

M-4.3
Realize the reverberant structure of Fig. 4.8. The reverberator can be tried e.g. with N = 4, M = 2, and
with the following settings: time delays mi/Fs (i = 1 . . . 4) of the comb filters distributed 30 and 45 ms, time
delays mi/Fs (i = 5, 6) of the all-pass combs between 1.7 and 5 ms, modal density Df = 1000, gains of the
all-pass combs gi = 0.7 (i = 5, 6). With these settings the structure is known as Schroeder reverberator (see
the bibliography).

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2007 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�


Chapter 4. Sound in space 4.17

4.3.2 Improved structures

The reverberator discussed in the previous section sounds reasonably well especially for short rever-
beration times and low reverberation levels. For different settings however it suffers from a number of
problems. First, the reverberation is not dense enough at the beginning, resulting in a “grainy” sound
quality (especially in response to impulsive sounds). Second, the late reverberation tends to exhibit
an already mentioned “fluttering” effect. Third, especially for long reverberation times a “ringing”
effect can be heard, which gives an undesired metallic quality to the reverberation. Fourth, the modal
density is not sufficiently large and, as already mentioned, does not increase with frequency. Fifth,
the reverberation time Tr does not depend on frequency, unlike in real rooms (see Sec. 4.2.2 and the
EDR function there discussed). Finally, no modeling of early reflection is provided.

4.3.2.1 Low-pass combs

A first obvious way of improving the modal density is to increase the number of comb filters in
parallel, especially when long reverberation times need to be simulated. A second more substantial
improvement amounts to employ, in place of comb filters, a low-pass comb filter, where a low-pass
filter Hlp is inserted in the feedback loop of the comb filter instead of a scalar gain. The purpose of
this modification is to simulate the attenuation effects of higher frequencies, due to air viscosity, heat
conduction, and energy losses at reflection. As a result, the reverberation time decreases at higher
frequencies and makes the reverberation sound more realistic. In addition, the response to impulsive
sounds is also improved, due to the smoothing effect of the low-pass filtering.

If a simple one-pole low-pass filter Hlp is used, then the low-pass comb filter is given as

H(z) =
z−m

1−Hlp(z)z−m
, with Hlp(z) =

g1
1− g2z−1

. (4.33)

One can easily verify that in order for H(z) to be stable the condition g1/(1 − g2) < 1 must hold.
Note that we have already introduced the low-pass comb filter for the Karplus-Strong algorithm in
Ch. Sound modeling: source based approaches, although here we are using a different low-pass filter Hlp.

Coefficients of the low-pass combs: g1 can be determined as a function of the delay length and
the desired Tr, as explained in the previous section. The g2 coefficient can also be related with decay
time at a specific frequency or fine tuned by direct experimentation.

M-4.4
Realize the reverberant structure of Fig. 4.8 using low-pass comb filters of the form (4.33). The reverberator
can be tried e.g. with N = 6, M = 1, and with the following settings: time delays mi/Fs (i = 1 . . . 6) of the
comb filters distributed between ..... and ..... ms, time delay of the all-pass comb m7/Fs = 6 ms, modal density
Df = ......., gain of the all-pass comb g7 = 0.7.

4.3.2.2 Nested all-pass filters

Despite the improvements provided by this latter reverberator, some problems remain. First, it is
not possible to tune the reverberator to a desired Tr(ω) function. Second, the modal density is still
constant with respect to frequency and the ringing quality and the fluttering effect in the reverberation
tail remain, although reduced to some extent. In order to overcome this problems some researchers
have proposed reverberators with entirely different structures than the one shown in Fig. 4.8. One
such structure is shown in Fig. 4.9.
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Figure 4.9: A reverberator constructed with a series connection of all-pass filters and a low-pass
filter in feedback.
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Figure 4.10: Nested all-pass filters; (a) generalization of an all-pass structure (see Fig. 4.8), and (b)
realizazion by means of a lattice structure.

As before, the cascaded all-pass filters Ai(z) have the effect provide a high temporal density of
reflections, because each echo generated by a filter will create a set of echoes in the following one. In
this case however, the output of the last all-pass filter is recirculated to the series connection through
a low-pass filter H(z) and an attenuating gain g. The resulting system is stable, if the condition
|gH(ejω)| < 1 ∀ω is verified.

The low-pass filter H(z) can be interpreted as simulating frequency-dependent absorptive losses,
and the gain g provides control over the reverberation time. An important effect of this outer feedback
loop is that the characteristic metallic sound of the series all-pass is drastically reduced. Another
peculiarity of this structure is that the output is constructed as a linear combination of the all-pass
outputs. Since each each tap outputs a different response shape, the coefficients ai can be adjusted in
order to shape the amplitude envelope of the reverberant decay.

A final remark concerns the possibility of generating a reflection density that increases with time,
as in real rooms. A structure that achieves this goal is a nested all-pass filter A1(z), which can be
defined recursively as follows:

AN+1(z) = 1,

Ai(z) =
z−miAi+1(z)− g

1− gz−miAi+1(z)
, fori = 1 . . . N.

(4.34)

Figure 4.10(a) shows that this structure can be seen as a generalization of the all-pass comb, in which
part of the delay line has been substituted by an all-pass filter. Figure 4.10(b) explodes this structure
into a realization based on a lattice structure. It is easy to verify that each of the nested filters Ai(z)
are all-pass. Moreover, Fig. 4.10(a) shows that each echo generated by the inner all-pass Ai+1(z)
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is recirculated to itself through the outer feedback path of Ai(z): this intuitively explains why this
structure provides a reflection density that increases with time.

M-4.5
Realize the reverberant structure of Fig. 4.9 using nested all-pass filters of the form (4.34).

4.3.2.3 Adding early reflections

So far we have only examined algorithms for the simulation of the late, diffuse reverberation. We
have not paid any attention to the simulation of early reflections, which have great importance in the
perception of the acoustic space. In this section we address this point.

As previously discussed, the early response of a room is sparsely populated with attenuated im-
pulses. These can be straightforwardly simulated using a direct-form FIR filter that reproduces these
impulses explicitly and accurately. For the determination of the filter parameters, a good rule of thumb
is to apply to the arly reflections delays the same criterion of “mutually-primeness” used before for the
comb delays. A better strategy is to derive the parameters from some geometric modeling technique,
e.g. the source image method discussed in Sec. 4.2.1.

Figure 4.11 shows an example of early reflection modeling, in which the FIR filter has been real-
ized using a direct form structure. The early reflection filter has to be connected to a late reverberation
block: Fig. 4.11(a) and 4.11(b) show two possible connections. In Fig. 4.11(a) the late reverberator
receives the delayed input signal, and therefore the FIR response will always occur before the late re-
sponse in the final output. Figure 4.11(b) shows a more complex coupling between the two blocks. In
this case the late reverberator is driven by the output of the FIR filter, with the result of increasing the
reflection density in the late reverberation. Moreover, additional control parameters are available: the
gain g can be adjusted in order to balance the early/late reverberation ratio, while the delays D1, D2

can be tuned so that the start of the late reverberator output coincides with the last pulse output from
the FIR filter, thus avoiding undesired gaps in the overall response.

M-4.6
Realize the reverberator depicted in Fig. 4.11(a), where the early reflection FIR filter has to be coupled to one
of the late reverberation structures discussed in the previous sections.

M-4.7
Realize the reverberator depicted in Fig. 4.11(b), where the early reflection FIR filter has to be coupled to
one of the late reverberation structures discussed in the previous sections. Compare the resulting impulse
responses with the ones obtained from M-4.6.

In order to improve the quality of the FIR structure described above, one has to include some form
of low-pass filtering that models frequency dependent losses. One possibility is to substitute each of
the gains ai with a low-pass filter, composed by considering the history of reflections for each echo.
Early reflections are not perceived as individual events however, therefore it is not necessary to model
accurately the spectral content of each single reflection. A cheaper, and often satisfactory, choice is to
sum sets of reflections together and and to filter them through the same low-pass.

As a final remark to this section, one should note that early reflections are extremely important
for the formation of spatial impression: an echo reaches the two ears with different intensities and
at different times, because of the shadowing effect of the head and because of the different distance
traveled. For this reason early reveberation is most effective if it is presented binaurally, i.e. by taking
into account these effects and presenting different echoes to the two ears (e.g. via headphones). This
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Figure 4.11: Two realizations of a reverberator with early reflections; (a) late reverberation block
receiving the delayed input signal, and (b) late reverberation block receiving the output of the early
reverberation FIR filter, with additional control parameters D1, D2, g. The late reverberation block
can be one of the structures examined in the previous sections.

consideration anticipates the subject of Sec. 4.6, where we will address the topic of rendering the
location in space of a sound source. At this point it worth mentioning that if no binaural processing is
done the addition of early reflections can in certain cases deteriorate the quality of a reverberator, as
they cause tonal coloration of the sound without producing spatial impression.

4.4 Multidimensional reverberation structures

4.4.1 Feedback delay networks

4.4.1.1 A n-D generalization of the recursive comb filter

In the previous section we have seen that the recursive comb filter of Eq. (4.28) has been extensively
used as the main building block of perceptual reverberators, as an inexpensive way to generate patterns
of resonances. Now the question is: can we generalize the comb structure in order to achieve higher
modal densities? The filter structure depicted in Fig. 4.12 provides a first answer. First, it is easily
seen to be a vector generalization of the recursive comb filter, as it reduces to a parallel combination of
ordinary comb filters when the feedback matrix A = [aij ] is diagonal. Second, and more interesting,
it recirculates the output of the ith delay line to the input of the jth delay line, for every non-null
element aij . This observation gives the intuition that when A is non-diagonal this structure is capable
of much higher modal densities than a simple parallel of comb filters.

The generalization extend also to stability conditions. While the comb filter of Eq. (4.28) is
stable if | g | < 1, the multidimensional structure of Fig. 4.12 is stable if ‖A ‖2 < 1, where ‖ · ‖2 is
the spectral norm of a matrix3 This can be easily verified by applying the conditions for Lyapunov

3The matrix norm corresponding to any vector norm ‖ · ‖may be defined for any matrix A as ‖A ‖ = maxx 6=0
‖Ax‖
‖x ‖ .
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stability, i.e. that the output y[n] decreases in time when the input signal x is zero:

‖y[n− 1] ‖2 > ‖y[n] ‖2 =

∥∥∥∥∥∥∥
A




y1[n−M1]
...

yN [n−MN ]




∥∥∥∥∥∥∥
2

(4.35)

where the first inequality is the Lyapunov stability condition, and the second equality holds for the
block scheme of Fig. 4.12. Therefore stability is guaranteed whenever the feedback matrix satisfies

‖Ay ‖2 < ‖y ‖2 ∀ y. (4.36)

In other words, a sufficient condition for stability is that the feedback matrix decreases the L2 norm
of its input vector. Since in general ‖Ay ‖2 < ‖A ‖2 · ‖y ‖2, we conclude that stability is guaranteed
for ‖A ‖2 < 1.

A class of matrices that satisfy the stability condition is

A = ΓQ, where Γ =




g1 0 · · · 0
0 g2 · · · 0
...

...
. . . 0

0 0 · · · gN


 , | gi | < 1, (4.37)

and where Q is an orthogonal matrix. Recall that (1) the spectral norm ‖A ‖2 is the square root of the
largest eigenvalue of AAT , and that (2) by definition Q is orthogonal if and only if QQT = III. Then
‖A ‖2 = ‖ΓQ ‖ = maxi | gi |.

The above analysis justify the use of the structure of Fig. 4.12 as a multichannel reverberator in
which N input signals x[n] (or N replicas of a single input signal x[n]) produce N outputs y[n] that
are approximately mutually incoherent and thus can be used in a N -channel loudspeaker system to
render a diffuse soundfield. A possible choice for the matrix A is

A = g
1√
2




0 1 1 0
−1 0 0 −1

1 0 0 −1
0 1 −1 0


 , | g | < 1, (4.38)

The spectral norm ‖ · ‖2 is the matrix norm induced by the L2 vector norm.
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Figure 4.13: A Feedback Delay Network structure for artificial reverberation.

which is immediately seen to belong to the class (4.37).

4.4.1.2 A general FDN reverberators

The “vector comb filter” that we have analyzed in the previous section is an example of a class of
filter networks, known as Feedback Delay Networks (FDNs). Figure 4.13 shows a more general FDN
structure for artificial reverberation, that extends in many ways the one depicted in Fig. 4.12. First,
it is a Single-Input, Single-Output structure which uses two N × 1 vectors b = [bi] and c = [ci] to
split the input into N channels and to combine the N outputs in one channel. Second, low-pass filters
Hlp,i(z) are cascaded to the delay lines. Third, the final output y is corrected with an additional filter
E(z) plus an additive term dx. The transfer function of the system is almost immediately found to be:

Y (z)
X(z)

= cT
{

[III−D(z)A]−1 D(z)
}

b · E(z) + d = cT
[
D(z−1)−A

]−1
b · E(z) + d, (4.39)

where A = [aij ] is the feedback matrix of the system, and

D(z) =




z−m1Hlp,1(z) 0 · · · 0
0 z−m2Hlp,2(z) · · · 0
...

...
. . . 0

0 0 · · · z−mNHlp,N (z)




is the delay matrix of the system. We shall see that this structure allows to orthogonalize to a great
extent the reverberation parameters, as the various blocks can be independently tuned to fit desired
values of different reverberation parameters.

M-4.8
Realize the reverberant structure of Fig. 4.13. With N = 4, and with the matrix given in Eq. (4.38), the structure
of Fig. 4.12 is a special case of this.
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Figure 4.14: Lossless prototype network associated to the Feedback Delay Network of Fig. 4.13.

Since an “ideal” late reverberation impulse response should resemble exponentially decaying
noise, it is useful to start designing a lossless reverberator (with infinite reverberation time) and work
on making it a good noise generator. Once this lossless prototype has been designed, one can work on
obtaining the desired reverberation time in each frequency band. We associate to the FDN of Fig. 4.13
the lossless prototype of Fig. 4.14.

What does the losslessness requirement imply to the feedback matrix A? We know that by defini-
tion of losslessness the equality

∫
ω

{∑n
i=1

∣∣Yi(ejω)
∣∣2

}
dω =

∫
ω

{∑n
i=1

∣∣Xi(ejω)
∣∣2

}
dω must hold.

Moreover it is a general result that a multidimensional filter is lossless if and only if its frequency re-
sponse matrix H(ejω) is unitary, i.e. H(ejω)H∗(ejω) = III (where ∗ denotes the complex-conjugate
transpose as usual). In our case, it is quite straightforward to prove that A being unitary is a sufficient
condition for the overall frequency response matrix to be unitary. Moreover the entries aij have to be
real in order for the system to output a real signal y[n], and a unitary matrix with real entries is an
orthogonal matrix.

In conclusion, if A is orthogonal then the network of Fig. 4.14 is lossless. Note however that this
condition is sufficient but not necessary, thus the system may be lossless even with a non-orthogonal
feedback matrix. We will return to this point in Sec. 4.4.2.

4.4.1.3 Designing the lossless prototype

Designing the lossless prototype means choosing the dimensionN , the mi’s, and the feedback matrix
A. Let us start with the dimension N and the delay lengths mi. Together with the feedback matrix
these parameters determine the buildup of reflection density. The criteria that we have examined in
Sec. 4.3 (see in particular Eqs. (4.30, 4.31) can be applied also in this case with satisfactory results.
Note however that Eqs.Eqs. (4.30, 4.31) are no longer valid here, since, a non-diagonal feedback
matrix increases the modal and reflection densities. Therefore in general the parameters have to be
chosen on the basis of empirical observations. It is generally noted that N = 8 to 16 lines with a total
delay

∑
imi/Fs of 1 to 2 seconds already produce a response perceptually undistinguishable from

white noise.

Let us now consider the lossless feedback matrix A. The simplest orthogonal matrix is a diagonal
matrix whose diagonal elements (which are the eigenvalues) have unit modulus: as already seen this
choice corresponds to a parallel of ordinary comb filters. A more interesting family of orthonormal
matrices are Householder reflection matrices. A specific Householder matrix is defined given the
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reference vector u = [1, . . . 1]T :

A = III− 2
N

uuT , then Ax =



x1 − 2

N

∑
i xi

...
xN − 2

N

∑
i xi


 , (4.40)

for any input vector x. We will see in Sec. 4.4.2 that u can be interpreted as the specific vector about
which an input vector is reflected by the matrix A in an N -dimensional space. A more general for-
mulation may be obtained by replacing the identity matrix in Eq. (4.40) with any N ×N permutation
matrix.

The explicit expression for Ax in Eq. (4.40) shows that applying a Householder matrix to a
vector requires N − 1 additions and one multiplication to obtain the term 2

N

∑
i xi, plus N additions

to subtract this term from x. Therefore the matrix-times-vector operation is only O (N) as opposed
to the usual O (

N2
)
.

Another interesting feature of the Householder feedback matrix is that forN 6= 2 A does not have
null entries. This is a desirable property since it implies that every delay line feeds back to every other
delay line, reinforcing the build-up of reflection density. The case N = 4 is especially nice, since the
matrix entries all have the same magnitude and A is therefore “balanced”. For larger N the diagonal
becomes larger than the off-diagonal elements, and A approaches a diagonal matrix as N →∞. Due
to the elegant balance of the N = 4 case, a larger (N = 16) feedback matrix can be constructed as
follows:

A =
1
2




A4 −A4 −A4 −A4

−A4 A4 −A4 −A4

−A4 −A4 A4 −A4

−A4 −A4 −A4 A4


 , where A4 :=

1
2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 . (4.41)

is the 4× 4 Householder matrix.
Other types of unitary matrices may be used. In particular, unitary feedback matices can be

derived fromm Hadamard matrices. A Hadamard matrix H is defined as an N × N , (−1, 1)-matrix
(i.e. a matrix whose elements consist only of the numbers -1 or 1) with the additional property that
HHT = NIII. This means that A = H/

√
N is an orthogonal matrix whose entries all have the same

magnitude 1/
√
N . In Sec. 4.4.2 we discuss other classes of feedback matrices.

4.4.1.4 Designing lossy components

So far we have designed the lossless prototype. Now we have to correct it by inserting the low-pass
filters Hlp,i and the correction filter E. The Hlp,i’s set the reverberation time from infinity to a finite
value, by moving the poles slightly inside the unit circle. More precisely, they can be chosen to tune
the reverberator to a desired, frequency-dependent reverberation time Tr(ω).

The following analysis assumes that the filters Hlp,i are defined as Hlp,i = [G(z)]mi : this is
conceptually equivalent to substituting each delay z−1 in the lines with a “damped delay” G(z)z−1,
where the factor G(z) represents a filtering per sample in the propagation medium. We also make
the simplifying hypotheses that (1) the response G(ejω) is zero-phase and that (2) the magnitude∣∣G(ejω)

∣∣ is close to 1. Now assume that the lossless prototype has poles ejωi/Fs , i = 1, . . . N , then
the insertion of the low-pass filters moves the poles to

pi ≈ Rie
jωi/Fs , with Ri = G

(
Rie

jωi/Fs

)
≈ G

(
ejωi/Fs

)
, (4.42)
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where we have exploited our first simplifying hypothesis in assuming that the filters affect the radius
of the poles and not their angles, and we have exploited our second simplifying hypothesis in the last
approximation for Ri.

We know that the component of the impulse response arising from the ith pole of the system
decays as = Rn

i , as a function of time n. Therefore the time needed for this response to decay

by 60 dB (i.e. Tr(ωi)) satisfies the relation 20 log10

(
R

Tr(ωi)Fs

i

)
= −60 dB. From Eq. (4.42), and

recalling that Hlp,i = Gmi , we conclude that the ideal low-pass filter satisfies the relation

20 log10

∣∣∣Hlp,i

(
ejωi/Fs

) ∣∣∣ = −60
mi

FsTr(ωi)
. (4.43)

Having been derived in the assumption of zero-phase, this expression disregards the phase response
of the Hlp,i’s, which has the effect of slightly modifying the effective length of the delay mi. It is
usually assumed that in practice this correction has no perceivable effect and can therefore be ignored.

A consequence of incorporating the filters Hlp,i(z) into the delay lines is that the envelope of
the frequency response of the system will no longer be flat. In particular, for exponentially decaying
reverberation the envelope is proportional to the reverberation time at all frequencies. The role of
the filter E(z) (often referred to as the tonal correction filter) is to compensate for this effect: a flat
frequency response envelope is restored if the magnitude response of E(z) is inversely proportional
to the reverberation time: ∣∣∣E

(
ejω/Fs

) ∣∣∣ ∼ 1√
Tr(ω)

. (4.44)

Having specified ideal filter responses for the Hlp,i’s and for E, any number of filter-design methods
can be used to find low-order filters that reasonably approximate Eqs. (4.43, 4.44). Note that this
design effectively decouples the control over reverberation time from the overall reverberator gain.

M-4.9
Write a function that computes filter coefficients for Hlp,i(z) and E(z), given a function Tr(ω) specified on a
set of points {ωk}, and given the filter order k. The native functions invfreqz and stmcb may help.

Since the function Tr(ω) is typically very smooth and slowly varying with respect to ω, the filters
Hlp,i(z) can be chosen to have low order. In particular, first-order filters of the form (4.33) can be
used:

Hlp,i(z) =
g1,i

1− g2,iz−1
. (4.45)

In this case one can use Eq. (4.43) to find the gains (we only report results):

g2,i =
ln(10)

4
log10(ai)

(
1− Tr(0)2

Tr(πFs)

)
, g1,i = ai(1− g2,i) (4.46)

where ai = 10−3
mi

FsTr(0) is determined from the desired reverberation time at ω = 0, while g2,i sets
the reverberation time at high frequencies.

If first-order low-pass filters of the form (4.45) are used, then one can use a correction filter which
is also first-order and is determined as follows (we only report results):

E(z) =
1− bz−1

1− b
, with b =

1− Tr(πFs)
Tr(0)

1 + Tr(πFs)
Tr(0)

. (4.47)

M-4.10
Write a function that computes filter coefficients for Hlp,i(z) and E(z) in the first-order case described above,
given a function Tr(ω) specified on a set of points {ωk}.
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Figure 4.15: DWN reverberator

4.4.2 Digital waveguide networks

4.4.2.1 The link between FDNs and DWNs

In Eq. (4.40) we have introduced a specific Householder reflection matrix, constructed from the ref-
erence vector u = [1, . . . , 1]T . In fact a Householder matrix can be constructed given any reference
vector u. We now want to provide a geometric interpretation of this family of matrices.

Consider the projection matrix P u, which orthogonally projects any vector x onto the vector u:

P u =
uuT

uT u
=

uuT

‖u ‖2 , then xu := P u x = u
〈u,x〉
‖u ‖2 (4.48)

is the orthogonal projection of x onto u. Now consider the vector x⊥u := (III − P u)x: this is the
projection of x onto the hyperplane orthogonal to u, since it is easily verified that x⊥u ⊥ xu and that
x⊥u + xu = x.

Finally consider the vector y obtained by reflecting x about u. Elementary geometrical consider-
ations allow to conclude that this vector is the difference between xu and x⊥u :

y = xu − x⊥u = P ux− (III− P u)x = (2P u − III)x. (4.49)

The matrix (2P u − III) is a Householder matrix as defined in Eq. (4.40), except for a sign. Therefore
we conclude that given a reference vector u the corresponding Householder matrix reflects any vector
x about u.

Having undestood the meaning of Householder matrices, we now construct a digital waveguide
network (DWN) that is equivalent to the FDN lossless prototypes considered in the previous section.
We start by considering the physical resonator depicted in Fig. 4.15(a). It is composed by N acoustic
bores connected in parallel. In Chapter Sound modeling: source based approacheswe have derived the N × N
scattering matrix A that relates the incoming pressure waves p+ to the outgoing pressure waves p−.
In this section we reconsider that matrix when the pressure waves in the ith bore are defined as

p+
i =

√
Γi
pi + Ziui

2
, p−i =

√
Γi
pi − Ziui

2
, (4.50)
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where Zi and Γi = 1/Zi are the wave impedance and admittance of the ith bore. These are often
referred to as normalized waves, and differ from our previous definition of wave variables uniquely
for the scaling factor

√
Γi. It is straightforward to see that normalized pressure waves are scattered as

p− = Ap+, where

A =




2Γ1
ΓJ

− 1, 2
√

Γ1Γ2
ΓJ

, · · · 2
√

Γ1ΓN
ΓJ

2
√

Γ2Γ1
ΓJ

, 2Γ2
ΓJ

− 1, · · · 2
√

Γ2ΓN
ΓJ

...
. . .

...
2
√

ΓNΓ1

ΓJ
, 2

√
ΓNΓ2

ΓJ
, · · · 2ΓN

ΓJ
− 1



, where ΓJ =

N∑

l=1

Γl. (4.51)

This normalized scattering matrix is immediately recognized as a Householder matrix:

A =
2

‖Γ ‖ΓΓT − III, with Γ :=
[√

Γ1,
√

Γ2, . . . ,
√

ΓN

]
, (4.52)

so we have this interesting geometrical interpretation: scattering of normalized pressure waves corre-
sponds to a reflection around the vector Γ.

If the acoustic bores are lossless and with ideal closed terminations, and if the length (in sam-
ples) of the ith bore is mi/2, then the physical resonator of Fig. 4.15(a) can be modeled with the
digital waveguide network given in Fig. 4.15(b). Now compare this scheme with the lossless FDN
of Fig. 4.14: apart from the input signals xi[n], the two schemes implement the same computational
structure. The incoming pressure waves p+

i [n] correspond to the output signals yi[n], and the outgoing
pressure waves p−i [n] correspond to the feedback signals generated by the feedback matrix.

4.4.2.2 General lossless scattering matrices

Showing the equivalence between DWNs and FDNs is more than a mere intellectual exercise: we can
now design an entire new class of lossless FDN prototypes, in which the feedback matrix A is given
by Eq. (4.51) and have a straightforward physical interpretation.

Note that the matrix in Eq. (4.51) is still orthogonal (it is easy to verify that AAT = III. We
can push the generalization further by generalizing our definition of losslessness, and consequently
define new classes of lossless feedback matrices that are neither physical nor orthogonal. Consider
a Hermitian, positive-definite N × N matrix Γ (we use this notation because we interpret Γ as a
generalized junction admittance). This matrix induces a norm ‖ · ‖Γ, defined as follows: ‖x ‖Γ :=
xTΓx for any real valuedN -dimensional vector x. We can then define a waveguide scattering matrix
A to be “lossless” if the scattering preserve the norm, i.e. the equality ‖p+ ‖Γ = ‖p− ‖Γ holds. This
condition is clearly equivalent to the condition

ATΓA = Γ (4.53)

for the scattering matrix A. In the case Γ = III, the norm ‖ · ‖Γ is the euclidean norm and the above
equation reduces to the condition of A being orthogonal. In the general case Γ 6= III it can be shown
that Eq. (4.53) holds if and only if A has eigenvalues with modulus 1 and N linearly independent
eigenvectors. We do not provide a proof of this characterization: intuitively it means that when such a
feedback matrix is used in a lossless FDN prototype the system poles all have unit modulus and thus
the system response consists of non-decaying eigenmodes.
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Clearly orthogonal matrices are lossless in this sense, since they have unitary eigenvalues and
pairwise orthogonal eigenvectors. Another class of matrices that satisfy this condition are triangular
matrices: designing a triangular matrix with unitary eigenvalues is straightforward since we know
from linear algebra that they lie on the diagonal. Additional care is required in order to ensure that the
triangular matrix possesses N independent eigenvectors.

4.4.2.3 Waveguide meshes

So far we have seen DWNs in analogy with FDNs. In this section we discuss a new multidimensional
waveguide structure, named waveguide mesh, that can be used to physically simulate resonating en-
closures. What follows is only a quick and qualitative introduction to the subject, the interested reader
can refer to the bibliography.

Consider again the N-D D’Alembert equation (4.1). Similarly to what we have done in the 1-D
case (Chapter Sound modeling: source based approaches), we can simulate the traveling wave solution by using
delay lines. In this case the delay lines are arranged in a mesh, that represents waves propagating
in the x, y, z directions. At each node of the mesh continuity constraints must be satisfied, namely
the pressure waves in each direction must provide the same pressure value.4 This means that at each
node of the mesh the incoming pressure waves are scattered by a matrix identical to the matrix A
given in Chapter Sound modeling: source based approaches, in which all the incoming branches share the same
impedance:

A =




2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
...

. . .
...

2
N

2
N . . . 2

N − 1



. (4.54)

In order to clarify this idea, let us examine the 2-D case shown in Fig. 4.16. The outgoing pressure
waves at each node are computed as p− = Ap+, i.e.

p−i [n] = pJ [n]− p+
i [n] (i = 1 . . . 4) where pJ [n] =

∑4
i=1 p

+
i [n]

2
(4.55)

is the junction pressure. It can be shown that this rectangular waveguide mesh is equivalent to a finite-
difference numerical solution of the the 2-D D’alembert equation, in which the pressure at a certain
node is expressed in terms of the pressures at its neighboring nodes one sample earlier, and itself two
samples earlier.

The rectangular layout depicted in Fig. 4.16 is not the only possible one: other geometries may
be used for assembling the mesh, like triangular, hexagonal, and so on. The choice of the geometry
has a major influence on the dispersion error in the mesh, i.e the error in propagation speed as a
function of frequency and direction along the mesh. It can be shown that the triangular waveguide
mesh is the simplest 2-D mesh geometry with the least dispersion variation as a function of direction of
propagation. In other words, the triangular mesh is closer to isotropic than all other known elementary
geometries. Isotropy can be obtained also through interpolation, i.e. by using non integer propagation
delays, but computational costs are higher. As far as frequency dispersion is concerned, frequency-
warping methods can be used to minimize it in the mesh.

4In this section we are using waveguide meshes to simulate resonating enclosures and thus we work with pressure waves
and consider parallel junctions. Waveguide meshes can also be used to simulate mechanical resonators, e.g membranes, and
in that case it is natural to choose velocity waves and to consider series junctions at mesh nodes.
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Figure 4.16: 2D rectilinear digital waveguide mesh.

The waveguide meshes analyzed so far simulates lossless propagation in an infinite medium. In
order to model something similar to a real resonating enclosure we must add losses and boundary
conditions into the structure. The techniques discussed in Chapter Sound modeling: source based approachesto
simulate lossless in 1-D wave propagation can be extended to the waveguide mesh: the basic idea
is once again that wave propagation during one sampling interval (in time) is associated with linear
filtering by G(z). The problem of modeling mesh boundaries is particularly important in the context
of artificial reverberation: in order to obtain high temporal reflection densities, maximally diffusing
boundaries have to be modeled.

As efficient solutions are found to deal with the above mentioned problems, 3-D waveguide
meshes are being more and more used for the simulation of acoustic spaces.

4.5 Spatial hearing

Sound is transformed by the pinnae (the visible portion of the outer ear) and proximate parts of the
body such as the shoulder and head. Following this are the effects of the meatus (or “ear canal”) that
leads to the eardrum.

Our assumption is that the sound pressure at the two eardrums is a sufficient stimulus. Producing
the same sound pressure will produce the same auditory perception. Caveats: Bone conduction,
Adaptation, Conflicting visual cues, Conflicting expectations

Exact reproduction of the sound pressure is not necessary for producing the same auditory per-
ception. The limitations of neural responses allow different (and simpler) stimuli to produce the same
response. Examples: Bandwidth (20 Hz to 20 kHz) Amplitude (1-dB resolution) Monaural phase
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Figure 4.17: Estimate of ITD in the case of a distance sound source (plane waves) and spherical
head..
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4.5.1 The sound field at the eardrum

Spatial attributes of the sound field are coded into temporal and spectral attributes via this filtering
effect of head, external ear, torso and shoulders.

4.5.1.1 Head

Our ears are not isolated objects in space. They are located, at the same height, on opposite sides of
an acoustically rigid object: the head. This acts as an obstacle to the free propagation of sound and
has two main effects: (1) it introduces an interaural time difference (ITD), because a sound wave has
to travel an extra distance in order to reach the farthest ear, and (2) it introduces an interaural level
difference (ILD) because the farthest ear is acoustically “shadowed” by the presence of the head.

As one may expect, the ILD is highly frequency dependent: at low frequencies (i.e., for wave-
lengths that are long relative to the head diameter) there is hardly any difference in sound pressure at
the two ears, while at high frequencies differences can be up to 20 dB or more. On the other hand
an approximate yet quite accurate description of the ITD can be derived using a few simplifying as-
sumptions, in particular by considering the case of “distant” sound sources and a spherical head: this
situation is depicted in Fig. 4.17.

The first assumption implies that the sound waves that strike the head are plane waves. Then
the extra-distance ∆x needed for a sound ray to reach the farthest ear is estimated from elementary
geometrical considerations, as shown in Fig. 4.17, and the ITD is simply ∆x/c. Therefore

ITD ∼ a

c
(θ + sin θ), (4.56)

where a is the head radius and θ is the azimuth angle that defines the direction of the incoming sound
on the horizontal plane. This formula shows that the ITD is zero when the source is directly ahead
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Figure 4.18: Magnitude response
∣∣∣H(∞, µ, θ̃)

∣∣∣ of a sphere for an infinitely distant source.

(θ = 0), and is a maximum of a/c(π/2 + 1) when the source is off to one side (θ = π/2). This
represents an ITD of more than 0.6 ms for a head radius a = 8.5 cm, which is a realistic value.

Take a sphere of radius a, a point sound source at a distance r > a from the center of the sphere,
and a point on the sphere. It is customary to use the normalized variables µ = ωa/c (normalized
frequency) and ρ = r/a (normalized distance). Then the diffraction of an acoustic wave by the sphere
seen on the chosen point is expressed with the transfer function

H(ρ, µ, θ̃) = −ρ
µ
e−iµρ

+∞∑

m=0

(2m+ 1)Pm(cos θ̃)
hm(µρ)
h′m(µ)

, (4.57)

where Pm and hm are themth order Legendre polynomial and spherical Hankel function, respectively,
and θ̃ is the angle of incidence, i.e. the angle between the ray from the center of the sphere to the source
and the ray to the measurement point on the surface of the sphere.5 Normal incidence corresponds to
θ̃ = 0, while the sphere point opposite to the source is at θ̃ = π.

It is known that the Hankel function hm(x) admits an asymptotic approximation as the argument
x goes to infinity. By exploiting this approximation one can study the behavior of the transfer func-
tion H(∞, µ, θ̃) as the distance r between the source and the sphere becomes arbitrarily large. The
approximate solution

∣∣∣H(∞, µ, θ̃)
∣∣∣ is plotted in Fig. 4.18.

At low frequencies the tranfer function is not directionally dependent and the magnitude |H | is
essentially unity for any angle θ̃. When µ exceeds 1 the dependence on θ̃ becomes noticeable. The
response increases around the front of the sphere, and in particular exhibits a 6 dB boost at high
frequencies near the front of the sphere (|H(∞,∞, 0) | = 2), consistently with the requirement that
in this limit the solution must reduce to that of a plane wave normally incident on a rigid plane surface.
|H | is approximately flat when θ̃ is around 100 degrees, and progressively decreases around the back

5We are using a different notation with respect to the azimuth angle θ used previously, in order to avoid confusion.
Given a 2-D reference system like that in Fig. 4.17, the transfer functions (4.57) at the right and left ear will use the angles
θ̃(r) = θ − π/2 and θ̃(l) = θ + π/2, respectively.
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Figure 4.19: External ear: (a) pinna, and (b) ear canal.

of the sphere. Note however that the minimum response does not occur at the very back (θ̃ = π).
Instead, this point exhibits a so-called “bright spot” effect, which is due to the fact that all the waves
propagating around the sphere arrive at that point in phase. At very high frequencies the bright-spot
lobe becomes extremely narrow, and the back of the sphere is effectively in a sound shadow. Finally,
note that interference effects caused by waves propagating in various directions around the sphere
introduce ripples in the response that are quite prominent on the shadowed side.

4.5.1.2 The external ear

External ear consists of the pinna and ear canal until the eardrum. Then middle ear and internal ear.
Here we are interested in the external ear only, in Chapter Auditory based processingwe will study the middle
and internal ear.

Pinna: Fig. 4.19(a). It has a characteristic “bas-relief” form with features that differ greatly
from one individual to another (just look at people’s ears). The pinna is connected to the ear canal:
Fig. 4.19(b). It can be approximately described as a tube of constant width, with walls of high acoustic
impedance. At the end opposite to the pinna, the ear canal is terminated by the eardrum diaphragm.

At a first approximation the acoustic behaviour of the ear canal is easily understood: it behaves
like a one-dimensional resonator. On the other hand the pinna has much more complex effects, as it
basically acts like an acoustic antenna. Its resonant cavities amplify some frequencies, and its geom-
etry leads to interference effects that attenuate other frequencies. Moreover, its frequency response is
directionally dependent. Acoustically it acts like a filter whose transfer function depends in general
on the distance and direction of the sound source relative to the ear. Like for any other resonator, we
can interpret these filtering effect either in the frequency domain or by looking at reflections of sound
rays.

First approach: measurements of frequency responses using an imitation pinna and a ear canal
with high impedance termination. The measurements give results like those depicted in Fig. 4.20(a).
First resonance is that of a open-closed tube ∼ 33% longer then the ear canal: the pinna acts as a
prolongation of the ear canal with an aperture effect. Second resonance is a resonance of the cavum
concha alone: the pressure distribution is similar to what would be obtained if the canal were plugged.
The higher resonances instead are again associated to longitudinal standing waves: these are not very
widely spaced and are quite dependent on the individual, therefore it can combine in a single broad
peak of the magnitude response.
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Figure 4.20: Effects of pinna: (a) resonances , and (b) direction-dependent reflections

Second approach: external ear as a sound reflector. Figure 4.20(b) shows two different directions
of arrival. In each case there are two paths from the source to the ear canal –a direct path and a longer
path following a reflection from the pinna. At moderately low frequencies, the pinna essentially
collects additional sound energy, and the signals from the two paths arrive in phase. However, at
high frequencies, the delayed signal is out of phase with the direct signal, and destructive interference
occurs. The greatest interference occurs when the difference in path length is a half wavelength: this
produces a “pinna notch”. Since the pinna is a more effective reflector for sounds coming from the
front than for sounds from above, the resulting notch is much more pronounced for sources in front
than for sources above. In addition, the path length difference changes with elevation.

The synthetic conclusion of this section is then that the pinna and the ear canal form a systems of
acoustic resonators, whose resonances are excited to different extents depending on the direction and
distance of the sound source.

4.5.1.3 Torso and shoulders

In the discussion up to now we have not considered a third element that, together with the head and
the external ear, contributes to the shaping of the sound field at the eardrum: the torso. Torso and
shoulders affect incident sound waves in two main respects. First, they provide additional reflections
that sum up with the direct sound. Second, they have a shadowing effect for sound rays coming from
below.

The geometry of the torso is quite complicated. However a simplified description can be derived
by considering an ellipsoidal torso below a spherical head. These kind of approximate descriptions are
sometimes called “snowman models”, for obvious reasons. Figure 4.21(a) depicts a snowman model
and shows the main effects of the ellipsoidal torso on the sound field at the ear.

Reflections: Fig. 4.21(a). If we measured the impulse response at the right ear for the sound
source locations depicted in Fig. 4.21(a) we would see that the initial pulse is followed by a series of
subsequent pulses, whose delays increase and then decrease with elevation. These additional pulses
are caused by reflections on the torso.

We could exploit the simplified geometry of the snowman model to compute analitycally the
delay of the reflected rays, given the model parameters and the sound source position. However some
important remarks can already be made from a qualitative analysis. First, the delay between the direct
sound and the reflected ray does not vary much if the sound source moves on a circumference in the
horizontal plane (especially if its radius is large compared to the head radius). Second, the delay varies
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Figure 4.21: Effects of torso: (a) reflections, and (b) shadowing.

considerably if the sound source moves vertically, and in particular the reflected pulses are maximally
delayed for sound source locations right above the listener. If we consider that the distance from the
ear canal to the shoulder is roughly 16 cm, then a reflected ray from a source right above the subject
has to travel an extra distance of approximately 32 cm, which corresponds to a delay of almost 1 ms.

In the frequency domain the torso reflections act as a comb filter, introducing periodic notches in
the spectrum. The frequencies at which the notches occur are inversely related to the delays, and thus
produce a pattern that varies with the elevation of the source. The lowest notch frequency corresponds
to the longest delay. Delays longer than a sixth of a millisecond will produce one or more notches
below 3 kHz, which is approximately the lowest frequency where pinna effects start to be noticeable.

Modeling the effects of the torso as specular reflections means accounting for only a part of the
story. First, reflection is a high frequency concept. Second, and perhaps more important, as the
source descends in elevation, a point of grazing incidence is reached, below which torso reflections
disappear and torso shadowing emerges. As shown in Fig. 4.21(b), rays drawn from the ear to points
of tangency around the upper torso define a torso-shadow cone. Clearly, the specular reflection model
does not apply within the torso shadow cone. Instead, diffraction and scattering produce a qualitatively
different behavior, characterized by a stronger attenuation for high frequencies (i.e. for wavelength
comparable to or smaller than the size of the torso).

Although the acoustic effects of torso and shoulders are not as strong as those introduced by the
pinna, they are important because they appear at lower frequencies, where typical sound signals have
most of their energy and where the response of the pinna is essentially flat. In terms of frequency
ranges the effects provided by the torso are therefore complementary to those provided by the pinna.

4.5.1.4 Head-related transfer functions

In the preceding sections we have investigated the influence of hear, torso and external ear on the
sound field at the eardrum. All the effects that we have examined are linear, which means that (1) they
can be described by means of transfer functions, and (2) they combine additively. Therefore the sound
pressure produced by an arbitrary sound source at the eardrum is uniquely determined by the impulse
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Figure 4.22: Spherical coordinate systems: (a) vertical-polar coordinate system, and (b) interaural-
polar coordinate system.

response from the source to the eardrum. This is called Head-Related Impulse Response (HRIR), and
its Fourier transform is called Head Related Transfer Function (HRTF). The HRTF captures all of the
physical effects that we have examined separately in the previous sections.

The HRTF is a function of three spatial coordinates and frequency. Given the approximately
spherical shape of the head, it is customary to use spherical coordinates. The angular coordinates are
named azimuth and elevation and noted as θ and φ, respectively, while the radial coordinate is named
range and noted as r. Note however that more than one choice of spherical coordinates is available.
Figure 4.22(a) show the most popular one, sometimes called vertical polar coordinate system: in
this system the azimuth is measured as the angle from the yz plane to a vertical plane containing the
source and the z azis, and the elevation is measured as the angle up from the xy plane. With this
choice, surfaces of constant azimuth are planes through the z axis, and surfaces of constant elevation
are cones concentric about the z axis.6

In alternative the so-called interaural-polar coordinate system, shown in Fig. 4.22(b), is some-
times used. In this case the elevation is measured as the angle from the xy plane to a plane containing
the source and the x axis, and the azimuth is then measured as the angle from the yz plane. With this
choice, surfaces of constant elevation are planes through the x axis, and surfaces of constant azimuth
are cones concentric with the x axis. One advantage of this system is that it makes it significantly
simpler to express interaural differences at all elevations (in particular the constant-azimuth cones are
the loci of points that share equals ILD and ITD values for a spherical head).

In the remainder of this chapter we will specify, when necessary, whether we are using the
vertical-polar or the interaural-polar coordinate system. In any case we will indicate the HRTFs
as Hl,r(r, θ, φ, ω) or, in the limiting case of a “distant” sound source (in most practical applications
for r > 1 m), as Hl,r(θ, φ, ω). The subscripts l, r will indicate the HRTF at the left and right ear,
respectively. In the hypotesis of a perfectly symmetrical geometry will will simply write H(θ, φ, ω),
with Hr(θ, φ, ω) = H(θ, φ, ω) and Hl(θ, φ, ω) = H(−θ, φ, ω).

The HRTF is a surprisingly complicated function.

6This is the coordinate system that we have already introduced in Chapter Sound modeling: source based approaches.
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Figure 4.23: HRIRs and HRTFs

In spherical coordinates, for distances greater than about one meter, the source is said to be in the
far field. Most HRTF measurements are made in the far field, which essentially reduces the HRTF to
a function of azimuth, elevation and frequency.

We formally define the HRTF at one ear as the frequency-dependent ratio between the sound
pressure level (SPL) Φl,r(θ, φ, ω) at the corresponding eardrum and the free-field SPL at the center of
the head Φf (ω) as if the listener were absent:

Hl(θ, φ, ω) =
Φl(θ, φ, ω)

Φf (ω)
, Hr(θ, φ, ω) =

Φr(θ, φ, ω)
Φf (ω)

. (4.58)

4.5.2 Perception of sound source location

This is complicate matter. Many competing and interfering effects can influence auditory perception
of sound source location. In this section we provide a brief summary, but we warn the reader to be
cautios when dealing with this matter and always to be aware of limitations and simplifying hypoteses.

4.5.2.1 Azimuth perception

The horizontal placement of the ears maximizes differences for sound events occurring around the
listener, rather than from below or above, enabling audition of sound sources at the terrain level and
outside the visual field of view. The ITD and the ILD are considered to be the key parameters for
azimuth perception, in what is sometimes referred to as the duplex theory of localization.

For the sake of clarity, consider a sine wave reaching the left and right ear. At low frequencies the
ITD shifts the waveform a fraction of a cycle, which is easily detected: see Fig 4.24(a). Qualitatively
one can say that if the half wavelength is larger than the size of the head, then it is possible for the
auditory system to detect the phase of these waveforms unambiguously, and the ITD cue can function.
On the other hand, at high frequencies there is ambiguity in the ITD, since there can be several cycles
of shift: see Fig 4.24(b). Qualitatively, we can consider the critical point to be the point where the
half wavelength becomes shorter than the head size: for shorter wavelengths, the phase information
in relation to relative time of arrival at the ears can no longer convey which is the leading wavefront.
The critical point in frequency is usually assumed to be a value around 1.5 kHz.

If we now look at the ILD the situation is reversed. As we have seen in Sec. 4.5.1 (see in particular
Fig. 4.18), at low frequencies the head transfer function is essentially flat and therefore there is little
ILD information. On the other hand, at high frequencies the ILD is more marked and can become
very large. For this reason the Duplex Theory asserts that the ILD and the ITD are complementary
cues to azimuth perception, and that taken together they provide azimuth perception throughout the
audible frequency range.

This is not completely true, though. In fact timing information can be exploited for azimuth
perception also in the high frequency range because the timing differences in amplitude envelopes
are detected. Again, for the sake of clarity consider a sine wave that is modulated in amplitude as
in Fig. 4.24(c). Then an ITD envelope cue, sometimes referred to as Interaural Envelope Difference

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2007 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�


Chapter 4. Sound in space 4.37

sound at left ear

ITD

sound at right ear

(a)

sound at left ear

sound at right ear

ITD?
ITD?

(b)

sound at left ear

sound at right ear

IED

(c)

Figure 4.24: Time differences at the ears; (a) non ambiguous ITD, (b) ambiguous ITD, and (c) IED.

(IED) can be exploited, based on the hearing system’s extraction of the timing differences from the
transients of amplitude envelopes, rather than from the timing of the waveform within the envelope.
This is demonstrated by the so-called Franssen Effect. If a sine wave is suddenly turned on and a high-
pass-filtered version is sent to Loudspeaker A while a low-pass filtered version is sent to Loudspeaker
B, most listeners will localize the sound at Loudspeaker A. This is true even if the frequency of the
sine wave is sufficiently low that in steady state most of the energy is coming from Loudspeaker B.

The information provided by ITD and ILD can be ambiguous. If we assume the spherical geome-
try of Fig. 4.17, a sound source located in front of the listener at a certain θ, and a second one located
at the rear, at π− θ, provide identical ITD and ILD values. In reality ITD and ILD will not be exactly
identical at θ and π − θ because (1) human heads are not spherical, (2) there are asymmetries and
other facial features, and (3) ears are not positioned as in Fig. 4.22 but lie below and behind the x
axis. Nonetheless the values will be very similar, and front-back confusion is in fact often observed
experimentally: listeners operate reversals in azimuth judgements, erroneously locating sources at the
rear insted of at the front, or viceversa. The former reversal occurs more often than the latter. Some
argue that this asymmetry may originate from a sort of ancestral “survival mechanism”, according to
which if something (a predator?) can be heard but not seen then it must be at the rear (danger!).

The Duplex Theory essentially works in anechoic conditions. But in everyday conditions rever-
beration can severely degrade especially ITD information. As we know, in a typical room reflections
begin to arrive a few milliseconds after the direct sound. Below a certain sound frequency, the first
reflections reach the ear before one oscillation period is completed. Before the auditory system es-
timates the frequency of the incoming sound wave, and consequently infers the ITD, the number
of reflections at the ear has increased exponentially and the auditory system is not able to estimate
the ITD. Therefore sounds that possess energy in the low-frequency range only (indicatively below
250 Hz) are essentially impossible to localize in a reverberant environment.7 Instead the IED is used,
because the starting transient provides unambiguous localization information, while the steady-state
signal is very difficult to localize. In conclusion we can state –with some risk of oversimplification–
that high-frequency energy only is important for localization in reverberant environments.

4.5.2.2 Lateralization and externalization

In Sec. 4.6 we will see that the simplest systems for spatial sound rendering are based on manipulation
of the interaural cues examined above, and on headphone-based auditory display. These systems can
be used in applications where only two-dimensional localization –in the horizontal plane– is required.

In this context, the term lateralization is typically used to indicate a special case of localization,
where the spatial percept is heard inside the head, mostly along the interaural axis (the x of Fig. 4.22),

7This is why surround systems use many small loudspeakers for high frequencies and one subwoofer for low frequencies.
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Figure 4.25: Cone of confusion.

and the means of producing the percept involves manipulation of ITD and/or ILD over headphones.
Lateralization illustrates a fundamental example of virtual, as opposed to actual, sound source posi-
tion. When identical monaural sounds are delivered from stereo headphones, the listener does not hear
two distinct sounds coming from the transducers, and instead perceives a single virtual sound source
which appears to be positioned at the center of the head. As ITD and ILD are increased, the perceived
position of the virtual sound source will start to shift toward one the ears, along an imaginary line.
Once a critical value of the ITD or the ILD is reached, the perceived sound source will stop moving
along the interaural axis and will be located at one of the ears. This effect is sometimes termed inside-
the-head localization (IHL). Having knowledge of this effect is important since headphone playback
is otherwise superior to loudspeakers for transmitting virtual acoustic imagery in three dimensions.

Achieving externalization of the sound (i.e. in removing the IHL effect) is in many respects the
“sacred graal” of headphone-based spatial audio systems. It is not completely clear what additional
cues are most effective in producing sound externalization. However it has been observed by many
that externalization increases as the stimulation approximates more closely a stimulation that is natural
and that especially reverberation, either natural or artificial, can enhance dramatically externalization.
In general, IHL is not an inevitable consequence of headphone listening, simply because externalized
sounds can be heard through headphones in many instances.

4.5.2.3 Elevation perception

While the relevant cues for the localization of a sound source in the horizontal plane are relatively
well understood, things become more complicated when we consider non-null elevations

Figure 4.25 show that sound sources located anywhere on a conical surface extending out from the
ear of a spherical head produce identical values of ITD and ILD. These surfaces are often referred to
as cones of confusion, and extend the concept of front/back confusion that we have examined above.
Of course this situation is only theoretical: in reality ITD and ILD will never be completely identical
on the cone of Fig. 4.25, because of the facial features and asymmetries already mentioned above.
Nonetheless, when ITD and ILD cues are maximally similar between two locations, a potential for
confusion between the positions exists in the absence of other spatial cues.

The directional effects of the pinnae can disambiguate this confusion, and are considered to be
particularly important for vertical localization. The role of the pinnae in improving vertical localiza-
tion can be evaluated experimentally e.g. by comparing judgments made under normal conditions to
a condition where the pinnae are bypassed or occluded. In fact vertical localization can be achieved
even when one ear is completely occluded. This evidence support the idea that the spectral cues
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Figure 4.26: HRTFs with varying (a) azimuth and (b) elevation (interaural polar coordinates are
used).

provided by the pinnae work mainly monaurally.
There are many theories about the role of pinnae spectral cues. Very roughly, all of them suggest

that a major cue for elevation involves movement of spectral notches and/or peaks, that change as
a function of source and listener orientation. Figure 4.26(a) provides a plot of measured HRTFs
(magnitude response) for a sound source on the horizontal xy plane, as functions of θ. One can notice
the movement in the center frequency of two spectral notches: this changes could contribute to the
disambiguation of front-back source positions on a cone of confusion. Another way of appreciating
the pinnae spectral cues is to examine the special case of sound sources along the yz plane of the
listener: note that this is the locus of the points where not only IID and ITD are null, but also spectral
differences between the left and right HRTFs are null as long as the left and right pinnae are identical.
Figure 4.26(b) provides a plot of measured HRTFs (magnitude response) for a sound source on the yz
plane, as functions of φ. Again, a moving spectral notch can be noticed, that is thought to be important
for elevation perception.

In general it is difficult without extensive psychoacoustic evaluation to ascertain how importantly
these changes function as spatial cues. In particular, it is unclear if localization cues are derived from
a particular spectral feature such as a peak or a notch, or from the overall spectral shape. Also, it is
generally considered that a sound source has to contain substantial energy in the high-frequency range
for accurate judgment of elevation, because the pinna has limited dimensions in space and wavelengths
longer than the size of the pinna are not affected (see also Fig. 4.20(a)). One could roughly state that
the pinnae have a relatively little effect below 3 kHz.

While the role of the pinna in vertical localization has been extensively studied, the role of the
torso is less well understood. We have seen in Sec. 4.5.1 that the torso disturbs incident sound waves
at frequencies lower than those affected by the pinna. However, the effects of the torso are relatively
weak, and experiments to establish the perceptual importance of low-frequency cues have produced
mixed results.

4.5.2.4 Distance perception

It is an unanimous claim that auditory estimation of azimuth is more accurate that elevation estima-
tion, and that distance estimation is the most difficult task. Similarly, the cues for azimuth are quite
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well understood, those for elevation are less well understood, and those for distance are least well
understood. Distance perception involve a process of integrating multiple cues, the most important
being loudness, ratio of direct to reverberant sound, cognitive familiarity, and distance dependent
spectral effects. Additional effects are produced in the so-called near field case, i.e. when the distance
between the sound source and the listener is less than approximately 1 m. Any of these cues can be
rendered ineffective by the summed result of other potential cues.

In the absence of other information, the intensity of a sound source is the primary distance cue
used by listeners, who learn from experience to correlate the physical displacement of sound sources
with corresponding increases or reductions in intensity. Under anechoic conditions, one can use the
inverse square law to predict sound intensity reduction with increasing distance. Given a reference
intensity and distance, an omnidirectional sound source’s intensity will fall approximately 6 dB for
each distance doubling (we have already remarked this point in Sec. 4.2.2 when discussing the clarity
index parameter). However this law is not well motivated perceptually: intensity expresses the ratio
of a sound source’s intensity to a reference level, whereas the perceived magnitude of intensity is
called loudness. Thus a mapping where the relative estimation of doubled distance follows “half-
loudness” rather than “half-intensity” seems preferable: the two scales are different. Without entering
into details, we can say that experimental results show that, for most sounds, an increase of 10 dB is
roughly equivalent to a doubling of loudness.8

However loudness (or intensity) increments can only operate effectively as distance cues in the
absence of other information, in particular reverberation. When reverberation is present the overall
loudness at a listener’s ear does not change much for very close and very distant sources: the distante-
dependent scaling applies only to the direct sound whereas the reflected energy remains approximately
constant. Reverberation is often not included in distance perception studies, thereby giving subjects
an incomplete and non-realistic information with respect everyday listening situations. In particular,
estimation of distance with anechoic stimuli is usually worse than in experiments with “optimal”
reverberation conditions. As an example, many experimental results show an overall underestimation
of the apparent distance of a sound source in an anechoic environment, which may be explained by the
absence of reverberation in the stimulus. Many studies report that in a reverberant context the change
in the proportion of reflected to direct energy, the so-called R/D ratio, functions as a stronger cue for
distance than intensity scaling. In particular a sensation of changing distance can occur if the overall
loudness remains constant but the the R/D ratio is altered. Note however that in some contexts the
possible R/D ratio variation can be limited by the size of the particular environmental context, causing
the cue to be less robust (e.g. in a small, acoustically treated room, the ratio would vary between
smaller limits than in a large room like a gymnasium). It can be said that reverberation provides the
“spatiality” that allows listeners to move from the domain of loudness inferences to the domain of
distance inferences, i.e. from an analytic listening attitude to an everyday listening attidude.

Distance perception is also affected by expectation or familiarity with the sound source. If the
sound source is completely synthetic (e.g., pulsed white noise), then a listener will typically concen-
trate on parametric changes in loudness and other cues that occur for different simulated distances
(in this case loudness probably plays a more important role than reverberation effects). On the other
hand, if the sound source is cognitively associated with a typical distance range, that range will be
more easily perceived than unexpected or unfamiliar distances. This is especially true for speech: as
an example, it is easier to simulate a whispering voice 20 cm away from your ear than it is to simulate
the same whisper 5 m away.

Distance-dependent spectral effects can also affect distance perception, although to a lesser extent

8We will return on the concept of loudness in Chapter Auditory based processing.
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than the cues discussed above. One effect is due to the influence of atmospheric conditions and air ab-
sorption: with increasing distance, higher frequencies of a complex sound are increasingly attenuated
by air humidity and temperature. There is little experimental evidence this spectral effect is actually
used by listeners in forming the distance of an auditory event, although some experimental results
suggest that, in the absence of other cues, a low-frequency emphasis applied to a stimulus would
be interpreted as “more distant” compared to an untreated stimulus. A second distance-dependent
spectral effect is produced in the so-called near field, i.e. for distances less than approximately 1 m.
Within this range it is not possible to assume the sound wavefronts to be planar, and the effect of
their curvature must be taken into account. The relatively simple sphere transfer function given in
Eq. (4.57) already shows what these effects are: by computing the response for the same angle of
incidence θ̃ but with varying normalized distances ρ, one would note that as the source approach the
sphere emphasis is added to lower frequencies. This phenomenon corresponds to the “darkening” of
tone color that occurs as a sound source is moved very close to one’s ear.

Note that all the cues discussed above are essentially monoural cues. An open question is whether
binaural listening improves the perception of distance. This could indeed be the case again in the
near field limit. The spherical head model shows that in this limit both the ILD and the ITD at low
frequencies are emphasized, especially for very lateralized sound sources (θ ∼ ±π). This effect is
sometimes termed auditory parallax, and has been interpreted by some to mean that the accuracy of
estimation of a sound from the side should be improved when compared to distance perception on
the median plane. There are numerous discrepancies in the literature, however, and the question of
binaural cues to distance is therefore still unresolved.

4.5.2.5 Dynamic cues

So far in this section we have examined sound source perception in the implicit assumption of static
conditions, i.e. with both listener and source not moving. However in everyday perception we use also
dynamic cues in addition to static ones to reinforce localization. These arise from active, sometimes
unconscious, motions of listeners, who change their position relative to the source. When we hear a
sound that we want to localize, we move e.g. in order to minimize the interaural differences, using
our head as a sort of “pointer”. Animals use movable pinnae for the same purpose (think of a cat).

Several studies have shown that allowing listeners to move their head can improve localization
ability. Listeners apparently integrate some combination of the changes in ITD, ILD, and movement
of spectral notches and peaks that occur with head movement over time, and subsequently use this
information. Perhaps the most clear example in this respect is represented by front/back confusions:
while these are common in static listening tests (see our discussion about cones of confusion), they
can be disambiguated and disappear when listeners are allowed to turn their heads during the sound
source localization task. A sound source located in the horizontal plane at θ = 30◦ could potentially
be confused with a source at θ = 150◦. A listener who is trying to localize this source will probably
attempt to center the auditory image by moving his head to the right, since ITD and ILD cues suggest
that the source is somewhere to the right, in spite of front-back ambiguity. If the sound source becomes
increasingly centered –i.e. interaural differences are minimized– consequently to rightward head
motion, then it must be in the front. If instead it becomes increasingly lateralized –i.e., the sound
becomes louder and arrives sooner at the right ear relative to the left– then it must be to the rear.

A second relevant example of the importance of dynamic cues is about externalization. We have
seen previously that IHL can occur in lateralization with headphone reproduction. It has been ob-
served that this effect is less likely to occur when head movement is allowed, probably for the same
reason that front/back confusion is avoided: dynamic cues arising from head motion can be used to
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disambiguate locations, while static conditions can potentially lead to judgments at a “default” posi-
tion inside or at the edge of the head. An even worse situation is when the sound scene is presented
through headphones without traking of head/body motion, and the listener can move. In this case dy-
namic cues are absent and the scene rotates together with the user, creating discomfort and preventing
externalization. The situation changes completely if visual cues are supplied, e.g. if one can move in a
fully immersive virtual environment and can see the virtual sound source. In this case it is quite likely
that the combination of vestibular and visual cues will enable externalization. In fact externalization
can occur even when listening to a television with a single earpiece: this is because vision is more
reliable than audition in spatial location, and therefore our brain “trusts” visual rather than auditory
feedback (the general mechanism underlying this phenomenon is known as “visual capture”).

Finally, active motion of the listener can provide useful cues for distance perception. If a listener
translates his or her head, the azimuth will undergo small or large variations depending on the sound
source distance. For sources that are very close, a small shift causes a large change in azimuth, while
for sources that are distant the azimuth change will be small. In the limit of infinite distance, there
will be no change in azimuth irrespective of the amount of head shift. This dynamic cue is sometimes
referred to as motion parallax, and is in many respects similar to its visual counterpart (a large, distant
sphere and a small, near sphere look the same, but if we move the different changes in perspective
reveal the different distances).

4.6 Algorithms for 3-D sound rendering

Before examining processing algorithms for 3-D sound rendering we have to understand that the
techniques to be developed depend on the type of system that is going to be used: the type of the
effectors (e.g loudspeakers vs. headphones), as well as their number and geometric arrangement (e.g.
stereo systems vs. 5 + 1 surround systems, etc.).

Stereo is the simplest system involving “spatial” sound. In order to place a sound on the left or to
the right, its signal is sent to the corresponding loudspeaker. If the same signal if sent to both speak-
ers, the speakers are wired “in phase”, and the listener is approximately equidistant from the speakers,
then the listener will perceive a “phantom source” located midway between the two loudspeakers. By
crossfading the signal from one speaker to the other, one can create the impression of the source mov-
ing continuously between the two louspeaker positions. With this technique however the perceived
source will never move outside the line segment between the two speakers.

Multichannel systems are the next step in complexity. The idea is to have a separate channel
for every desired direction, possibly including above and below. Commercial home-theater systems
are based on this idea. In typically reverberant environments, one can exploit the limitations of our
perception (see in Sec. 4.5.2 our discussion about azimuth perception in reverberant environments)
and use small loudspeakers everywhere, except for one large speaker (the “subwoofer”) that provides
the nondirectional, low-frequency content.

Headphone-based systems have some disadvantages compared to loudspeakers: headphones are
invasive and can be uncomfortable to wear for long periods of time; they have non-flat frequency
responses that can severely compromise spatialization effects; they tend to provide the impression of
too close sources, and do not compensate for listener motion unless a tracking system is used. On
the other hand there are two main advantages in using headphones: first, they eliminate reverberation
of the listening space; second, and probably more important, they allow to deliver distinct signals
to each ear, which greatly simplifies the design of 3-D sound rendering techniques. On the contrary
loudspeaker based systems suffer from “cross-talk”, i.e. the sound emitted by one loudspeaker will be
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Figure 4.27: Block scheme of a headphone 3-D audio rendering system based on HRTFs.

always heard by both ears. If one ignores the effects of the listening environment, headphone listen-
ing conditions can be roughly approximated from stereo loudspeakers using cross-talk cancellation
techniques, which try to pre-process the stereo signals in such a way that the sound emitted from one
loudspeaker is cancelled at the opposite ear. Using these techniques the phantom source can be placed
significantly outside of the line segment between the two loudspeakers and in particular elevation ef-
fects can be produced. The main problem is that the result will depend on where the listener is relative
to the speakers: proper effects are obtained only near the so-called “sweet spot”, a specific listener
location assumed by the system.

In this section we will focus on techniques for headphone-based systems.

4.6.1 HRTF-based rendering

The general idea in HRTF-based 3-D audio systems is to use measured HRIRs and HRTFs. Given
an anechoic signal and a desired virtual sound source position (θ, φ), a left and right signals are syn-
thesized by convolving the anechoic signal with the corresponding left and right head-related impulse
responses. A synthetic block scheme is given in Fig. 4.27. In the remainder of this section we summa-
rize the main steps involved in the development of a HRTF-based 3-D audio system, including HRTF
measurement and processing, approximation through synthetic HRTFs, and interpolation.

4.6.1.1 Measuring HRTFs

The typical setting for HRTF measurement is the following: an anechoic chamber, a set of speakers
mounted on a geodesic sphere (with a radius of at least one meter in order to avoid near-field effects),
at fixed intervals in azimuth and elevation. The listener is at the center of the sphere, with microphones
placed in each ear. HRIRs are then measured by playing an analytic signal and recording the corre-
sponding signals produced at the ears, for each desired virtual position.9 The listener and the speakers
do not need to be moved, facilitating the collection of the measurements. Microphone placing is an
issue: it can be placed at the entrance of a plugged ear canal, or near the eardrum to account for the
response of the ear canal. Techniques and equipment are explored in order to minimize measurement
variability, to improve the signal-to-noise ratio of the measurement hardware used and to determine
the optimal placement of the measurement microphone.

In most 3-D sound applications one typically wants to use a single set of HRTFs for every user.
One approach might be to use the features of a person who has “desirable” HRTFs, based on some

9There is a plethora of sophisticated techniques for Impulse Response estimation, which we do not discuss here
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criteria. A set of HRTFs from a good localizer could be used if the criterion were localization per-
formance. An alternative approach is to construct generalized HRTFs, that represent the common
features of a number of individuals. Binaural impulse responses from many individuals can be “spec-
trally averaged” in the Fourier domain. However this can cause the resultant HRTF to have diminished
spectral features relative to any particular individual’s spectral features. In the extreme case, one per-
son has a 20 dB spectral notch at 8 kHz, and another has a 20 dB spectral peak – the average is no
spectral feature at all.

Generalized HRTFs can also be obtained through the use of so-called “dummy heads”, which are
mannequins constructed from averaged anthropometric measures and represent standardized heads
with average pinnae and torso. The most widely used one is probably the KEMAR head (Knowles
Electronics Manikin for Auditory Research), although many others are commercially available. Mea-
surements with dummy heads are usually easier, since they are often part of integrated measurement
and analysis systems. The low frequency response will be better than with probe mics, since the mic is
built into the head; the results will be more replicable since the mic and head remain fixed in position.
Moreover, 3-D sound systems based on dummy head HRTFs will be closely matched to recordings
made by the same binaural head, allowing compatibility between the two different types of process-
ing. One dummy head might sound more natural to a particular set of users than another, depending
on the microphones, the technique used for simulating the ear canal, the head’s dimensions, and so
on. The head size (and correspondingly, its diffraction effects and overall ITD) is a major component
in the suitability of one dummy head versus another.

4.6.1.2 Post-processing of measured HRTFs

Measured HRTFs undergo a series of processing steps. First, the “blank” portion at the beginning of
the impulse response, that results from the time needed for the sound to travel from the speaker to the
microphone, is typically discarded. This can be applied to all the impulse responses by investigating
the case involving the shortest path, i.e., the measurement position with the ear nearest the loud-
speaker. One can even customize the delay inherent to each HRIR pair: by inserting or subtracting
blank samples at the start of the impulse response corresponding to the ear furthest from the ana-
lytic signal, the overall ITD cue can be customized to a particular head size, or even exaggerated. A
second typical procedure is post-equalization of HRTFs to eliminate potential spectral nonlinearities
originated from the loudspeaker, the measuring microphone, and the headphones used for playback.
As an example, probe microphone are usually small and are especially inefficient at low (< 400 Hz)
frequencies, making high-pass filtering or “bass boosting” a fairly common HRTF postequalization
procedure. A frequency curve approximating the ear canal resonance, usually derived from some
standard equalization, can be applied if it was not part of the impulse response measurement. Since
the ear canal resonance is almost independent on the angle of incidence, this needs to be done only
once. For most applications, the listener’s own ear canal resonance will be present during headphone
listening; this requires removal of the ear canal resonance that may have been present in the original
measurement, to avoid a “double resonance”.

A final post-processing procedure is often applied to reduce redundancy in HRTF data. Spec-
tral features that are common to raw HRTFs at all locations do not contain important directional
cues, and do not need to be encoded in each single HRTF. Therefore a so-called Common Transfer
Function (CTF) is often estimated, by computing the mean log-magnitude of the HRTFs measured
at several spatial locations. The CTF will include the direction-independent spectral features shared
by all HRTFs (e.g., the ear canal resonance). It will also include systematic measurement artifacts, if
any. During postprocessing, the CTF can be removed from the raw HRTFs to yield the Directional
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Transfer Function (DTF). The DTF is a function of θ and φ, and is the quantity that contains spectral
cues responsible for spatial hearing. Let C(ω) be the known CTF and Dl,r(θ, φ, ω) be the unknown
left and right ear DTFs respectively. Then Dl,r are estimated from Hl,r and C from the equality

Hl,r(θ, φ, ω) = C(ω)Dl,r(θ, φ, ω). (4.59)

The CTF captures the overall structure and dynamic range of the HRTFs, allowing each DTF to
operate over a smaller dynamic range. This division allows us to vary a smaller parameter set (corre-
sponding to only the DTF) to achieve space-varying HRTF approximations. Many of the algorithms
described in the next sections can be applied either to the “raw” HRTFs or to the DTFs.

It is also known that it is not really necessary to preserve phase information in the interpolated
HRTF, as humans are sensitive mostly to the magnitude spectrum for the localization purposes [40]
and the measured phase is likely to be contaminated anyway due to difficulties of measuring it accu-
rately because of sampling and other problems.

[40] A. Kulkarni, S. K. Isabelle, and H. S. Colburn (1999). Sensitivity of human subjects to
head-related transfer-function phase spectra, J. Acoust. Soc. Am., vol. 105, no. 5, pp. 2821-2840.

Having acquired HRTF magnitude responses, one can design low-order filters that approximate
the original HRTFs, in a perceptually motivated way. The resulting filters are synthetic HRTFs, and
should be perceptually undistinguishable from the measured ones while providing significant compu-
tational advantages. Convolving the sound stimuli with a low-order filter requires little computational
resources, while the direct use of measured HRTFs requires a convolution with long FIR filters. The
reported duration of measured HRIRs varies across studies: assuming an average duration of∼ 10 ms,
the corresponding FIR filter length is ∼ 440 samples for a sampling rate of 44.1 kHz. Despite the
ever increasing computational power at our disposal, such filter sizes can make it difficult to synthesize
complex acoustic environments in real time, particularly when multiple sound sources and reverberant
environments have to be rendered.

A perceptually appropriate low-order representation of the HRTFs may also provide insight into
sound localization mechanisms. The usefulness of various cues embodied in the HRTF is incompletely
understood, and identifying an appropriate simple representation can be used to study attributes that
lead to directional perceptions. Moreover, an appropriate low-order model can be used to study the
physical mechanisms that produce certain features in the HRTF. Gaining this insight could result in
computational methods for generating HRTFs that would not rely upon making empirical measure-
ments from individuals.

We can schematically divide the techniques for deriving synthetic HRTFs into two families. In
pole-zero models the modeling problem is viewed as one of system identification, which has several
classical solutions. One drawback is that the coefficients are usually complicated functions of azimuth
and elevation, and have to be tabulated, which destroys the usefulness of the model. Series expansions
let one represent the HRTF as a weighted sum of simpler basis functions. While this is useful for
inspecting the data, the run-time complexity of such models severely limits their usefulness. Below
we discuss both approaches.

4.6.1.3 Synthetic HRTFs: pole-zero models

We now briefly discuss the pole-zero modeling approach. For a given direction (θ, φ), we want to
approximate the corresponding HRTF, H(z), with a rational transfer function Ĥ(, z) defined as

Ĥ(z) =
b0 +

∑q
k=1 bkz

−k

1−∑p
k=1 akz−k

=
B(z)
A(z)

. (4.60)
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For simplicity, here and in the following we omit in the notation any dependence on (θ, φ): in par-
ticular the coefficient vectors b = {bk},a = {ak} will depend on θ, φ. We will call this a pole-zero
model (or an ARMA model)10 of the HRTFs. In the particular case q = 0, Eq. (4.60) is an all-pole
model: we have already seen in Chapter Sound modeling: signal based approachesthat linear prediction can be
used in this case to estimate the coefficients {ak} that allow Ĥ to best approximate H . In the general
case q ≥ 1, we can still re-state the problem as a problem of minimizing some error function. In the
hypothesis that the head related impulse response h[k] have lengthm, the most straightforward choice
is to minimize the energy of the difference signal (the Least-Squares Error):

E{h− ĥ} =
m∑

k=0

(
h[k]− ĥ[k]

)2
=

1
2π

∫ π

−π

∣∣∣∣H(ejω)− B(ejω)
A(ejω)

∣∣∣∣
2

dω, (4.61)

In practical applications the desired response H(ωk) is specified on a set of L “design frequencies”
ωk = 2kπ/LFs and the error to be minimized will have e.g. the form

E{h− ĥ} ∼ 1
L

L−1∑

k=0

(
H(ωk)− Ĥ(ωk)

)2
. (4.62)

Minimizing the error E{h − ĥ} means finding the coefficient vectors b,a for which the gradient of
E{h− ĥ} is null, that is solving the set of equations

∇aE{h− ĥ} = ∇bE{h− ĥ} = 0, (4.63)

where the notation∇xE stands for the gradient ofE with respect to the vector x. We do not enter into
the mathematics involved in writing and solving these equations and refer the reader to the literature
on linear Least-Squares Error estimation.

Instead we note that, since our goal is to derive a fit to the perceptually salient features in the HRTF
set using a minimal number of model coefficients, an error metric that utilizes absolute LS error on
a linear scale is not the best choice, whereas an error criteria based on the ratio of the approximated
to desired magnitude of the HRTF across frequency (e.g., the difference in log magnitude) might
be perceptually more appropriate. Since both spectral peaks and spectral notches provide relevant
information about the sound source location, minimizing the error on a log scale ensures that the
solution is not biased toward peaks relative to notches. An example of such a perceptually motivated
error criterion is

Elog{h− ĥ} =
1
L

L−1∑

k=0

(
ln |H(ωk) | − ln

∣∣∣ Ĥ(ωk)
∣∣∣
)2
, (4.64)

where many other variants have been proposed in the literature. A drawback of this kind of log-
magnitude response errors is that determining the pole-zero model parameters is a nonlinear problem.
A possible approach to solve the resulting equations is using“quasi-Newton” gradient search algo-
rithms. Note also that the error function (4.64) does not consider errors in the phase response. This is
not a major issue since listener’s localization accuracy is not significantly degraded when appropriate
interaural time delays are used and HRTFs are represented by their minimum phase responses (al-
though it is also true that listeners can hear differences when they are asked to discriminate between
signals passed through measured and approximated HRTFs that differ only in their phase spectrum).
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Figure 4.28:

4.6.1.4 Synthetic HRTFs: series expansions

Based on the notions given in Sec. 4.5.1, one can argue on a physical basis that HRTFs should be
completely determined by a relatively small number of physical parameters: the average head radius,
head eccentricity, maximum pinna diameter, etc. This suggests that the intrinsic dimensionality of the
HRTFs might be small, and that their complexity primarily reflects the fact that we are not viewing
them correctly.

Among the statistical procedures used to provide a “simpler” representation of a set of correlated
measures, a powerful and very popular one is Principal component analysis (PCA), also known as
Karhunen-Loève transformation. The central idea of PCA is to reduce the dimensionality of a data set
in which there are a large number of interrelated measures, while retaining as much as possible of the
variation present in the data. A small set of basis functions is derived, and these are used to compute
the principal components, i.e. the sets of weights that reflect the relative contributions of each basis
function to the original data.

Assume we wish to represent M N -dimensional vectors x1 . . .xM with a 1-dimensional projec-
tion (a line) through the sample mean. The line can be written as

x = m + ae, (4.65)

where e is a unit vector in the direction of the line, a is a constant coefficient that indicates the distance
of any x from the sample meanm = 1/M

∑M
k=1 xk. The kth vector xk is represented as m + ake,

where the optimal coefficient ak can be obtained by minimizing the “squared error criterion function”

E(a1 . . . , ak,e) =
M∑

k=1

‖ (m− ake)− x ‖2 . (4.66)

For a given direction e, the optimal coefficients are clearly ak = eT (xk −m), i.e. they are obtained
by projecting the data vectors onto the line e that passes through the sample mean. The question is

10See linear prediction in Chapter Sound modeling: signal based approaches.
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now: what is the optimal direction e? By exploiting the expression written above for the optimal ak’s,
the error E can be rewritten after some straightforward algebra as

E(a1 . . . , ak, e) =
M∑

k=1

‖ (m− ake)− xk ‖2 = . . . = −eT Se +
M∑

k=1

‖xk −m ‖2 , (4.67)

where S =
∑M

k=1(xk −m)(xk −m)T is the N ×N scattering matrix of the data (which coincides
with the covariance matrix except for a multiplying factor 1/(N − 1)). Therefore minimizing E
means maximizing the function f(e) = eT Se, with the constraint ‖ e ‖ = 1. This can be done
using Lagrange multipliers.11 For our PCA problem we have L(e, λ) = eT Se − λ(1 − eT e), and
∇eL(e, λ) = 2Se− 2λe. In conclusion the points e that maximize f(e) are those for which

Se = λe, (4.68)

i.e. are the eigenvectors of S corresponding to the eigenvalue λ. The single “best” line that represents
the data is found by picking the eigenvector corresponding to the largest eigenvalue of S so to ensure
that eT Se = λ is maximized.

This can be readily extended to larger dimensions. If we wish to represent the xk’s on a q-
dimensional hyperplane through the sample mean, written as

x = m +
q∑

i=1

aiei, (4.69)

then we project the data onto the q eigenvectors of S corresponding to the q largest eigenvalues. If
we choose to use all eigenvectors, that is project the data to all eigenvectors and then add them, we
will get the original data back (with no dimensionality reduction). From a geometrical standpoint, the
eigenvectors represent the principal axes along which the data (and hence the covariance matrix) show
largest variance. The weight coefficients ai are called the principal components. Note also that the
basis functions are derived in such a way that the first function and its weights capture the majority
of common variation present in the data and that the remaining functions and weights reflect decreas-
ing common variation and increasing unique variation. The number q of basis functions required to
provide an adequate representation of the data is largely a function of the amount of redundancy or
correlation present in the data. The greater the redundancy, the smaller the number of basis functions
needed.

Now suppose we have measured directional transfer functions D, on M directions (θk, φk) and
on N frequency points: D(θk, φk, ωj), k = 1 . . .M , j = 1 . . . N . We can apply PCA to the particular
set of M N -dimensional vectors xk constructed as xk,j = log |Dk(θk, φk, ωj) |, i.e. we work on the
log magnitudes of the DTFs (as already remarked, approximation of log-magnitudes is perceptually
more appropriate than approximation of linear magnitudes). The result is a set of q basis vectors ei

(where ei,j = ei(ωj)), such that for the kth direction (θk, φk) the DTF can be approximated as

log |D(θk, φk, ωj) | ∼
q∑

i=1

ai(θk, φk)ei(ωj). (4.70)

Accurate evaluation of the procedure sketched above would show that the first five basis functions
(q = 5)are sufficient to accurately represent the magnitudes of the DTF set, and listening tests would

11Reminder: to find the extremum of a function f(x) subject to a constraint g(x) = 0, one constructs the Lagrange
function L(x, λ) = f(x) + λg(x) and looks for a zero of the gradient ∇xL(x, λ).
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Figure 4.29: (a) Bilinear interpolation, and (b) Interpolation of zeros

show a high correlation between responses to the synthesized and measured conditions. Furthermore,
it is possible to relate series expansions to anthropometric measurements and to scale them to account
for individual differences .

A similar procedure can also be applied to the complex HRTF rather than to to the log magnitude.
Expanding the log-magnitude can be viewed as a cascade model, and is most natural for representing
head diffraction, ear-canal resonance, and other operations that occur in sequence. Expanding the
complex HRTF can be viewed as a parallel model, and is most natural for representing shoulder
echoes, pinna echoes, and other multipath phenomena. One drawback of this kind of representations
is that they require significant computation for real-time synthesis when head motion or source motion
is involved, because the weights ai are relatively complex functions of azimuth and elevation that must
be tabulated. This remark leads us to the topic of HRTF interpolation.

4.6.1.5 Interpolation

HRTF measurements can only be made a finite set of locations, and when a sound source at an in-
termediate location must be rendered, the HRTF must be interpolated. If interpolation is not applied
(e.g.. if a nearest neighbor approach is used) audible artifacts like clicks and noise are generated in
the sound spectrum when the source position changes.

A straightforward way to perform interpolation directly on the HRIR samples is the bilinear
method, which simply consists of computing the response at a given point (θ, φ) as a weighted mean
of the measured responses associated with the four nearest points. More precisely, if the correspond-
ing set of HRIRs has been measured over a spherical grid with steps θgrid and φgrid, the estimate of
the HRIR at an arbitrary (θ, φ) can be obtained as (see Fig. 4.29(a))

ĥ[n] = (1− cθ)(1− cφ)ha[n] + cθ(1− cφ)hb[n] + cθcφhc[n] + (1− cθ)cφhd[n], (4.71)

where hα[n] (α = a, b, c, d) are the HRIRs associated with the four nearest points to the desired
position. The parameters cθ and cφ are computed as

cθ =
θ mod θgrid

θgrid
, cφ =

φ mod φgrid

φgrid
. (4.72)

Several refinements can be applied to this simple technique, in order to improve efficiency. In partic-
ular, reduced-order HRIR such as those described earlier in this section can be used, and interpolation
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can be performed using only three grid points (those which form a triangle around the desired po-
sition). Since some HRTF features arise due to coherent addition or cancelation of reflected and
diffracted waves, interpolation may not preserve these features and produce perceptually poor results.
Moreover, the interpolating filters are required to be minimum-phase: if this requirement is not sat-
isfied, severe comb-filtering effects in the frequency domain can be produced when the phase delays
of the interpolating filters vary considerably. Also, to capture fine details of the HRTF the sampling
must be fine enough, i.e. satisfy a Nyquist criterion. Interpolation can be performed in the frequency
domain as well (i.e. estimate the DFT of ĥ by interpolating the DFTs of the hα’s). Besides linear
approaches, geometric and spline interpolation can be used as well.

If synthetic HRTFs in the form of pole-zero filters are being used, interpolation can be performed
on the poles and the zeros themselves. The case of an all-zero filter is relatively straightforward.
Suppose that we want to interpolate between two transfer functions Hα(z) (α = a, b) of the form

Hα(z) = 1 +
q∑

k=1

bα,kz
−k =

q∏

k=0

(1− cα,kz
−1), α = a, b, (4.73)

where bα,0 = 1 without loss of generality, and where we are assuming that the zeros of both filters are
sorted according to their phases. Then an interpolated filter Ĥ(z) =

∏q
k=0(1−ĉkz−1) can be obtained

by (1) pairing the zeros according to angular proximity, and (2) computing ∀k the interpolated zero
ĉk = (1 − ρ)ca,k + ρcb,k. Note that if the Hα are minimum-phase the interpolated filter is also
minimum-phase (see also Fig. 4.29(b))

If we use pole-zero synthetic HRTFs, i.e. of the form 4.60 with p > 0, then interpolation becomes
more complicated. One can still use convex combinations of pole and zero values from neighbouring
DTF approximations (note in particular that linear combination of stable poles is guaranteed to be
stable). However a naive realization of this approach can result in erratic and occasionally large errors
of the interpolated filters. In order to achieve regularity in the interpolation, more refined algorithms
are needed that provide pairing and ordering on the entire HRTF database.

Reconstruction of the underlying continuous coefficient functions from the samples obtained is an
inherently ill-posed problem because the samples do not uniquely define the functions in the absence
of additional assumptions. Furthermore, the samples are usually corrupted by the presence of noise.
Regularization theory [Tikhonov and Arsenin 1977] offers a general framework for transforming ill-
posed problems to well posed problems through the use of smoothness constraints. Here smoothness
constraints imply that a small change in θ, φ induces a small change in the coefficients: the HRTFs
originate from a physical system of limited spatial extent. Various methods, including linear interpo-
lation, could be used to reconstruct continuous coefficients. Alternatively, spline models [Gu (1989)]
can be used.

4.6.2 Structural models

A synthetic block scheme is given in Fig. 4.30.
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Figure 4.30: Block scheme of a headphone 3-D audio rendering system based on a structural model.

4.7 Commented bibliography

Room acoustics: Wallace C. Sabine has in a way invented the science of concert hall acoustics in the
early ’900s. For a review of his work and early literature on concert hall acoustics see [Sabine, 1939].
Note that the Paul E. Sabine author of this paper is the cousin of Wallace. A very complete discussion
of physical aspects of room acoustics is provided by Kuttruff [1991]: Section 4.2.1 is almost entirely
based on this book.

Concerning the research on perceptual attributes of reverberation, the tutorial paper by Beranek
[1992] summarizes the main results obtained up to 1992. Research at IRCAM tried to provide a
minimal set of independent parameters that give an exhaustive characterization of room acoustic qual-
ity [Jot, 1999]. These parameters are divided into three categories, that relate to room perception,
source/room interaction, and source perception, respectively.

The first artificial reverberator was proposed by Manfred Schroeder in the early ’60’s. The re-
verberator realized in our example M-4.3 is in fact the Schroeder [1962]reverberator. Schroeder also
provided a method for measuring the reverberation time [Schroeder, 1965], which can be used to
realize the code in example M-4.1. Moreover, Schroeder [1970] proposed the combination of early
reflections and late reverberation depicted in our Fig. 4.11(a).

An extensive experimentation on structures for artificial reverberation was conducted by Andy
Moorer in the late seventies. He extended the work done by Schroeder in relating some basic com-
putational structures (e.g., tapped delay lines, comb and allpass filters) with the physical behavior of
actual rooms. The reverberator realized in our example M-4.4 is in fact the Moorer [1979] rever-
berator. He also proposed the combination of early reflections and late reverberation depicted in our
Fig. 4.11(b).

Gardner [1998] has explored the use of structures based on all-pass and nested all-pass filters (see
in particular Figs. 4.9 and 4.10). This reference, together with [Rocchesso, 2002], also provides an
extensive overview of reverberation algorithms.

Feedback Delay Networks were first suggested for artificial reverberation by Gerzon [1971, 1972],
who noted that several comb filters could “sound good” when cross-coupled. He proposed an orthog-
onal matrix feedback around a parallel bank of delay lines, as a means of maximizing cross-coupling.
Some years later Stautner and Puckette [1982] independently suggested similar ideas and proposed
a four-channel FDN reverberator based on the feedback matrix given in our Eq. (4.38). Jot [Jot and
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Chaigne, 1991, Jot, 1991, 1997] developed a systematic FDN design methodology allowing largely
independent setting of reverberation time in different frequency bands. Rocchesso and Smith [1997]
have provided further insights about the structures of feedback matrices in FDNs, and discussed analo-
gies between FDNs and DWNs. General discussions of the use of FDNs for artificial reverberation
are provided by Gardner [1998], Rocchesso [2002], Smith [2006]

Waveguide meshes were first studied by Van Duyne and Smith [1993, 1995]. Since then many
studies have focused on techniques for reducing dispersion errors. Savioja and Välimäki [2000, 2003]
have proposed interpolation and frequency-warping techniques to reduce dispersion as function of
both frequency and propagation direction. Fontana and Rocchesso [1998, 2001] have focused on 2-D
meshes, and provided results both about applications to membrane modeling and about general numer-
ical aspects: they compared square, triangular, and hexagonal meshes in terms of sampling efficiency
and dispersion error. Bilbao [2004] has also investigated in details many numerical and computa-
tional properties of the waveguide mesh, in particular he analyzed dispersion properties of various
mesh topologies using von Neumann analysis and he provided a unified view of the digital waveguide
mesh and wave digital filters as particular classes of energy invariant finite difference schemes. Fi-
nally, another topic addressed in the literature is the design of mesh boundaries, with a special focus
on modeling diffusion. This problem was addressed by Laird et al. [1999], and later by Lee and Smith
[2004], who used quadratic residue sequences to design maximally diffusing boundaries.
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