Corso di ELETTRONICA INDUSTRIALE

"Normative europee sulle armoniche in rete. Power Factor Correctors"

Argomenti trattati

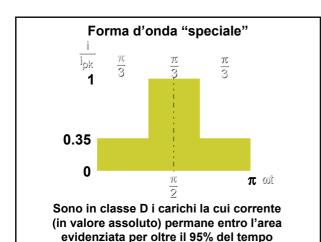
- Cenni sulle normative relative all'impatto armonico dei carichi
- Dispositivi per la correzione del fattore di potenza (Power Factor Correctors, PFC)
- · Struttura di un PFC tipo Boost
- Dimensionamento del filtro di uscita di un PFC
- · PFC di tipo flyback

Limiti Normativi

- L'Unione Europea (UE) si è dotata di norme armonizzate al fine di garantire l'uniformità delle caratteristiche dei prodotti immessi nel mercato europeo
- Tra queste, le EN 61000-3 limitano l'impatto armonico dei carichi, definendo i valori massimi della distorsione di tensione e/o corrente ammessa
- Normative simili vengono applicate in altri mercati (USA, Giappone)

IEC 1000-3-2

Carichi con corrente nominale <16 A / fase


A: carichi generici

B: macchine utensili portatili

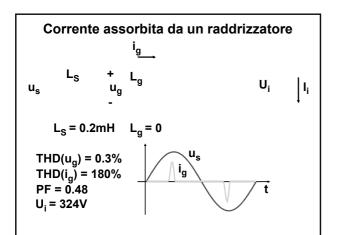
C: sistemi d'illuminazione

D: carichi che assorbono correnti con forme d'onda "speciali"

Per ogni classe vengono definiti i valori massimi (relativi o assoluti) delle correnti armoniche ammesse

LIMITI per le Classi A e B				
Ordine delle armoniche	Classe A	Classe B		
Dispari	[A]	[A]		
3	2.30	3.45		
5	1.14	1.71		
7	0.77	1.155		
9	0.40	0.60		
11	0.33	0.495		
13	0.21	0.315		
15 <= n <= 39	2.25/n	3.375/n		
Pari				
2	1.08	1.62		
4	0.43	0.645		
6	0.30	0.45		
8 <= n <= 40	1.84/n	2.76/n		

LIMITI per la Classe C (> 25 W)		
Ordine delle armoniche n	Valore massimo espresso come percentuale della componente fondamentale della corrente di ingresso	
2	2	
3	30 × λ	
5	10	
7	7	
9	5	
11 <= n <= 39	3	
λ è il fattore di potenza		


LIMITI per la Classe D			
Ordine delle	75 W < P < 600 W	P > 600 W	
armoniche	[mA/W]	[A]	
n			
3	3.4	2.30	
5	1.9	1.14	
7	1.0	0.77	
9	0.5	0.40	
11	0.35	0.33	
13	0.296	0.21	
15 <= n <= 39	3.85/n	2.25/n	
Nessuna limitazione per apparecchi con P < 75 W			

NOTE

- I carichi vanno compensati individualmente
- La classe D è la più penalizzata (limiti espressi in termini relativi alla fondamentale per P < 600 W)
- Può essere conveniente adottare metodi correttivi per rientrare in classe A (limiti espressi in termini assoluti)

Motivazioni delle normative

- diffusione crescente dei carichi distorcenti
- peggiore utilizzazione delle reti (basso fattore di potenza)
- sovraccarico del filo neutro (sistemi trifase con carichi distorcenti monofase)
- · distorsione della tensione di rete
 - errori di misura
 - interventi delle protezioni
 - malfunzionamento dei carichi

Dispositivi di correzione attiva del fattore di potenza

PFC - Power Factor Correctors
PFP - Power Factor Pre-regulators

- Assorbono dalla rete a c.a. una corrente poco distorta ed erogano una tensione continua pre-regolata (precisione limitata)
- Gli schemi non isolati tipicamente forniscono una tensione continua di valore elevato (centinaia di V)

NOTA: Fattore di potenza di un carico resistivo

$$PF = \frac{P}{S} = \frac{R I^2}{UI} = \frac{R I}{U}$$

NOTA: Fattore di potenza di un carico resistivo

$$PF = \frac{P}{S} = \frac{RI^2}{UI} = \frac{RI}{U}$$

$$I = \sqrt{\sum_{n=1}^{\infty} I_n^2}$$

NOTA: Fattore di potenza di un carico resistivo

$$PF = \frac{P}{S} = \frac{RI^2}{UI} = \frac{RI}{U}$$

$$I = \sqrt{\sum_{n=1}^{\infty} I_n^2} = \sqrt{\sum_{n=1}^{\infty} \frac{U_n^2}{R^2}}$$

NOTA: Fattore di potenza di un carico resistivo

$$PF = \frac{P}{S} = \frac{RI^2}{UI} = \frac{RI}{U}$$

$$I = \sqrt{\sum_{n=1}^{\infty} I_n^2} = \sqrt{\sum_{n=1}^{\infty} \frac{U_n^2}{R^2}} = \frac{1}{R} \sqrt{\sum_{n=1}^{\infty} U_n^2}$$

NOTA: Fattore di potenza di un carico resistivo

$$PF = \frac{P}{S} = \frac{RI^2}{UI} = \frac{RI}{U}$$

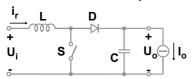
$$I = \sqrt{\sum_{n=1}^{\infty} I_n^2} = \sqrt{\sum_{n=1}^{\infty} \frac{U_n^2}{R^2}} = \frac{1}{R} \sqrt{\sum_{n=1}^{\infty} U_n^2} = \frac{U}{R}$$

NOTA: Fattore di potenza di un carico resistivo

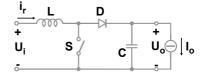
$$PF = \frac{P}{S} = \frac{RI^2}{UI} = \frac{RI}{U}$$

$$I = \sqrt{\sum_{n=1}^{\infty} I_n^2} = \sqrt{\sum_{n=1}^{\infty} \frac{U_n^2}{R^2}} = \frac{1}{R} \sqrt{\sum_{n=1}^{\infty} U_n^2} = \frac{U}{R}$$

Per un carico resistivo PF = 1 anche se la tensione è deformata

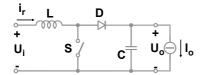

Controllo dei PFC

Obiettivo del controllo di un PFC (o PFP) è di imprimere i_g proporzionale a u_g (carico resistivo equivalente), così da ottenere PF = 1


Vantaggi

- conformità alle norme
- migliore utilizzazione dei componenti (minimi stress di corrente e tensione)

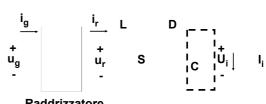
Convertitore cc/cc di tipo Boost


Convertitore cc/cc di tipo Boost

Funzionamento CCM

$$\mathbb{M} = \frac{\mathbb{U}_{\delta}}{\mathbb{U}_{i}} = \frac{1}{1 - \delta} \qquad \quad \delta = \text{duty cycle}$$

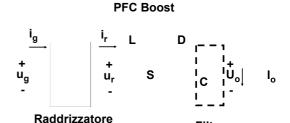
Convertitore cc/cc di tipo Boost



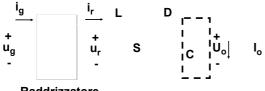
Funzionamento CCM

$$\mathbb{M} = \frac{\mathbb{U}_o}{\mathbb{U}_i} = \frac{1}{1 - \delta} \qquad \quad \delta = \text{duty cycle}$$

La topologia boost è idonea all'impiego nei PFC perchè consente di mantenere costante la tensione d'uscita anche per ampie variazioni della tensione d'ingresso (0 < U_i < U_{imax})


PFC Boost

Raddrizzatore a doppia semionda Filtro

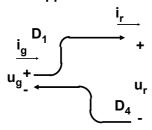

La corrente assorbita è filtrata dall'induttanza L, quindi le armoniche in AF non inquinano la rete

Se i_r > 0 in ogni istante (funzionamento CCM) allora il raddrizzatore a diodi conduce sempre

a doppia semionda

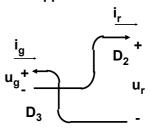
PFC Boost

Raddrizzatore a doppia semionda


Se i_r > 0 in ogni istante (funzionamento CCM)

Filtro

Funzionamento del raddrizzatore a doppia semionda


$$\begin{array}{cccc}
& & & & \stackrel{I_r}{\longrightarrow} \\
 & \stackrel{i_g}{\longrightarrow} & D_1 & D_2 & \\
 & u_{g_{\underline{-}}} & & u_r \\
 & D_3 & D_4 & \\
\end{array}$$

Funzionamento del raddrizzatore a doppia semionda

 $u_g > 0 \implies D_1 e D_4 on \implies u_r = u_g e i_g = i_r$

Funzionamento del raddrizzatore a doppia semionda

$$u_g > 0 \implies D_1 e D_4 \text{ on } \implies u_r = u_g e i_g = i_r$$
 $u_g < 0 \implies D_2 e D_3 \text{ on } \implies u_r = -u_g e i_g = -i_r$

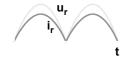
Funzionamento del raddrizzatore a doppia semionda

$$\begin{array}{ccc}
& & \stackrel{\text{'r}}{\longrightarrow} \\
 & \stackrel{\text{i}_g}{\longrightarrow} & D_1 & D_2 \\
 & u_{g_{\underline{}}^+} & u_r \\
 & D_3 & D_4
\end{array}$$

$$u_g > 0 \implies D_1 e D_4 on$$
 $u_g < 0 \implies D_2 e D_3 on$
 $u_r = |u_g|$

Funzionamento del raddrizzatore a doppia semionda

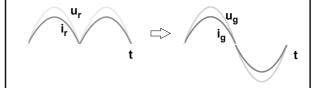
Funzionamento del raddrizzatore a doppia semionda


Funzionamento del raddrizzatore a doppia semionda

Se
$$i_r > 0$$
: $i_g = i_r \operatorname{sign}(u_g)$ $u_r = |u_g| = u_g \operatorname{sign}(u_g)$

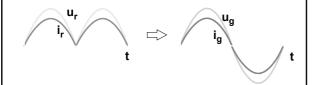
Funzionamento del raddrizzatore a doppia semionda

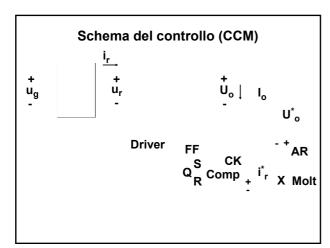
Se
$$i_r > 0$$
: $i_g = i_r \operatorname{sign}(u_g)$ $u_r = |u_g| = u_g \operatorname{sign}(u_g)$

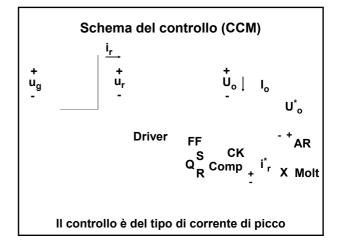

Quindi se:
$$i_r = \frac{u_r}{R_{eq}}$$

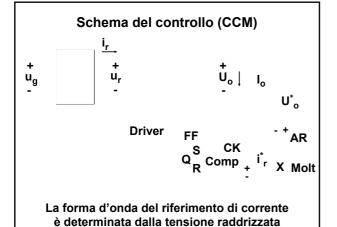
Funzionamento del raddrizzatore a doppia semionda

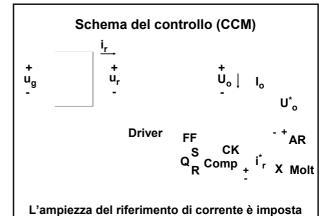
Se
$$i_r > 0$$
: $i_g = i_r \operatorname{sign}(u_g)$ $u_r = |u_g| = u_g \operatorname{sign}(u_g)$


Quindi se:
$$i_r = \frac{u_r}{R_{eq}}$$
 \Longrightarrow $i_g = \frac{u_g}{R_{eq}}$


Funzionamento del raddrizzatore a doppia semionda


Il controllo del PFC viene realizzato in modo da mantenere i_r proporzionale ad u_r


$$i_r = \frac{u_r}{R_{eq}} \quad \Longrightarrow \quad i_g = \frac{u_g}{R_{eq}}$$



Schema del controllo (CCM)

dal regolatore di tensione per ottenere U_o = U*_o

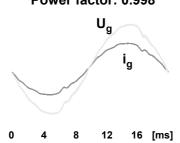
LIMITE:

Poichè il convertitore è di tipo boost, si ha che U_o > max (u_r)

LIMITE:

Poichè il convertitore è di tipo boost, si ha che $U_0 > max(u_r)$

Il convertitore cc/cc a valle del PFC deve includere un trasformatore abbassatore di tensione


Esempio di applicazione

Esempio di applicazione Specifiche del PFC:

Tensione di ingresso U_g = 90 - 260 Vrms Tensione di uscita U_o = 380 V Potenza di uscita P_o = 550 W Frequenza di commutazione f_S = 70 kHz Induttanza L = 500 μ H Capacità C = 450 μ F

Risultati sperimentali u_a : THD = 3.2% i_a : THD = 4.2%

Power factor: 0.998

Dimensionamento del condensatore d'uscita di un PFC

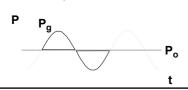
Dimensionamento del condensatore d'uscita di un PFC

$$p_g = u_g i_g$$

Dimensionamento del condensatore d'uscita di un PFC

$$p_g = u_g i_g = \frac{U_{g_{max}}^2}{R_{eq}} sin^2(\omega t)$$

Dimensionamento del condensatore d'uscita di un PFC

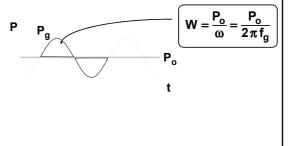

$$p_g = u_g i_g = \frac{U_{g_{max}}^2}{R_{eq}} sin^2(\omega t) = \frac{U_g^2}{R_{eq}} [1 - cos(2\omega t)]$$

Dimensionamento del condensatore d'uscita di un PFC

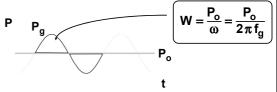
$$\begin{split} p_g &= u_g \, i_g = \frac{U_{g_{max}}^2}{R_{eq}} \sin^2(\omega t) = \frac{U_g^2}{R_{eq}} [1 - \cos(2\omega t)] \\ P_o &= U_o \, I_o = \frac{U_g^2}{R_{eq}} \quad \text{La potenza media d'ingresso} \\ eguaglia quella d'uscita \end{split}$$

Dimensionamento del condensatore d'uscita di un PFC

$$\begin{split} p_g &= u_g \, i_g = \frac{U_{g_{max}}^2}{R_{eq}} \sin^2(\omega t) = \frac{U_g^2}{R_{eq}} [1 - \cos(2\omega t)] \\ P_o &= U_o \, I_o = \frac{U_g^2}{R_{eq}} \quad \text{La potenza media d'ingresso} \\ &= \text{eguaglia quella d'uscita} \end{split}$$

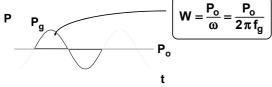

Dimensionamento del condensatore d'uscita di un PFC

$$p_{g} = u_{g} i_{g} = \frac{U_{g_{max}}^{2}}{R_{eq}} sin^{2}(\omega t) = \frac{U_{g}^{2}}{R_{eq}} [1 - cos(2\omega t)]$$


$$P_{o} = U_{o} I_{o} = \frac{U_{g}^{2}}{R_{eq}}$$
Energia scambiata dal filtro capacitivo:
$$W = \frac{P_{o}}{\omega} = \frac{P_{o}}{2\pi f_{g}}$$

$$P_{o}$$

Dimensionamento del condensatore d'uscita di un PFC



Dimensionamento del condensatore d'uscita di un PFC

L'energia associata alla potenza fluttuante viene scambiata tra rete e condensatore di filtro, generando un'ondulazione di tensione

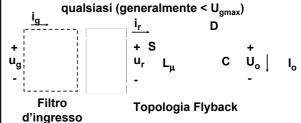
Dimensionamento del condensatore d'uscita di un PFC

L'energia associata alla potenza fluttuante viene scambiata tra rete e condensatore di filtro, generando un'ondulazione di tensione

$$C = \frac{W}{U_o \Delta U_o}$$

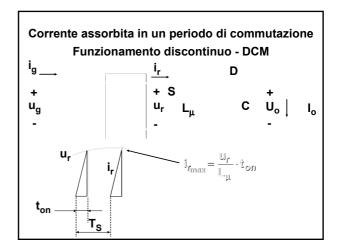
Dimensionamento del condensatore d'uscita di un PFC

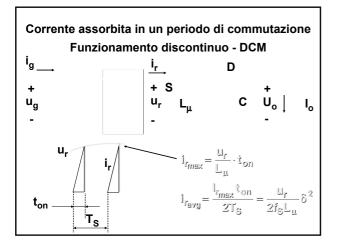
$$C = \frac{W}{U_o \Delta U_o}$$

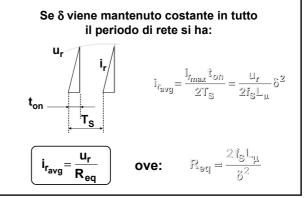

- per avere bassa ondulazione della tensione di uscita occorre usare grandi capacità
- · ciò limita la banda passante del PFC

PFC con isolamento

Includono un trasformatore AF e forniscono una tensione di uscita pre-regolata di valore qualsiasi (generalmente < U_{gmax})

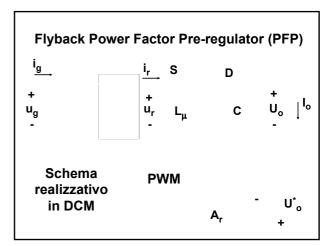

PFC con isolamento

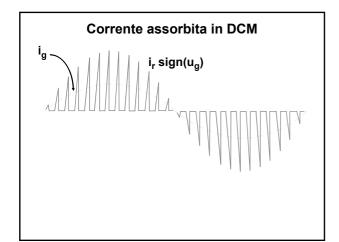

Includono un trasformatore AF e forniscono una tensione di uscita pre-regolata di valore

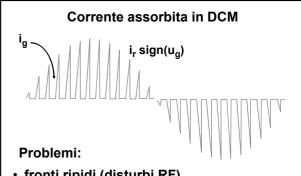


Corrente assorbita in un periodo di commutazione

Corrente assorbita in un periodo di commutazione Funzionamento discontinuo - DCM






Funzionamento discontinuo - DCM

Il convertitore Flyback in funzionamento discontinuo (con duty-cycle e frequenza di commutazione costanti) garantisce PF = 1

- · si può usare un semplice controllo di tensione (PWM)
- è necessario utilizzare un filtro di ingresso per assorbire le armoniche AF contenute nella i,

- · fronti ripidi (disturbi RF)
- armoniche di corrente a frequenza fs e multiple

Conclusioni

- · Le normative impongono la limitazione dell'impatto armonico causato dagli alimentatori elettronici
- I Power Factor Correctors costituiscono una soluzione compatta ed efficace
- · Essi però necessitano di uno stadio d'ingresso switching, che incrementa complessità e costo del circuito e riduce il rendimento
- · Inoltre possono generare armoniche della frequenza di commutazione e radiodisturbi