
PD overview

Matthias Rath (XVI ciclo)

Dipartimento di Informatica
Università degli Studi di Verona

rath@sci.univr.it

• General

– Open Source, originally written by Miller Puckette (author of
Max/msp, developed at IRCAM, today distributed commercially)

– PD is a modular System. It includes a (simple) graphical design
interface, but can be used without.

– Plugin-like architecture: Modules can be written and compiled
separately and loaded at runtime. This is the only difference be-
tween internals and externals. PD uses its own interface definition,
but a Ladspa module enables the integration of Ladspa plugins.

– Combination of modules in patches; these are stored in “clear”
text format, normally built/edited graphically (through GUI).

– Organization in subpatches is provided, to hide away details and
structure the design process.

– PD communicates to the outside world via special modules like
“adc∼”, “dac∼”, “midiin”, “midiout”, “print” . . . and through
GUI elements like “atoms” and sliders

• Patching and module communication

– PD modules take and send audio signals and messages.
Convention (that should be retained when programming new ex-
ternals): Modules that process audio signals are marked by a “∼”
at the end of their name.

– Each object class handles a fixed collection of message types. Ar-
riving messages of different type are reported as errors on standard
output.

1

– If not defined specifically otherwise (through a “list” method), ob-
jects respond to “list” messages by distributing the list arguments
to their inlets.

– There are two types of subpatches: “one–off–subpatches” are stored
within the mother patch.
“abstractions” are stored in a separate file and can be instantiated
in foreign patches.

– Only modules and their connections are stored in patches, no
states of modules. (Exception: Subpatches.)

• GUI principles

– Object boxes hold messages to the pd engine. They cause PD
to instantiate modules.
Further elements: message boxes and “GUI operators” (atoms,
graphs, sliders . . .)

– Two operation modes: Edit and Run mode
Run mode: Input to number-/symbol-boxes and sliders
Edit mode: Editing boxes, connections and layout; standard edit-
ing commands exist.

– Audio–/message processing is independent from GUI mode.

– “put” in edit menu instantiates modules, eventually after typing
text into the opening box; PD automatically changes to edit mode.

– Only boxes, their connections and creation arguments are saved
within a patch (see above); extra objects for storing further infos
exist.

– “one-of-subpatches” are created or instantiated by typing “pd sub-
patchname” in an object box.
“abstractions” are created or instantiated, when only a name (that
is not yet reserved for a module) is supplied.

– Access to properties and help by right click on boxes, in both
modes.

• Audio

– Audio signals are 32bit floats processed at sampling rate; of course,
output/input resolution depends on hardware and driver. Input
signals are interpreted as values between -1 and 1 (no matter what
format: aiff, wav), output is clipped to that range.

2

– audio values are processed in buffers of a fixed number of samples
(default: 64). Buffersize is set globally by command flag and
patch-wide via “block∼”; this is also the window size (determining
resolution) for “fft∼”.

– Signal and control processing are interleaved, audio ticks are “atomic”:
No messages are processed during a dsp cycle (of buffersize).
=⇒ Precision for external controls or timer objects of e.g.

64

44100Hz
' 1.5ms (1)

– No reordering for realtime considerations; determinism is pre-
served.

– When audio computation is turned on (i.e. when “pd” receives
a “dsp 1” message), or when the audio network is changed while
audio computation is running, PD sorts all audio-modules in a
linear order.

– Feedback loops are detected as errors; they can be build with non-
local connections (“send∼”/“receive∼”, “throw∼”/“catch∼”,
“delread∼”/“delwrite∼”) but feedback signals are only processed
with one buffersize delay.

– “switch∼” can turn audio on and off for subpatches.

– “sig∼” and “snapshot∼” are converters between audio and control
messages.

– Audio rate of input/output is neither adjusted nor checked; so you
must set the one you use on program start (default 44100 Hz).

– The scheduler tries to keep ahead of realtime (controlled by the
“audiobuffer” flag). Computational overload results in dropouts;
disk streaming still works correctly.
Audio engine and gui compete for computational power: avoid
drawing during audio processing!

• Messages

– Messages consist of a selector and any number (incl. 0) of argu-
ments. Arguments can be symbols or numbers.

– All numbers are interpreted as floats. (PD, as opposed to MAX/msp,
does not know an “integer” type.) Messages that transport sin-
gle values for numerical computations normally have the selector
“float”.

3

– Message boxes send messages (surprisingly), when “something”
arrives or when they are clicked in the GUI. The associated module
is also called “message”.

– Message boxes/modules can keep multiple messages, separated by
commas and sent in sequence but at the same logical time. Semi-
colons may also separate messages; in that case the first symbol
gives the “destination”, i.e. semicolons “clear the destination”:
The first destination is the outlet (precisely all the modules con-
nected to it), others are named (“receive”s, “arrays”, pd windows
or “pd”).

– With few exceptions, only the leftmost message inlet of a mod-
ule/box is “hot”: Messages arriving at this inlet cause an output.
“cold” inlets normally are “sticky”, which means that their values
are stored until changed (exception: “line” and “line∼”).

– The “trigger” module is used to achieve active behavior of right
inlets. This convention is useful: Active behavior can be easily
simulated, the converse would cause bigger effort.

– Messages are passed in “depth first” order: If message A is re-
ceived before B, then all following messages resulting from A are
also handled before B. This assures that messages are processed
instantaneously (logically) in welldefined order (which depends on
order of cabling). To avoid dependency on the order of cabling
use “trigger”.
As a consequence infinite loops (without delay) lead to stack over-
flow.

– Messages that appear/are generated at the same logical time, are
also processed at the same logical time in the order of their recep-
tion.
Message flow is instantaneous. No reordering whatsoever is done
for realtime considerations! Determinism is preserved at “any
cost”.

– Message arguments starting with “$number” are “environment
variables”:
In case of a message box/module the environment are the argu-
ments of incoming (possibly “list”) messages.

– Note that the text in an object box is sent to PD as a message:
Consequently creation arguments of abstractions and one–off–
subpatches can thus be referred to by “$1”,

4

Special: “$0” is a unique identifier that is automatically set for
each instance.

– Unspecified environment variables are undefined.

– GUI convention: Single numbers in a message box (which can not
mark a selector, only symbols), are automatically interpreted as
float messages. I.e., selector “float” is added automatically.
Analogously, selector “list” is automatically added, when several
arguments starting with a number are typed into a message box.

• Terms

– “message” also names a module with its own GUI element, the
“message box”.

– “symbol” should maybe be seen as synonymous to “(character)string”:
Message arguments can be numbers or symbols, the selector is
always a symbol; BUT “symbol” (is also a symbol that) names a
selector!!!

5

