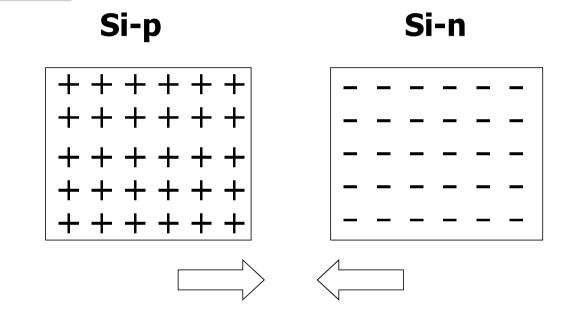


La giunzione *pn* (2.4.1-4)

Argomenti della Lezione

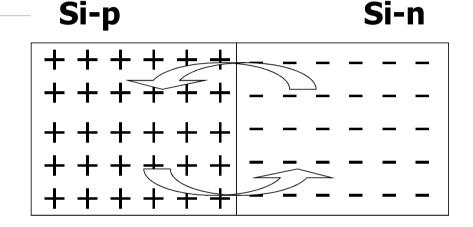
- Analisi della giunzione p-n
 - campo elettrico
 - potenziale di contatto
- Polarizzazione inversa
 - capacità di transizione
 - fenomeno del breakdown
- Polarizzazione diretta
 - equazione del diodo
- Caratteristica i-v del diodo

La giunzione *pn*



Supponiamo di avere a disposizione due blocchetti di silicio, uno drogato di tipo p e uno drogato tipo n. Cosa succede se (idealmente) li mettiamo in contatto?

La giunzione *pn*

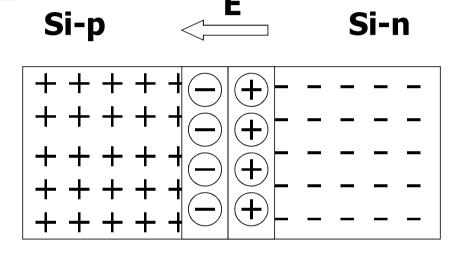


Se mettiamo a contatto Silicio drogato di tipo p con Silicio drogato tipo n, a causa degli elevati gradienti di concentrazione avremo **diffusione**:

<u>lacune da Si-p a Si-n</u> ed <u>elettroni da Si-n a Si-p</u>

Ma il processo non può procedere all'infinito altrimenti la giunzione sparirebbe

La giunzione *pn*



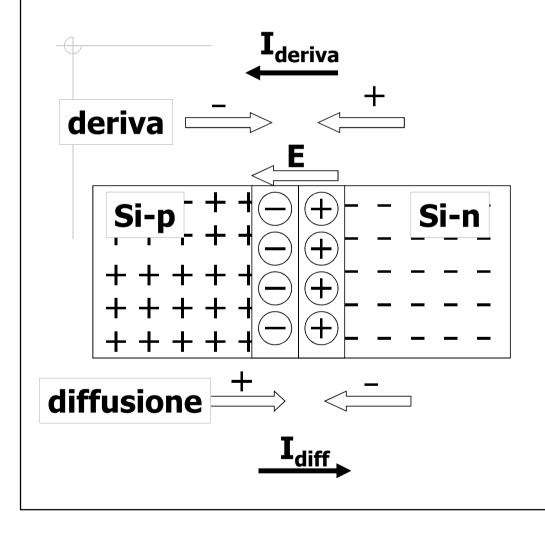
Cosa frena la diffusione?

La diffusione di portatori mobili lascia atomi ionizzati che danno luogo ad un **CAMPO ELETTRICO**, **E**

Ipotesi di svuotamento completo "a gradino":

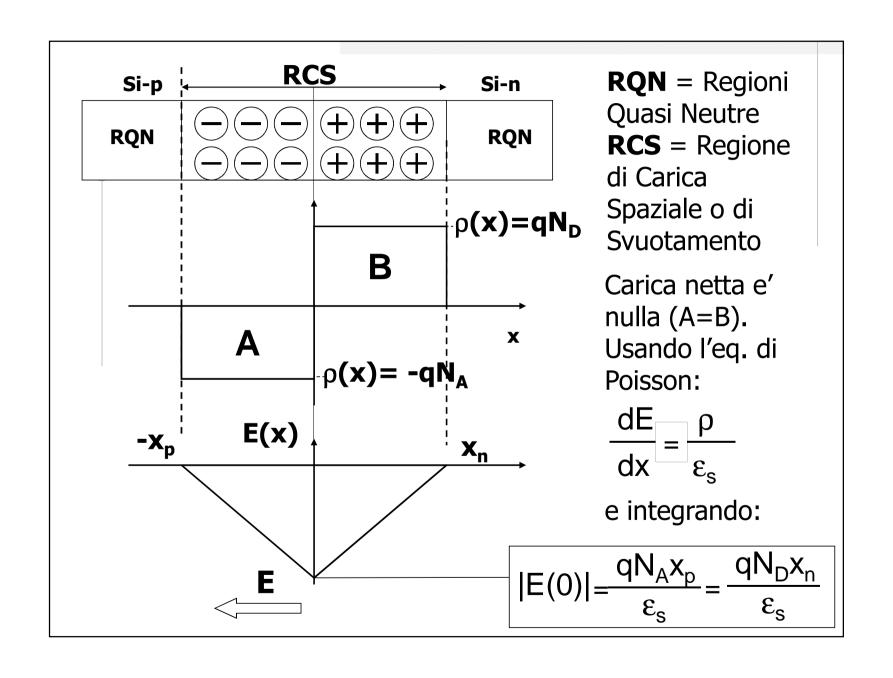
l'interfaccia della giunzione risulta completamente svuotata di portatori mobili.

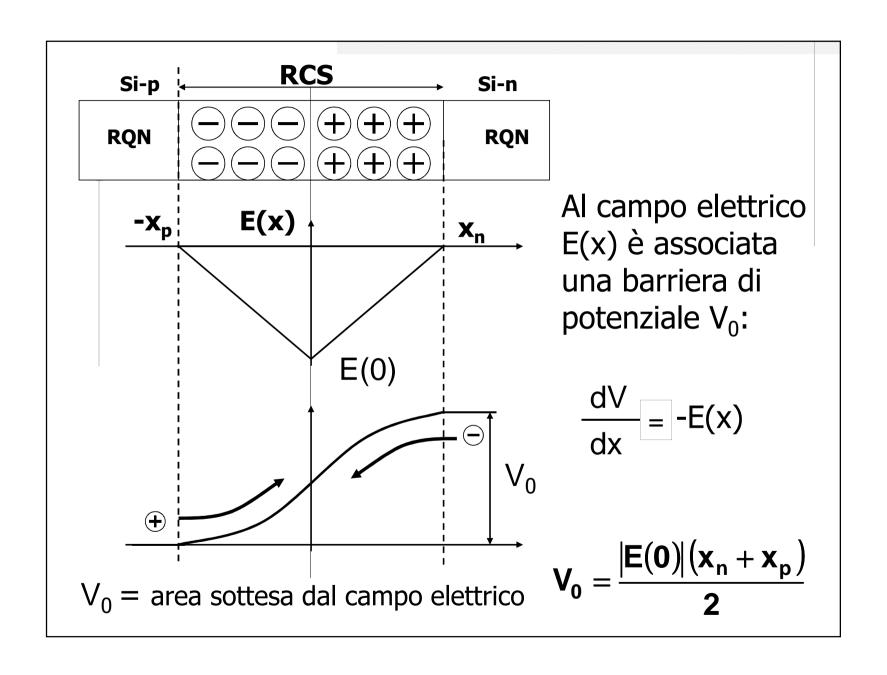
La giunzione *pn all'equilibrio*



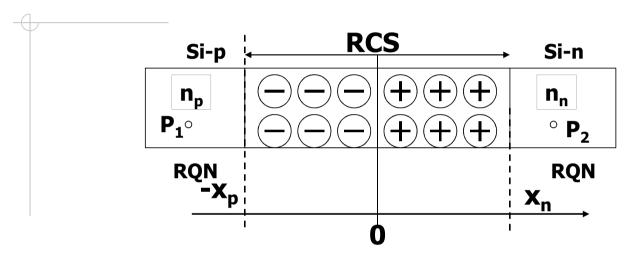
Si raggiunge una condizione di equilibrio dinamico nella quale le due componenti di corrente si bilanciano e quindi risulta:

$$I_{diff} = I_{deriva}$$





Calcolo del potenziale di contatto



Consideriamo due punti P₁ e P₂ qualsiasi all'interno delle regioni quasi neutre. Le concentrazioni di elettroni nei due punti valgono:

$$P_1: n_1 = n_p = \frac{n_i^2}{N_A}$$
 $P_2: n_2 = n_n = N_D$

$$P_2: n_2 = n_n = N_D$$

Calcolo del potenziale di contatto

All'equilibrio, la corrente totale di elettroni è nulla (così come quella di lacune):

$$J_{nx}(x) = q\mu_n n(x)E(x) + qD_n \frac{dn(x)}{dx} = 0$$

da cui:

$$J_{nx}(x) = q\mu_n n(x)E(x) + qD_n \frac{dn(x)}{dx} = 0$$
cui:
$$n(x)\frac{dV(x)}{dx} = \frac{D_n}{\mu_n}\frac{dn(x)}{dx} \qquad \Box \qquad dV = V_T \frac{1}{n}dn$$

Integrando ambo i membri otteniamo:

$$\int_{V_1}^{V_2} dV = V_T \int_{n_1}^{n_2} \frac{1}{n} dn \quad \text{e quindi:} \quad \left(V_2 - V_1 = V_T \ln \left(\frac{n_2}{n_1} \right) \right)$$

$$V_2 - V_1 = V_T \ln \left(\frac{n_2}{n_1} \right)$$

Analogamente, per le cariche p si può ricavare:

$$V_2 - V_1 = V_T \ln \left[\frac{p_1}{p_2} \right]$$

Potenziale di contatto V₀ all'equilibrio

All'equilibrio, le concentrazioni in P_1 e P_2 sono quelle che si hanno nelle zone p e n, cioè $n_1=n_p=n_i^2/N_A$ e $n_2=N_D$. Perciò, sostituendo:

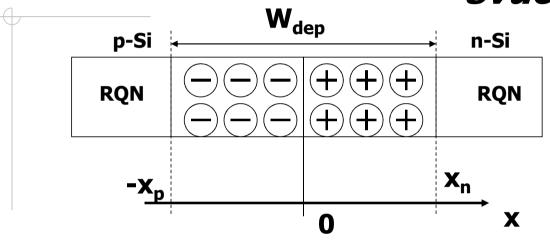
$$V_0 = V_2 - V_1 = V_T \ln \left(\frac{n_2}{n_1} \right) = V_T \ln \left(\frac{N_D N_A}{n_i^2} \right)$$

Che esprime la tensione di contatto V_0 in condizioni di equilibrio, in funzione delle concentrazioni N_A nella zona p e N_D nella zona n.

Lo stesso risultato si ottiene ragionando sulle cariche p anzichè sulle cariche n.

Giunzione **pn**, regione di

svuotamento



$$W_{dep} = x_p + x_n = \sqrt{\frac{2\mathcal{E}_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_0}$$

$$\frac{x_n}{x_p} = \frac{N_A}{N_D}$$

$$\varepsilon_{\rm s} = 1.04 \ 10^{-12} \ {\rm F/cm}$$

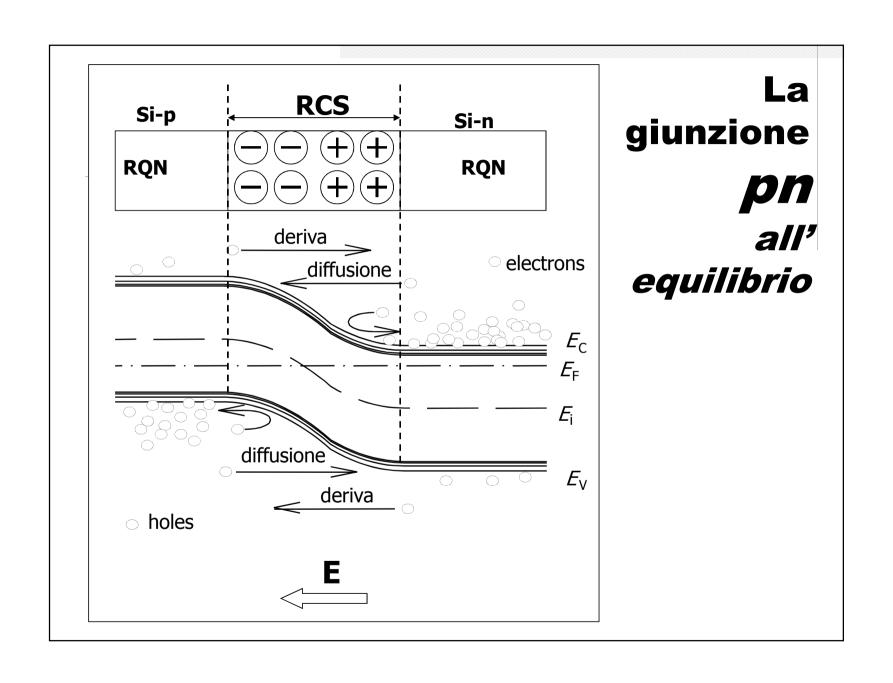
$$\varepsilon_{\rm s} = 1.04 \ 10^{-12} \ {\rm F/cm} \qquad 0.1 \mu {\rm m} \le {\rm W_{dep}} \le 1 \mu {\rm m}$$

Giunzione *pn regione di*svuotamento

$$x_{p} = \frac{W_{dep}}{1 + \frac{N_{A}}{N_{D}}} \qquad x_{n} = \frac{W_{dep}}{1 + \frac{N_{D}}{N_{A}}}$$

Se $N_A >> N_D$, allora $x_p << x_n$ (la regione di svuotamento si estende quasi interamente nella regione n)

Se N_A << N_D , allora x_p >> x_n (la regione di svuotamento si estende quasi interamente nella regione p)

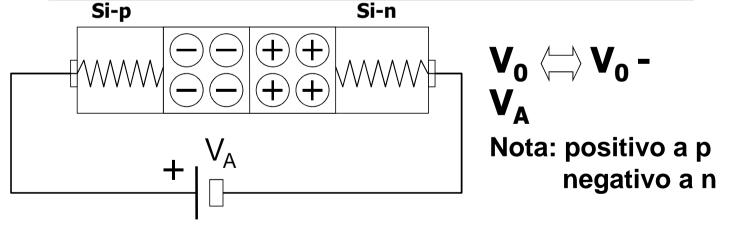


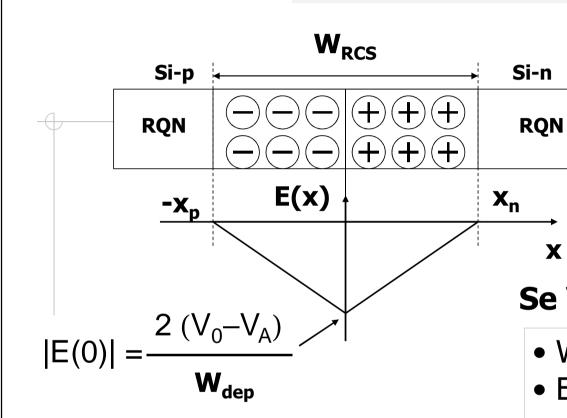
Giunzione **pn** polarizzata

Ipotesi semplificative:

- Approssimazione di svuotamento
- Cadute di tensione trascurabili sui contatti e RQN
- Deboli correnti (bassa iniezione)

La tensione applicata V_A cade tutta alla giunzione. La tensione sulla giunzione diventa $V_0 - V_A$.



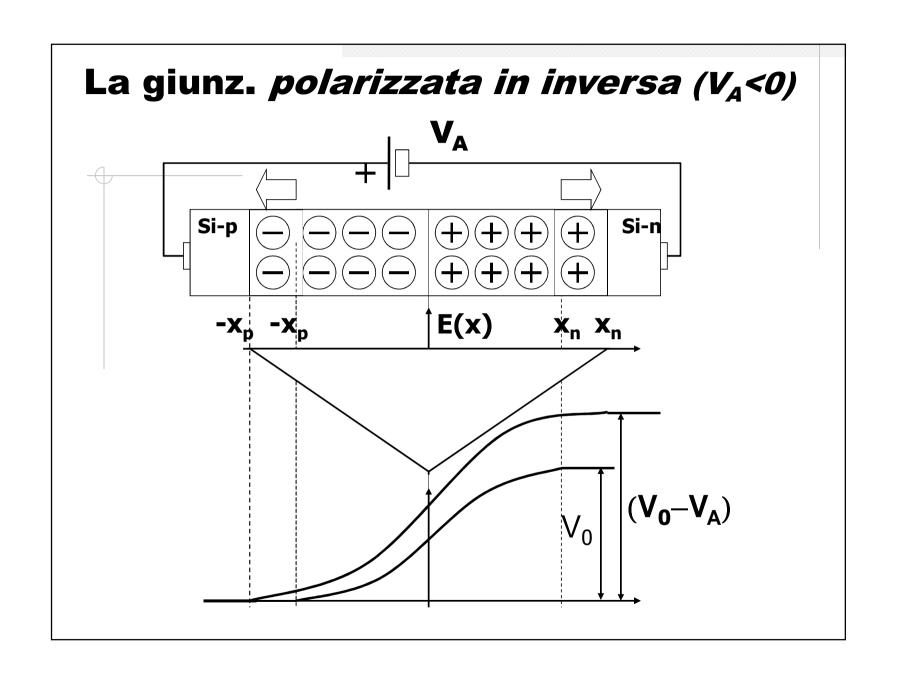


$$W_{dep} = x_p + x_n = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 - V_A)}$$

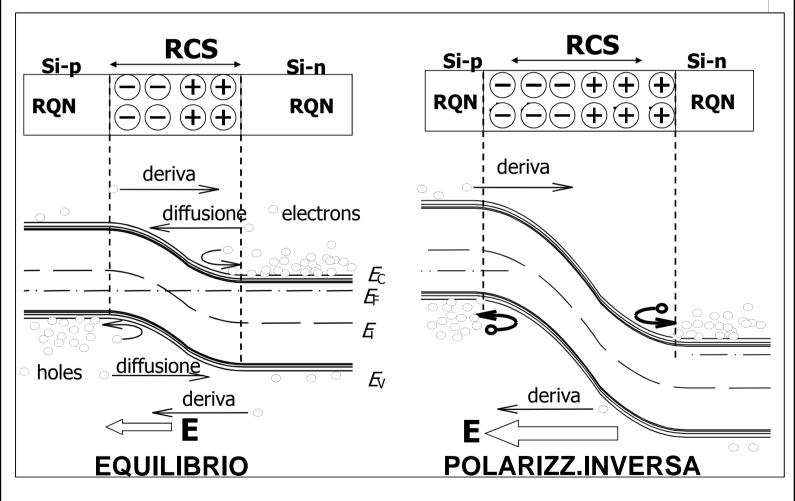
Se V_A aumenta:

- W_{dep} cala
- E(0) cala
- potenziale alla giunzione cala

e viceversa



La giunz. polarizzata in inversa $(V_A < 0)$ movimento dei portatori liberi



Capacita' parassite nei diodi (Polarizzazione inversa)

$$W_{dep} = x_p + x_n = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 - V_A)}$$

$$V_R = -V_A$$

$$W_{\text{dep}} = \sqrt{1 + \frac{V_{\text{R}}}{V_{\text{0}}}} \sqrt{\frac{2\varepsilon_{\text{s}}}{q} \left(\frac{1}{N_{\text{A}}} + \frac{1}{N_{\text{D}}}\right) V_{\text{0}}} \Rightarrow W_{\text{dep}} = W_{\text{d0}} \sqrt{1 + \frac{V_{\text{R}}}{V_{\text{0}}}}$$

$$Q = qN_{\scriptscriptstyle D}x_{\scriptscriptstyle n}A = qN_{\scriptscriptstyle A}x_{\scriptscriptstyle p}A = q\Bigg(\frac{N_{\scriptscriptstyle D}N_{\scriptscriptstyle A}}{N_{\scriptscriptstyle D}+N_{\scriptscriptstyle A}}\Bigg)W_{\scriptscriptstyle dep}A$$

$$Q = qAW_{d0} \frac{N_D N_A}{N_D + N_A} \sqrt{1 + \frac{V_R}{V_0}}$$

Capacita' parassite nei diodi (Polarizzazione inversa)

$$Q = qAW_{d0} \frac{N_D N_A}{N_D + N_A} \sqrt{1 + \frac{V_R}{V_0}}$$

$$C_j = \frac{\partial Q}{\partial V_R}\Big|_{V_R = V_O}$$
 Con alc

Con alcuni passaggi algebrici si ottiene:

$$C_{j} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{R}}{V_{0}}}}; \quad C_{j0} = A\sqrt{\left(\frac{\mathcal{E}_{S}q}{2}\right)\left(\frac{N_{D}N_{A}}{N_{D} + N_{A}}\right)\left(\frac{1}{V_{0}}\right)}$$

Si poteva ottenere partendo dalla: $C_j = \frac{A \mathcal{E}_S}{VAV}$

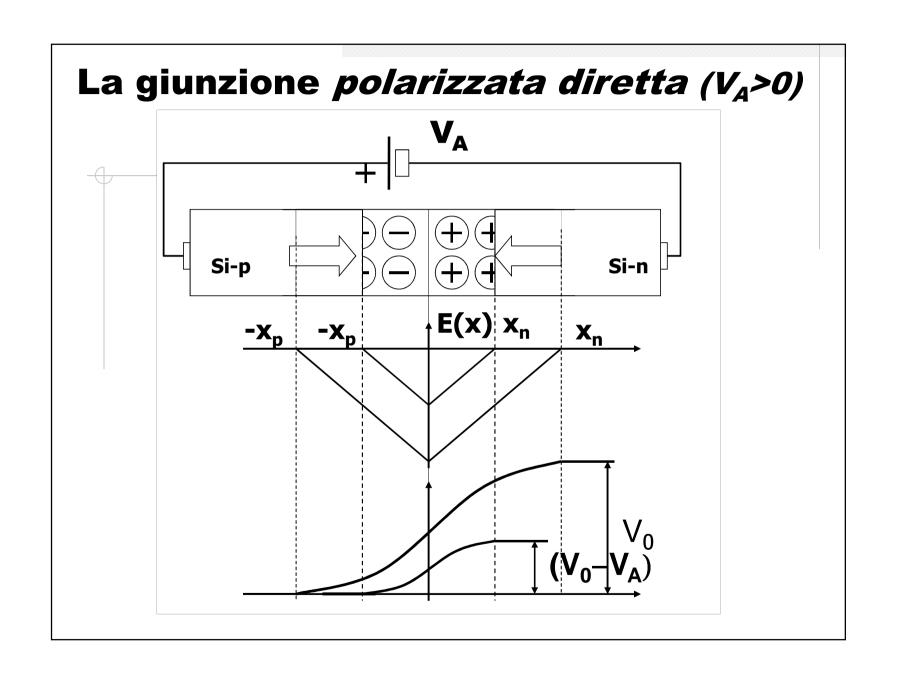
$$C_{j} = \frac{A\mathcal{E}_{S}}{W_{dep}}$$

Breakdown ZENER

In giunzioni pesantemente drogate, la RCS risulta sottile ed il campo elettrico alla giunzione così elevato da riuscire a rompere legami covalenti e a creare coppie elettrone-lacuna con conseguente aumento della corrente inversa.

Breakdown a Valanga

La velocità media di deriva dei portatori nella RCS è il risultato di continui urti con il reticolo cristallino (in cui viene ceduta energia) e movimento accelerato dal campo elettrico tra un urto e l'altro. Se l'energia cinetica acquisita durante la fase di accelerazione e ceduta al reticolo cristallino durante un urto è tale da rompere un legame covalente, si ha un effetto moltiplicativo ("a valanga") causato dai nuovi portatori così prodotti che, a loro volta vengono accelerati dal campo elettrico e possono provocare la rottura di altri legami covalenti



La giunz. *polarizzata in diretta (V₄>0)* movimento dei portatori liberi **RCS RCS** Si-n Si-p Si-p Si-n **RQN RQN RQN RQN** deriva deriva diffusione diffusione¦ ^o electrons diffusione holes diffusione deriva deriva **EQUILIBRIO POLARIZZ.DIRETTA**

La giunzione *polarizzata* Concentrazioni ai bordi della RCS

Se la tensione applicata $V_A \neq 0$, cambiano le concentrazioni ai bordi –x_p e x_n della RCS (Regione di Carica Spaziale). Per l'ipotesi di deboli correnti (bassa iniezione), sono ancora valide le relazioni tra potenziale di contatto e concentrazioni:

$$V_2-V_1=V_T \ln \left(\frac{n_2}{n_1}\right) \left[V_2-V_1=V_T \ln \left(\frac{p_1}{p_2}\right) \right]$$

$$V_2 - V_1 = V_T \ln \left(\frac{p_1}{p_2} \right)$$

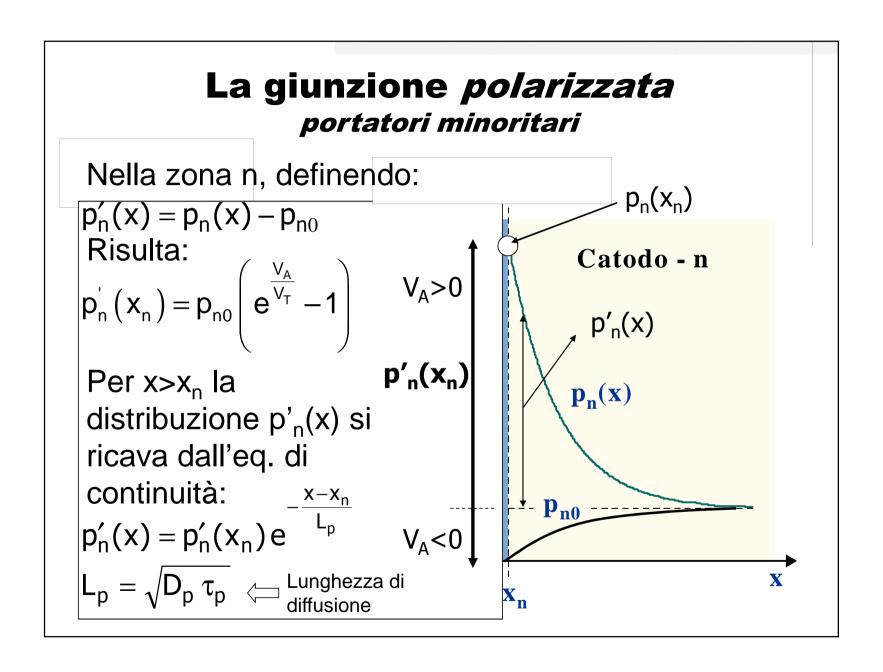
La giunzione *polarizzata*Concentrazioni ai bordi della RCS

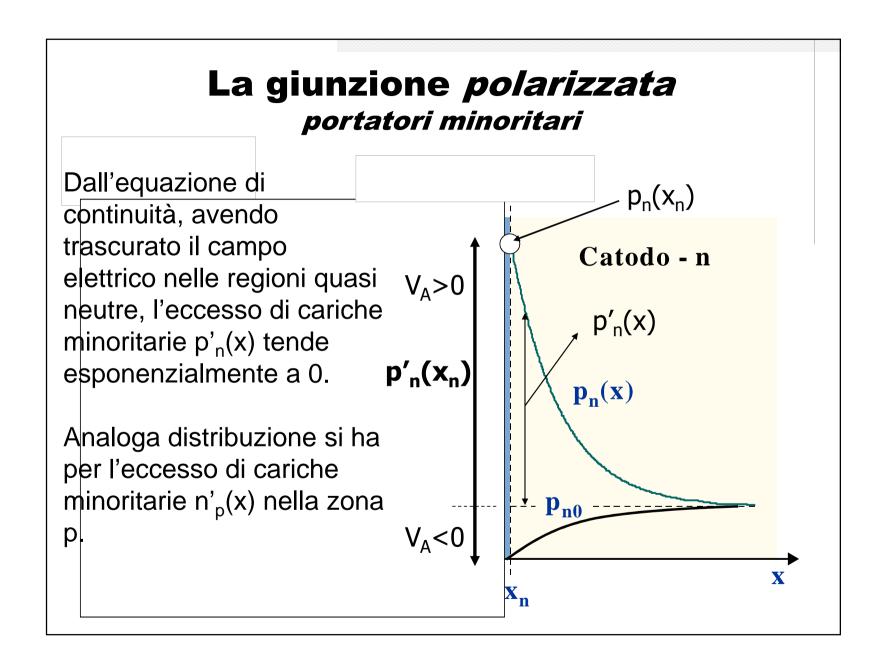
Ad es., per le cariche p, per la presenza degli accettori nella zona p è $p_1=N_A$, e nella zona n , all'ascissa x_n , la concentrazione dei portatori minoritari $p_2=p_n(x_n)$ è data dalla relazione col potenziale di contatto V_0-V_A :

dalla relazione col potenziale di contatto
$$V_0$$
- V_A :
$$V_0 - V_A = V_2 - V_1 = V_T \ln\left(\frac{N_A}{p_2}\right)$$
da cui
$$\frac{V_A - V_0}{V_T} = p_{n0} e^{\frac{V_A}{V_T}}$$

Dove p_{n0} è la concentrazione di lacune nella zona n all'equilibrio, quando $V_A=0$. Analogamente nella zona p, a $-x_p$, si ha: V_A-V_0 V_A

zona p, a
$$-x_p$$
, si ha:
$$\underline{V_A - V_0} = n_p (-x_p) = N_D e^{V_A} = n_{p0} e^{V_T}$$



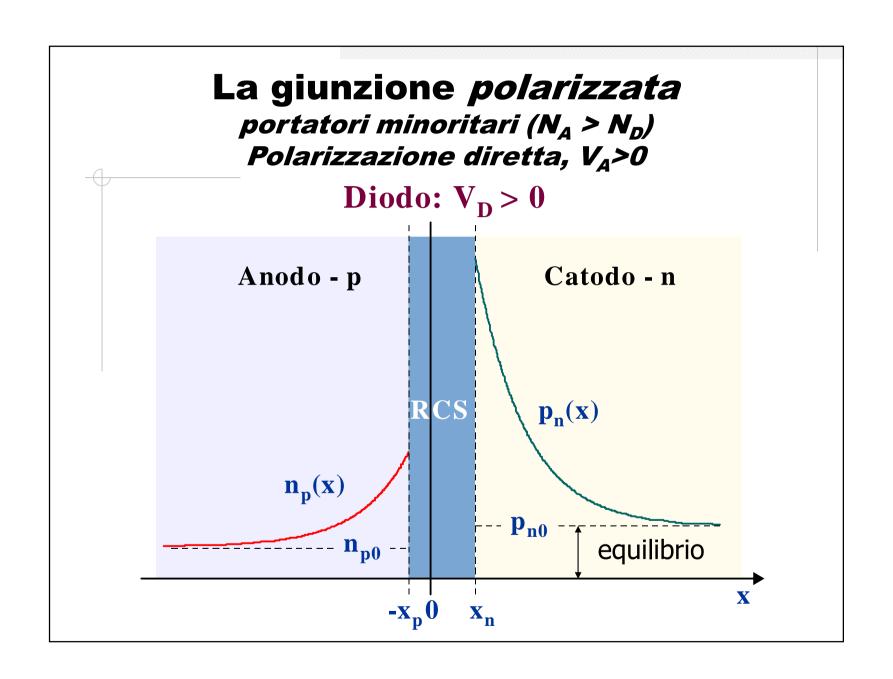


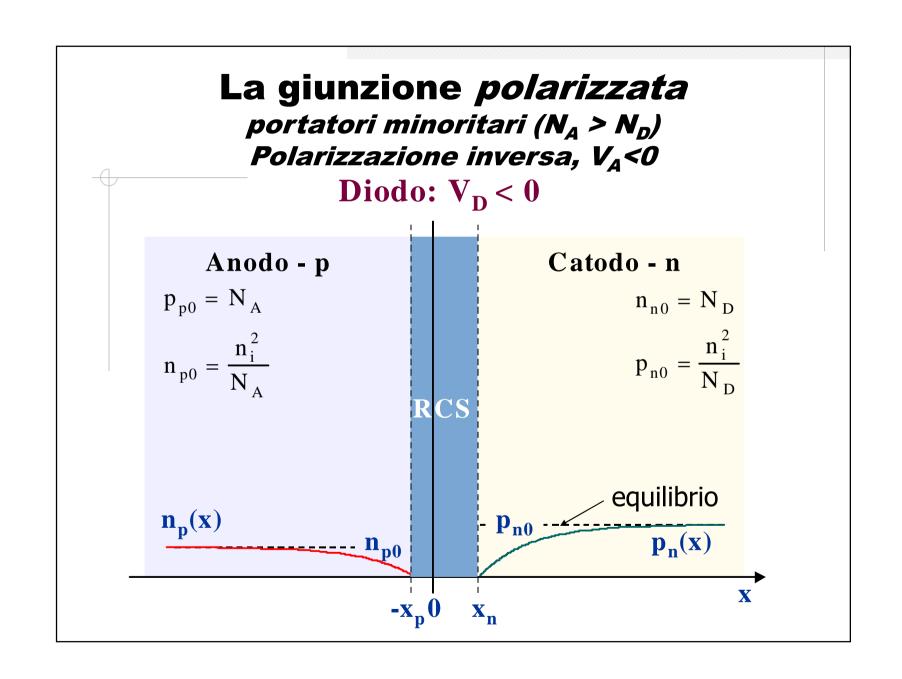
La giunzione *polarizzata* portatori minoritari

In polarizzazione diretta si crea un eccesso di portatori minoritari $p'_n(x_n)$ (rispetto alla condizione di equilibrio), in prossimità della RCS, che cresce esponenzialmente con la tensione applicata V_A :

- eccesso di lacune nella regione n
- ed eccesso di elettroni nella regione p.

Al contrario, in polarizzazione inversa, rispetto alla condizione di equilibrio, si crea un difetto di portatori minoritari in prossimità della RCS.





$$p'_{n}(x) = p'_{n}(x_{n})e^{-\frac{x-x_{n}}{L_{p}}}$$

$$p'_{n}(x)$$

$$per \quad x > x_{n}$$

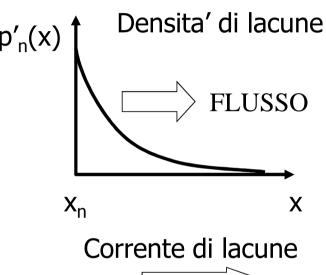
Corrente di diffusione:

$$J_{p}(x) = -qD_{p} \frac{\partial p_{n}(x)}{\partial x}$$

E dalle relazioni precedenti:

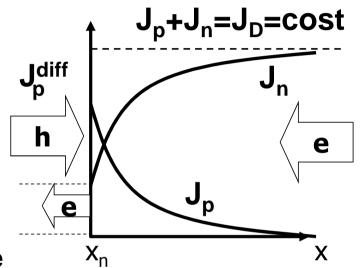
$$J_{p}(x) = q \frac{D_{p}}{L_{p}} p_{n0} \left(e^{\frac{V_{A}}{V_{T}}} - 1 \right) e^{-\frac{x - x_{n}}{L_{p}}}$$

$$per \quad x > x_{n}$$



 J_p e' massima in $x=x_n$ e poi decade in modo esponenziale con lunghezza di diffusione L_p .

- (1) Le lacune vengono continuamente iniettate nel Silicio tipo n;
- (2) In presenza del gran numero di elettroni si ricombinano (lontano dalla giunzione non ci sono lacune in eccesso, $p'_n(x) \rightarrow 0$;

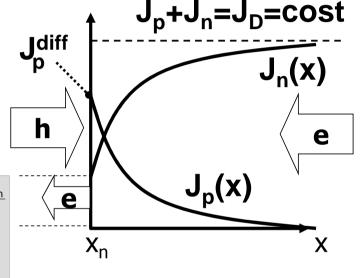


- (3) Vengono richiamati elettroni che si ricombinano con le lacune iniettate (dando una corrente verso destra);
- (4) In regime stazionario, la corrente lungo il diodo è costante.

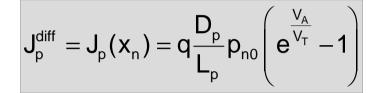
Consideriamo gli andamenti della corrente nella zona n

$$J_{p}(x) = q \frac{D_{p}}{L_{p}} p_{n0} \left(e^{\frac{V_{A}}{V_{T}}} - 1 \right) e^{-\frac{x - x_{n}}{L_{p}}}$$

$$per \quad x > x_{n}$$

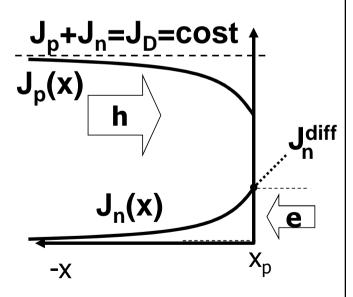


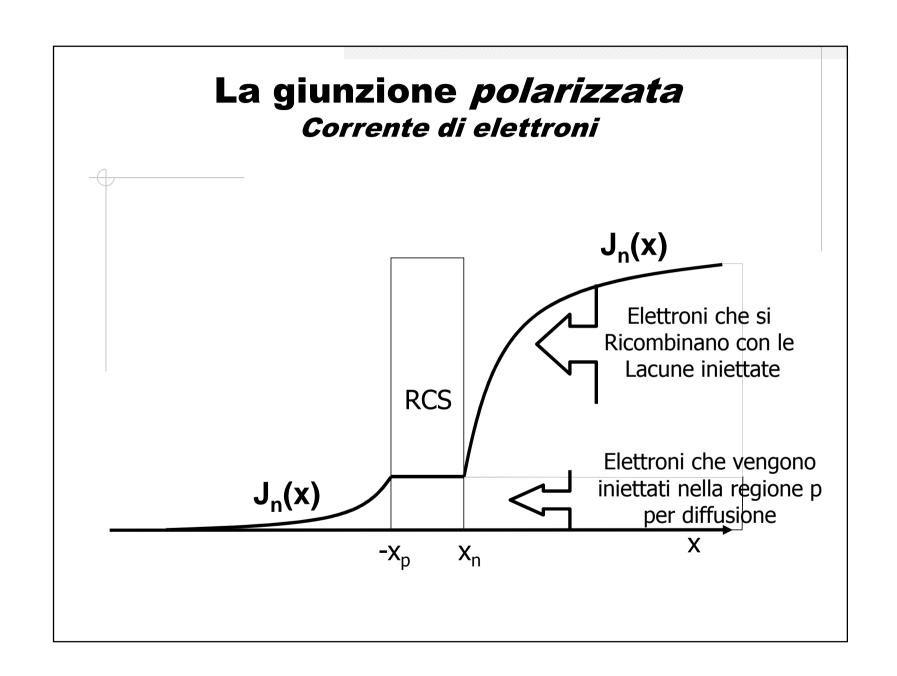
$$J_p^{diff} = J_p(x_n) = q \frac{D_p}{L_p} p_{n0} \left(e^{\frac{V_A}{V_T}} - 1 \right)$$

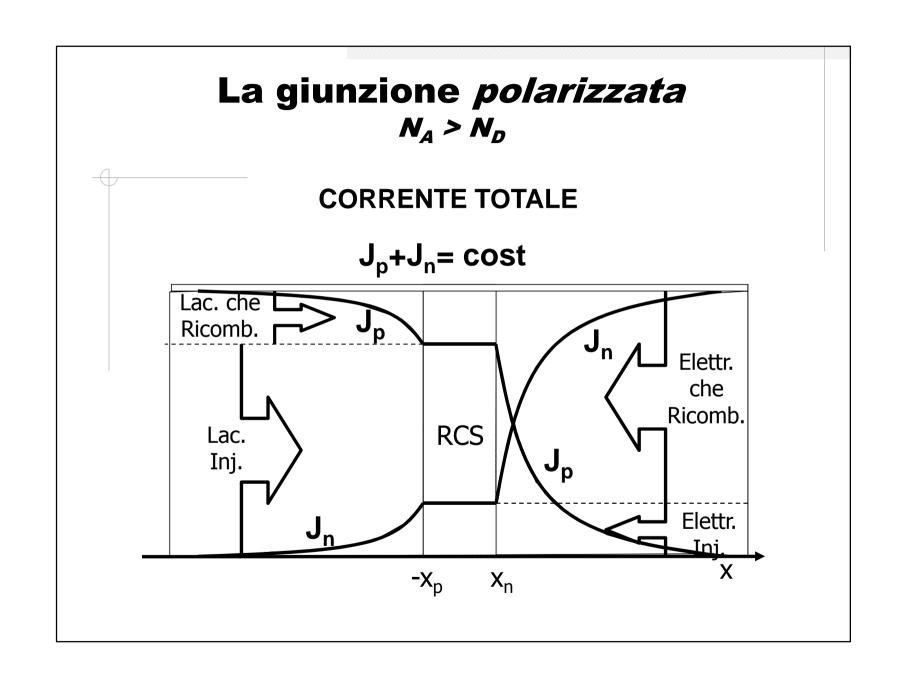


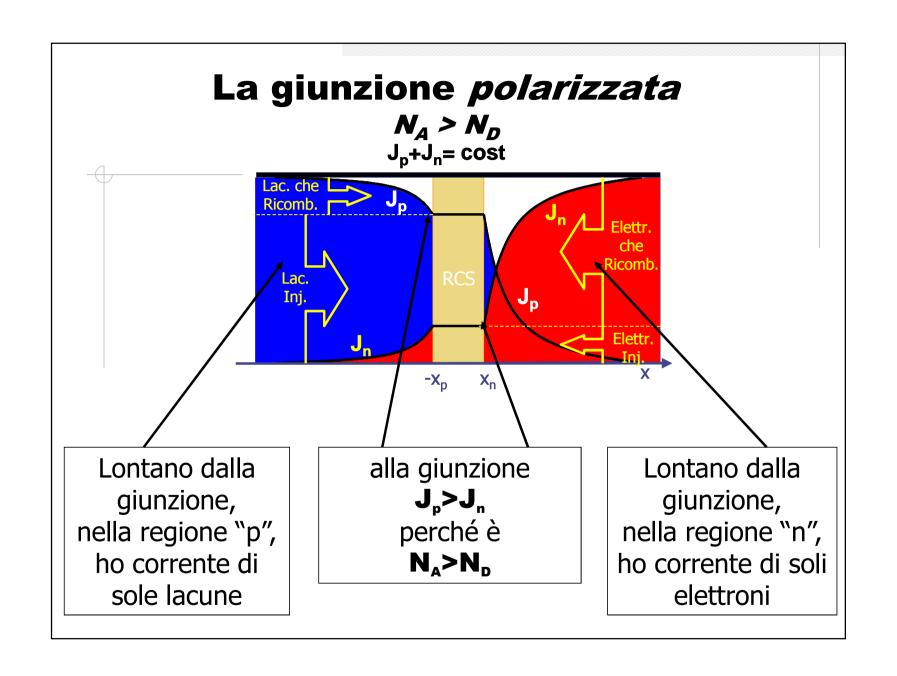
IN MODO ANALOGO NELLA ZONA P:

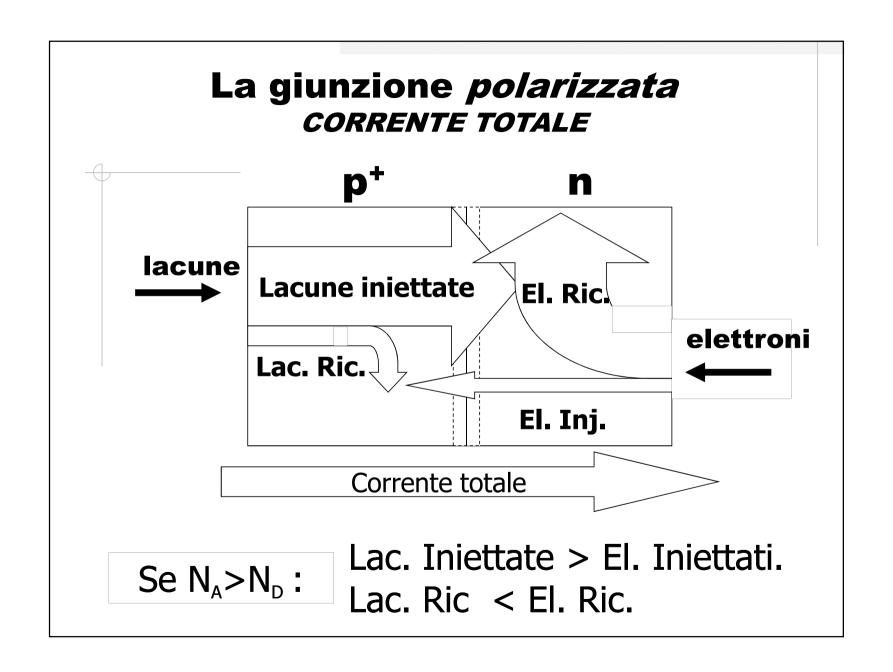
$$J_n^{\text{diff}} = J_n(-x_p) = q \frac{D_n}{L_n} n_{p0} \left(e^{\frac{V_A}{V_T}} - 1 \right)$$











La giunzione *polarizzata corrente totale*

$$I = A \left[J_p(x_n) + J_n(-x_p) \right]$$

$$\mathbf{I} = \mathbf{A} \left(\frac{\mathbf{q} \mathbf{D}_{p} \mathbf{p}_{n0}}{\mathbf{L}_{p}} + \frac{\mathbf{q} \mathbf{D}_{n} \mathbf{n}_{p0}}{\mathbf{L}_{n}} \right) \left(\mathbf{e}^{\frac{\mathbf{V}_{A}}{\mathbf{V}_{T}}} - 1 \right)$$

E ricordando che
$$p_{no} = \frac{n_i^2}{N_D}$$
 $n_{po} = \frac{n_i^2}{N_A}$

$$I = Aqn_i^2 \left(\frac{D_p}{N_D L_p} + \frac{D_n}{N_A L_n} \right) \left(e^{\frac{V_A}{V_T}} - 1 \right) = I_S \left(e^{\frac{V_A}{V_T}} - 1 \right)$$

Caratteristica I-V della giunzione PN $I = I_s \left(e^{V/V_T} - 1 \right)$ $I_s = Aqn_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right)$ **Breakdown**

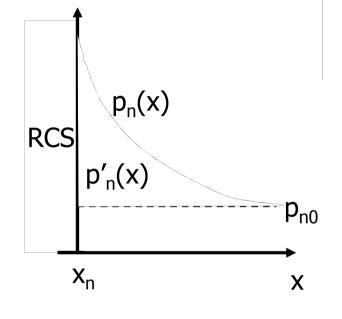
Capacità di diffusione nei diodi (Polarizzazione diretta)

$$Q_{p} = \int_{x_{n}}^{\infty} p'_{n}(x)dx$$

$$= AqL_{p}p_{n0}\left(e^{\frac{V_{A}}{V_{T}}} - 1\right) = I_{p}\tau_{p}$$

Analogamente: $Q_n = I_n \tau_n$

Quindi: $Q = I_n \tau_n + I_p \tau_p = I \tau_T$



$$\left. \mathbf{C_{d}} = \frac{\partial \mathbf{Q}}{\partial \mathbf{V_{A}}} \right|_{\mathbf{V_{A}} = \mathbf{V_{Q}}} = \left(\frac{\tau_{\mathsf{T}}}{\mathbf{V_{\mathsf{T}}}} \right) \cdot \mathbf{I} \qquad \mathbf{Capacità di} \\ \mathbf{DIFFUSIONE}$$