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Abstract - The paper analyses the stability limitations of the digital dead-beat current control applied
to voltage-fed three-phase converters used as PWM rectifiers. In particular, attention is focused on the
interactions between the rectifier and the input filters, which are commonly employed to eliminate the
high frequency harmonic content from the line currents. The effects of the inherent model mismatch
represented by the input filters, which are not normally included in the conventional dead-beat
algorithm, are analysed by developing a detailed stability analysis, based on a discrete-time state
space model of the controlled system. The proposed analysis allows to predict the occurrence of
unstable conditions and to identify some control refinements improving the system's robustness. The
results of the theoretical analysis and the validity of the proposed modifications to the control strategy
are finally verified by simulations.
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1. INTRODUCTION
The use of fully digital control techniques for
PWM converters is, more and more often, the
preferred design choice thanks, on the one hand,
to the well known advantages of the digital
controls in terms of flexibility, insensitivity to
ageing effects and/or thermal drifts, ease of
implementation and upgrade, and, on the other
hand, to the availability of powerful, low-cost
microcontrollers (µC's) and digital signal
processors (DSP's). This paper focuses on the
stability limits of the dead-beat current control
technique [1]-[3], since this is a widely applied
digital current control technique for power
converter applications, such as PWM rectifiers.

In particular, the paper analyses the interactions
between a dead beat controlled PWM rectifier
and the input passive filters which are normally
adopted to reduce the high frequency harmonic
content of the current injected on the utility grid.
The dynamics of these filters are not normally
taken into account in the conventional dead-beat
current control algorithm, which is directly
derived from drive applications. This causes an

inherent mismatch between the internal
representation of the load applied to the rectifier
and the actual one. While the dead-beat control’s
algorithm is capable of providing a satisfactory
dynamic performance when the converter's ac
impedances are exactly identified, in case of a
not correct identification, stability problems may
arise [2]. More specifically, the presence of
model mismatches or, in case of a correctly
identified model's structure, of parameter
uncertainties and/or variations can cause stability
problems to the current control loop, especially
when a line voltage estimation strategy is
adopted, as reported in [2]. This paper extends
the analysis of the problem, as presented in [5]-
[6], deriving a generalized discrete-time state-
space representation of the controlled converter
and its load, which includes also the input filters.
The analysis procedure reveals the stability
margins of the algorithm considering its typical
implementation, which employs a conventional
line voltage estimation technique, and gives the
possibility of predicting the occurrence of
oscillations in the current loop by mapping the
closed loop plant's eigenvalues. Besides, a
modification to the control algorithm is
proposed, which is shown to increase the



control's robustness. All the theoretical forecasts
are verified by means of simulations.

2. BASIC SCHEME OF THE SYSTEM
The basic scheme of a PWM rectifier, which is
the application discussed in this paper, is shown
in Fig. 1. As can be seen, for the sake of
simplicity, the power converter feeds a generic
resistive load RL on the DC side. The passive
components LS, C are required to filter the
current high frequency harmonic components
which are due to the modulation process and
must be suitably damped to avoid undesired
resonant oscillations of the line current iS.
Resistor RC, also shown in Fig. 1, indicates one
of the possible configurations to smooth the
resonance of the input filter. Actually, it may be
substituted by an active damping obtained by a
proper control of the PWM converter [8], if the
oscillation frequency falls within the current
control bandwidth. Finally, it may be worth
noting that in LS also the line impedance is
included. As a matter of fact, depending on the
particular application requirements, a series filter
inductance may not be necessary and inductance
LS of Fig. 1 represents the line impedance only;
this is, indeed, the case assumed in the analysis
discussed in 3.3.

It is assumed that the control of the PWM
converter's current is performed by means of the
dead-beat control technique [1]-[7]. As it is well
known, in a dead-beat controller the control
algorithm calculates the voltage to be generated
by the power converter so as to make the phase
current reach its reference by the end of the
following modulation period. The necessary

calculations are typically performed in the α, β
frame, and the space vector modulation (SVM)
strategy, which very well suits the digital
implementation, is adopted for the switching
converter. An important advantage of the dead-
beat technique is that it does not require the line
voltage measurement in order to generate the
current reference. The dead-beat control's
algorithm, in fact, allows an estimation of the
line voltage instantaneous value, based on the
data measured in the previous modulation
periods, which can therefore be used also for the
current reference generation. On the other hand,
the inherent delay due to the calculation time is
indeed a serious drawback of this control
technique, which implies an unavoidable
tracking error between the current reference and
the actual generated current. In the more recent
versions [2] of the dead-beat controller, the delay
is reduced by sampling the control variables and
executing the control routines twice in a
modulation period. The turn-on and turn-off
times of the power converter switches are
independently decided in two successive control
intervals. As a consequence, the aforementioned
delay in the current reference tracking can be
reduced to a single modulation period. In the
following analysis, a basic implementation of the
dead-beat algorithm is considered, this being the
more commonly used. The same approach may,
of course, be applied also to the double sampled
version of the algorithm by simply modifying the
sampling period and the discretized equations
accordingly.

3. STABILITY ANALYSIS
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Fig. 1 - Simplified representation of a PWM rectifier using a digital dead-beat current regulator.



Dead-beat control of three-phase inverters has
been widely investigated by many researchers in
recent years [1]-[5], especially for drive
applications. The application of the same control
technique to active filters or PWM rectifiers is
almost straightforward; however, as stated
before, the effect of the input filters must be
carefully considered. These filters, in fact, are
not normally accounted for in the control
algorithm, which refers to an "ideal" load model,
where only inverter inductances LF are taken into
account, as indicated by the dashed box in Fig. 1.
This is what can be called a model mismatch.
The direct approach to solve this problem, that is
to augment the internal load model so as to
include the input filter dynamics, is not
practically adopted for different reasons: the
basic ones are the dependence of the dynamics
on the line impedance, which is normally
unknown, and the complexity of the resulting
control algorithm, which is generally
unacceptable.

Even if the model mismatch is avoided, because
the structure of the load seen by the rectifier is
correctly identified, problems may arise when
there is a parameter mismatch, in particular
between the modeled inverter inductance and the
actual one [2].

Moreover, in active filters and high-quality
rectifiers the line current reference generation is
related to the line voltage, introducing an
additional action which may affect the system’s
stability. All of these points are hereafter
analyzed separately, beginning from the
parameter mismatch case.

3.1. Analysis of parameter mismatches [6]

We first consider the case in which the presence
of the line impedance and of the input filter are
neglected. Stability analysis is performed using
the discrete-time state space equations of the
remaining first order system, given by the actual
converter inductances LF. Note the three-phase
system is assumed to be balanced and
symmetrical. As a consequence, the discrete time
system equations, developed in the α, β fixed
reference frame, have the following expression:

[ ]i(k
Tsw
LF

uav k us k i(k+ = − +1) ( ) ( ) ) , (1)

where i(k) is the inverter current, uav(k) the
average phase voltage generated by the rectifier,
and us(k) the supply voltage, all of them
evaluated at the sampling instant kTsw.

The control algorithm, which ensures a dead-beat
response for the first order system based on the
modeled inductance Lm is given by [1]-[6]:

[ ]u k
L
T

i k i(k u k u kav
m

sw
ref s av( ) ( ) ) ( ) ( )+ = − + −1 2 ,

(2)
where the line voltage us is either measured or
estimated. The line voltage estimation can be
obtained using the algorithm:

[ ]e k u k
L
T

i k i ks av
m

sw
( ) ( ) ( ) ( )− = − + − −1 1 1 (3)

and then substituting in (2) us(k) with eS(k-1) [1]-
[5].

The stability analysis of the closed loop system
can be performed by applying the Z-transform to
(1), (2) and possibly (3), by deriving the
characteristic polynomial of the closed loop
system, and by mapping the closed loop poles. If
the magnitude of the closed loop poles is equal
or greater than one, the resulting system is, of
course, unstable.

Following this procedure, it can be found that, if
the line voltage is measured, the poles of the
closed loop system given by (1) and (2) are:
p L1 2, %= ± ∆ , (4)

where ∆L L Lm F% = −1  is the relative error
between the actual and the modeled inductance.
Eq. (4) shows that the system’s stability is
ensured up to 100% error in the modeled
inductor Lm, revealing a considerable robustness
to parameter mismatches for this condition. It is
worth noting that only positive values of ∆L%
will be presented throughout the analysis, since
this reveals that negative values always imply a
somewhat higher stability margin. Therefore,
positive errors (implying an underestimation of
LF) have been considered as the worst case.

Instead, if the line voltage is estimated using (3),
it turns out that the characteristic polynomial of
the closed loop system, determined by (1), (2)
and (3), is

λ( ) % %z z L z L= − +3 3 2∆ ∆ . (5)



The closed loop poles, obtained solving λ(z)=0
and reported in Fig. 2, show that only a 20%
error is allowed before system instability occurs.
It is worth noting that this result is independent
of the switching frequency since (5) is only
function of the relative error ∆L%. Moreover, it is
interesting to note that the unstable pole is at half
of the switching frequency since it lies on the
real axis of Fig. 2.

3.2. Analysis with model mismatch

Let us now consider the state space equations of
the complete system of Fig. 1. The continuous
time system equations, again developed in the α,
β fixed reference frame, assuming a three-phase
balanced and symmetrical system, have the
following expressions:

dx
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A x
L

u
L

u

x
i
i
u

A

R
L

R
L L

R
L

R
L L

C C

F
av

s
s

s

c

c

F

c

F F
c

s

c

s s

�

�

�

= ⋅ +

�

�

�
�
�
�
�

�

�

�
�
�
�
�

⋅ +

�

�

�
�
�
�

�

�

�
�
�
�

⋅

=
�

�

�
�
�

�

�

�
�
�

=

− − −

− − −

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

1

0
0

0
1

0

1

1

1 1 0

,

(6)

where iS(t) is the line current, uC(t) the voltage on
the switching frequency filter, and uS(t) the
internal supply voltage, while RC is the damping
resistor. Discrete time system equations are

obtained by using a zero-order-hold sampling (at
instant kTsw) of the continuous time system (6).
Indeed, the use of the average phase voltage
uav(t), instead of the actual one, is an
approximation which is negligible only if we
assume that  the natural frequencies of system (6)
are much lower than the sampling frequency.
Assuming that the control algorithm is not
changed, despite the presence of the input filter,
(2) and (3) are still valid. Stability analysis of the
closed loop system can be performed, as in the
previous case, by applying the Z-transform to (6),
(2) and possibly (3), by deriving the
characteristic polynomial of the closed loop
system, and by mapping the closed loop poles. If
the input filter voltage is measured, the poles of
the closed loop system given by (6) and (2) are
shown in Fig. 3, which has been obtained using
the following parameters: LF = 0.043 pu,
LS = 0.02 pu, C ranging from 0.005 pu to 0.5 pu,
RC = 0, Tsw = 100 µs, (we assume hereafter that
the base quantities are: nominal power
Pb =10 kVA, phase-to-phase voltage
Vb = 380 VRMS, base frequency fb = 50 Hz). It is
interesting to note that increasing filter capacitor
C, system poles move close to the ideal condition
where two poles are in the origin (eq. (4)) and
two poles represent the dynamics of the
uncontrolled input filter. Instead, decreasing the
value of filter capacitor C, two poles shift toward
the unity circle and the system can even become
unstable.

If the line voltage is estimated using (3), the
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poles of the closed loop system given by (6) and
(2) are shown by the map of Fig. 4, which is
obtained using the same parameters of the
previous one. Note that we have an additional
pole on the real axis, associated with the
estimation algorithm (3) and that the unstable
condition can be reached even for capacitor
values smaller than 0.015 pu.

We note that capacitor values, which may give
unstable operation, are slightly smaller than the
typical filters used in these applications. As a
consequence, dead-beat current controlled
inverters may require only a small oversizing of
the filter capacitor to achieve satisfactory
dynamic responses.

3.3. Generation of the current reference

A significant change in the system behaviour is
obtained when the rectifier current reference
iref(k) is a function of the line voltage estimation
eS(k-1):
i k G e kref eq s( ) ( )= − −1 . (7)

Indeed, this provision, which avoids the use of
the line voltage sensors, is peculiar of active
filters and high-quality rectifiers, where the line
current reference is related to the line voltage,
and is not encountered in drive applications.

Even if we neglect the presence of the input filter
dynamics, (7) may strongly affect system’s
stability in the presence of parameter
uncertainties [6]. We recall [6] that critical
conditions are encountered when Geq is negative,
i.e. for those applications in which the power
converters are injecting active power into the
line, where the maximum allowed error ∆L% is
drastically reduced. As an example, Fig. 5 shows
the closed loop poles obtained using
∆L% = 0.15% and varying the equivalent
conductance Geq from -1 pu to 1 pu. It is worth
noting that one pole moves toward the unity
circle when Geq becomes negative and, again, the
unstable mode due to the parameter uncertainties
is at half of the switching frequency.

A different type of instability may arise when the
dynamics of the input filters are included and
when the PWM rectifier current reference iref(k)
is determined through (7). In fact, even
neglecting parameter mismatch, we have seen
that, using (7) into (2) and applying the Z-
transform to (2), (3), and the sampled version of
(6), the closed loop poles may have magnitude
greater than one for negative values of Geq and
these unstable modes, if present, oscillate at
frequencies close to the input filter oscillation
frequency given by C and LS. As an example,
Fig. 6 shows the closed loop poles’ map obtained
using LF = 0.043 pu, LS = 0.04 pu, C = 0.1 pu
(RC = 0.19 pu), ∆L% = 0 and varying the
equivalent conductance Geq from -1 pu to 1 pu.
As Geq becomes negative, the poles associated
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with the input filter dynamics move toward the
unity circle, crossing it for Geq = -0.45 pu.

Indeed, this second type of instability can be
explained with a simplified reasoning,
highlighting a potential problem which is general
for any current controlled PWM rectifier
working in the regenerative mode. The system
can be schematically represented as in Fig. 7,
where a current generator is used to represent the
current controlled rectifier. The generator current
is supposed to be given by (8), where the current
reference given by (7) is multiplied by the closed
loop transfer function of the current controller,
which can be roughly approximated by a low
pass filter with a suitably placed single pole. This
should simply represent the dead-beat control
delay in the current reference tracking. Note that
it is assumed to have a measurement of the
output voltage uCT; therefore no estimation
algorithm is taken into account.
i s G u s g seq CT I( ) ( ) Re ( )= − ⋅ ⋅ (8)

Referring to Fig. 7, it is easy to determine the
open loop gain of the system GH(s), which is
given by (9). The root locus plot for (9), which is
shown in Fig. 8, reveals that, as already
anticipated by the general analysis, instabilities
in the system may arise as the value of Geq goes
negative and lower than a minimum value, which
can be found to be around -0.5. This is in good
agreement with the critical value Geq = -0.45,
which was previously determined.

GH s G
Z s Z s
Z s Z s

g seq
S F

S F
I( )

( ) ( )
( ) ( )

Re ( )= ⋅
⋅
+

⋅ (9)

It is worth noting that this kind of instability does
not depend on the particular implementation of
the current controller, but is inherent in the
regenerative operation of the converter when a
capacitive filter is located at the output, as it is
usual. Therefore, the outer control loop, which
produces the current reference, has to be
corrected to improve the stability in this
particular condition. A simple way to implement
such a correction is discussed in the following
section.

4. ROBUSTNESS IMPROVEMENT
First we want to address the problem of the low
frequency instability arising in the system
because of the interaction between the current
controlled rectifier and the input capacitive filter,
which, as it has just been demonstrated in section
3.3, is particularly critical in the regenerative
mode of operation. This interaction is made
possible by the current reference generation
strategy, which uses the measured or estimated
line voltage to build the current reference. The
direct coupling between the current reference and
the line voltage allows the possible instabilities
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Fig. 7 - Equivalent scheme of the rectifier.
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to propagate through the system. A possible
solution is based on the fact that these
instabilities occur at the resonance frequency of
the input capacitive filter and the inductive line
impedance, which is normally much higher than
the supply frequency. It is therefore possible to
eliminate the coupling between the line voltage
and the current reference generator using a filter
on the estimated (or measured) voltage eS(k) (or
uS(k)), which selectively returns to the current
reference generator only the fundamental
frequency component of the line voltage. The
block diagram corresponding to the proposed
control implementation is shown in Fig. 9a, in
the case of line voltage estimation.
Since the line voltage uS(t) can be considered
almost sinusoidal at a fixed frequency, a proper
choice for the selective filter is a digital band-
pass filter centered at the supply frequency

whose expression is given by (10), where:
λ€= 2πfbTs, fb = 50Hz (filter frequency equal to
the line frequency), TS = 100µs (sampling
period), and m is the filter resonant poles'
magnitude.

W z m z m z
m z m z

( ) cos ( ) ( )
cos

−
− −

− −= − + −
− +

1
1 2 2

1 2 2
2 1 1

1 2
λ

λ
(10)

Secondly, we consider the problem of the high
frequency instability, arising in the case of a
parameter mismatch, as discussed in section 3.1.
Basically the same idea adopted for the previous
case can here be applied. Again, the origin of the
instability is the interaction between the
estimation algorithm (3) and the current control
algorithm (2). These algorithms can be
decoupled from each other by using a suitably
designed selective filter, as shown in Fig. 9b. In
this case the instability frequency is the half of
the switching frequency; therefore, a low pass
filter capable of eliminating this high frequency
content from the estimated voltage while
maintaining the low frequency part of the signal,
would, in principle, be a good choice.
Nevertheless a band-pass filter centered on the
line frequency can do the same job, while
minimizing the phase-shift at the supply
frequency. This filter does not need to be very
selective, which can be an advantage in the case
of sudden variation of the input voltage (e.g.
voltage sags). A very selective filter, having a
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Fig. 10 - Real and imaginary components of the
closed loop poles with ∆L%=25% and
different values of equivalent
conductance Geq: (a) Geq = -1 pu, (b)
Geq = 0, (c) Geq = 1 pu.
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long settling time, could indeed worsen the
current loop dynamic speed of response to input
voltage variations; a less selective one, instead,
can achieve the needed decoupling while giving
a faster response.

We finally consider the case in which both the
decoupling actions have to be implemented,
because regenerative mode of operation and
parameter mismatches are expected in the
particular application. It is of course possible to
insert both the selective filters in the control
system, as shown in Fig. 9c, but another
possibility must be considered. A single filter
inserted at the output of the estimation algorithm
can indeed perform both tasks, but it is necessary
to accept a certain degradation of the current
loop performance due to the selectivity required
to decouple the current reference generation from
the estimation algorithm.

The effects of these modifications can be
appreciated by evaluating the map of the
system’s poles in the three cases. The solution of
Fig. 9a) determines the map depicted in Fig. 10.
As can be seen, the position of the poles due to
the input filter is almost unchanged varying the
Geq value. Nothing happens to the poles due to
the parameter mismatch that are almost
unchanged too. Therefore, if a significant
mismatch can be expected (higher than 20%),
this solution is not capable of guaranteeing the

stability of the system. As shown in the figure,
which refers to a 25% mismatch, the system is
unstable. Nevertheless, if the filter inductance is
correctly estimated and therefore the poles
associated to the mismatch stay within the unity
circle, this provision surely solves the problem in
the regenerative mode of operation.

The solution of Fig. 9b, determines the pole map
shown in Fig. 11. As can be seen, the poles’
positions are not fixed and still an instability
problem can be expected. This is due to the
interaction which is still present between the
estimation and the current control algorithms
which propagates through the current reference
generation. Therefore, this solution is not a
practically viable one.

The solution of Fig. 9c determines the pole map
of Fig. 12, where, the poles’ positions appear to
be almost insensitive of the parameter mismatch
and Geq variations. Therefore this is the solution
which can be practically considered the most
effective. The only drawbacks are the necessity
to use two different filters or, if only one at the
output of the estimation algorithm is
implemented, the necessity to degrade the current
loop performance in the presence of voltage
fluctuations.

5. SIMULATION RESULTS
The system of Fig. 1 has been simulated in order
to verify the results of the described
mathematical analysis and the effectiveness of
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the suggested modifications. The system's
parameters are: LF = 2 mH, C = 15 µF, RC = 4 Ω,
LS = 1 mH, the phase-to-phase voltage is
380 VRMS, the nominal power of the load is
10 kW and the switching frequency is 20 kHz.

Fig. 13 reports an example of instability which
occurs due to the oscillation between the PWM
filter and the line impedance generated by (7)
using the conventional estimation technique and
neglecting the parameter mismatch (i.e.
∆L% = 0). Note that the unstable conditions take
place when the rectifier is working in
regenerative mode, as predicted by our analysis.
We also verified that, if the filter voltage is
measured instead of being estimated, the unstable
condition is still present and the results of Fig. 13
do not change significantly. Moreover, we have
also verified that, when parameter errors are
taken into account (i.e. ∆L% ≠ 0), even worse
stability problems can be encountered. Fig. 14,
instead, shows the main rectifier waveforms in
the same operating condition of Fig. 13, but
using a pass band filter (with m = 0.9) for the
generation of the current reference. With the
adopted provision, the system becomes stable
and the dynamic response well damped even in
regenerative operating mode.

In order to highlight the instability in the
estimation algorithm only due to parameter
mismatch, Fig. 15 shows system response of the
PWM rectifier imposing that the parameter
identification error is 20% and neglecting the
presence of the PWM filter and of the line
impedance. In this way, we can show the
instability problem due to the parameter
mismatch independently of the contribution
given by the input filter dynamics. We can see
that during the regenerative mode, the estimated
voltage is clearly unstable  and this instability
occurs precisely at half of the switching
frequency, as predicted in our analysis. The
effect of the use of a pass-band filter in the
estimation algorithm is shown in Fig. 16 where
the oscillatory behaviour due to parameter
mismatch has been removed. We also verified
that, introducing the dynamics of the input filter
and of the line impedance, but still considering
the parameter mismatches, the system behaviour
is very similar to that presented in Fig. 14, as
long as, the current reference is generated using
the adopted provisions.

Fig. 13 - PWM rectifier behaviour with the
conventional estimation technique and
using (7) and ∆L% = 0. Upper trace:
line voltage (us) and filter voltage (uC).
Middle trace: converter output current
(-iF). Lower trace: line current (iS).

Fig. 14 PWM rectifier behaviour using the
proposed solution and ∆L% = 0. Upper
trace: line voltage uS and filter voltage
(uC). Middle trace: converter output
current (-iF). Lower trace: line current
(iS).



6. CONCLUSIONS
The paper has presented a theoretical analysis of
the stability robustness of the digital dead-beat
current control technique with respect to
parameter and model mismatches. These are very
likely to be encountered when considering a
PWM rectifier application of a current
controlled, voltage-source converter. In
particular, after presenting the results of the
analysis concerning the parameter mismatch
problem, the paper has focused on the interaction
between the controlled rectifier and the input
high frequency passive filters, which are not
normally accounted for in the control’s
algorithm. Also for this case the proposed
analysis technique effectively enables to predict
the occurrence of instability problems, revealing
the different robustness levels of the possible
implementations of the converter's dead-beat
control. The key role of the line voltage
estimation technique in determining the control's
robustness has been evidenced and a novel
estimation strategy, which guarantees a superior
performance level, has been proposed. This
solution consists in decoupling the estimation
algorithm both from the current reference

generation and from the dead-beat modulation
algorithm. The effect is achieved by means of a
simple band-pass digital filter on the estimated
voltage. The effectiveness of the theoretical
analysis and of the proposed improvements has
been verified by simulations.
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