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Abstract. A PWM rectifier including an uncontrolled
rectifier and a _uk converter stage driven by a sliding-mode
controller is described.

Similarly to other high-quality rectifiers, this solution
allows low-distorted and in-phase line current. Moreover,
due to the sliding-mode control, fast and stable response is
achieved, in spite of the large output filter. Control com-
plexity is the same of standard current-mode controls.

Converter analysis, design criteria, and experimental
results are reported.

INTRODUCTION

High Quality Rectifiers (HQR) provide dc voltage regulation
together with high input power factor and small line current
distortion.

Single-phase topologies based on standard dc/dc converter
stages are increasingly popular [1,2] , due also to the availability
of application-oriented control IC's, either for continuous-con-
duction mode (CCM) or discontinuous-conduction mode
(DCM). Detailed analysis and design criteria of these circuits
are available in the literature [3,4] .

An inherent limitation of single-phase HQR's is the slow
response. In fact, sinusoidal input current means large input
power fluctuations, at twice the line frequency, resulting in an
output voltage ripple which cannot be corrected by the control,
otherwise input current waveform is affected. A big output filter
capacitor must therefore be adopted in order to limit the voltage
ripple, resulting in a bandwidth limitation of the voltage control
loop. Accordingly, these converters are normally used as pre-
regulators, their output performances being below the require-
ments of standard power supplies.

In practice, this bandwidth limitation can be overcome if
some input current distortion is accepted (within the limits
posed by the standards, e.g. IEC 555-2 and IEEE 519),
provided that this results in  smaller power fluctuation. From
this point of view, sliding-mode control is very powerful, since
it can provide an optimal trade-off between the needs for
increasing response speed and reducing input current distortion
and output voltage ripple.

Following this approach, this paper describes a single-phase
HQR based on a _uk stage driven by a second-order sliding-
mode controller. This solution maintains all advantages of _uk
converters (single switch; full utilization of the flux swing in the
transformer core; full-range output regulation; small high-
frequency ripple on the input and output current), while
ensuring high control robustness and good static and dynamic
performances (typical of sliding-mode control). Moreover,
control complexity is the same of standard current-mode
controllers.

CONVERTER SCHEME AND PRINCIPLE OF
OPERATION UNDER SLIDING-MODE CONTROL

Fig.1 shows the basic converter scheme with fourth-order
sliding-mode control.

The power stage includes an uncontrolled rectifier followed
by a _uk stage. As known, this converter can be operated with
all state variables continuous (CSV mode), or with some of
them discontinuous (DSV mode), resulting in different control-
to-output characteristics [4,5] .



Fig.1 - Basic HQR scheme with sliding-mode control

Achieving a sinusoidal line current in the CSV mode calls
for duty-cycle modulation, as for any boost-like structure [6,7] .
Instead, operating the circuit in the DSV mode (either
Discontinuous Inductor Current Mode, DICM, or Discontinu-
ous Capacitor Voltage Mode, DCVM), causes sinusoidal
absorption even without duty-cycle modulation [4,8] .

Accordingly, most low-power PFC's behave in DSV mode,
which allows simpler control (the output voltage control loop
drives directly the switch, according to a PWM technique)
while a high input power factor is "naturally" ensured.

Instead, CSV operation, which allows better circuit
exploitation, calls for a control loop in order to enforce
sinusoidal absorption. This is normally accomplished by
implementing an inner current loop driven by the voltage loop.
The reference signal of this current loop is sinusoidal, with an
amplitude which is adjusted by the voltage loop so as to obtain
the desired dc output. This control technique is simple and
reliable but, as mentioned before, the voltage loop must have a
crossover frequency below the line frequency, in order to avoid
input current distortion while ensuring stability [9] .

Better performances can be obtained by sliding-mode
control, which acts simultaneously on all state variables, as
shown in the basic scheme of Fig.1.

In principle, sliding-mode control keeps near zero, according
to a hysteretic technique, the sliding variable:
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which is defined as the weighted sum (Ki are suitable gains) of
all state variable errors εi. These error terms are given by:

V - v = *
iiiε (2)

where vi is the generic state variable (i1, i2, u1, u2) and V*
i is the

corresponding reference value.
Clearly, this kind of control is not practical, since all state

variables must be sensed and a suitable reference must be
provided for each of them.

However, it offers several benefits, deriving from the
property to act on all state variables simultaneously. First, let N
to be the system order (in our case N=4), the system response
has order N-1. In fact, under sliding mode we have:

0  ≈ψ (3)

which means that only N-1 state variables are independent, the
N-th being constrained by (3). This order reduction makes
simpler both system analysis and control design. Second,
dynamic response is very fast, since all control loops act
concurrently. Third, stability (even for large input and output
variations) and robustness (against load, supply and parameter
variations) are those typical of hysteretic controls. Fourth, the
system response depends only slightly on the actual converter
parameters.
 These advantages have already been proved for _uk dc/dc
converters [10] . They hold also for ac/dc converters, as it will
be shown later.

SIMPLIFIED CONTROL SCHEME

In [10]  it has been demonstrated that excellent performances
can be obtained even with reduced-order controllers, like that
shown in Fig.2, where only input current i1 and output voltage
uo are sensed, as for standard current-mode controls.

In this scheme, including an insulation transformer, reference
values (i1

*, Uo
*) are required for both state variables. However,

while Uo
* is an input variable for the control, i1

* must be
evaluated as a function of voltage error εu. For this purpose,
similarly to the case of current-mode control, an error amplifier
Ri is used to determine reference amplitude I1

*, which is then
multiplied by rectified voltage signal uR to obtain current
reference i1

*.
Given i1

* and Uo
*, an hysteretic control is then performed to

keep near zero the sliding variable by proper operation of the
converter switch. Accordingly, the system trajectories lie on a
sliding hyperplane, which is defined, in the state space, by the
equation:

0 =  K +  K = uuii ε⋅ε⋅ψ (4)

As discussed in [10] , selection of coefficients Ki and Ku must
be done in order to satisfy three requirements:
   - existence condition of the sliding mode, which requires

that the state trajectories are directed toward the sliding
plane for both possible statuses of the converter switch;

- hitting condition, which requires that the system trajec-
tories encounter the sliding plane irrespective of their
starting point in the state space;

   - stability of the system trajectories on the sliding plane.



If coefficients Ki and Ku are chosen properly, we gain
additional advantages. First, in the steady state the controller
tends to maintain the minimum errors εi and εu which are
consistent with energy balance conditions. The value of the
coefficients also determines the relative amplitudes of voltage
and current errors. Second, under dynamic conditions the
system moves along state trajectories which can be made stable
irrespective of the circuit parameters. Third, the speed of
response can be optimized, by a careful selection of system and
control parameters [10] .

It must be emphasized that these benefits are generally paid
with large variations of the switching frequency. However, also
this limitation can be overcome by a modulation of the
hysteresis band, as it will be shown later.

Additional functions can be implemented to provide switch
or inductor current limitation. For instance, the current limiter
shown in Fig.2 overrides sliding mode control when the switch
current exceeds threshold ILIM. If this happens, control maintains
the switch current at the value ILIM.

Note lastly that the scheme of Fig.2 resembles that of
current-mode control, with the only addition of a hysteretic
control on variable ψ. However, as mentioned before, resulting
performances are quite different.

CIRCUIT EQUATIONS

Converter operation can be described by two sets of linear
differential equations, which are valid when the switch is closed
and when it is open, respectively. As compared to the case of
dc/dc converters, some modifications must be introduced to take
into account the time-varying input voltage. Moreover, in order
to keep the same notation used in [10] , all elements on the
transformer secondary side are moved to the primary side (and
indicated by superscript ′) according to the relations:

Ln = L 2
2

2 ′ Rn = R 2
2

2 ′ Rn = R L
2

 L′ (5)

n

C = C 2

2
2 ′

n

C = C 2

0
0 ′ n

i = i
0

0 ′ u n = u 00 ′

where n is the transformer turn ratio N1/N2. We also define the
equivalent energy transfer capacitor:

C + C
C C = C

2 1

2 1
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′
(6)

Assuming now the following base quantities:

C
L = Z

e

2 
b

′
base impedance (7.a)

Û = U Rb base voltage (7.b)

CL

1
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e2 

b
′

ω base angular frequency (7.c)

Z
U = I

b

b
b base current (7.d)

and the adimensional coefficients:

L
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′
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Û

(t) u = l
R
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where ωl is the angular frequency of the supply, the converter
equations can be rewritten in the form:

F +  B + v A = v NN σ� (9)

where σ is the switch status, and vN 1 and  vN
� 2 are the vectors

of the normalized status variables (i1N, i2N', ueN, u0N') and their
derivatives, respectively. Matrices A, B, F are given by:

Fig.2 - Actual converter scheme
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where subscript N refers to normalized quantities.

SELECTION OF CONTROL PARAMETERS

According to the general sliding-mode control theory, we
will refer to normalized state variable errors xi:

V - v = x N
*

N (11.a)

where VN
* is the vector of normalized dc references:
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Note that, according to this definition, most elements of VN
*

exhibit low-frequency variations corresponding to the instantan-
eous input voltage variations. This is consistent with the
assumption of quasi-stationary behavior, which implies that the
input voltage varies so slowly, as compared to the circuit
response, that all circuit variables follow, in the low-frequency
domain, the supply variations. In other words, we assume that
an operation cycle at the line frequency is made up of a
sequence of steady-state conditions, each one corresponding to
a different value of the input voltage.
Substituting (11.a) and (11.b) in (9) we obtain:

G +  B + x A  =  x σ� (12)

where:

F+ V A = G *
N (13)

In the general theory [11,12], sliding function ψ is defined
by a linear combination of all state variable errors. Using a

normalized notation we can therefore write:

x K = xK+xK+xK+xK = T
N44N33N22N11N ⋅ψ (14)

where KN
T is the transpose of the vector of normalized sliding

coefficients. In the case of the second-order controller shown in
Fig.2, coefficients K2N and K3N are zero, while coefficients K1N

and K4N are related to Ki and Ku by:

U
Z  K = K

b

b
1Ni (15.a)

U

n
  K = K

b
4Nu (15.b)

Note that, since in the sliding mode ψ≈0, only the ratio
between Ki and Ku is important. This allows easy control tuning
by simply adjusting a gain.

As mentioned before, control coefficients must be chosen so
as to satisfy existence and hitting conditions, and to ensure
stability.

Hitting condition. As demonstrated in [11,12] the hitting condi-
tion is satisfied if:

0  
R

K-
   _   0  A  K

CNL

4N
4

T
N ≤

α⋅′
≤ (16)

where A4 is the fourth column of matrix A.
This relation shows that K4N must be positive.

Existence condition. As shown in [10-12], the existence
condition can be expressed by the following inequalities:

ξψ
∂

ψ∂
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0  <    <  -  0 > G  K + B  K + x A  K  =  
 t
 T

N
T
N

T
N ψξ

∂
ψ∂

(17.b)

where ξ is an arbitrary small positive quantity.
Since vector VN

* varies during the supply period, selection of
KiN so as to satisfy these inequalities is possible, but calls for
complicated calculations, even in the simplified assumption that
state variable errors are suitably smaller than references VN

*.

Stability condition. As done in [10] , the equivalent input
approach [11]  can be applied, in which switch status σ is
assumed to be a continuous variable. A system non-linear
equations results, which is linearized around the working point.
The system eigenvalues are then computed as a function of
coefficients KiN. Only those values of KiN corresponding to
eigenvalues with negative real part and suitable damping factor
are accepted.

Obviously, this procedure must be repeated for different
operating points, corresponding to different values of the input
voltage values and different load conditions, in order to
determine suitable values of the control coefficients. As one
may expect, for low values of the input voltage the range of
acceptable coefficients reduces.



CONVERTER DESIGN

Designing the converter for operation under sliding-mode
control has the advantage, over solutions using other control
techniques, that the circuit elements can be sized only on the
basis of power/energy requirements.

Power section design
Output capacitor (C0). This element must absorb low-frequency
power fluctuations while satisfying voltage ripple specifications.
Accordingly, it is selected by the relation:

u 
I = C

0l

0
0 ∆ω

(18)

where ∆u0 is the desired peak-to-peak output voltage ripple.
Energy transfer capacitors (C1,C2). These are crucial items. In
fact, since these capacitors charge at a voltage which is the sum
of the input and output voltages, increasing their size causes a
considerable increase of the energy stored in the circuit,
affecting the circuit response. In addition, these must be fast
capacitors, since they must withstand very high current
derivatives. Thus, these elements must be as small as possible.

Instead, large transfer capacitors are normally used, in order
to decouple the input (boost) and output (buck) stages, which is
a condition to achieve stability with standard control techniques.
In our case, however, stability is ensured by the control,
irrespective of the transfer capacitors size, so that the transfer
capacitors can be selected in order to suit voltage ripple
requirements only, according to the relation:
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where f is the rated switching frequency, ∆u1 and ∆u2 are the
specified peak-to-peak voltage ripples, and:

Û

U =M 
R

0 (20)

is the voltage conversion ratio.
Another constrain derives from the interaction between

transfer capacitors and transformer magnetizing inductance
(Lµ). The corresponding resonance frequency must be suitably
higher than the line frequency, in order to avoid low frequency
oscillations, which affect line current waveform and may cause
control problems. Thus the condition:
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must be satisfied.
Input and output inductors (L1,L2). The corresponding current
ripples are related to the operating mode, either CCM or DCM.
The condition to ensure CCM operation is [3] :

K > K crita axm′ (22.a)

where:

M 2

1
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while from ripple considerations we can write:

 Mn+1
 Mn

  
i  f
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where ∆i1 and ∆i2 are the desired peak-to-peak current ripples.
Insulation transformer. Design is not critical, except for the
leakage inductances, which cause overvoltages and energy loss
each time the switch is turned off. This effect can however be
limited by a suitable clamping circuit.

The number of primary turns is given by:

 Mn+1
 Mn

  
S B f 2

Û = N
femax

R
1 ⋅ (24)

where Bmax and Sfe are the rated flux density and the cross
section of the iron core, respectively.

Control section design
Sliding mode coefficients (Ki, Ku). They must be designed  
according to the procedure discussed in the previous section.
Output voltage loop regulator Ri. It must adjust current
reference i1

* within suitable times. In fact, sliding mode control
reacts immediately to any transient condition (it does not
include delays in the loop), ensuring a fast response at the
expense of the energy stored in the circuit: the controlled state
variables can therefore show a temporary error, which disap-
pears as soon as Ri responds.

As known, below the line frequency the power stage can be
modeled by a single pole transfer function [9] . Thus, for
regulator Ri a suitable transfer function is:

) s+s(1
) s+(1

 K = (s)R
p

z
Ri τ

τ (25)

and the parameters must be chosen to have a crossover
frequency well below the line frequency. In particular, pole 1/τp

is introduced to remove the 100 Hz ripple on the error voltage
signal.
Switching frequency stabilization. Observe that the ripple of
current i1 is given by:

L  f
  u = i

1

R
1

δ
∆ (26)

where δ is the duty-cycle. Since in the steady state ∆i1 is
proportional to current error εi, which is a part of sliding
function ψ, we can get some stabilization of the switching
frequency by making the hysteresis band proportional to uR. 



EXPERIMENTAL RESULTS

A converter prototype was built having the following
parameters:

UL = 100 Vpeak, 50 Hz Uo = 15 V ± 3%
Io = 2 A N1/N2 = 10
L1 = 4 mH L2 = 40 µH
C1 = 0.22 µF C2 = 100 µF
Co = 0.01 F

The hysteresis band was selected to provide a switching
frequency near 60 kHz.

Typical waveforms describing the converter operation are
shown in Fig.3 and Fig.4.

Fig.3 refers to the case of Ki/Ku = 4.6, which means that the
current error term is dominant in the sliding function ψ. In this
case, sliding-mode control performs like standard current-mode
controls, the voltage accuracy being primarily determined by the
slow external voltage loop. Accordingly, a good ac current
waveform results (Fig.3a), proportional to the supply voltage.
The low distortion is confirmed by Fig.3b, showing the
harmonic spectrum of the input current. Fig.3c shows the
converter response to load variations (from light-load to full-
load and viceversa). The response time is mainly determined by
the output stage characteristics and the overshoot is about 10%
of the rated voltage. Instead, in steady-state conditions (e.g.,
between the two load transitions), the output voltage ripple
drops to 3% of rated voltage.

Fig.3 - Experimental waveforms with Ki/Ku=4.6
a) input voltage and current; b) input current spectrum; c)

response to step-load variation

Fig.4 shows similar waveforms for Ki/Ku = 1.1. In this case,
the voltage error term influences heavily the sliding function.
Correspondingly, the voltage ripple is reduced to 2%, but a
penalty is paid on the input current waveform (Fig.4a and
Fig.4b). The dynamic behavior improves, resulting in faster
response and lower overshoots. In fact, voltage error terms are
rapidly compensated by the sliding-mode controller, before the
intervention of the external loop.



Fig.4 - Experimental waveforms with Ki/Ku=1.1
a) input voltage and current; b) input current spectrum; c)

response to step-load variation

CONCLUSIONS

A high-quality single-phase rectifier including a _uk stage
driven by a sliding-mode controller has been presented.

This solution maintains the advantages of _uk converters
(limited input and output current ripple, good transformer
utilization, step-up and step-down conversion ratio, etc.), with
the additional benefit of small transfer capacitors.

In spite of the simple control circuitry, which resembles that
of current-mode controls, the converter provides excellent
stability, robustness and dynamic response, taking advantage of
the potentiality of sliding-mode control.
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