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Abstract. The paper deals with small-signal analysis of dc-dc
converters with sliding mode control. A suitable small-signal
model is developed, which allows selection of control
coefficients, analysis of parameter variation effects and
characterization of the closed-loop behavior in terms of
audiosusceptibility, output and input impedances and
reference-to-output transfer function.

Unlike previous analyses, the model includes effects of the
filters used to evaluate state variable errors.

Simulated and experimental results demonstrate model
potentialities.

I. INTRODUCTION

A control technique suitable for dc-dc converters must
cope with their intrinsic nonlinearity and wide input voltage
and load variations, ensuring stability in any operating
condition while providing fast transient response. Among the
various control techniques proposed in the literature, sliding
mode control [1,2] offers several advantages, namely,
large-signal stability, robustness, good dynamic response
and simple implementation [3-4].

In spite of these positive aspects, sliding mode control is
not yet popular, probably because its theoretical complexity,
which can make difficult selection of controller parameters.
In fact, these parameters must be chosen so as to satisfy
existence, hitting and stability conditions, the analysis being
easily carried out only for second-order converters, which
permit a phase-plane description of the system.

Another limitation is that sliding mode control requires,
in theory, sensing of all state variables and generation of
suitable references for each of them.

In practice, generation of reference signals for all state
variables is not needed in dc-dc converters. In fact, since
only error signals are required for the control, they can be

achieved by high-pass filtering the state variable signals, in
the assumption that their dc component is automatically
adjusted by the converter according to input-to-output power
balance condition. Of course, these high-pass filters, not
considered in previous analyses, increase the system order
and can heavily affect the converter dynamic.

Moreover, converter control can effectively be done by
sensing only one inductor current in addition to the output
voltage [4] even for high-order converters (e.g. Cuk and
Sepic), resulting in a control complexity similar to that of
standard current-mode controllers. However, a  comparison
between the two solutions (full-order control and
reduced-order control) is not easy to obtain.

In summary, there is a lack of models able to describe the
effects of circuit and controller parameter variations and to
allow a comparison between the sliding mode approach and
other popular control techniques, like current-mode control,
PWM control, etc., in terms of converter transfer functions
(audiosusceptibility, output and input impedances,
reference-to-output transfer ratio).

This paper presents a small-signal model of sliding-mode
controlled dc-dc converters operating in continuous
conduction mode, which also includes the effects of the
filters used to determine state variable references.

Simulated results of a Sepic converter are reported,
which show the model potentialities.

Experimental results of a Boost converter are also given.

II. BASIC SLIDING MODE CONTROLLER

Fig. 1 shows the general sliding mode control scheme of
dc-dc converters. Although non used in practice, this scheme
emphasizes the properties and operation mechanism of this
control. Ug and uCN are input and output voltage,
respectively, while iLi  and uCj (i=1÷r, j=r+1÷N-1) are the



internal state variables of the converter (r inductor currents
and N-r-1 capacitor voltages) and N is the system order.

For the sake of generality the state variables will be
indicated as components of state vector x.

According to the general sliding mode control theory, all
state variables are sensed, and the corresponding errors
(defined by difference to the reference values x*) are
multiplied by proper gains K=[k1, k2,...kN]T and added
together to form sliding function ψ. Then, hysteretic block
HC keeps this function near to zero by gating on and off the
power switch S. We can therefore assume:

ψ = − ≅K x xT( )* 0 (1)

This means that the control forces the system to evolve on
the hyperplane (sliding surface) defined by (1).

g

Fig.1 - Basic scheme of a sliding mode controller

for dc-dc converters

As discussed in [4], selection of coefficients K must be
done in order to satisfy some basic requirements: first, the
state trajectories starting from points near the hyperplane
must be directed toward the sliding surface (1) for both
possible states of the converter switch (existence condition);
second, the system trajectories must encounter the sliding
surface irrespective of their starting point in the phase space
(hitting condition); third, the system motion on the sliding
surface must reach a stable point corresponding to the
desired voltages and currents (stability condition).

Although the feasibility of a sliding mode controller of
reduced order (where only one inductor current is sensed in
addition to the output voltage) has been already
demonstrated [4], in the following we will consider the case
of Fig.1 for the sake of generality. Results for reduced-order
controllers are easily obtainable by setting to zero some
sliding coefficients ki.

III. SMALL-SIGNAL MODEL DERIVATION

A generic dc-dc converter, working in continuous
conduction mode, can be characterized by the following two
sets of equations:

�x A x B u= +1 1      switch on (2)
�x A x B u= +0 0      switch off (3)

where x is the vector of state variables and u is the vector of
the input variables (input voltage ug and possibly load
current io). According to the state space averaging method
[5], the average system behavior is described by the
equation:

�x A x Bu= + (4.a)
where:

A A A

B B B
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= + −
1 0
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δ δ

δ δ

( )

( )
(4.b)

δ being the converter duty-cycle in the steady state. After
linearization (small-signal assumption), we can derive the
following small-signal equation, in which the hat means
perturbation from a steady-state working point (X, U):

�

�

� �

�x A x Bu C= + + δ (5)

Matrices A and B are the same as (4.b) and matrix C is
given by:

( ) ( )UBBXAAC 0101 −+−= (6)

In general, only some of the reference values x* indicated
in (1) are fed from the external control (often, only output
voltage reference is assigned). The other references are
derived internally to the controller, normally by low-pass
filtering the corresponding state variables. For these latter

references we can define M additional state variables xint
*

whose dynamic is described by:

� ,
int int

* *x x x i Mi
i

i
i

i= − + = ÷1 1
1τ τ

(7)

where τi are the corresponding filter time constants.
Thus, system order increases by M. The remaining N-M

state variable references are additional inputs.
Note that linear equation (7) holds also for perturbed

variables.
We call � ′x  the vector of all state variables, including the

additional state variables of the filters:









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intx̂

x̂
x̂ (8)



Assuming that the converter operates in the sliding mode,
constraint (1) also implies �ψ = 0, so that, from (5) and (7),
we can express the converter duty-cycle as a function of
complete state vector � ′x , derivative of external references
�

�
*xext , and input variables:

�

� � �

�
*δ = ′ + +D x D u D xext1 2 3 (9)

where matrices Di (i=1÷3) are given in Appendix I.
Substituting (9) in (5) and using (7) we obtain the linear
system equation:

�

�

� � �

�
*′ = ′ + +x A x B u D xc c c ext (10)

Taking now into account constraint (1), which holds
even for perturbed variables, the system order is reduced by
one. The final small-signal model has order N+M-1 and is
given by:

�

�

� � � �

�
* *′′ = ′′ + + +x A x B u D x D xT T T ext T ext1 2 (11)

Expressions for matrices Ac, Bc, Dc, AT, BT, DT1, DT2 are
given in Appendix I.

From (11) we are now able to compute all closed-loop
transfer functions. In particular, the input to output voltage
transfer function (audiosusceptibility), the external
reference-to-output voltage and the input admittance are
directly derived from (11). Instead, derivation of converter
output impedance, requires definition of the load current as
an external input in (5).

It is noticeable that the above model derivation involves
the same approximations of state-space-averaged modeling.

IV. MODEL VERIFICATION

In order to test the validity of the model, a Sepic
converter operating at about 50kHz with sliding mode
control was analyzed. According to [6], only two state
variables are sensed: one is the output voltage and the other
is the input inductor current, as shown in Fig.2.

Output impedance and audiosusceptibility were
computed from the above small-signal model and by circuit
simulation. The corresponding results are shown in Fig.3 a)
and b), respectively (continuous line - model simulation;
dotted line - converter simulation). As we can see, the
maximum error is about 1dB in the whole range of operating
frequencies.

Li 1u

2u
1L

1C
2C

D

S RL

K

*

U

i u

2

2

K

i u

H1

L
*

ε ε

ψ

UI

g

L.P.F

Fig.2 - Sepic converter with sliding mode control
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Fig.3 - a) Output impedance, b) Audiosusceptibility

(continuous line - model simulation; dotted line - circuit simulation)

As already explained, the proposed small-signal model
can be used both for full- and reduced-order control, thus
showing how much this latter influences the system
performances.

Although a full-order control generally results in better
performances, this is not true in general. For example, the
audiosusceptibility of the converter of Fig.2, is considerably
better in terms of peak value and low frequency behavior.



V. EFFECTS OF CONTROL PARAMETER VARIATIONS

An important advantage of the derived small-signal
model is the possibility to analyze the dynamic of the
controlled system as a function of all control parameters, i.e.
filter time constants and sliding coefficients ki. This makes
straightforward the design process, unlike previous analyses
which disregard filter time constants and do not give
information on dependence of the system dynamic on sliding
coefficients.

Let us consider, for example, the boost converter with
sliding mode control shown in Fig.4.
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Fig.4 - Boost converter with sliding mode control

The order of the overall system is 2, because we have
two state variables (N=2) and one low-pass filter (M=1).
Following the procedure reported in Appendix I, we
compute matrix AT which is given by:
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where KT=[ki ku], g=ku/ki, δ'=1-δ, τ is the filter time
constant and Leq=L/δ'2. Note that coefficients ki and ku were
chosen in order to make adimensional the value of ψ, so that
g results to be a conductance. The characteristic polynomial
of matrix AT is given by the determinant of matrix (sI-AT):
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From the analysis of the coefficients of polynomial ∆
(see Appendix II), we recognize that if we choose

0 < < =
′

g g
RC

Lcrit
δ

(14)

the system stability is ensured provided that:

τ τ> =
+

crit
eq

eq

L

R
L

RC
2

(15)

It can be demonstrated that condition (14), derived under
small-signal time-averaging approximation, is the same as
the existence condition of the sliding mode for a boost
converter in the steady-state. This is easily derived from
converter trajectory analysis (see Appendix III).  The same
result can be found for other basic converter topologies, for
which values of τcrit and gcrit are reported in Table I.

TABLE I : Values of τcrit and gcrit for basic converter topologies

Buck Boost Buck-boost

gcrit ∞ RC
L

′δ RC
L

′δ
δ

τcrit 0

L

R
L

RC

eq

eq+ 2 ( )
RC

L
2

R

L

eq

eq

δ′−+
δ

For higher order systems, for which is not easy to derive
simple conditions as (14) and (15), eq.(11) can be used
directly to observe the effects of the controller parameters on
the system dynamic. For example, Fig.5 shows the root locus
resulting from different values of the filter time constant of
the Sepic converter of Fig.2. Too low values cause real poles
P1 and P2 to become complex or even to cross the imaginary
axis.
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Fig.5 - Root locus of closed-loop system for variation of

low-pass filter time constant of the Sepic converter of Fig.2

VI. EXPERIMENTAL RESULTS

A boost converter prototype, according to the scheme of
Fig.4, was used to test the validity of the above theoretical
results. Converter parameters are listed in Table II.

TABLE II: Experimental prototype parameters

Ug = 24 V Uo = 48 V Po = 50 W fs = 50 kHz

L = 570 µH C = 22 µF τ = 0.4 ms g = 0.35

Converter audiosusceptibility and output impedance were
measured and compared with those predicted by the model.
For this purpose, the parameters used in the model were
measured directly on the prototype and the inductor series
resistance was taken into account.

In Fig.6, the open- and closed-loop output impedance is
reported. As we can see, theoretical and experimental results
agree pretty well. The sliding mode control reduces the peak
in the output impedance diagram by almost 20dB. Fig.7
shows the audiosusceptibility behavior in the same
conditions. Once again, simulated and experimental curves
look very similar, while the improvement in the
audiosusceptibility peak is about 30dB.

Note that control causes a worsening of the dynamic
characteristics at high frequencies, as compared to the
open-loop case. This behavior agrees with the multi-loop
nature of sliding mode control, as explained in [7].

Fig.6 - Comparison between model forecast and experimental results:

output impedance a) open loop, b) closed loop

Fig.7 - Comparison between model forecast and experimental results:

audiosusceptibility a) open loop, b) closed loop

VII. CONCLUSIONS

A small-signal model of dc-dc converters with sliding
mode control is derived. It allows evaluation of closed-loop
performances like audiosusceptibility, output and input
impedances and reference-to-output transfer function.

With this model, stability as well as effects of controller
parameter variations can deeply be investigated and control
parameters can be carefully selected.

Simulated results of a Sepic converter and experimental
results of a Boost converter are reported, showing the
validity of the approach.



APPENDIX I

In order to derive the expressions of matrices in (9), (10),
(11) it is convenient to split the vector of state variable
references between internal and external variables, as
follows:









=

*
ext

*
int*

x

x
x (A1.1)

From (1), it follows that also the derivative of sliding
function ψ is zero. Thus, considering perturbed signals, we
can write:

( ) 0x̂Kx̂Kx̂Kx̂x̂Kˆ *
ext

T
ext

*
int

T
int

T*T =−−=−=ψ ������ (A1.2)

in which the vector of sliding coefficients K is divided in
two terms Kint and Kext.

The dynamic description of the internal references is
given by (7), which can be rewritten as:

�

�

� �int
*

int
*x T x T x= −1 2 (A1.3)

where T1 is a diagonal M×M matrix, while T2 is a M×N
matrix given by

T T2 1 0= [ ] (A1.4)

which holds in the hypothesis that the state variables in
vector x are ordered as in vector x*.

Substituting (A1.3) and (5) into (A1.2), and calculating
the duty-cycle we obtain (9), whose matrices are given by:

D D D1 11 22= (A1.5a)

( ) BKCKD T1T
2 ⋅−=

−
(A1.5b)

( ) T
ext
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−
(A1.5c)
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+⋅−=
−

−

(A1.6)

Note that term KTC is scalar.
The complete description of the system is given by (10),

which is obtained by substituting (9) in (5) and using (A1.3)
and (8). Matrices Ac, Bc, Dc result:
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Lastly, in order to derive the matrices of the reduced
order system (11), let us consider non zero the first element
k1 of vector K. Thus, from (1) and (A1.1) we can write:

( ) [ ] 0x̂Kx̂KKx̂x̂K *
ext

T
ext

T
int

T*T =⋅−′⋅−=− (A1.8)

Solving for the first state variable and substituting in (10)
we obtain equations (11), in which we have:

( )MN:2x̂x̂ +′=′′
( ) ( ) 1ccT FM,1N:2AMN:M,2N:2AA ⋅++++=

( ): M,N:2BB cT +=
( ) 2c1T F1,MN:2AD ⋅+=

( ) :,MN:2DD c2T +=
where
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1
1 KN:2K

k
1

F −⋅−=

F
k

K ext
T

2
1

1= ⋅

and the notation A(n:m , j:k) means the submatrix obtained
from matrix A taking rows from index n to m and columns
from index j to k, while symbol : alone means all.

APPENDIX II

In order to derive conditions (14) and (15), which ensure
system stability for a Boost converter with sliding mode
control, we analyze the sign of coefficients of the
characteristic polynomial ∆ (13). Calling r1 and r2 the roots
of ∆, we can write:

( ) 2121
2 rrrrss ⋅++⋅−=∆ (A2.1)

The system is stable if both r1 and r2 have negative real
part, i.e. if

r r1 2 0⋅ > (A2.2)
and

r r1 2 0+ < (A2.3)

From (13), (A2.2) and (A2.3) the following inequalities
result:
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From (A2.4) it results
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which is the condition (14).
From (A2.5), taking into account (A2.6), it results:
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>
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R
R g

eq 1

1
2

(A2.7)

where, substituting the maximum value gcrit for g given by
(A2.6), the minimum value τcrit as given by (15) results.

APPENDIX III

As already mentioned, the existence condition requires
that the phase trajectories are directed toward the sliding
surface in a small volume around the surface itself. This
statement translates into the conditions [1-2]:
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(A3.1)

Writing the expression of � �ψ = K xT  for the boost
converter in the two situations corresponding to the different
values of the switch status, the above inequalities give:

k
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RC
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i

g

C
< ⋅

u
(A3.2)

where uC is the instantaneous voltage of the output filter
capacitor. Now, if we consider a small volume around the
operating point in the phase plane (small-signal
approximation), we can use the nominal capacitor voltage in
(A3.2), which is equal to the output voltage, thus obtaining
condition (14).
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