
Chapter 8

Algorithms

Giovanni De Poli

Copyright c© 2006 by Giovanni De Poli.
All rights reserved except for paragraphs labeled as adapted from <reference>.

8.1 Markov Models and Hidden Markov Models

Andrei Andreevich Markov first introduced his mathematical model of dependence, now known as
Markov chains, in 1907. A Markov model (or Markov chain) is a mathematical model used to rep-
resent the tendency of one event to follow another event, or even to follow an entire sequence of
events. Markov chains are matrices comprised of probabilities that reflect the dependence of one or
more events on previous events. Markov first applied his modeling technique to determine tendencies
found in Russian spelling. Since then, Markov chains have been used as a modeling technique for a
wide variety of applications ranging from weather systems to baseball games.

Statistical methods of Markov source or hidden Markov modeling (HMM) have become increas-
ingly popular in the last several years. The models are very rich in mathematical structure and hence
can form a basis for use in a wide range of applications. Moreover the models, when applied properly,
work very well in practice for several important applications.

8.1.1 Markov Models or Markov chains

Markov models are very useful to represent families of sequences with certain specific statistical
properties. To explain the idea consider a simple 3 state model of the weather. We assume that once
a day, the weather is observed as being one of the following: rain (state 1); cloudy (state 2); sunny
(state 3).

If we examine a sequence of observation during a month, the state rain appears a few times, and
it can be followed by rain, cloud or sun. Given a long sequence of observations, we can count the
number of times the state rain is followed by, say, a cloudy state. From this we can estimate the
probability that a rain is followed by a cloudy state. If this probability is 0.3 for example, we indicate
it as shown in Figure 8.1. The figure also shows examples of probabilities for every state to transition

8.2 Algorithms for Sound and Music Computing

Figure 8.1: State transition of the weather Markov model (from Rabiner 1999).

to other states, including itself. The first row of the matrix A

A = {ai,j} =

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 (8.1)

shows the three probabilities more compactly (notice that their sum is unity). Similarly the probabil-
ities that the cloudy state would transition into the three states can be estimated, and is shown in the
second row of the matrix. This 3 × 3 matrix is called a state transition matrix, and is denoted as A
and the coefficients have the properties ai,j ≥ 0 and

∑
j ai,j = 1 since they obey standard stochastic

constraints. Figure 8.1 is called a Markov model.
Formally a Markov model (MM) models a process that goes through a sequence of discrete states,

such as notes in a melody. At regular spaced, discrete times, the system undergoes a change of state
(possibly back to same state) according to a set of probabilities associated with the state. The time
instances for a state change is denoted t and the actual state at time t as x(t). The model is a weighted
automaton that consists of:

• A set of N states, S = {s1, s2, s3, . . . , sN}.

• A set of transition probabilities, A, where each ai,j in A represents the probability of a transi-
tion from si to sj . I.e ai,j = P [x(t) = j |x(t− 1) = i].

• A probability distribution, π, where πi is the probability the automaton will begin in state si, i.e
πi = P (x1 = i), 1 ≤ i ≤ N . Notice that the stochastic property for the initial state distribution
vector is

∑
i πi = 1.

• E, a subset of S containing the legal ending states.

In this model, the probability of transitioning from a given state to another state is assumed to depend
only on the current state. This is known as the Markov property.

Given a sequence or a set of sequences of similar kind (e.g., a long list of melodies from a com-
poser) the parameters of the model (the transition probabilities) can readily be estimated. The process

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.3

of identifying the model parameters is called training the model. In all discussions it is implicitly
assumed that the probabilities of transitions are fixed and do not depend on past transitions.

Suppose we are given a Markov model (i.e., A given). Given an arbitrary state sequence x =
[x(1), x(2), ..., x(L)] we can calculate the probability that x has been generated by our model. This is
given by the product

P (x) = P (x(1))× P (x(1) → x(2))× P (x(2) → x(3))× · · · × P (x(L− 1) → x(L))

where P (x(1)) = π(x(1)) is the probability that x(1) is the initial state, P (x(k) → x(m)) is the
transition probability for going from x(k) to x(m), and can be found from the matrix A. For example
with reference to the weather Markov model of equation 8.1, given that the weather on day 1 is sunny
(state 3), we can ask the question: What is the probability that the weather for next 7 days will be
”sun-sun-rai-rain-sun-cloudy-sun . .”? This probability can be evaluated as

P = π3 · a33 · a33 · a31 · a11 · a13 · a32 · a13

= 1(0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)
= 1.536× 10−4

The usefulness of such computation is as follows: given a number of Markov models (A1 for
a composer, A2 for a second composer, and so forth) and given a melody x, we can calculate the
probabilities that this melody is generated by any of these models. The model which gives the highest
probability is most likely the model which generated the sequence.

8.1.2 Hidden Markov Models

A hidden Markov model (HMM) is obtained by a slight modification of the Markov model. Thus
consider the state diagram shown in Figure 8.1 which shows three states numbered 1, 2, and 3. The
probabilities of transitions from the states are also indicated, resulting in the state transition matrix
A shown in equation 8.1. Now we can suppose that we can not observe directly the state, but only
a symbol that is associated in a probabilistic way to the state. For example when the weather system
is in a particular state, it can output one of four possible symbols L, M, H, VH (corresponding to
temperature classes low, medium, high, very high), and there is a probability associated with each of
these. This is summarized in the so-called output matrix B

B = {bi,j} =

0.4 0.3 0.2 0.1
0.2 0.5 0.2 0.1
0.1 0.1 0.4 0.4

 (8.2)

The element bi,j represents the probability of observing the temperature class j when the weather is in
the (non observable) state i, i.e. bi,j = P (x(t) = si|x(t) = j). For example when the weather is rainy
(state i = 1), the probability of measuring medium temperature (output symbol j = 2) is b1,2 = 0.3.

More formally, an HMM requires two things in addition to that required for a standard Markov
model:

• A set of possible observations, O = {o1, o2, o3, . . . , on}.

• A probability distribution B over the set of observations for each state in S.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.4 Algorithms for Sound and Music Computing

Basic HMM problems In order to apply the hidden Markov model theory successfully there are
three problems that need to be solved in practice. These are listed below along with names of standard
algorithms which have been developed for these.

1. Learn structure problem. Given an HMM (i.e., given the matrices A and B) and an output
sequence o(1), o(2), . . . , compute the state sequence x(k) which most likely generated it. This
is solved by the famous Viterbi’s algorithm (see 8.1.4.2).

2. Evaluation or scoring problem. Given the HMM and an output sequence o(1), o(2), . . . com-
pute the probability that the HMM generates this. We can also view the problem as one of
scoring how well a given model matches a given output sequence. If we are trying to choose
among several competing models, this ranking allow us to choose the model that best matches
the observations. The forward-backward algorithm solves this (see 8.1.4.1).

3. Training problem. How should one design the model parameters A and B such that they are
optimal for an application, e.g., to represent a melody? The most popular algorithm for this is
the expectation maximization algorithm commonly known as the EM algorithm or the Baum-
Welch algorithm (see Rabiner [1989] for more details).

Figure 8.2: Block diagram of an isolated word recognizer (from Rabiner 1999).

For example let us consider a simple isolated word recognizer (see Figure 8.2). For each word we
want to design a separate N -state HHM. We represent the speech signal as a time sequence of coded
spectral vectors. Hence each observation is the index of the spectral vector closest to the original
speech signal. Thus for each word, we have a training sequence consisting of repetitions of codebook
indices of the word.

The first task is to build individual word models. This task is done by using the solution to Prob-
lem 3 to estimate model parameters for each word model. To develop an understanding of physical
meaning of the model state, we use the solution to Problem 1 to segment each of the word state se-
quence into states, and then study the properties of the spectral vectors that lead to the observations
occurring in each state. Finally, once the set of HMMs has been designed, recognition of an unknown

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.5

word is performed using the solution to Problem 2 to score each word model based on the observation
sequence, and select the word whose model score is highest.

We should remark that the HMM is a stochastic approach which models the given problem as a
doubly stochastic process in which the observed data are thought to be the result of having passed the
true (hidden) process through a second process. Both processes are to be characterized using only
the one that could be observed. The problem with this approach, is that one do not know anything
about the Markov chains that generate the speech. The number of states in the model is unknown,
there probabilistic functions are unknown and one can not tell from which state an observation was
produced. These properties are hidden, and thereby the name hidden Markov model.

8.1.3 Markov Models Applied to Music

Hiller and Isaacson (1957) were the first to implement Markov chains in a musical application. They
developed a computer program that used Markov chains to compose a string quartet comprised of four
movements entitled the Illiac Suite. Around the same time period, Meyer and Xenakis (1971) realized
that Markov chains could reasonably represent musical events. In his book Formalized Music Xenakis
[1971], Xenakis described musical events in terms of three components: frequency, duration, and
intensity. These three components were combined in the form of a vector and then were used as the
states in Markov chains. In congruence with Xenakis, Jones (1981) suggested the use of vectors to
describe notes (e.g., note = pitch, duration, amplitude, instrument) for the purposes of eliciting more
complex musical behavior from a Markov chain. In addition, Polansky, Rosenboom, and Burk (1987)
proposed the use of hierarchical Markov chains to generate different levels of musical organization
(e.g., a high level chain to define the key or tempo, an intermediate level chain to select a phrase of
notes, and a low level chain to determine the specific pitches). All of the aforementioned research
deals with the compositional aspects and uses of Markov chains. That is, all of this research was
focused on creating musical output using Markov chains.

8.1.3.1 HMM models for music search: MuseArt

In the MuseArt system for music search and retrieval, developed at Michigan University by Jonah
Shifrin, Bryan Pardo, Colin Meek, William Birmingham, musical themes are represented using a
hidden Markov model (HMM).

Representation of a query. The query is treated as an observation sequence and a theme is judged
similar to the query if the associated HMM has a high likelihood of generating the query. A piece of
music is deemed a good match if at least one theme from that piece is similar to the query. The pieces
are returned to the user in order, ranked by similarity.

A query is a melodic fragment sung by a single individual. The singer is asked to select one
syllable, such as ta or la, and use it consistently during the query. The consistent use of a single
consonant-vowel pairing lessens pitch-tracker error by providing a clear onset point for each note,
as well as reducing error caused by vocalic variation. A query is recorded as a .wav file and is
transcribed into a MIDI based representation using a pitch-tracking system. Figure 8.3 shows a
time-amplitude representation of a sung query, along with example pitch-tracker output (shown as
piano roll) and a sequence of values derived from the MIDI representation (the deltaP itch, IOI and
IOIratio values). Time values in the figure are rounded to the nearest 100 milliseconds. We define
the following.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.6 Algorithms for Sound and Music Computing

Figure 8.3: A sung query (from Shifrin 2002)

• A note transition between note n and note n + 1 is described by the duple < deltaP itch,
IOIratio >.

• deltaP itchn is the musical interval, i.e. the pitch difference in semitones between note n and
note n+ 1.

• IOIration is IOIn/IOIn+1, where the inter onset interval (IOIn) is the difference between
the onset of notes n and n+ 1. For the final transition, IOIn = IOIn/durationn+1.

A query is represented as a sequence of note transitions. Note transitions are useful because they
are robust in the face of transposition and tempo changes. The deltaP itch component of a note
transition captures pitch-change information. Two versions of a piece played in two different keys
have the same deltaP itch values. The IOIratio represents the rhythmic component of a piece. This
remains constant even when two performances are played at very different speeds, as long as relative
durations within each performance remain the same. In order to reduce The number of possible IOI
ratios is reduced by quantizing them to one of 27 values, spaced evenly on a logarithmic scale. A
logarithmic scale was selected because data from a pilot study indicated that sung IOIratio values
fall naturally into evenly spaced bins in the log domain.

The directed graph in Figure 8.4 represents a Markov model of a scalar passage of music. States
are note transitions. Nodes represent states. The numerical value below each state indicates the
probability a traversal of the graph will begin in that state. As a default, all states are assumed to be
legal ending states. Directed edges represent transitions. Numerical values by edges indicate transition
probabilities. Only transitions with non-zero probabilities are shown.

In Markov model, it is implicitly assumed that whenever state s is reached, it is directly observable,
with no chance for error. This is often not a realistic assumption. There are multiple possible sources
of error in generating a query. The singer may have incorrect recall of the melody he or she is
attempting to sing. There may be production errors (e.g., cracked notes, poor pitch control). The
transcription system may introduce pitch errors, such as octave displacement, or timing errors due to
the quantization of time. Such errors can be handled gracefully if a probability distribution over the set
of possible observations (such as note transitions in a query) given a state (the intended note transition
of the singer) is maintained. Thus, to take into account these various types of errors, the Markov
model should be extended to a hidden Markov Model, or HMM. The HMM allows us a probabilistic

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.7

Figure 8.4: Markov model for a scalar passage (from Shifrin 2002)

map of observed states to states internal to the model (hidden states). In the system, a query is a
sequence of observations. Each observation is a note-transition duple, < deltaP itch, IOIratio >.
Musical themes are represented as hidden Markov models whose states also corresponds to note-
transition duples. To make use of the strengths of a hidden Markov model, it is important to model
the probability of each observation oi in the set of possible observations, O, given a hidden state, s.

Making Markov Models from MIDI. Our system represents musical themes in a database as
HMMs. Each HMM is built automatically from a MIDI file encoding the theme. The unique duples
characterizing the note transitions found in the MIDI file form the states in the model. FigureFig-
ure 8.4 shows a passage with eight note transitions characterized by four unique duples. Each unique
duple is represented as a state. Once the states are determined for the model, transition probabilities
between states are computed by calculating what proportion of the time state a follows state b in the
theme. Often, this results in a large number of deterministic transitions. Figure 8.5 is an example
of this, where only a single state has two possible transitions, one back to itself and the other on to
the next state. Note that there is not a one-to-one correspondence between model and observation se-

Figure 8.5: Markov model for Alouette fragment (from Shifrin 2002)

quence. A single model may create a variety of observation sequences, and an observation sequence

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.8 Algorithms for Sound and Music Computing

may be generated by more than one model. Recall that our approach defines an observation as a du-
ple, ¡deltaPitch, IOIratio¿. Given this, the observation sequence q = {(2, 1), (2, 1), (2, 1)} may be
generated by the HMM in Figure 8.4 or the HMM in Figure 8.5.

Finding the best target. The themes in the database are coded as HMMs and the query is treated as
an observation sequence. Given this, we are interested in finding the HMM most likely to generate the
observation sequence. This can be done using the Forward algorithm. The Forward algorithm, given
an HMM and an observation sequence, returns a value between 0 and 1, indicating the probability the
HMM generated the observation sequence. Given a maximum path length, L, the algorithm takes all
paths through the model of up to L steps. The probability each path has of generating the observation
sequence is calculated and the sum of these probabilities gives the probability that the model generated
the observation sequence. This algorithm takes on the order of |S|2L steps to compute the probability,
where |S| is the number of states in the model.

Let there be an observation sequence (query), O, and a set of models (themes), M . An order may
be imposed on M by performing the Forward algorithm on each modelm in M and then ordering the
set by the value returned, placing higher values before lower. The i-th model in the ordered set is then
the i-th most likely to have generated the observation sequence. We take this rank order to be a direct
measure of the relative similarity between a theme and a query. Thus, the first theme is the one most
similar to the query.

8.1.3.2 Markov sequence generator

Markov models can be thought of as generative models. A generative model describes an underlying
structure able to generate the sequence of observed events, called an observation sequence. Note that
there is not a one-to-one correspondence between model and observation sequence. A single model
may create a variety of observation sequences, and an observation sequence may be generated by
more than one model.

A HMM can be used as generator to give an observation sequence O as follow

1. Choose initial state x(1) = S1 according the initial state distribution π.

2. Set t = 1

3. Choose o(t) according the symbol probability distribution in state x(t) described in matrix B

4. Transit to new state x(t+1) = Sj according to the state transition probability for state x(t) = i,
i.e. ai,j

5. Set t = t+ 1 and return to step 2

If a simple Markov model is used as generator, step 3 is skipped, and the state x(t) is used in output.
The ”hymn tunes” of Figure 8.6 were generated by computer from an analysis of the probabilities

of notes occurring in various hymns. A set of hymn melodies were encoded (all in C major). Only
hymn melodies in 4/4 meter and containing two four-bar phrases were used. The first ”tune” was
generated by simply randomly selecting notes from each of the corresponding points in the analyzed
melodies. Since the most common note at the end of each phrase was ‘C’ there is a strong likelihood
that the randomly selected pitch ending each phrase is C.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.9

Figure 8.6: ”Hymn tunes” generated by computer from an analysis of the probabilities of notes
occurring in various hymns. From Brooks, Hopkins, Neumann, Wright. ”An experiment in musical
composition.” IRE Transactions on Electronic Computers, Vol. 6, No. 1 (1957).

8.1.4 Algorithms

8.1.4.1 Forward algorithm

The Forward algorithm is uses to solve the evaluation or scoring problem. Given the HMM λ =
(A,B,Π) and an observation sequence O = o(1)o(2) . . . o(L) compute the probability P (O|λ) that
the HMM generates this. We can also view the problem as one of scoring how well a given model
matches a given output sequence. If we are trying to choose among several competing models, this
ranking allow us to choose the model that best matches the observations. The most straighforward
procedure is through enumerating every possible state sequence of lenght L (the number of obser-
vations), computing the joint probability of the state sequence and O and finally summing the joint
probabilty over all possible sate sequence. But if there are N possible states that can be reached,
there are NL possible state sequences and thus such direct approach have exponential computational
complexity.

However we can notice that there are only N states and we can apply a dynamic programming
stategy. To this purpose let us define the forward variable αt(i) as

αt(i) = P (o(1)o(2) . . . o(t), x(t) = si|λ)

i.e. the probability of the partial observation o(1)o(2) . . . o(t) and state si at time t, given the model λ.
The Forward algorithm solves the problem with a dynamic programming strategy, using an iteration
on the sequence length (time t), as follows:

1. Initialization
α1(i) = π(i)bi(o1), 1 ≤ i ≤ N

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.10 Algorithms for Sound and Music Computing

2. Induction

αt+1(i) =

[
N∑

i=1

αt(i)aij

]
bj(ot+1) 1 ≤ t ≤ L− 1

1 ≤ i ≤ N

3. Termination

P (O|λ) =
N∑

i=1

αL(i)

Step 1) initializes the forward probabilities as the joint probability of state i and initial observation
o(1). The induction step is illustrated in Figure 8.7(a). This figure shoes that state sj can be reached
at time t+ 1 from the N possible states at time t. Since αt(i) is the probability that o(1)o(2) . . . o(t)
is observed and x(t) = si, the product αt(i)aij is the probability that o(1)o(2) . . . o(t) is observed
and state sj is reached at time t+ 1 via state si at time t. Summing this product over all the possible
states results in the probability of sj with all the previous observations. Finally αt+1(i) s obtained by
accounting for observation ot+1 in state sj , i.e. by multiplying by the probability bj(ot+1). Finally
step 3) gives the desired P (O|λ) as the sum of the terminal forward variables αL(i). In fact αL(i)
is the probability of the observed sequence and that the system at time t = L is in the state si.
Hence P (O|λ) is just the sum of the αL(i)’s. The time computational complexity of this algorithm
is O(N2L). The forward probability calculation is based upon the lattice structure shown in figure
8.7(b). The key is that since there are only N states, all the possible state sequences will remerge
into these N nodes, no matter how long the observation sequence. Notice that the calculation of αt(i)
involves multiplication with probabilities. All these probabilities have a value less than 1 (generally
significantly less than 1), and as t starts to grow large, each term of αt(i) starts to head exponentially
to zero, exceed the precision range of the machine. To avoid this problem, a version of the Forward
algorithm with scaling should be used. See Rabiner [1989] for more details.

(a) (b)

Figure 8.7: (a) Illustration of the sequence of operations required for the computation of the forward
variable αt+1(i). (b) Implementation of the computation of αt+1(i) in terms of a lattice of observation
t and states i.

8.1.4.2 Viterbi algorithm

The Viterbi algorithm, based on dynamic programming, is used to solve the structure learning prob-
lem. Given an HMM λ (i.e., given the matrices A and B) and an output sequenceO = {o(1)o(2) . . . o(L)},

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.11

find the single best state sequence X = {x(1)x(2) . . . x(L} which most likely generated it. To this
purpose we define the quantity

δt(i) = P [x(1)x(2) . . . x(t) = si, o(1)o(2) . . . o(t) |λ]

i.e. δt(i) is the best score (highest probability) along a single path at time t, which accounts for the
first t observations and ends in state si. By induction we have

δt+1(i) = max
i

[δt(i)aij] bj(ot+1)

To actually retrieve the state sequence, we need to keep track of the argument which maximized the
previous expression, for each t and j using a predecessor array ψt(j). The complete procedure of
Viterbi algorithm is

1. Initialization
for 1 ≤ i ≤ N

δ1(i) = π(i)bi(o1)
ψ1(i) = 0

2. Induction
for 1 ≤ t ≤ L− 1

for 1 ≤ j ≤ N
δt+1(j) = maxi [δt(i)aij] bj(ot+1)
ψt+1(j) = argmaxi [δt(i)aij]

3. Termination
P ∗ = maxi [δT (i)]
x∗(T) = argmaxi [δT (i)]

4. Path backtracking
for t = L− 1 downto 1

x∗(t) = ψt+1(x∗t+1)

Notice that the structure of Viterbi algorithm is similar in implementation to forward algorithm.
The major difference is the maximization over the previous states which is used in place of the sum-
ming procedure in forward algorithm. Both algorithms used the lattice computational structure of
figure 8.7(b) and have computational complexity N2L. Also Viterbi algorithm presents the prob-
lem of multiplicationof probabilities. One way to avoid this is to take the logarithm of the model
parameters, giving that the multiplications become additions. The induction thus becomes

log[δt+1(i)] = max
i

(log [δt(i)] + log [aij] + log [bj(ot+1)]

Obviously will this logarithm become a problem when some model parameters has zeros present.
This is often the case for A and π and can be avoided by adding a small number to the matrixes.
See Rabiner [1989] for more details.

To get a better insight of how the Viterbi (and the alternative Viterbi) works, consider a model
with N = 3 states and an observation of length L = 8. In the initialization (t = 1) is δ1(1), δ1(2) and
δ1(3) found. Lets assume that δ1(2) is the maximum. Next time (t = 2) three variables will be used
namely δ2(1), δ2(2) and δ2(3). Lets assume that δ2(1) is now the maximum. In the same manner will
the following variables δ3(3), δ4(2), δ5(2), δ6(1), δ7(3) and δ8(3) be the maximum at their time, see
Fig.8.8. This algorithm is an example of what is called the Breadth First Search (Viterbi employs this
essentially). In fact it follows the principle: ”Do not go to the next time instant t + 1 until the nodes
at at time T are all expanded”.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.12 Algorithms for Sound and Music Computing

Figure 8.8: Example of Viterbi search.

8.2 Algorithms for music composition

Composers have long been fascinated by mathematical concepts in relation to music. The concept
of ”music of the spheres,” dating back to Pythagoras, held the notion that humans were governed by
the perfect proportions of the natural universe. This mathematical order may be seen in the musical
interval choice and system of organization that was used by the ancient Greek culture.

Procedures that entail rules or provisions to govern the act of musical composition have been used
since the Medieval period; these same principles have been applied in very specific methods to many
of the recent computer programs developed for algorithmic composition.

8.2.1 Algorithmic Composition

Algorithmic composition could be described as ”a sequence (set) of rules (instructions, operations)
for solving (accomplishing) a [particular] problem (task) [in a finite number of steps] of combining
musical parts (things, elements) into a whole (composition)”. From this definition we can see that it
is not necessary to use computers for algorithmic composition as we often infer; Mozart did not when
he described the Musical Dice Game.

The concept of algorithmic composition is not something new. Pythagoras (around 500 B.C.)
believed that music and mathematics were not separate studies. Hiller and Isaacson (1959) were
probably the first who used a computational model using random number generators and Markov
chains for algorithmic composition. Since then many researchers have tried to address the problem of
algorithmic composition from different points of view.

Some of the algorithmic programs and compositions specify score information only. Score infor-
mation includes pitch, duration, and dynamic material, whether written for acoustic and/or electronic
instruments. That is, there are instances in which a composer makes use of a computer program to
generate the score while the instrumental selection has been predetermined as either an electronic or-
chestra or a realization for acoustic instruments. Other algorithmic programs specify both score and
electronic sound synthesis. In this instance, the program is used not only to generate the score, but
also the electronic timbres to be used in performance. This distinction has its roots in the traditional
differentiation between score and instrument, but a computer-generated continuum between two dif-
ferent sounds, however, is both score and sound synthesis. In both types of synthesis, the appearance
of events in time is structured, both globally (form) as well as locally (sound, timbre).

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.13

The selection or construction of algorithms for musical applications can be divided into three
categories:

• Modeling traditional, non-algorithmic compositional procedures. This category refers to
algorithms that model traditional omposition techniques (tonal harmony, tonal rhythm, coun-
terpoint rules, specific formal devices, serial parametrisation, etc.). This approach has been
scarcely used in music composition, but it has become an essential element of musicological
Research.

• Modeling new, original compositional procedures, different from those known before. This
category refers to algorithms that create new constructs which sport some inherently musical
qualities. These algorithms range from Markov chains to stochastic and probabilistic functions.
Such algorithms have been pioneered by the composer Iannis Xenakis in the ”50s-”60s and
widely used by a consistent group of composers since then.

• Selecting algorithms from extra-musical disciplines. This category refers to algorithms in-
vented to model other, non-musical, processes and forms. Some of these algorithms have been
used very proficiently by composers to create specific works. These algorithms are generally
related to self-similarity (which is a characteristic that is closely related to that of ”thematic
development” which seems to belong universally to all musics) and they range from genetic
algorithms to fractal systems, from cellular automata, to swarming models and coevolution. In
this same category, a persistent trend of using biological data to generate compositional struc-
tures has developed since the 60’s. Using brain activity (through EEG measurements), hormonal
activity, human body dynamics, there has been a constant attempt to render biological data with
musical structures.

8.2.2 Computer Assisted Composition

Another use of computers for music generation has been that of Computer-Assisted Composition.
In this case, computers do not generate complete scores. Rather, they provide mediation tools to
help composers to manage and control some aspects of musical creation. Such aspects may range
from extremely relevant decision-making processes to minuscule details according to the composers’
wishes.

Two main approaches can be observed in Computer-Assisted Composition:

• Integrated tools and languages that will cover all possible composing desiderata;

• Personalised micro-programs written in small languages like awk, lisp, perl, prolog, python,
ruby, etc. (written by the composer herself and possibly interconnected together via pipes,
sockets and common databases).

While computer assistance may be a more practical and less generative use of computers in Musical
Composition, it is currently enjoying a much wider diffusion among composers.

8.2.3 Categories of algorithmic processes

A review can not be exhaustive because there have been so many attempts. In the following subsec-
tions 1 we give some representative examples of systems which employ different methods which we
categorise, based on their most prominent feature, as follows:

1adapted from Papadopoulos, Wiggins 1993

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.14 Algorithms for Sound and Music Computing

8.2.3.1 Mathematical models

Stochastic processes and especially Markov chains have been used extensively in the past for algo-
rithmic composition (e.g., Xenakis, 1971).

The basic algorithm is

Algorithm GenerateAndTest

while composition is not terminated
generate raw materials
modify according to various functions
select the best results according to rules

The simplest way to generate music from a history-based model is to sample, at each stage, a
random event from the distribution of events at that stage. After an event is sampled, it is added to the
piece, and the process continues until a specified piece duration is exceeded.

Algorithm RandomWalk

Get events distribution by analysing a music repertoire
while composition is not terminated

sample a random event from the distribution of events
add to the piece

One manner of statistical analysis that has been frequently used in musical composition is Markov
Analysis or Markov Chains. Named for the mathematician Andre Andreevich Markov (1856-1922),
Markov Chains were conceived as a means by which decisions could be made based on probability.
Information is linked together in a series of states based on the probability that state A will be fol-
lowed by state B. The process is continually in transition because state A is then replaced by state B
which continues to look at the probability of being followed by yet another state B. The so-called or-
ders of Markov Analysis indicate the relationship between states. For instance, zeroth-order analysis
assumes that there are no relationships between states; that is, the relationship between any two states
is random. First-order analysis simply counts the frequency with which specific states occur within
the given data. Second-order analysis examines the relationships between any two consecutive states
(e.g., what is the probability that the state B would follow state A?). Third-order analysis determines
the probability of three consecutive states occurring in a row (e.g., what is the probability that state
A would be followed by state B, would be followed by state C?). Fourth-order analyzes the chance
of four states following each other. Composer/scientist Lejaren Hiller made use of Markov Chains,
statistical analysis, and stochastic procedures in algorithmic composition beginning in the late 1950s.

Probably the most important reason for stochastic precesses is their low complexity which makes
them good candidates for real-time applications.

We also see computational models based on chaotic nonlinear systems or iterated functions but it
is difficult to judge the quality of their output, because, unlike all the other approaches, their ”knowl-
edge” about music is not derived from humans or human works. Since the 1970s basic principles of
the irregularities in nature have been studied by the scientific community, and by the 1980s chaos was
the focus of a great deal of attention. The new science has spawned its own language, an elegant shop

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.15

talk of fractals and bifurcations, intermittencies and periodicities, folded-towel diffeomorphisms and
smooth noodle maps. . . To some physicists chaos is a science of process rather than state, or becom-
ing rather than being. One subcategory of chaotic structures that has come to the forefront since ca.
1975 is fractals. Fractals are recursive and produce ’parent-child’ relationships in which the offspring
replicate the initial structure. Seen in visual art as smaller and smaller offshoots from the original
stem, fractals were categorized by Benoit Mandelbrot in his book, The Fractal Geometry of Nature.
The underlying principles of chaos may best be thought of in terms of natural, seemingly disorderly
designs.

”Nature forms patterns. Some are orderly in space but disorderly in time, others orderly
in time but disorderly in space. Some patterns are fractal, exhibiting structures self-
similar in scale. Others give rise to steady states or oscillating ones. Pattern formation
has become a branch of physics and of materials science, allowing scientists to model the
aggregation of particles into clusters, the fractured spread of electrical discharges, and the
growth of crystals in ice and metal alloys.”

The main disadvantages of stochastic processes are:

• Someone needs to find the probabilities by analysing many pieces. Something necessary if we
want to simulate one style. The resulting models will only generate music of similar style to the
input.

• For higher order Markov models, transition tables become unmanageably large for the average
computer. While many techniques exist for a more compact representation of sparse matrices
(which usually result for higher order models), these require extra computational effort that can
hinder real time performance.

• The deviations from the norm and how they are incorporated in the music is an important aspect.
They also provide little support for structure at higher levels (unless multiple layered models
are used where each event represents an entire Markov model in itself).

8.2.3.2 Knowledge based systems

Many early systems focused on taking existing musicological rules and embedding them in compu-
tational procedures. In one sense, most AI systems are knowledge based systems (KBS). Here, we
mean systems which are symbolic and use rules or constraints. The use of KBS in music seems to be a
natural choice especially when we try to model well defined domains or we want to introduce explicit
structures or rules. Their main advantage is that they have explicit reasoning; they can explain their
choice of actions.

Even though KBS seem to be the most suitable choice, as a stand alone method, for algorithmic
composition they still exhibit some important problems:

• Knowledge elicitation is difficult and time consuming, especially in subjective domains such as
music.

• Since they do what we program them to do they depend on the ability of the ”expert”,who
in many cases is not the same as the programmer, to clarify concepts, or even find a fiexible
representation.

• They become too complicated if we try to add all the ”exceptions to the rule and their precon-
ditions, something necessary in this domain.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.16 Algorithms for Sound and Music Computing

8.2.3.3 Grammars

The idea that there is a grammar of music is probably as old as the idea of grammar itself.
Linguistics is an attempt to identify how language functions: what are the components, how do

the components function as a single unit, and how do the components function as single entities
within the context of the larger unit. Linguistic theory models this unconscious knowledge [of
speech] by a formal system of principles or rules called a generative grammar, which describes (or
’generates’) the possible sentences of the language. Curtis Roads has made a distinction between the
specific use of generative grammars and the more open-ended field of algorithmic composition in that
”Generative modeling of music can be distinguished from algorithmic composition on the basis of
different goals. While algorithmic composition aims at an aesthetically satisfying new composition,
generative modeling of music is a means of proposing and verifying a theory of an extant corpus of
compositions or the competence that generated them.”

Experiments in Musical Intelligence (EMI) is a project focused on the understanding of musical
style and stylistic replication of various composers (Cope, 1991, 1992). EMI needs as an input a
minimum of two works from which extracts ”signatures” using pattern matching. The meaningful
arrangement of these signatures in replicated works is accomplished through the use of an augmented
transition network (ATN).

Some basic problems of the grammars are:

• They are hierarchical structures while much music is not (i.e improvisation). Therefore ambi-
guity might be necessary since it ”can add to the representational power of a grammar”.

• Most, if not all, musical grammar implementations do not make any strong claims about the
semantics of the pieces.

• Usually a grammar can generate a large number musical strings of questionable quality.

• Parsing is, in many cases, computationally expensive especially if we try to cope with ambigu-
ity.

8.2.3.4 Evolutionary methods

Genetic algorithms (GAs) have proven to be very efficient search methods, especially when dealing
with problems with very large search spaces. This, coupled with their ability to provide multiple
solutions, which is often what is needed in creative domains, makes them a good candidate for a
search engine in a musical application. Taking inspiration from natural evolution to guide search of
problem space, the idea is that good compositions, or composition systems can be evolved from an
initial (often random) starting point.

Algorithm GeneticAlg

Initialise population
while not finished evolving

Calculate fitness of each individual
Select prefered individuals to be parents
for N ¡= populationSize

Breed new individuals
(cross over + mutation)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.17

Build next generation

Render output

We can divide these attempts into two categories based on the implementation of the fitness function.

Use of an objective fitness function. In this case the chromosomes are evaluated based on formally
stated, computable functions. The efficacy of the GA approach depends heavily on the amount
of knowledge the system possesses; even so GAs are not ideal for the simulation of human
musical thought because their operation in no way simulates human behaviour.

Use of a human as a fitness function. Usually we refer to this type of GA as interactive-GA (IGA).
In this case a human replaces the fitness function in order to evaluate the chromosomes.

These attempts exhibit two main drawbacks associated with all IGAs:

• Subjectivity

• Efficiency, the ”fitness bottleneck. The user must hear all the potential solutions in order to
evaluate a population.

Moreover, this approach tells us little about the mental processes involved in music composition
since all the reasoning is encoded inaccessibly in the users mind. Most of these approaches exhibit
very simple representations in an attempt to decrease the search space, which in some cases compro-
mises their output quality.

8.2.3.5 Systems which learn

In the category of learning systems are systems which, in general, do not have a priori knowledge
(e.g. production rules, constraints) of the domain, but instead learn its features by examples. We can
further classify these systems, based on the way they store the information, to subsymbolic/distributive
(Artificial Neural Networks, ANN) and symbolic (Machine Learning, ML).

ANNs offer an alternative for algorithmic composition to the traditional symbolic AI methods,
one which loosely resembles the activities in the human brain, but at the moment they do not seem to
be as efficient or as practical, at least as a stand-alone approach. Some of their disadvantages are:

• Composition as compared with cognition is a much more highly intellectual process (more
”symbolic”).The output from a ANN matches the probability distribution of the sequence set
to which it is exposed, something which is desirable, but on the other hand shows us its limit:
”While ANNs are capable of successfully capturing the surface structure of a melodic passage
and produce new melodies on the basis of the thus acquired knowledge, they mostly fail to pick
up the higher-level features of music, such as those related to phrasing or tonal functions”.

• The representation of time can not be dealt efficiently even with ANNs which have feedback.
Usually they solve toy problems, with many simplifications, when compared with the knowl-
edge based approaches.

• They can not even reproduce fully the training set and when they do this it might mean that they
did not generalise.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.18 Algorithms for Sound and Music Computing

• Even though it seems exciting that a system learns by examples this is not always the whole
truth since the human in many cases needs to do the ”filtering” in order not to have in the
training set examples which conflict.

• Usually, the researchers using ANNs say that their advantage over knowledge based approaches
is that they can learn from examples things which can’t be represented symbolically using rules
(i.e. the ”exceptions”).

8.2.3.6 Hybrid systems

Hybrid systems are ones which use a combination of AI techniques. In this section we discuss systems
which combine evolutionary and connectionist methods, or symbolic and subsymbolic ones. The
reason behind using hybrid systems, not only for musical applications, is very simple and logical.
Since each AI method exhibits different strengths then we should adopt a ”postmodern attitude by
combining them.

The main disadvantage of hybrid systems is that they are usually complicated, especially in the
case of tightly-coupled or fully integrated models. The implementation, verification and validation is
also time consuming.

8.2.4 Discussion

First there is usually no evaluation of the output by real experts (e.g., professional musicians) in
most of the systems and second, the evaluation of the system (algorithm) is given relatively small
consideration

Knowledge representation Two almost ubiquitous issues in AI are representation of knowledge
and search method. From one point of view, our categorisation above, reflects the search method,
which however, constrains the possible representations of knowledge. For example structures which
are easily represented symbolically are often difficult to represent with a ANN.

In many AI systems, especially symbolic, the choice of the knowledge representation is an im-
portant factor in reducing the search space. For example Biles (1994) and Papadopoulos and Wiggins
(1998) used a more abstract representation, representing the degrees of the scale rather than the ab-
solute pitches. This reduced immensely the search space since the representation did not allow the
generation of non-scale notes (they are considered dissonant) and the inter-key equivalence was ab-
stracted out.

Most of the systems reviewed exhibit a single, fixed representation of the musical structures.
Some, on the other hand, use multiple viewpoints which we believe simulate more closely human
musical thinking.

Computational Creativity Probably the most difficult task is to incorporate in our systems the
concept of creativity. This is difficult since we do not have a clear idea of what creativity is (Boden,
1996).

Some characteristics of computational creativity, which were proposed by Rowe and Partridge
(1993) are:

• Knowledge representation is organised in such a way that the number of possible associations
is maximised. A flexible knowledge representation scheme. Similarly Boden (1996) says that
representation should allow to explore and transform the conceptual space.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Chapter 8. Algorithms 8.19

• Tolerate ambiguity in representations.

• Allow multiple representations in order to avoid the problem of ”functional fixity”.

• The usefulness of new combinations should be assessable.

New combinations need to be elaboratable to find out their consequences. One question that AI
researchers should aim to answer is: do we want to simulate human creativity itself or the results of
it? (Is DEEP BLUE creative, even if it does not simulate the human mind?) This is more or less similar
to the, subtle in many cases, distinction between cognitive modeling and knowledge engineering.

8.2.5 Emerging Trends

There are trends that, while being foreign to the Music Generation Modelling domain, propose issues
that need to be taken in due consideration because they may condition the musical creation in the very
near future2.

Internet as a Participation Architecture The Internet is developing as an architecture of participa-
tion. There is a fast development of support to the creation of musical subcultures. In fact new musical
styles develop with a speed never seen before. The spreading of new works of art happens through
peer recommendation. In this way the Internet contributes to social innovation and the creation of
social interaction and integration without much of geographic boundaries. Even language boundaries
are less important in the musical domain, which stimulates the emergence of World Musics. In this
way music and Internet have functions that create mutual synergy. In this way music can become an
antidote for individualism. Technology could help in bringing people together through musical com-
munication and interaction. However, many of these new systems depend on information gathering
technologies that cannot stand the test of acceptable user privacy and on the other hand social partici-
pation and effects of entrainment are not well understood. What kind of participative technologies are
needed in this domain?

Music as a Multi-Modal phenomenon Up to recent, most music technology researchers have as-
sociated music research with audio. Yet the above trend shows that music is in fact grounded on
multi-modal perception and action. The way music is experienced in non-Western cultures and in the
modern Wester popular culture is a good example of the multi-modal basis of music, e.g. its associ-
ation with dance, costumes, decor etc... The multi-modal aspect of musical interaction draws on the
idea that the sensory systems, auditory, visual, haptic, and tactile, as well as movement perception,
form a fully integrated part of the way the human subject is involved with music during interactive
musical communication. However, the multi-modal basis of the musical experience is very badly un-
derstood, as is the coupling between perception and action. A more thorough scientific understanding
of the multi-modal basis of music, as well as of the close interaction between perception and action,
is needed in view of the new trends towards multimedia.

Active Listener Participation Looking at the consumption pattern of people, there is also a trend
which shows that people become more active consumers. For example, children nowadays like more
their computer environment than television because they can be active with it. We don’t consume what
is presented to use, but we perform actions and we choose. (Digital television is likely to focus on

2adapted from Sound and Music Computing roadmap, S2S2 project (in preparation)

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

8.20 Algorithms for Sound and Music Computing

this new type of consumers in the near future in that it will offer programs with active participation.)
In music creation and performance, active participation of the audience is likely to become a new
trend provided that there is a technology which processes the actions of the consumer and feed them
back into the performance. More research is needed in exploring technology as an extension of the
human body, capture responses of the human body, as individual and as a group, and allow active
participation of the participant. This involves massive wireless networking of many people gathered
in indoor or outdoor theatres, which goes much beyond any present day mobile technology capacity
density, and high quality portable music equipment.

8.3 Commented bibliography

A good tutorial on Hidden Markov Models is Rabiner [1989]. Hiller and Isaacson Hiller and Isaacson
[1959] were the first to implement Markov chains in a musical application. The application of HMM
representation of musical theme for search, described in Sect. 8.1.3.1, is presented in Shifrin et al.
[2002].

References
Lejaren A. Hiller and L. M. Isaacson. Experimental Music-Composition with an Electronic Computer. McGraw-Hill, 1959.

L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceeedings of the IEEE,
77(2):257–286, 1989.

J. Shifrin, B. Pardo, C. Meek, and W. Birmingham. Hmm-based musical query retrieval. In Proc. ACM/IEEE Joint Confer-
ence on Digital Libraries, pages 295–300, 2002.

Iannis Xenakis. Formalized Music. Indiana University Press, 1971.

This book is available under the CreativeCommons Attribution-NonCommercial-ShareAlike licence,
c©2006 by the authors except for paragraphs labeled as adapted from <reference>

http://www.creativecommons.org�
http://creativecommons.org/licenses/by-nc-sa/2.5/�

Contents

8 Algorithms 8.1
8.1 Markov Models and Hidden Markov Models . 8.1

8.1.1 Markov Models or Markov chains . 8.1
8.1.2 Hidden Markov Models . 8.3
8.1.3 Markov Models Applied to Music . 8.5

8.1.3.1 HMM models for music search: MuseArt 8.5
8.1.3.2 Markov sequence generator . 8.8

8.1.4 Algorithms . 8.9
8.1.4.1 Forward algorithm . 8.9
8.1.4.2 Viterbi algorithm . 8.10

8.2 Algorithms for music composition . 8.12
8.2.1 Algorithmic Composition . 8.12
8.2.2 Computer Assisted Composition . 8.13
8.2.3 Categories of algorithmic processes . 8.13

8.2.3.1 Mathematical models . 8.14
8.2.3.2 Knowledge based systems . 8.15
8.2.3.3 Grammars . 8.16
8.2.3.4 Evolutionary methods . 8.16
8.2.3.5 Systems which learn . 8.17
8.2.3.6 Hybrid systems . 8.18

8.2.4 Discussion . 8.18
8.2.5 Emerging Trends . 8.19

8.3 Commented bibliography . 8.20

8.21

