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ABSTRACT

The identification of the set of 𝑘 most central nodes of a graph, or
centrality maximization, is a key task in network analysis, with
various applications ranging from finding communities in social
and biological networks to understanding which seed nodes are im-
portant to diffuse information in a graph. As the exact computation
of centrality measures does not scale to modern-sized networks,
the most practical solution is to resort to rigorous, but efficiently
computable, randomized approximations. In this work we present
CentRA, the first algorithm based on progressive sampling to com-
pute high-quality approximations of the set of 𝑘 most central nodes.
CentRA is based on a novel approach to efficiently estimate Monte
Carlo Rademacher Averages, a powerful tool from statistical learn-
ing theory to compute sharp data-dependent approximation bounds.
Then, we study the sample complexity of centrality maximization
using the VC-dimension, a key concept from statistical learning
theory. We show that the number of random samples required to
compute high-quality approximations scales with finer character-
istics of the graph, such as its vertex diameter, or of the centrality
of interest, significantly improving looser bounds derived from
standard techniques. We apply CentRA to analyze large real-world
networks, showing that it significantly outperforms the state-of-
the-art approximation algorithm in terms of number of samples,
running times, and accuracy.
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1 INTRODUCTION

Measuring the importance of nodes of a graph is a fundamental
task in graph analytics [48]. To this aim, several centrality measures
have been proposed to quantify the importance of nodes and sets of
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nodes, such as the betweenness [28], closeness [6], pagerank [50],
random walk [49], and harmonic [12] centralities. While the spe-
cific notion of centrality to use depends on the application [30],
identifying important components of a network is crucial for many
relevant tasks, such as finding communities in social and biological
networks [31], identifying vulnerable nodes that may be attacked
to disrupt the functionality of a network [37], and for influence
maximization [38]. As in many applications the goal of the analysis
is to identify important sets of central nodes, recent works proposed
extensions and generalizations of centrality measures from single
nodes to sets of nodes, such as the set betweenness [35], cover-
age [67], 𝜅-path [1] and set closeness centrality [7]. A key problem
is set centrality maximization, that consists in the task of finding the
most central set of nodes of cardinality at most 𝑘 , for some integer
𝑘 ≥ 1. For example, 𝑘 may represents the budget of an attacker
with the intention of disrupting a network, or the number of seed
nodes to effectively diffuse relevant information in a graph.

To address the problems mentioned above, many algorithms
have been proposed to compute centrality metrics exactly [18, 24].
For most centralities, however, these algorithms poorly scale when
applied to large graphs [14, 57]. Therefore, often the only viable
solution is to resort to approximate, but rigorous, estimates. In fact,
several works (e.g., [14, 21, 54, 57, 58] for the betweenness central-
ity, see also Section 2) have recently proposed sampling approaches
that provide approximations with rigorous guarantees of the cen-
tralities of individual nodes. In all these methods, the most critical
challenge to address is to relate the size of the random sample
with the accuracy of the approximation, i.e. studying the trade-off
between the time to process the sample and the probabilistic guar-
antees that the sample provides w.r.t. the exact analysis. To achieve
this goal, these works make use of sophisticated probabilistic and
sampling techniques (described in more detail in Section 2).

However, as anticipated before, in many applications the inter-
est of the analysis is on the centrality of sets of nodes, a task that
is considerably more challenging, while yielding results that are
substantially different. In fact, the centrality of a set of nodes is
weakly related to the centralities of the individual nodes making
part of the set. This implies that knowing the centralities of sev-
eral nodes does not provide information on the centrality of the
corresponding set of nodes as a whole. More importantly, all the
most refined approaches mentioned above [14, 21, 54, 57, 58] are
specifically tailored to provide guarantees for the centralities of
individual nodes, and do not generalize to sets of nodes of size > 1.
For this reason, they cannot be applied to centrality maximization
or other tasks related to node sets.

Given the difficulty of set centralities approximation, this prob-
lem received only scant attention. In fact, only a few recent works
proposed sampling-based algorithms to compute rigorous approx-
imations of the centrality maximization task [43, 67]. As for the
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individual nodes case, the main technical challenge of these meth-
ods is to relate the accuracy of the approximation to the size of
the random sample to process, that impacts both the space and
running time of the algorithm, imposing a severe trade-off. As the
state-of-the-art techniques [43, 67] typically provide loose guaran-
tees on the approximation quality, and require unrealistic a-priori
knowledge of underlying graph, this problem remains difficult to
address and computationally expensive in practice. Set centrality
approximation is a challenging problem that requires new tech-
niques to provide rigorous, yet efficiently computable, accuracy
guarantees. This is the main goal of this work.

Our contributions. We introduce a new algorithm, calledCentRA
(Centrality Maximization with Rademacher Averages) for efficient
centrality maximization using progressive sampling, that signifi-
cantly outperforms previous works.
• CentRA is the first algorithm for approximate centrality max-
imization with data-dependent bounds and progressive sam-
pling (Section 4.1 and 4.2). The progressive sampling strategy
of CentRA makes it oblivious to the (unknown) set central-
ity of the optimal solution to approximate, in strong contrast
with previous works (that instead requires a-priori knowledge
of the optimal set centrality, see Section 3.1). To provide sharp
data-dependent bounds, the central contribution at the core of
CentRA is a new algorithmic strategy to estimate Monte Carlo
Rademacher Averages, a key tool from statistical learning theory.
CentRA enables the efficient computation of tight graph- and
data-dependent probabilistic upper bounds to the Supremum
Deviation, a key component of its strategy to provide rigorous
high-quality approximations of set centralities.
• We study the sample complexity of centrality maximization with
the VC-dimension, a fundamental concept from statistical learn-
ing theory. We derive new bounds to the number of sufficient
samples to obtain high-quality approximations of set centrali-
ties with high probability (Section 4.3). Such bounds scale with
granular properties of the graph or of the centrality measure of
interest. Therefore, our novel bounds improve the analysis based
on standard techniques (e.g., based on a union bound), typically
offering a refined dependence on the graph size. In practice,
these results can be naturally combined with the progressive
sampling approach of CentRA by providing an upper limit to
the number of samples it needs to process.
• We perform an extensive experimental evaluation, testing Cen-
tRA on several large real-world graphs (Section 5). Compared to
the state-of-the-art, CentRA computes much sharper approxi-
mations for the same amount of work, or speeds up the analysis,
of up to two orders of magnitude, for obtaining approximations
of comparable quality.

2 RELATEDWORK

We first introduce related work for centrality approximation of indi-
vidual nodes. We focus on methods providing rigorous guarantees,
a necessary requirement for many tasks and downstream analysis.
Riondato and Kornaropoulos [57] study the VC-dimension [65],
a key notion from statistical learning theory, of shortest paths to
obtain approximation bounds for the betweenness centrality with
random sampling. Riondato and Upfal [58] present an improved

method based on deterministic upper bounds to Rademacher Av-
erages [40] and pseudodimension [55]. KADABRA [14] furtherly
improved betweenness centrality approximations with adaptive
sampling and a weighted union bound, while BAVARIAN [21] used
Monte Carlo Rademacher Averages [5, 51] as a framework to fairly
compare the accuracy of different estimators of the betweenness
centrality. SILVAN [54] furtherly improved upon [21] leveraging
non-uniform approximation bounds. As anticipated in Section 1,
all these methods are specifically designed for individual nodes,
and do not provide information or guarantees for node sets. Our
algorithm CentRA leverages novel data-dependent bounds based
on Monte Carlo Rademacher Averages. We remark that, while these
techniques have been previously applied to centrality approxima-
tion of individual nodes [21, 54] and other pattern mining prob-
lems [51, 64], embedding and generalizing them to the context of
set centrality approximation is extremely challenging, as we dis-
cuss in Section 3.2. The main technical contributions of CentRA
are to prove new concentration results, that are general and may
be of independent interest, and to develop a new algorithmic ap-
proach, based on the contraction principle of Rademacher Averages
([5, 41], see Section 4.1 of [16]) and progressive sampling to obtain
efficiently computable, but still accurate, approximations for set
centrality maximization. Interestingly, contraction approaches are
fundamental theoretical tools that have been applied to prove gener-
alization bounds for several complex Machine Learning tasks, such
as multi-class classification and ranking [63], and models [5, 47],
such as SVMs and neural networks [4, 20]. In this work we show
their relevance and practical impact within graph analysis.

For the problem of approximate set centrality maximization, the
state-of-the-art method is from Mahmoody et al. [43]. This work
presents HEDGE, an algorithm based on a general framework for
centralities that can be defined as submodular set functions, and
that admit an appropriate randomized sampling oracle (an hyper-
edge sampler, see Section 3.1). In our work we adhere to a similar
random sampling framework, but we develop a novel progressive
and adaptive algorithm, and derive sharper sample complexity and
data-dependent bounds. We show that our new algorithm CentRA
significantly outperforms HEDGE [43] in terms of running time,
accuracy, and approximation guarantees.

Other works considered efficient algorithms for different tasks or
to approximate different notions of group centralities. [8] considers
the problem of closeness centrality maximization. [45] studies the
problem of maximizing the centrality of a set of nodes by adding
new edges to the graph. [3] proposes a new group centrality mea-
sure inspired by Katz centrality that can be efficiently approximated.
[2] studies the problem of approximating the group harmonic and
group closeness centralities [11, 12]. [23] approximates percolation
centrality with pseudodimension, while [19] is based on probabil-
ity proportional to size sampling to estimate closeness centralities.
Other recent works extended the computation of the betweenness
centrality to dynamic [9, 10, 34], uncertain [60], and temporal net-
works [61].

3 PRELIMINARIES

In this Section we introduce the notation and the most important
concepts for our algorithm CentRA.



Efficient Centrality Maximization with Rademacher Averages KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3.1 Set Centralities

Let a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | nodes. Let C : 2𝑉 → R be a
set centrality function from the set of all possible subsets of 𝑉 to
R. Let ℌ ⊆ 2𝑉 be a space of sets of nodes, or hyper-edges [43, 67],
such that each ℎ ∈ ℌ is a subset of 𝑉 . For a parameter 𝑘 ≥ 1,
we define a family of functions F as F = {𝑓S : S ⊆ 𝑉 , |S| ≤ 𝑘},
where each 𝑓S : ℌ → {0, 1} is a function from ℌ to {0, 1} such
that 𝑓S (ℎ) = 1 if at least one of the nodes of S belongs to ℎ, 0
otherwise; more formally, we have 𝑓S (ℎ) = 1 [S ∩ ℎ ≠ ∅]. Note
that, to simplify notation, we will also denote 𝑓𝑢 for all nodes 𝑢 ∈ 𝑉
as equivalent of 𝑓{𝑢 } . Under this setting, it is possible to define
various set centralities C(·) as the average value of 𝑓S over ℌ

C(S) = 1
|ℌ |

∑
ℎ∈ℌ

𝑓S (ℎ),

using different notions of the space ℌ. For instance, we define
the set betweenness centrality by taking ℌ as the family of sets of
nodes that are internal to shortest paths of the graph𝐺 , where each
shortest path is from the node 𝑢 to the node 𝑣 , for all pairs of nodes
𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣 . A large value of C(S) denotes that many shortest
paths of 𝐺 pass along any of the nodes of S. Analogously, for the
𝜅-path centrality [1], ℌ is the family of sets of nodes traversed by
simple paths of length at most 𝜅; for the triangle centrality [43],
ℌ contains sets of nodes incident to triangles of 𝐺 . Intuitively, the
centrality C(S) of a node set S is large if the nodes of S “cover”
a large fraction of the space ℌ. Finally, note that C(S) cannot be
obtained from the values {C({𝑢}) : 𝑢 ∈ S}, i.e. the values of the
centralities of individual nodes making part of the set S.

The problem of centrality maximization is, for a given 𝑘 ≥ 1, to
identify a set S∗ ⊆ 𝑉 of size at most 𝑘 maximizing C(·), such that

S∗ = argmax
S⊆𝑉 , |S |≤𝑘

C(S) .

As the computation of S∗ is NP-Hard for most set centrality func-
tions [26], the only viable solution is to obtain approximations that
are efficient to compute, but with rigorous guarantees in terms of
solution quality. We are interested in the following standard notion
of 𝛼-approximation.

Definition 3.1. For any 𝛼 > 0, a set S ⊆ 𝑉 with |S| ≤ 𝑘 provides
an 𝛼-approximation of S∗ if it holds C(S) ≥ 𝛼C(S∗).

The state-of-the-art approach for the approximation of centrality
maximization relies on the submodularity of the set centrality func-
tion [62]. The well known greedy algorithm that, starting from an
empty set of nodes S = ∅, iteratively picks and inserts in S a new
node 𝑢∗ maximizing the set centrality 𝑢∗ = argmax𝑢 C(S ∪ {𝑢}),
for 𝑘 iterations, achieves an (1− 1/𝑒)-approximation. Such approxi-
mation ratio is essentially the best possible unless 𝑃 = 𝑁𝑃 [25, 26].

When considering large graphs, this approach is not efficient. In
fact, simply computing the exact betweenness centrality of indi-
vidual nodes requires O(𝑛 |𝐸 |) time with Brandes’ algorithm [18]
(with a matching lower bound [13]); furthermore, each iteration
of the greedy algorithm would require to evaluate and update the
centralities C(S ∪ {𝑢}) for nodes 𝑢 ∉ S, which is clearly infeasible
in reasonable time on large graphs. For this reason, approaches
based on random sampling have been proposed [43, 67] to scale the
approximation of set centralities.

Let a sampleH = {ℎ1, . . . , ℎ𝑚} be a multiset of size𝑚 of hyper-
edges from ℌ, where each ℎ ∈ H is taken independently and
uniformly at random from ℌ. The estimate CH (S) of C(S) for the
set S computed onH is defined as

CH (S) =
1
𝑚

𝑚∑
𝑠=1

𝑓S (ℎ𝑠 ).

The key observation of sampling approaches [43, 67] is that the
greedy algorithm can be applied to a random sample, rather than
considering the entire space ℌ.

Let greedyCover(𝑘,H) be the algorithm defined as follows:
starting from S = ∅, at every iteration 𝑖 ∈ [1, 𝑘], insert the node
𝑢∗ = argmax𝑢 CH (S ∪ {𝑢}) in S; after all iterations, return S.

It is clear that the size𝑚 of the random sampleH imposes a trade-
off between the accuracy of the approximation and the running
time of greedyCover. Our goal is to precisely and sharply quantify
this trade-off. First, note that, by definition, CH (S) is an unbiased

estimator of C(S), as EH [CH (S)] = C(S),∀S ⊆ 𝑉 . However,
in order to provide guarantees in terms of solution quality, it is
necessary to properly quantify |C(S) − CH (S)|, i.e. the deviation
of CH (S) w.r.t. its expectation C(S), for all S ⊆ 𝑉 .

A key quantity to study in order to control the approximation
accuracy is the Supremum Deviation (SD) D(F ,H), defined as

D(F ,H) = sup
𝑓S ∈F

|C(S) − CH (S)|.

Note that it is not possible to evaluate D(F ,H) explicitly, as the
values of C(S) are unknown. Therefore, our goal is to obtain tight
upper bounds to the SD D(F ,H).

The state-of-the-art method for approximate centrality max-
imization is HEDGE [43]. This algorithm computes, for an 𝜀 ∈
(0, 1 − 1/𝑒), an (1 − 1/𝑒 − 𝜀)-approximation with high probability.
More precisely, their analysis shows that if greedyCover(𝑘,H) is
applied to a random sampleH of size

𝑚 ∈ O
(
𝑘 log(𝑛) + log(1/𝛿)

𝜀2C(S∗)

)
, (1)

then it holds D(F ,H) ≤ 𝜀C(S∗)/2 with probability ≥ 1 − 𝛿 ; more-
over, this is a sufficient condition to guarantee that the output S of
greedyCover(𝑘,H) is an (1 − 1/𝑒 − 𝜀)-approximation of S∗. The
analysis of [43] (Lemma 2 and Theorem 1) combines the Chernoff
bound (to upper bound the deviation |C(S) − CH (S)| of a set S
with high probability) with an union bound over 𝑛𝑘 events (an
upper bound to the number of non-empty subsets of 𝑉 of size ≤ 𝑘).

As introduced in previous Sections, there are two key limitation
of this approach. First, the union bound leads to loose guarantees,
as it ignores any information of the input graph (apart from its size,
which is very large for real-world graphs). Then, the number of
samples to generate to compute an high-quality approximation of
the most central set of nodes (given by (1)) depends on C(S∗), that
is unknown a-priori.

Our new algorithm CentRA tackles both these issues. Our first
goal is to obtain a finer characterization of the trade-off between the
size𝑚 of the random sample and bounds to the SD D(F ,H). Cen-
tRA employs advanced and sharp data-dependent bounds to the
SD based on Rademacher Averages (defined in Section 3.2), leading
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to a much more efficient algorithm for approximate centrality max-
imization. Moreover, CentRA is oblivious to the (unknown) values
of C(S∗), computing an high-quality approximation progressively

and adaptively with progressive sampling. Overall, CentRA is the
first progressive and data-dependent approximation algorithm for
set centralities. While in this work we focus on the task of centrality
maximization, CentRA’s bounds and rigorous guarantees may be
useful to scale other exploratory analyses based on the centralities
of sets of nodes. Furthermore, CentRA directly applies to all set
centrality functions supported by the framework introduced in
Section 3.1.

3.2 Rademacher Averages

Rademacher averages are fundamental tools of statistical learning
theory [5, 39, 40] and of the study of empirical processes [16]. We
introduce the main notions and results relevant to our setting and
defer additional details to [16, 46, 63]. While Rademacher averages
are defined for arbitrary distributions and real valued functions,
here we focus on the scenario of interest for set centralities.

The Empirical Rademacher Average (ERA) R̂ (F ,H) of the fam-
ily of functions F computed on H is a key quantity to obtain a
data-dependent upper bound to the supremum deviation D(F ,H).
Let 𝝈 = ⟨𝝈1, . . . ,𝝈𝑚⟩ be a vector of𝑚 i.i.d. Rademacher random
variables, such that each entry 𝝈𝑠 of 𝝈 takes value in {−1, 1} with
equal probability. The ERA R̂ (F ,H) is defined as

R̂ (F ,H) = E𝝈

[
sup
𝑓S ∈F

1
𝑚

𝑚∑
𝑠=1

𝝈𝑠 𝑓S (ℎ𝑠 )
]
.

A central result in statistical learning theory implies that the ex-
pected supremum deviation is sharply controlled by twice the ex-
pected ERA, where the expectation is taken over the sample H ;
this fundamental result is known as the symmetrization lemma (see
Lemma 11.4 of [16] and Lemma A.3). However, the exact compu-
tation of R̂ (F ,H) is usually intractable, since it is not feasible to
evaluate all the 2𝑚 assignments of 𝝈 . A natural solution to estimate
the ERA is based on a Monte-Carlo approach [5].

For 𝑡 ≥ 1, let𝝈 ∈ {−1, 1}𝑡×𝑚 be a 𝑡×𝑚matrix of i.i.d. Rademacher
random variables. The Monte-Carlo Empirical Rademacher average

(MCERA) R𝑡𝑚 (F ,H ,𝝈) of F onH using 𝝈 is:

R𝑡𝑚 (F ,H ,𝝈) = 1
𝑡

𝑡∑
𝑗=1

sup
𝑓S ∈F

{
1
𝑚

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓S (ℎ𝑠 )
}
.

The MCERA is a powerful tool as it allows to directly estimate the
expected supremum deviation from several random partitions of
the data, also by taking into account the data-dependent structure
of F . Most importantly, it provides very accurate bounds even
with a typically small number 𝑡 of Monte Carlo trials (as we show
in Section 5). For this reason, this Monte Carlo process leads to
much more accurate bounds to the SD, compared to deterministic

upper bounds (e.g., obtained with Massart’s Lemma [44]) or other
distribution-free notions of complexity, such as the VC-dimension.

While the MCERA has been applied to centrality approximation
for individual nodes [21, 54], its generalization to centralities of

sets of nodes is highly non-trivial. In fact, for the case of set central-
ities, computing the MCERA is NP-Hard1. This is in strong contrast
with the restriction to individual nodes (𝑘 = 1), where it can be
computed efficiently. Moreover, the weighted sum

∑𝑚
𝑠=1 𝝈 𝑗𝑠 𝑓S (ℎ𝑠 )

is neither monotone or submodular w.r.t. S, due to the negative
entries of 𝝈 . For this reason, the greedy algorithm for constrained
submodular function maximization described in Section 3.1 does
not provide any approximation guarantee for theMCERA. It may be
tempting to represent the function

∑𝑚
𝑠=1 𝝈 𝑗𝑠 𝑓S (ℎ𝑠 ) as the difference∑

𝑠 :𝝈 𝑗𝑠=1 𝑓S (ℎ𝑠 ) −
∑
𝑠 :𝝈 𝑗𝑠=−1 𝑓S (ℎ𝑠 ) of two monotone submodular

functions; unfortunately, there are strong inapproximability results
for this maximization problem [36]. Moreover, we note that, while
recent general approaches based on branch-and-bound optimiza-
tion can be applied to compute the MCERA for general structured
function families [51], they would still require a very expensive
enumeration of the space of node subsets, incurring in high running
times. These approaches cannot be adapted to centrality maximiza-
tion as they would defy the purpose of using random sampling
to scale the computation. These highly non-trivial computational
barriers impose a significant challenge to obtaining accurate data-
dependent approximations to set centralities.

In this work we tackle this problem with a new approach to
upper bound the MCERA, that we introduce in Section 4.1. Our
idea is to relate the ERA of arbitrary sets of nodes (of cardinality
≤ 𝑘) to the ERA of linear combinations of individual nodes. We
make use of the contraction principle [5, 16], a fundamental tool
in statistical learning theory. This approach leads to accurate and
efficiently computable probabilistic upper bounds to the ERA, key
to our algorithm CentRA.

4 CENTRA: EFFICIENT CENTRALITY

MAXIMIZATIONWITH RADEMACHER

AVERAGES

This Section presents our contributions. In Section 4.1 we introduce
new data-dependent bounds to the Supremum Deviation, the key
techniques to our algorithm. In Section 4.2 we present our algorithm
CentRA for efficient centrality maximization with progressive
sampling. In Section 4.3 we prove new sample complexity bounds
for the rigorous approximation of centrality maximization.

4.1 Bounding the Supremum Deviation

In this Section we introduce our new, efficiently computable, data-
dependent bounds to the SD, the key components of CentRA.

For 𝑡,𝑚 ≥ 1, recall that 𝝈 ∈ {−1, 1}𝑡×𝑚 is defined as a 𝑡 ×𝑚
matrix of Rademacher random variables, such that, for all 𝑠 ∈
[1,𝑚], 𝑗 ∈ [1, 𝑡], 𝝈 𝑗𝑠 ∈ {−1, 1} independently and with equal proba-
bility.We define theApproximateMonte Carlo Empirical Rademacher

Average (AMCERA) R̃𝑡𝑚 (F ,H ,𝝈) as

R̃𝑡𝑚 (F ,H ,𝝈) = 1
𝑡

𝑡∑
𝑗=1

sup
S⊆𝑉 , |S |≤𝑘

{
1
𝑚

∑
𝑢∈S

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 )
}
.

Note that, as anticipated in Section 3.2, the AMCERA R̃𝑡𝑚 (F ,H ,𝝈)
takes the form of a linear combination of empirical deviations of

1Computing maxS⊆𝑉 ,|S|≤𝑘 CH (S) reduces to computing R𝑡𝑚 (F,H,𝝈 ) by taking
𝑡 = 1 and 𝝈 = {1}1×𝑚 .
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individual nodes, rather than arbitrary sets of nodes. With Theo-
rem 4.1 we show that the AMCERA R̃𝑡𝑚 (F ,H ,𝝈) gives a sharp
bound to the ERA R̂ (F ,H), while Lemma 4.6 proves that we can
compute it efficiently. A key quantity governing the accuracy of
the probabilistic bound of Theorem 4.1 is the approximate wimpy

variance �̃�F (H), that is defined as

�̃�F (H) = sup
S⊆𝑉 , |S |≤𝑘

{
𝑏H
𝑚

∑
𝑢∈S

𝑚∑
𝑠=1
(𝑓𝑢 (ℎ𝑠 ))2

}
,

where 𝑏H = maxℎ∈H |ℎ |. We are now ready to state our new, effi-
ciently computable, probabilistic bound to the ERA R̂ (F ,H). Our
proof (deferred to the Appendix for space constraints) is based on
two key theoretical tools: a contraction inequality for Rademacher
Averages [41] and a concentration bound for functions defined on
the binary hypercube [16].

Theorem 4.1. For 𝑡,𝑚 ≥ 1, let𝝈 ∈ {−1, 1}𝑡×𝑚 be a 𝑡×𝑚matrix of

Rademacher random variables, such that, for all 𝑠 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑡],
𝝈𝑠 𝑗 ∈ {−1, 1} independently and with equal probability. Then, with

probability ≥ 1 − 𝛿 over 𝝈 , it holds

R̂ (F ,H) ≤ R̃𝑡𝑚 (F ,H ,𝝈) +

√
4�̃�F (H) ln

( 1
𝛿

)
𝑡𝑚

.

We now investigate additional properties of the AMCERA. The
following result proves guarantees on the expected approximation
ratio of the AMCERA w.r.t. the MCERA. We note that, while there
are no guarantees on the relation between theMCERAR𝑡𝑚 (F ,H ,𝝈)
and the AMCERA R̃𝑡𝑚 (F ,H ,𝝈) in the worst-case (i.e., that holds for
all assignments of 𝝈 ∈ {−1, 1}𝑡×𝑚), their expectations (taken w.r.t.
to𝝈 ) are tightly related. In fact, we prove that the expected AMCERA
R̃𝑡𝑚 (F ,H ,𝝈) is within a factor 𝑘 of the ERA R̂ (F ,H), therefore
it provides a 𝑘-approximation of the MCERA R𝑡𝑚 (F ,H ,𝝈) in ex-
pectation. To make the dependence of the approximation bound on
𝑘 explicit, define the set of functions F𝑗 = {𝑓S : S ⊆ 𝑉 , |S| ≤ 𝑗}
(note that F = F𝑘 ).

Lemma 4.2. It holds

R̂ (F𝑘 ,H) ≤ E𝝈
[
R̃𝑡𝑚 (F𝑘 ,H ,𝝈)

]
≤ 𝑘R̂ (F1,H) ≤ 𝑘R̂ (F𝑘 ,H) .

In Section 4.2 we prove that the AMCERA can be computed
efficiently, enabling the joint scalability and accuracy of CentRA.

We now prove that the greedy solution S = greedyCover(𝑘,H)
gives a sharp upper bound to the optimum set centrality C(S∗).
Interestingly, the accuracy of this tail bound is independent of F
and 𝑘 , but leverages the concentration of the empirical estimator
supS CH (S) of the optimal set centrality C(S∗) directly. Our novel
proof is based on its self-bounding property [16]. This result is
instrumental for bounding the SD D(F ,H) (Theorem 4.4) and for
the stopping condition of CentRA, as we discuss in Section 4.2.

Theorem 4.3. Let a sampleH of size𝑚 and let S be the output

of greedyCover(𝑘,H). With probability ≥ 1 − 𝛿 , it holds

C(S∗) ≤ CH (S)
1 − 1

𝑒

+

√√√(
ln( 1

𝛿
)

𝑚

)2
+
2CH (S) ln( 1𝛿 )
(1 − 1

𝑒 )𝑚
+
ln( 1

𝛿
)

𝑚
.

The following result combines Theorem 4.1 with sharp con-
centration inequalities [16] to obtain a probabilistic bound to the

Supremum Deviation D(F ,H) from a random sampleH using the
AMCERA. (proof deferred to the Appendix.)

Theorem 4.4. LetH be a sample of𝑚 hyper-edges taken i.i.d. uni-

formly fromℌ. For𝑘 ≥ 1, letS be the output of greedyCover(𝑘,H).
For any 𝛿 ∈ (0, 1), define 𝜈, R̃,R, and 𝜂 as

𝜈 �
CH (S)
(1 − 1

𝑒 )
+

√√√(
ln

( 5
𝛿

)
𝑚

)2
+
2CH (S) ln

( 5
𝛿

)
(1 − 1

𝑒 )𝑚
+
ln

( 5
𝛿

)
𝑚

,

R̃ � R̃𝑡𝑚 (F ,H ,𝝈) +

√
4�̃�F (H) ln

( 5
𝛿

)
𝑡𝑚

,

R � R̃ +

√√√(
ln

( 5
𝛿

)
𝑚

)2
+
2 ln

( 5
𝛿

)
R̃

𝑚
+
ln

( 5
𝛿

)
𝑚

,

𝜂 � 2R +

√
2 ln

( 5
𝛿

)
(𝜈 + 4R)
𝑚

+
ln

( 5
𝛿

)
3𝑚

. (2)

With probability at least 1 − 𝛿 over the choice ofH and 𝝈 , it holds
D(F ,H) ≤ 𝜂.

In the following Section, we show that these results are essential
to the theoretical guarantees of CentRA.

4.2 CentRA Algorithm

In this Section we present CentRA, our algorithm based on pro-
gressive sampling for centrality maximization. Algorithm 1 shows
the pseudo-code of CentRA, that we now describe in more detail.

Algorithm 1: CentRA
Input: Graph 𝐺 = (𝑉 , 𝐸); hyper-edge space ℌ; 𝑘, 𝑡 ≥ 1;

𝜀 ∈ (0, 1 − 1
𝑒 );𝛿 ∈ (0, 1).

Output: Set S ⊆ 𝑉 , s.t. |S| ≤ 𝑘, C(S) ≥ (1 − 1
𝑒 − 𝜀)C(S

∗)
with probability ≥ 1 − 𝛿

1 𝑖 ← 0;𝑚𝑖 ← 0;H𝑖 ← ∅;
2 while true do

3 𝑖 ← 𝑖 + 1; 𝛿𝑖 ← 𝛿/2𝑖 ;
4 𝑚𝑖 ← samplingSchedule();
5 H𝑖 ←H𝑖−1∪ sampleHEs(ℌ,𝑚𝑖 −𝑚𝑖−1);
6 S ← greedyCover(𝑘,H𝑖);
7 𝝈 ← sampleRadeVars(𝑡 ×𝑚𝑖);
8 forall 𝑢 ∈ 𝑉 do

9 forall 𝑗 ∈ [1, 𝑡] do 𝑟𝑢
𝑗
← 1

𝑚𝑖

∑𝑚𝑖

𝑠=1 𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 );

10 forall 𝑗 ∈ [1, 𝑡] do 𝑟 𝑗 ← supS′⊆𝑉 , |S′ | ≤𝑘
{ ∑

𝑢∈S′ 𝑟
𝑢
𝑗

}
;

11 R̃𝑡𝑚 (F ,H𝑖 ,𝝈) ← 1
𝑡

∑𝑡
𝑗=1 𝑟 𝑗 ;

12 𝜉 ←

√(
ln
(

5
𝛿𝑖

)
𝑚𝑖

)2
+

2CH𝑖 (S) ln
(

5
𝛿𝑖

)
(1− 1

𝑒
)𝑚𝑖

+
ln
(

5
𝛿𝑖

)
𝑚𝑖

;

13 𝜂 ← as in Equation (2) replacing 𝛿 by 𝛿𝑖 andH byH𝑖 ;
14 if (1 − 1

𝑒 )
[
(1− 1

𝑒 −𝜀)𝜉 + 𝜂
]
≤ 𝜀CH𝑖

(S) then return S;

CentRA takes in input a graph 𝐺 , a space of hyper-edges ℌ,
and the parameters 𝑘, 𝑡, 𝜀, and 𝛿 , with the goal of computing an
approximation S of S∗ such that C(S) ≥ (1 − 1/𝑒 − 𝜀)C(S∗) with
probability ≥ 1 − 𝛿 .
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As a progressive sampling-based algorithm, CentRA works in
iterations. In each iteration 𝑖 , CentRA considers a random sample
H𝑖 of size 𝑚𝑖 , and tries to establish if it is possible to compute
an high-quality approximation of S∗ fromH𝑖 . To verify whether
this holds, CentRA checks a suitable stopping condition (defined
below), returning the current solution when true.

In line 1, the algorithm initializes the variables 𝑖 to 0, H𝑖 to
the empty set, and 𝑚𝑖 = |H𝑖 | to 0. Then, the iterations of the
algorithm start at line 2. At the beginning of each iteration, 𝑖 is
increased by 1, and the confidence parameter 𝛿𝑖 is set to 𝛿/2𝑖 . This
correction is needed to prove the guarantees of the algorithm, i.e.,
to make sure that the probabilistic bounds computed at iteration 𝑖

holds with probability ≥ 1 − 𝛿𝑖 ,∀𝑖 , so that CentRA is correct with
probability ≥ 1 − 𝛿 when stopping at any iteration 𝑖 (more details
in the proof of Proposition 4.5). Then, the number of samples𝑚𝑖 to
consider is given by a procedure samplingSchedule (line 4). This
procedure can be implemented in several ways. For example, the
geometric progression defining𝑚𝑖 = 𝛼 ·𝑚𝑖−1 for some 𝛼 > 1 is
simple but considered to be optimal [56].We combine this geometric
progression (with 𝛼 = 1.2) with an adaptive schedule that tries to
guess the next sample size using an optimistic target for the SD
bound 𝜂; in fact, note that by setting R = 0 and 𝜈 = 1 in Thm. 4.4,
solving the equality (2) for𝑚 gives a lower bound to the minimum
number𝑚 of samples to obtain a sufficiently small 𝜂.

After getting the number of samples𝑚𝑖 , the algorithm generates
the new sampleH𝑖 composingH𝑖−1 with new𝑚𝑖 −𝑚𝑖−1 random
hyper-edges, taken from ℌ by the procedure sampleHEs(ℌ,𝑚𝑖 −
𝑚𝑖−1). We describe the implementation of sampleHEs that we use
for the set betweenness centrality in Section 5. Then, CentRA calls
the procedure greedyCover(𝑘,H𝑖), that finds a subset of nodes
of size ≤ 𝑘 covering many hyper-edges of H𝑖 with the greedy
procedure introduced in Section 3.1, returning the identified set S.

In lines 7-11, CentRA computes the AMCERA (Section 4.1).
To do so, it generates a matrix 𝝈 of size 𝑡 ×𝑚𝑖 by sampling 𝑡𝑚𝑖

Rademacher random variables (Section 3.2) using the procedure
sampleRadeVars(𝑡 ×𝑚𝑖) (line 7). Then, for each vertex 𝑢 ∈ 𝑉 and
each trial of index 𝑗 ∈ [1, 𝑡], it populates the values of 𝑟𝑢

𝑗
as the

weighted average of the function 𝑓𝑢 onH𝑖 w.r.t. the entries of the
matrix 𝝈 (line 9). Using these values, CentRA computes 𝑟 𝑗 as the
supremum sum of at most 𝑘 entries of the set {𝑟𝑢

𝑗
: 𝑢 ∈ 𝑉 } (line 10).

CentRA obtains the AMCERA in line 11 as the average of the 𝑡
values of 𝑟 𝑗 . We remark that it is not needed to generate the entire
matrix 𝝈 at each iteration of the algorithm, and to compute 𝑟𝑢

𝑗
for

all 𝑢 ∈ 𝑉 , as done in the simplified procedure described above;
it is sufficient to extend 𝝈 with 𝑚𝑖 −𝑚𝑖−1 new columns, and to
update the values of 𝑟𝑢

𝑗
incrementally as each sample is generated

and added to H𝑖 . All these operations can be done efficiently, as
proven by Lemma 4.6.

In line 12, the algorithm defines 𝜉 , an accuracy parameter that
quantifies how far is the estimate CH𝑖

(S) from the optimal central-

ity C(S∗): it holds C(S∗) ≤ CH𝑖 (S)1−1/𝑒 + 𝜉 with probability ≥ 1−𝛿𝑖/5
(see Theorem 4.3 and the value of 𝜈 in the statement and proof of
Theorem 4.4). After obtaining the AMCERA, CentRA computes
(line 13) an upper bound 𝜂 to the supremum deviation D(F ,H𝑖 ) on
the sampleH𝑖 with confidence 𝛿𝑖 , using the result of Theorem 4.4.

Finally, CentRA checks a stopping condition (line 14); if true,
it means that S provides an (1 − 1/𝑒 − 𝜀)-approximation of the
optimum S∗ with enough confidence, therefore CentRA returns
S in output. CentRA uses a new, improved stopping condition
to establish its theoretical guarantees. As discussed previously,
the condition D(F ,H) ≤ 𝜀C(S∗)/2 proposed by HEDGE [43] is
sufficient to guarantee that C(S) ≥ (1 − 1/𝑒 − 𝜀)C(S∗). However,
this condition is not necessary. CentRA combines the upper bound
C(S∗) ≤ 𝜈 = CH𝑖

(S)(1 − 1/𝑒)−1 + 𝜉 to C(S∗) with the lower
bound CH𝑖

(S) − 𝜂 ≤ C(S) to C(S), rather than using 𝜂 twice (for
both the upper bound to C(S∗) and the lower bound to C(S), see
the proof of Proposition 4.5). Note that, in general, we expect 𝜉 ≪ 𝜂,
as 𝜉 is independent of 𝑘 and any property of F (e.g., its complexity),
but sharply scales with the empirical estimate CH𝑖

(S) of C(S∗).
We now prove the correctness of CentRA, and a bound to its

time complexity for incrementally processing the random samples
and for computing the AMCERA. (the proofs are in the Appendix.)

Proposition 4.5. LetS be the output ofCentRA. With probability

≥ 1 − 𝛿 , it holds C(S) ≥ (1 − 1
𝑒 − 𝜀)C(S

∗).
Lemma 4.6. Define 𝑏H as supℎ∈H |ℎ | ≤ 𝑏H ≤ 𝑛. When CentRA

stops at iteration 𝑖 ≥ 1 after processing 𝑚𝑖 samples, it computes

R̃𝑡𝑚 𝑗
(F ,H𝑗 ,𝝈), for all 𝑗 ∈ [1, 𝑖], in time O((𝑏H𝑚𝑖 + 𝑘)𝑡 log(𝑛)).

Note that the time bound above considers the total number of
operations performed by CentRA for computing R̃𝑡𝑚 𝑗

(F ,H𝑗 ,𝝈),
summed over all iterations 𝑗 ≤ 𝑖 . Notably, the time needed by
CentRA to compute the AMCERA is linear in the final sample
size 𝑚𝑖 and logarithmic in the number of nodes 𝑛 of the graph.
Furthermore, the parameter𝑏H is typically very small, as we discuss
in Section 4.3 (e.g., for the betweenness centrality is at most the
vertex diameter 𝐵 of the graph [57]). We obtain the total running
time of CentRA by summing the bound from Lemma 4.6 and
O(𝑇ℌ𝑚𝑖 + 𝑛 log(𝑛)), where 𝑇ℌ is the time to sample one hyper-
edge from ℌ, and the second term is for the greedy algorithm
greedyCover (using the implementation from [15], and assuming
the final iteration index 𝑖 ∈ O(1), that is always the case in practice).
In our experimental evaluation (Section 5) we show that CentRA
is a very practical and scalable approach, since the time required to
compute the AMCERA is negligible w.r.t. to the time to generate
the random samples and greedyCover.

Finally, we remark that CentRA applies directly to approximate
set centrality functions that are submodular and can be defined as
averages over some hyper-edge space ℌ (see Section 3.1), such as
𝜅-path, coverage, and triangle centralities, as CentRA is oblivious
to the procedure sampleHEs to sample hyper-edges.

4.3 Sample Complexity bounds

In this Section we present a new bound (Theorem 4.7) to the
sufficient number of random samples to obtain an (1 − 1

𝑒 − 𝜀)-
approximation of S∗. (due to space constraints, we defer all proofs
of this Section to the Appendix.)

We first define the range space associated to set centralities and
its VC-dimension, and remand to [46, 47, 63] for a more complete
introduction to the topic. Define the range space 𝑄𝑘 = (ℌ, 𝑅𝑘 ),
where ℌ is a family of hyper-edges, and

𝑅𝑘 = {{ℎ : ℎ ∈ ℌ, 𝑓S (ℎ) = 1} : S ⊆ 𝑉 , |S| ≤ 𝑘}
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is a family of subsets of ℌ, indexed by the indicator functions
𝑓S ∈ F associated to subsets of 𝑉 with size at most 𝑘 . For any
H ⊆ ℌ of size𝑚, the projection 𝑃 (H , 𝑅𝑘 ) of 𝑅𝑘 onH is

𝑃 (H , 𝑅𝑘 ) = {H ∩ 𝑟 : 𝑟 ∈ 𝑅𝑘 } .
We say that H is shattered by 𝑅𝑘 if |𝑃 (H , 𝑅𝑘 ) | = 2𝑚 . The VC-

dimension [65] 𝑉𝐶 (𝑄𝑘 ) of the range space 𝑄𝑘 is the maximum
cardinality𝑚 of a setH that is shattered by 𝑅𝑘 . Under this frame-
work, we are ready to state the following sample complexity bound.

Theorem 4.7. LetH be a sample of𝑚 hyper-edges taken i.i.d. uni-

formly fromℌ. For𝑘 ≥ 1, letS be the output of greedyCover(𝑘,H).
Let 𝑑𝑘 such that 𝑉𝐶 (𝑄𝑘 ) ≤ 𝑑𝑘 . For 𝛿 ∈ (0, 1) and 𝜀 ∈ (0, 1 − 1

𝑒 ), if

𝑚 ∈ O
(
𝑑𝑘 log

( 1
C(S∗)

)
+ log

( 1
𝛿

)
𝜀2C(S∗)

)
, (3)

then, it holds C(S) ≥ (1 − 1
𝑒 − 𝜀)C(S

∗) with probability ≥ 1 − 𝛿 .

We may observe that the main consequence of Theorem 4.7
is that the number of samples required to obtain a (1 − 1

𝑒 − 𝜀)-
approximation of S∗ with probability ≥ 1 − 𝛿 does not necessarily
depend on the size of the graph𝐺 (e.g., the number of nodes𝑛 = |𝑉 |),
but rather scales with the VC-dimension 𝑉𝐶 (𝑄𝑘 ). Moreover, note
that it always holds 𝑉𝐶 (𝑄𝑘 ) ≤ log2 |𝑅𝑘 | ≤ ⌊𝑘 log2 (𝑛)⌋ (in other
words, 𝑉𝐶 (𝑄𝑘 ) cannot be larger than a naïve application of the
union bound), but the gap between 𝑉𝐶 (𝑄𝑘 ) and log2 |𝑅𝑘 | (and
⌊𝑘 log2 (𝑛)⌋) can be arbitrary large [63]. In order to characterize
𝑉𝐶 (𝑄𝑘 ), we give an upper bound to it as a function of 𝑉𝐶 (𝑄1).

Lemma 4.8. The VC-dimension 𝑉𝐶 (𝑄𝑘 ) of the range space 𝑄𝑘 is

𝑉𝐶 (𝑄𝑘 ) ≤ 2𝑉𝐶 (𝑄1)𝑘 log2 (3𝑘).

Lemma 4.8 conveniently involves 𝑉𝐶 (𝑄1), a quantity that is
often much easier to bound than 𝑉𝐶 (𝑄𝑘 ). In fact, for the case of
the betweenness centrality, it holds 𝑉𝐶 (𝑄1) ≤ ⌊log2 (2𝐵)⌋, where
𝐵 is (an upper bound to) the vertex diameter of the graph 𝐺 [57],
i.e., the maximum number of distinct nodes that are internal to
a shortest path of 𝐺 . Our next result generalizes such bound to
general set centralities, in which we assume that the maximum
number of distinct nodes in an hyper-edge ℎ that we can sample
from ℌ is upper bounded by a constant 𝑏.

Lemma 4.9. If supℎ∈ℌ |ℎ | ≤ 𝑏, then 𝑉𝐶 (𝑄1) ≤ 𝑑1 = ⌊log2 (2𝑏)⌋.

For instance, when sampling simple paths of length at most𝜅 ≥ 1
for estimating the 𝜅-path centrality it holds 𝑏 ≤ 𝜅 . For the triangle
centrality, 𝑏 = 3. Furthermore, note that 𝑏 ≤ 𝑛 as ℎ ⊆ 𝑉 ,∀ℎ ∈ ℌ.
In light of Theorem 4.7 and Lemma 4.8, and under the assumption
that C(S∗) ∈ Θ(1), as common in real-world networks [43, 67], it
is immediate to observe that the sufficient sample size𝑚 to achieve
an (1 − 1

𝑒 − 𝜀)-approximation is

𝑚 ∈ O
(
𝑑𝑘 + log(1/𝛿)

𝜀2

)
,𝑚 ∈ O

(
𝑑1𝑘 log(𝑘) + log(1/𝛿)

𝜀2

)
, (4)

where 𝑑1 can be easily bounded with Lemma 4.9.
Remarkably, the bounds (4) are never worse than (1) (from the

union bound, as 𝑑𝑘 ≤ ⌊𝑘 log2 (𝑛)⌋), while they are significantly re-
fined in many realistic scenarios. An interesting example is given by
small-world networks [66], that have vertex diameter 𝐵 ∈ O (log𝑛);
in such cases, both (3) and (4) provide an exponential improvement

on the dependence on 𝑛 for set betweenness centrality approxima-
tions (as 𝑏 ≤ 𝐵 ∈ O (log𝑛), and 𝑑1 ∈ O (log log𝑛)). Furthermore,
Lemma 4.8 and 4.9 imply that, when 𝑑1 or 𝑑𝑘 are constants (not de-
pending on 𝑛), the sample complexity bounds of (4) are completely
independent of the graph size 𝑛. This is the case, for example, when
estimating the 𝜅-path centrality and 𝜅 is a small constant (as it is
typically in applications), where 𝑑1 = ⌊log2 (𝜅)⌋, or for undirected
graphs with unique shortest paths between all pairs of vertices2,
where 𝑑1 = 3 (see Lemma 2 of [57]). These observations confirm
that in many situations standard techniques do not capture the
correct underlying complexity of the set centrality approximation
task, yielding loose guarantees.

We remark that, while these results improve state-of-the-art
bounds from a theoretical perspective, they also have a practical
impact as they can be embedded in the progressive sampling strat-
egy of CentRA by setting an upper limit to the number of samples
to consider.

5 EXPERIMENTAL EVALUATION

In this Section we present our experiments. The goals of our exper-
imental evaluation are: 1) to test the practical impact of the number
𝑡 of Monte Carlo trials for estimating the AMCERA, both in terms
of running time and bound on the SD D(F ,H); 2) to compare the
data-dependent bounds computed by CentRA with state-of-the-art
techniques; 3) to show the impact, both in terms of running time
and number of random samples, that a finer characterization of the
SD has to the task of centrality maximization.

Experimental Setup. We implemented CentRA in C++. The code
and the scripts to reproduce all experiments are available at https://
github.com/leonardopellegrina/CentRA. All the code was compiled
with GCC 8 and run on a machine with 2.30 GHz Intel Xeon CPU,
512 GB of RAM, on Ubuntu 20.04.

In our experiments we focus on the set betweenness centrality,
and remand testing other centralities to the full version of this work.
To sample random shortest paths fromℌ, the procedure sampleHEs
chooses a starting node 𝑢 and final node 𝑣 uniformly at random,
and then picks a random shortest paths from 𝑢 to 𝑣 , using the
balanced bidirectional BFS [14] (in which two BFSs are expanded
from both 𝑢 and 𝑣). If 𝑣 is not reachable from 𝑢, the procedure
returns the empty set. We compare CentRA with HEDGE [43], the
state-of-the-art method for approximate centrality maximization.
As the implementation of HEDGE is not publicly available, we
implemented it is as a modification of CentRA. Note that we do
not compare with the exact approach (that computes centralities
exactly), as HEDGE [43] already outperforms it on small graphs,
and because the exact approach does not conclude in reasonable
time on the large graphs we considered3, and to [67] (due to some
flaws in the analysis pointed out by [43]). Note that CentRA does
not use the upper bounds proved in Section 4.3 to limit its number
of samples, so to directly test its data-dependent bounds. However,
due to space constraints, we defer to the Appendix (Section A.4)
analogous comparisons with a variant of CentRA, that we call

2In road networks, this feature is often enforced [29].
3Computing the centralities of individual nodes on large graphs already requires
significant computation (e.g., [14] reports that 1 week is required on a 40 cores cluster
for graphs of size comparable to the ones we tested). In addition, it is infeasible to
update these centralities at each of the 𝑘 iterations of the greedy algorithm.

https://github.com/leonardopellegrina/CentRA
https://github.com/leonardopellegrina/CentRA


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Leonardo Pellegrina105 106

Number of samples m

10 2

10 1

Bo
un

d 
to

 S
up

re
m

um
 D

ev
ia

tio
n

Bounds to Supremum Deviation vs. m for CentRA (k = 50)

actor-collaboration com-amazon com-dblp com-youtube email-Enron soc-LiveJournal1 soc-pokec wiki-Talk wiki-Vote wiki-topcats

10 2

CentRA

10 2HE
DG

E

Bounds to Supremum Deviation (k=10)

(a)

10 1

CentRA

10 1

HE
DG

E

Bounds to Supremum Deviation (k=100)

(b)

10 2

CentRA

10 2

HE
DG

E

Bounds to Supremum Deviation (k=10)

(c)

10 2 10 1

CentRA

10 2

10 1

HE
DG

E

Bounds to Supremum Deviation (k=100)

(d)

Figure 1: Comparison between the bounds to the Supremum Deviation D(F ,H) obtained by HEDGE (𝑦 axes, based on the

union bound) and CentRA (𝑥 axes, Section 4.2) on samples of size𝑚 ∈ {5 · 104, 105, 2 · 105, 5 · 105, 106}, for 𝑘 = 10 and 𝑘 = 100 (other
values in Figure 6). Figures (a)-(b): undirected graphs. Figures (c)-(d): directed graphs. Each point corresponds to a different

value of𝑚 (the same for both algorithms). The black diagonal line corresponds to 𝑦 = 𝑥 .105 106
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Figure 2: Comparison between the number of samples and running times (in seconds) to obtain an (1− 1/𝑒 − 𝜀)-approximation

of the optimal set centrality S∗ using CentRA (𝑥 axes) and HEDGE-P (𝑦 axes) for 𝜀 ∈ {0.2, 0.1, 0.05} and 𝑘 = 50 (other values

of 𝑘 shown in Appendix). Figures (a)-(b): samples and times for undirected graphs. Figures (c)-(d): directed graphs. Each point

corresponds to a different value of 𝜀 (the same for both algorithms). The black diagonal line is at 𝑦 = 𝑥 .

CentRA-VC, that uses VC-dimension bounds (Section 4.3) instead
of the MCERA (Section 4.1). We briefly comment these results in the
following paragraphs.We repeat all experiments 10 times and report
averages (standard deviations not shown since the experiments
were extremely stable).

Graphs. We tested CentRA on 5 undirected and 5 directed real-
world graphs from SNAP4 and KONECT5. The characteristics of
the graphs are described in detail in Table 1 (in the Appendix).

Impact of CentRA parameters. In our first experiments, we evalu-
ate the practical impact of the number 𝑡 of Monte Carlo trials used
by CentRA to derive data-dependent bounds to the SD via the AM-
CERA (Section 4.1). We run CentRA, letting it process a fixed num-
ber of samples𝑚 = 5 · 105 using 𝑡 ∈ {1, 10, 50, 102, 2.5 · 102, 5 · 102},
measuring the upper bound 𝜂 to the SD (Theorem 4.4) and its run-
ning time. We focus on the two largest and two smallest graphs
of the ones we considered, two undirected and two directed. In
all cases, we fix 𝛿 = 0.05 (note that we do not vary 𝛿 as its im-
pact is negligible, due to the use of exponential tails bounds, see
Thm. 4.4). In Figure 3 (a) we show the bounds to the SD, and in

4http://snap.stanford.edu/data/index.html
5http://konect.cc/networks/

Figure 3 (b) the running time (Figures in the Appendix). We con-
clude that, when using more than 102 trials, the improvements in
terms of deviation bound is negligible. This confirms that a small
number 𝑡 of Monte Carlo trials is sufficient to estimate the ERA
accurately. More importantly, the impact to the running time is
negligible when increasing 𝑡 on large graphs, and not predominant
for smaller graphs (Figure 3 (b)). This means that the most expen-
sive operations performed by CentRA are sampling shortest paths
and processing the sample with the greedy algorithm, while the
AMCERA is computed efficiently. Based on these observations, we
fix 𝑡 = 102 for all experiments.

Bounds to the Supremum Deviation.We now compare the bounds
to the Supremum Deviation D(F ,H) obtained by HEDGE (using
the union bound) with our analysis of Section 4.1 based on the
AMCERA, at the core of CentRA. In this way, we directly assess
the trade-off in terms of accuracy and sample size𝑚 of both algo-
rithms. To do so, we sample for both algorithms the same number
𝑚 of hyper-edges and compute 𝜂 ≥ D(F ,H) for CentRA (using
Thm. 4.4) and combine the Chernoff bound with the union bound
(following the analysis of Lemma 2 of [43]) for HEDGE, obtaining
𝜂𝑈𝐵 ≥ D(F ,H). We considered𝑚 ∈ {5 ·104, 105, 2 ·105, 5 ·105, 106},
𝑘 ∈ {10, 25, 50, 75, 100}, and 𝛿 = 0.05 for both methods.

http://snap.stanford.edu/data/index.html
http://konect.cc/networks/
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Figure 1 shows the results for these experiments. Figures 1 (a)-(b)
show the bounds to the SD as functions of𝑚 for 𝑘 = 10 and 𝑘 = 100
for HEDGE (𝑦 axes) and CentRA (𝑥 axes) for undirected graphs
(to ease readability, directed are in Figures 1 (c)-(d)). Note that each
point in the plots corresponds to a value of𝑚, while the diagonal
black line is at 𝑦 = 𝑥 . Figures for other values of 𝑘 are very similar
and showed in the Appendix (Figure 6) for space constraints. In
Figure 4 we show the estimated centrality of the set S returned by
CentRA as function of 𝑘 , for𝑚 = 106.

From these results, we can clearly see that CentRA obtains a
much smaller bound to the SD than HEDGE (as the points are
above the black diagonal), uniformly for all graphs. This is a conse-
quence of the sharp data-dependent bounds derived in Section 4.1,
which significantly improve the loose guarantees given by the union
bound. We observe that, for 𝑘 = 10, the upper bound 𝜂𝑈𝐵 to the
SD from the union bound is at least 1.25 times higher than 𝜂 for
all graphs, more than 1.5 higher for 7 graphs, and at least 2 times
higher for 3 graphs. At 𝑘 = 50 (Figure 6), it is 1.5 higher for all
graphs, at lest 2 times higher for 6 graphs, and at least 3 times
higher for 2 graphs. This gap is even larger for 𝑘 = 100. There-
fore, 𝜂 is often a fraction of the upper bound 𝜂𝑈𝐵 from HEDGE.
Interestingly, we observe this difference on both smaller and larger
graphs. Furthermore, this gap grows with 𝑘 , confirming that the
data-dependent bounds of CentRA scale much more nicely than
the union bound w.r.t. 𝑘 . To appreciate the magnitude of the im-
provement, note that both 𝜂 and 𝜂𝑈𝐵 decrease proportionally with
Θ(

√
1/𝑚) (see the rates in Figures 5); this means that to make the

upper bound to the SD 𝛼 times smaller, we need a sample that is
approximately 𝛼2 times larger. Therefore, we expect that obtaining
a sharper bound to the SD should have a significant impact on the
the sample size and, consequently, on the cost to analyze it. The
following experiments confirm this intuition. Finally, the results
deferred to Section A.4 (comparing CentRA, CentRA-VC, and
HEDGE) confirm our theoretical insights: the novel VC-dimension
bounds (used by CentRA-VC) are always equally or more accu-
rate than standard bounds, while CentRA is the overall superior
approach, as it leverages sharp data-dependent techniques.

Approximate Centrality Maximization with Progressive Sampling.

In the last set of experiments, our goal is to evaluate the perfor-
mance of CentRA to compute an (1 − 1/𝑒 − 𝜀)-approximation
of the optimum S∗ with progressive sampling. Note that HEDGE
cannot be applied to this problem as is, since it requires knowl-
edge of C(S∗) to fix its sample size. Since CentRA is the first

algorithm of this kind, we compare it to a new variant of HEDGE,
that we call HEDGE-P, that we implemented as a modification of
CentRA. HEDGE-P follows the same iterative scheme of Algo-
rithm 1, but with crucial differences: instead of using the AMCERA
to upper bound the SD, it uses 𝜂𝑈𝐵 (described previously) from
a union bound (Lemma 2 of [43]). As the stopping condition, we
follow the analysis of [43]: HEDGE-P stops when it guarantees that
D(F ,H) ≤ 𝜀C(S∗)/2 = 𝜂𝑈𝐵 , as this is a sufficient condition to
obtain an (1 − 1/𝑒 − 𝜀)-approximation (see Thm. 1 of [43]). Instead,
CentRA leverages a refined stopping condition (line 14 of Alg. 1,
Section 4.2). We compare CentRA to HEDGE-P in terms of the
number of samples and running times required to converge, using

𝜀 ∈ {0.2, 0.1, 0.05} and 𝑘 ∈ {10, 50, 100} (that are well representative
of other values of 𝑘 , as shown previously).

Figure 2 shows the results of these experiments for 𝑘 = 50 (other
values in Figure 7). CentRA obtains an (1− 1/𝑒 − 𝜀)-approximation
of the optimum S∗ using a fraction of the samples and at a fraction
of the time of HEDGE-P. For 𝑘 = 10, CentRA needs a random
sample that is one order of magnitude smaller than HEDGE-P. For
𝑘 = 50, the random samples required by CentRA are at least 20
times smaller than the samples needed by HEDGE-P. When 𝑘 = 100,
the sample size reduction is close to 2 orders of magnitude (Figure
7). From these results it is clear that a better characterization of the
SD and a refined stopping condition allow CentRA to be a much
more efficient algorithm for approximate centrality maximization
in terms of sample sizes. As expected, we observed that reducing
the sample sizes has a significant impact on the running times.

In fact, we observed the running time to be essentially linear
w.r.t. the sample size. For 𝑘 = 10, for 3 graphs and 𝜀 = 0.2, CentRA
is at least 5 times faster than HEDGE-P; for all other cases, CentRA
is one order of magnitude faster. For 𝑘 = 50, CentRA finished in
less than 1/20 of the time needed by HEDGE-P, improving up to
two orders of magnitude when 𝑘 = 100 (Figure 7). Both CentRA
and HEDGE-P conclude after a small number of iterations (always
at most 3), confirming that the adaptive progressive sampling sched-
ule is very accurate. These observations confirm the efficiency of
CentRA: our new techniques provide efficiently computable, sharp
accuracy bounds that enable much more scalable approximations
for the centrality maximization task.

6 CONCLUSIONS

In this work we presented CentRA, a new algorithm for approxi-
mate centrality maximization of sets of nodes. First, we developed
a new approach based on efficiently computable bounds to Monte
Carlo Rademacher Averages, a fundamental tool from statistical
learning theory to obtain tight data-dependent bounds to the Supre-
mum Deviation. Then, we derived new sample complexity bounds,
proving that standard techniques typically provide overly conserva-
tive guarantees. We tested CentRA on large real-world networks,
showing that it significantly outperforms the state-of-the-art.

For future work, CentRA can be extended to analyse dynamic [9,
10, 34], uncertain [60], and temporal networks [61], all settings
in which our contributions may be useful to design efficient ap-
proximation algorithms for set centralities. Another direction is to
consider the approximation of different group centralities that are
not directly captured by the framework of Section 3.1 (e.g., [2, 8]).
More generally, it would be interesting to adapt the techniques
introduced in this work to other data mining problems, such as
mining interesting [27, 59], significant [22, 32, 51–53], and causal
patterns [64].
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A APPENDIX

In this Appendix we provide the proofs for our main results and
additional experimental results that were deferred due to space
constraints.

A.1 Proofs of Section 4.1

First, we state some key technical tools. The first is a contraction
inequality for Rademacher averages.

Lemma A.1 (Lemma 26.9 [63]). Let F be a family of functions

from a domain X to R. Let 𝜙 : R→ R be a 𝐿-Lipschitz function, such

that, for all 𝑎, 𝑏 ∈ R it holds |𝜙 (𝑎) − 𝜙 (𝑏) | ≤ 𝐿 |𝑎 − 𝑏 |. Define 𝝈 as a

vector of𝑚 i.i.d. Rademacher random variables 𝝈 =< 𝝈1, . . . ,𝝈𝑚 >.

For any 𝑋 ∈ X𝑚 with 𝑋 = {𝑥1, . . . , 𝑥𝑚}, it holds

E𝝈

[
sup
𝑓 ∈F

𝑚∑
𝑖=1

𝝈𝑖𝜙 (𝑓 (𝑥𝑖 ))
]
≤ 𝐿E𝝈

[
sup
𝑓 ∈F

{ 𝑚∑
𝑖=1

𝝈𝑖 𝑓 (𝑥𝑖 )
}]
.

We now state a concentration inequality for functions uniformly
distributed on the binary hypercube.

Theorem A.2 (Theorem 5.3 [16]). For 𝑐 > 0, let a function 𝑔 :
{−1, 1}𝑐 → R and assume that𝑋 is uniformly distributed on {−1, 1}𝑐 .
Let 𝑣 > 0 be such that

𝑐∑
𝑖=1

(
𝑔 (𝑥) − 𝑔(𝑥𝑖 )

)2
+
≤ 𝑣

for all 𝑥 = (𝑥1, . . . , 𝑥𝑐 ) ∈ {−1, 1}𝑐 , where
𝑥𝑖 = (𝑥1, . . . , 𝑥𝑖−1,−𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑐 )
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Figure 3: Impact of CentRA parameters on upper bounds to

the SD and running times on a sample of size𝑚 = 5 · 105 for
𝑘 = 50. (a): bounds to the SD as function of the number of

Monte Carlo trials 𝑡 . (b): running time of CentRA.
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Figure 4: Estimated centrality CH (S) of the node set S re-

turned by CentRA for different 𝑘 and𝑚 = 106. (the legend

is the same of Figure 1.)

Table 1: Statistics of undirected (top section) and directed

(bottom section) graphs. 𝐵 is the vertex diameter.

𝐺 |𝑉 | |𝐸 | 𝐵

actor-collaboration 3.82e5 3.31e7 13
com-amazon 3.34e5 9.25e5 44
com-dblp 3.17e5 1.04e6 21
com-youtube 1.13e6 2.98e6 20
email-Enron 3.66e4 1.83e5 11

soc-LiveJournal1 4.84e6 6.90e7 16
soc-pokec 1.63e6 3.06e7 16
wiki-Talk 2.39e6 5.02e6 9
wiki-topcats 1.79e6 2.85e7 9
wiki-Vote 7.11e3 1.03e5 7

is a copy of 𝑥 with the 𝑖-th component multiplied by −1, and (𝑏)+ =
max{𝑏, 0} is the positive part of 𝑏 ∈ R. Then, the random variable

𝑍 � 𝑔(𝑋 ) satisfies, for all 𝑞 > 0,

Pr (𝑍 > E [𝑍 ] + 𝑞) , Pr (𝑍 < E [𝑍 ] − 𝑞) ≤ exp(−𝑞2/𝑣) .

We are now ready to prove Theorem 4.1. To do so, we first
prove that the expected AMCERA upper bounds the ERA with the
contraction inequality of Lemma A.1, and then we show that the

https://doi.org/10.1137/1116025
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AMCERA is sharply concentrated around its expectation, leveraging
Theorem A.2.

Proof of Theorem 4.1. We first prove that

R̂ (F ,H) ≤ E𝝈
[
R̃𝑡𝑚 (F ,H ,𝝈)

]
.

We observe that, for all ℎ ∈ ℌ and all S ⊆ 𝑉 , we can equivalently
write the function 𝑓S as

𝑓S (ℎ) = max
{
𝑓𝑢 (ℎ) : 𝑢 ∈ S

}
=

∨
𝑢∈S

𝑓𝑢 (ℎ)

= min

{
1,

∑
𝑢∈S

𝑓𝑢 (ℎ)
}
.

We define the function 𝜙 : R→ R as

𝜙 (𝑥) = min{1, 𝑥}, for 𝑥 ∈ [0, 𝑘],
and observe that it is 1-Lipschitz. Replacing the above in the defini-
tion of the ERA R̂ (F ,H), we have

R̂ (F ,H) = E𝝈

[
sup
𝑓S ∈F

{
1
𝑚

𝑚∑
𝑠=1

𝝈𝑠 𝑓S (ℎ𝑠 )
}]

= E𝝈

[
sup

S⊆𝑉 , |S |≤𝑘

{
1
𝑚

𝑚∑
𝑠=1

𝝈𝑠𝜙

(∑
𝑢∈S

𝑓𝑢 (ℎ𝑠 )
)}]

. (5)

We apply Lemma A.1 to upper bound (5) obtaining that

(5) ≤ E𝝈

[
sup

S⊆𝑉 , |S |≤𝑘

{
1
𝑚

𝑚∑
𝑠=1

𝝈𝑠
∑
𝑢∈S

𝑓𝑢 (ℎ𝑠 )
}]

= E𝝈
[
R̃𝑡𝑚 (F ,H ,𝝈)

]
.

We now derive a new concentration bound for R̃𝑡𝑚 (F ,H ,𝝈) w.r.t.
its expectation E𝝈

[
R̃𝑡𝑚 (F ,H ,𝝈)

]
. Let the matrix 𝑥 ∈ {−1, 1}𝑡×𝑚 .

For 𝑗 ∈ [1, 𝑡] and 𝑠 ∈ [1,𝑚], define thematrix𝑥 𝑗𝑠 as a copy of𝑥 such
that its ( 𝑗, 𝑠)-th component 𝑥 𝑗𝑠

𝑗𝑠
is equal to the ( 𝑗, 𝑠)-th component

𝑥 𝑗𝑠 of 𝑥 multiplied by −1, i.e. 𝑥 𝑗𝑠
𝑗𝑠
= −𝑥 𝑗𝑠 . We define the function 𝑔

as 𝑔(𝑥) = 𝑡𝑚R̃𝑡𝑚 (F ,H , 𝑥). We aim at upper bounding
𝑡∑
𝑗=1

𝑚∑
𝑠=1

(
𝑔 (𝑥) − 𝑔(𝑥 𝑗𝑠 )

)2
+

below some constant 𝑣 . We first observe that the equivalence(
𝑔 (𝑥) − 𝑔(𝑥 𝑗𝑠 )

)
+
=

(
𝑔 (𝑥) − 𝑔(𝑥 𝑗𝑠 )

)
1

[
𝑔 (𝑥) > 𝑔(𝑥 𝑗𝑠 )

]
(6)

implies that we can focus on the case𝑔 (𝑥) > 𝑔(𝑥 𝑗𝑠 ) to upper bound
(6), as otherwise (6) is equal to 0. Let 𝑆∗

𝑗
be the subset of𝑉 such that

𝑆∗𝑗 = argmax
S⊆𝑉 , |S |≤𝑘

{∑
𝑢∈S

𝑚∑
𝑠=1

𝑓𝑢 (ℎ𝑠 )𝑥 𝑗𝑠

}
.

We note that, from the definition of supremum and after simple
calculations, for any 𝑗 ∈ [1, 𝑡] and 𝑠 ∈ [1,𝑚] it holds

𝑔(𝑥) − 𝑔(𝑥 𝑗𝑠 ) ≤
∑
𝑢∈𝑆∗

𝑗

𝑓𝑢 (ℎ𝑠 )
[
𝑥 𝑗𝑠 − 𝑥 𝑗𝑠𝑗𝑠

]
= 2

∑
𝑢∈𝑆∗

𝑗

𝑓𝑢 (ℎ𝑠 )𝑥 𝑗𝑠 ,

since all entries of 𝑥 and 𝑥 𝑗𝑠 are equal, apart from the pair ( 𝑗, 𝑠) for
which 𝑥 𝑗𝑠 = −𝑥 𝑗𝑠𝑗𝑠 . Summing over all 𝑗, 𝑠 we obtain

𝑡∑
𝑗=1

𝑚∑
𝑠=1

(
𝑔 (𝑥) − 𝑔(𝑥 𝑗𝑠 )

)2
+
≤

𝑡∑
𝑗=1

𝑚∑
𝑠=1

(
2

∑
𝑢∈𝑆∗

𝑗

𝑓𝑢 (ℎ𝑠 )𝑥 𝑗𝑠
)2

= 4
𝑡∑
𝑗=1

𝑚∑
𝑠=1

( ∑
𝑢∈𝑆∗

𝑗
∩ℎ𝑠

𝑓𝑢 (ℎ𝑠 )
)2
≤ 4

𝑡∑
𝑗=1

𝑚∑
𝑠=1

𝑏H
∑
𝑢∈𝑆∗

𝑗

(𝑓𝑢 (ℎ𝑠 ))2

≤ 4𝑏H𝑡 sup
S⊆𝑉 , |S |≤𝑘

{ ∑
𝑢∈S

𝑚∑
𝑠=1
(𝑓𝑢 (ℎ𝑠 ))2

}
= 4𝑡𝑚�̃�F (H),

where the second-last inequality holds by Cauchy-Schwarz inequal-
ity. We apply Theorem A.2 with 𝑣 = 4𝑡𝑚�̃�F (H), obtaining

E𝝈
[
𝑡𝑚R̃𝑡𝑚 (F ,H ,𝝈)

]
≤ 𝑡𝑚R̃𝑡𝑚 (F ,H ,𝝈) + 𝑞

with probability ≥ 1 − exp(−𝑞2/𝑣). Setting exp(−𝑞2/𝑣) ≤ 𝛿 and
solving for 𝑞 proves the statement. □

Proof of Lemma 4.2. First, note that we have already shown

R̂ (F𝑘 ,H) ≤ E𝝈
[
R̃𝑡𝑚 (F𝑘 ,H ,𝝈)

]
in the proof of Theorem 4.1. We now prove

E𝝈
[
R̃𝑡𝑚 (F𝑘 ,H ,𝝈)

]
≤ 𝑘R̂ (F1,H) . (7)

We have

R̃𝑡𝑚 (F𝑘 ,H ,𝝈) = 1
𝑡

𝑡∑
𝑗=1

sup
S⊆𝑉 , |S |≤𝑘

{∑
𝑢∈S

1
𝑚

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 )
}

≤ 1
𝑡

𝑡∑
𝑗=1

sup
S⊆𝑉 , |S |≤𝑘

{∑
𝑢∈S

sup
𝑢∈S

{
1
𝑚

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 )
}}

≤ 𝑘

𝑡

𝑡∑
𝑗=1

sup
S⊆𝑉 , |S |≤𝑘

{
sup
𝑢∈S

{
1
𝑚

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 )
}}

=
𝑘

𝑡

𝑡∑
𝑗=1

sup
S⊆𝑉 , |S |≤1

{∑
𝑢∈S

1
𝑚

𝑚∑
𝑠=1

𝝈 𝑗𝑠 𝑓𝑢 (ℎ𝑠 )
}

= 𝑘R̃𝑡𝑚 (F1,H ,𝝈) .

Taking the expectation w.r.t. 𝝈 on both sides yields (7). The right-
most inequality of the statement follows from simple properties of
the supremum. □

We now show Theorem 4.3. Our proof leverages the concept of
self-bounding functions [16]. Define the functions 𝑔 : X𝑚 → R and
𝑔𝑖 : X𝑚−1 → R, let the vector 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ X𝑚 and define
𝑥𝑖 = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑚) as a copy of 𝑥 removing the 𝑖-th
entry 𝑥𝑖 . We say that 𝑔 is a self-bounding function if there exists a
𝑔𝑖 such that, for all 𝑥 ∈ X𝑚 , it holds

0 ≤ 𝑔(𝑥) − 𝑔𝑖 (𝑥𝑖 ) ≤ 1,

and that
𝑚∑
𝑖=1
(𝑔(𝑥) − 𝑔𝑖 (𝑥𝑖 )) ≤ 𝑔(𝑥) .
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If all the 𝑥𝑖 ∈ X are independent random variables, a self-bounding
function satisfies (Theorem 6.12 [16])

Pr (𝑔(𝑥) ≤ E𝑥 [𝑔(𝑥)] − 𝑞) ≤ exp
(
− 𝑞2

2E𝑥 [𝑔(𝑥)]

)
.

Proof of Theorem 4.3. For any sample H of size 𝑚, define
S′ = argmaxS⊆𝑉 , |S |≤𝑘 CH (S). From Jensen’s inequality it holds

C
(
S∗

)
= sup
S⊆𝑉 , |S |≤𝑘

EH [CH (S)]

≤ EH
[

sup
S⊆𝑉 , |S |≤𝑘

CH (S)
]
= EH

[
CH (S′)

]
.

We now show that the function 𝑔 : ℌ𝑚 → R, with

𝑔(H) =𝑚CH (S′) = sup
S⊆𝑉 , |S |≤𝑘

𝑚∑
𝑠=1

𝑓S (ℎ𝑠 )

is self-bounding. Define 𝑔𝑖 (H) as

𝑔𝑖 (H) = sup
S⊆𝑉 , |S |≤𝑘

𝑚∑
𝑠=1,𝑠≠𝑖

𝑓S (ℎ𝑠 ).

First, denoting 𝑥 = H , note that 0 ≤ 𝑔(𝑥) − 𝑔𝑖 (𝑥𝑖 ) ≤ 𝑓S′ (ℎ𝑖 ) ≤ 1
are immediate from properties of the supremum and the definition
of 𝑓 . Then, we have

𝑚∑
𝑖=1
(𝑔(𝑥) − 𝑔𝑖 (𝑥𝑖 )) ≤

𝑚∑
𝑖=1

𝑓S′ (ℎ𝑖 ) = 𝑔(𝑥) .

Therefore, 𝑔 is self-bounding, and it holds

Pr
(
𝑚CH (S′) ≤ E[𝑚CH (S′)] − 𝑞

)
≤ exp

(
−𝑞2

2EH [𝑚CH (S′)]

)
.

Setting the r.h.s. ≤ 𝛿 , and solving for 𝑞, we obtain w.p. ≥ 1 − 𝛿

E[CH (S′)] ≤ CH (S′) +

√
2E[CH (S′)] ln( 1𝛿 )

𝑚
.

Finding the fixed point of the above inequality gives

E[CH (S′)] ≤ CH (S′) +

√√√(
ln( 1

𝛿
)

𝑚

)2
+
2CH (S′) ln( 1𝛿 )

𝑚
+
ln( 1

𝛿
)

𝑚
.

(8)

Let S be the output of greedyCover(𝑘,H) for a fixed sampleH .
For the properties of greedyCover, it holds

CH
(
S′

)
≤ CH (S) (1 − 1/𝑒)−1 .

By replacing this upper bound to CH (S′) in (8) and recalling that
C(S∗) ≤ E[CH (S′)] we obtain the statement. □

Before proving Theorem 4.4, we state some intermediate re-
sults. These results provide refined concentration inequalities re-
lating Rademacher averages to the supremum deviation [16]. Let
the Rademacher complexity R(F ,𝑚) of the set of functions F (de-
fined in Section 3) be defined as R(F ,𝑚) = EH

[
R̂ (F ,H)

]
. The

following central result relates R(F ,𝑚) to the expected supremum
deviation.

Lemma A.3. Symmetrization Lemma [46, 63] Let 𝑍 be either

sup
𝑓 ∈F
{CH (S) − C(S)} or sup

𝑓 ∈F
{C(S) − CH (S)} .

It holds EH [𝑍 ] ≤ 2R(F ,𝑚).

The following theorem states Bousquet’s inequality [17], that
gives a variance-dependent bound to the supremum deviation above
its expectation.

Theorem A.4. (Thm. 2.3 [17]) Let 𝜈F ≥ sup𝑓 ∈F {𝑉𝑎𝑟 (𝑓 )}, and
𝑍 be either sup𝑓 ∈F {CH (S) − C(S)} or sup𝑓 ∈F {C(S) − CH (S)}.
Then, with probability at least 1 − 𝜆 overH , it holds

𝑍 ≤ EH [𝑍 ] +

√
2 ln

( 1
𝜆

) (
𝜈F + 2E[𝑍 ]

)
𝑚

+
ln

( 1
𝜆

)
3𝑚

.

The next result bounds R(F ,𝑚) above its estimate R̂ (F ,H).

Theorem A.5. [16] With probability ≥ 1 − 𝜆 overH , it holds

R(F ,𝑚) ≤ R̂ (F ,H) +

√√√√(
ln

( 1
𝜆

)
𝑚

)2
+
2 ln

(
1
𝜆

)
R̂ (F ,H)

𝑚
+
ln

( 1
𝜆

)
𝑚

.

We now prove Theorem 4.4.

Proof of Theorem 4.4. We define 5 events 𝐴1, . . . , 𝐴5 as

𝐴1 = “ sup
𝑓 ∈F
{CH (S) − C(S)} > 𝜂”,

𝐴2 = “ sup
𝑓 ∈F
{C(S) − CH (S)} > 𝜂”,

𝐴3 = “R̂ (F ,H) > R̃”,
𝐴4 = “R(F ,𝑚) > R”,
𝐴5 = “ sup

𝑓 ∈F
{C(S)} > 𝜈”.

The statement holds if, with probability ≥ 1−𝛿 ,𝐴1 and𝐴2 are both
false. If we assume that Pr(𝐴𝑖 ) ≤ 𝛿/5,∀𝑖 , then it holds

Pr
(⋃

𝑖

𝐴𝑖

)
≤

∑
𝑖

Pr (𝐴𝑖 ) ≤ 𝛿.

This implies that all events 𝐴𝑖 are false simultaneously with proba-
bility ≥ 1−𝛿 , obtaining the statement. We now show that Pr(𝐴𝑖 ) ≤
𝛿/5,∀𝑖 . We observe that 𝑃𝑟 (𝐴3) ≤ 𝛿/5 is a consequence of The-
orem 4.1 (replacing 𝛿 by 𝛿/5). Then, 𝑃𝑟 (𝐴4) ≤ 𝛿/5 follows from
Theorem A.5 (using 𝜆 = 𝛿/5 and R̂ (F ,H) ≤ R̃). 𝑃𝑟 (𝐴5) ≤ 𝛿/5 is
a consequence of Theorem 4.3 (replacing 𝛿 by 𝛿/5). 𝑃𝑟 (𝐴1) ≤ 𝛿/5
and 𝑃𝑟 (𝐴2) ≤ 𝛿/5 both hold applying Bousquet’s inequality (Theo-
rem A.4) twice (with 𝜆 = 𝛿/5), observing that R(F ,𝑚) ≤ R, using
the Symmetrization Lemma (Lemma A.3), and observing that

sup
𝑓 ∈F
{𝑉𝑎𝑟 (𝑓 )} ≤ sup

𝑓 ∈F
{C(S)} ≤ 𝜈.

The fact Pr(𝐴𝑖 ) ≤ 𝛿/5,∀𝑖 , concludes our proof. □

A.2 Proofs of Section 4.2

Proof of Proposition 4.5. We prove that the statement is a
consequence of the following facts, that we assume hold simultane-
ously with probability ≥ 1 − 𝛿/2𝑖 at a fixed iteration 𝑖 ≥ 0:

(1) CentRA computes R̃𝑡𝑚 (F ,H ,𝝈) correctly at line 11;
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(2) 𝜂, at the end of iteration 𝑖 , is computed using Theorem 4.4
such that D(F ,H𝑖 ) ≤ 𝜂;

(3) 𝜉 (line 12) is such that C(S∗) ≤ CH𝑖
(S)/(1 − 1/𝑒) + 𝜉 ;

(4) S is computed by the greedy algorithm greedyCover(𝑘,H𝑖)
s.t. CH𝑖

(S) ≥ (1 − 1/𝑒) supS′⊆𝑉 , |S′ | ≤𝑘 CH𝑖
(S′);

(5) CentRA stops at the current iteration 𝑖 when the stopping
condition of line 14 is true.

Notice that if all the following inequalities hold,

C(S∗) ≤
CH𝑖
(S)

1 − 1
𝑒

+ 𝜉 ≤
CH𝑖
(S) − 𝜂

1 − 1
𝑒 − 𝜀

≤ C(S)
1 − 1

𝑒 − 𝜀
,

then C(S∗) ≤ C(S)/(1 − 1/𝑒 − 𝜀) and CentRA is correct. The
rightmost inequality holds due to facts (1) and (2), while the leftmost
holds from facts (3) and (4). The central inequality holds as it is
equivalent to the stopping condition (line 14) and from fact (5).

We need to prove that the algorithm is correct with probability ≥
1−𝛿 , taking into account the validity of the probabilistic guarantees
for of all possible iterations 𝑖 . The probability that there is at least
one iteration 𝑖 in which any of the above facts is false is at most∑
𝑖 𝛿𝑖 =

∑
𝑖 𝛿2−𝑖 ≤ 𝛿 , from a union bound, proving the statement.

□

Proof of Lemma 4.6. When a sampleℎ ∈ H is generated,O(|ℎ |𝑡)
operations are sufficient to generate 𝑡 Rademacher random vari-
ables and update all values of 𝑟𝑢

𝑗
, for all 𝑢 ∈ ℎ and 𝑗 ∈ [1, 𝑡]. With 𝑡

heaps, each of size at most 𝑛, the 𝑡 sets of values {𝑟𝑢
𝑗
: 𝑢 ∈ 𝑉 } can

be kept sorted with a total of O(|ℎ |𝑡 log(𝑛)) time for each sample
ℎ. Summing such costs for all ℎ ∈ H (noting that each sample is
considered only once) and observing that |ℎ | ≤ 𝑏H , we obtain the
first term of the bound. The second term is the time to retrieve
the 𝑘 largest positive values from all heaps, after processing all𝑚𝑖

samples, that costs O(𝑘𝑡 log(𝑛)) operations. □

A.3 Proofs of Section 4.3

Let F be a function family from a domain X to {0, 1}, and define
the range space 𝑄 = (X, 𝑅) such that 𝑅 is the family of subsets of
X generated by F :

𝑅 = {{𝑥 ∈ X : 𝑓 (𝑥) = 1} : 𝑓 ∈ F } .

A sample H = {ℎ1, . . . , ℎ𝑚} ∈ X𝑚 of size 𝑚 taken i.i.d. from a
distribution 𝛾 gives an (𝑟, 𝜃 )-relative approximation for F if, for
𝑟 > 0 and 𝜃 ∈ (0, 1], it holds���� 𝑚∑

𝑖=1
𝑓 (ℎ𝑖 ) − Eℎ∼𝛾 [𝑓 (ℎ)]

���� ≤ 𝑟 max{𝜃,Eℎ∼𝛾 [𝑓 (ℎ)]},∀𝑓 ∈ F .

We state a result due to [42] (in a version presented by [33]).

Theorem A.6 (Thm. 2.11 [33]). Let𝑑 ≥ 𝑉𝐶 (𝑄). A random sample

H of size𝑚 taken i.i.d. from a distribution 𝛾 gives an (𝑟, 𝜃 )-relative
approximation for F with probability ≥ 1 − 𝛿 if

𝑚 ≥ 𝑐

𝑑 ln
(
1
𝜃

)
+ ln

(
1
𝛿

)
𝑟2𝜃

,

where 𝑐 is an absolute constant.

Note that the sample complexity bound of Theorem A.6 is opti-
mal up to constant factors [42]. We now prove Theorem 4.7.

Proof of Theorem 4.7. In accordance with the statement, as-
sume𝑚 to be

𝑚 = 4𝑐
𝑑𝑘 ln

(
1

C(S∗)

)
+ ln

(
1
𝛿

)
𝜀2C(S∗)

,

where 𝑐 is the absolute constant of Theorem A.6. For 𝑟 = 𝜀/2,
𝜃 = C(S∗), and𝑄 = 𝑄𝑘 , the guarantees of Theorem A.6 imply that
the sampleH provides an (𝜀/2, C(S∗))-relative approximation for
F (where F is defined in Section 3.1) with probability ≥ 1−𝛿 . From
the definition of (𝜀/2, C(S∗))-relative approximation, it holds

D(F ,H) ≤ 𝜀C(S∗)/2.

Following analogous derivations of the proof of Theorem 1 in [43],
this constraint to the SD is a sufficient condition to guarantee that
S provides an (1 − 1/𝑒 − 𝜀)-approximation of S∗ with probability
≥ 1 − 𝛿 , proving the statement. □

We now prove that the VC-dimension𝑉𝐶 (𝑄𝑘 ) of the range space
𝑄𝑘 can be upper bounded in terms of the VC-dimension 𝑉𝐶 (𝑄1)
of the range space𝑄1 (Lemma 4.8). We follow steps that are similar
to the proof of bounds to the VC-dimension of a concept class
composed by the intersection of up to 𝑘 concept classes (Exercise
3.23 of [47]). In our case, 𝑅𝑘 can be seen as the disjunction of up to
𝑘 ranges from 𝑅1.

Proof of Lemma 4.8. We first prove that, for all 𝑘 ≥ 1,

|𝑃 (H , 𝑅𝑘 ) | ≤ |𝑃 (H , 𝑅1) | |𝑃 (H , 𝑅𝑘−1) |,

noting that when 𝑘 = 1 it holds |𝑃 (H , 𝑅𝑘−1) | = 1. Define the set of
ranges 𝑅𝑣

𝑘
built from the set of nodes 𝑉 \ {𝑣} as

𝑅𝑣
𝑘
= {{ℎ : 𝑓S (ℎ) = 1} : S ⊆ 𝑉 \ {𝑣}, |S| ≤ 𝑘} .

Clearly, it holds 𝑅𝑣
𝑘
⊆ 𝑅𝑘 ,∀𝑣 ∈ 𝑉 . We can write 𝑅𝑘 as the union of

the ranges of individual nodes 𝑣 with the ranges of 𝑅𝑣
𝑘−1:

𝑅𝑘 = {{ℎ : 𝑓S (ℎ) = 1} : S ⊆ 𝑉 , |S| ≤ 𝑘}

=
⋃
𝑣∈𝑉
{{ℎ : 𝑓𝑣 (ℎ) = 1} ∪ {ℎ : 𝑓S (ℎ) = 1} : S ⊆ 𝑉 \ {𝑣}, |S| ≤ 𝑘 − 1}

=
⋃
𝑣∈𝑉

{
{ℎ : 𝑓𝑣 (ℎ) = 1} ∪ 𝑟 : 𝑟 ∈ 𝑅𝑣

𝑘−1
}
.

Therefore, since𝑅𝑣
𝑘−1 ⊆ 𝑅𝑘−1 for all 𝑣 , the set of projection 𝑃 (H , 𝑅𝑘 )

of 𝑅𝑘 on H is contained in the union of all the projections of
𝑃 (H , 𝑅𝑘−1) in conjunction with all projections 𝑥 ∈ 𝑃 (H , 𝑅1):

𝑃 (H , 𝑅𝑘 ) ⊆
⋃

𝑥 ∈𝑃 (H,𝑅1)
{(H ∩ 𝑟 ) ∪ 𝑥 : 𝑟 ∈ 𝑅𝑘−1} .

This implies that the size |𝑃 (H , 𝑅𝑘 ) | of 𝑃 (H , 𝑅𝑘 ) can be bounded
with an union bound by

|𝑃 (H , 𝑅𝑘 ) | ≤
∑

𝑥 ∈𝑃 (H,𝑅1)
|{(H ∩ 𝑟 ) ∪ 𝑥 : 𝑟 ∈ 𝑅𝑘−1}|

≤
∑

𝑥 ∈𝑃 (H,𝑅1)
|{H ∩ 𝑟 : 𝑟 ∈ 𝑅𝑘−1}|

=
∑

𝑥 ∈𝑃 (H,𝑅1)
|𝑃 (H , 𝑅𝑘−1) |

= |𝑃 (H , 𝑅1) | |𝑃 (H , 𝑅𝑘−1) |,
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where the second inequality holds since the number of intersections
of the ranges 𝑅𝑘−1 on the sample H can only decrease when in
conjunctions with a fixed subset 𝑥 ⊆ H .

Iterating this argument 𝑘 times, we obtain

|𝑃 (H , 𝑅𝑘 ) | ≤ |𝑃 (H , 𝑅1) |𝑘 .
To prove that the VC-dimension of the range space 𝑄𝑘 is < 𝑚, it

must hold that

|𝑃 (H , 𝑅1) |𝑘 < 2𝑚 .

Let 𝑑 = 𝑉𝐶 (𝑄1). We apply Sauer-Shelah’s Lemma [63] obtaining

|𝑃 (H , 𝑅1) |𝑘 ≤
(𝑒𝑚
𝑑

)𝑘𝑑
.

We now need to show that, for𝑚 = 2𝑑𝑘 log2 (3𝑘), it holds(𝑒𝑚
𝑑

)𝑘𝑑
< 2𝑚 .

Taking the log2 on both sides, and substituting𝑚 = 2𝑑𝑘 log2 (3𝑘),
we obtain (𝑒𝑚

𝑑

)𝑘𝑑
< 2𝑚

⇐⇒ log2 (2𝑒𝑘 log2 (3𝑘)) < log2 (9𝑘2)
⇐⇒ 2𝑒𝑘 log2 (3𝑘) < 9𝑘2

⇐⇒ log2 (3𝑘) <
9𝑘
2𝑒

,

which holds for all 𝑘 ≥ 1, proving the statement. □

Proof of Lemma 4.9. Denote a setH = {ℎ1, . . . , ℎ𝑚} of size𝑚
that is shattered, such that

|𝑃 (H , 𝑅1) | = 2𝑚 .

If H is shattered, it means that each ℎ𝑖 ∈ H is in the projection
of 2𝑚−1 distinct ranges; there must be at least 2𝑚−1 distinct nodes

𝑢 ∈ 𝑉 with 𝑓𝑢 (ℎ𝑖 ) = 1. This implies that |ℎ𝑖 | ≥ 2𝑚−1. Since |ℎ | ≤
𝑏,∀ℎ ∈ ℌ, it also holds that

2𝑚−1 ≤ 𝑏 ⇐⇒ 𝑚 ≤ log2 (2𝑏).
Therefore, the maximum size of a set that can be shattered is at
most ⌊log2 (2𝑏)⌋, obtaining the statement. □

A.4 Additional Experimental Results

In this Section we report additional results not included in the main
text due to space constraints.

Comparisons betweenHEDGE,CentRA, and VC-dimension bounds.

Figures 8 and 9 compare the bounds to the Supremum Deviation
obtained from the results described in Section 4.3 (based on the
VC-dimension), with results obtained by HEDGE (based on the
union bound) and CentRA (based on Monte Carlo Rademacher
Averages, Section 4.1). To ease the comparison, we denote a mod-
ification of CentRA, that we call CentRA-VC, that instead of
using Rademacher Averages (the results of Section 4.1) uses the
VC-dimension based bounds (from Section 4.3). For these experi-
ments we consider 𝛿 = 0.05, 𝑘 ∈ {10, 50, 100}, and samples of size
𝑚 ∈ {5 ·104, 105, 2 ·105, 5 ·105, 106} (other values of 𝑘 produced anal-
ogous results). The bounds of Section 4.3 are computed bounding
the VC-dimension 𝑉 (𝑄𝑘 ) with Lemma 4.8 and Lemma 4.9, using
𝑏 = 𝐵 (the vertex diameter of the graphs, see Table 1).

From Figure 8, comparing CentRA-VC with HEDGE, we observe
that CentRA-VC yields generally more accurate bounds, up to 4
times smaller for two graphs, confirming that standard techniques
provide too conservative guarantees in such cases.

Figure 9 compares CentRA-VC with CentRA. As we may have
expected, we can clearly conclude that distribution- and data-dependent
bounds are significantly more accurate that VC-dimension based
results in almost all cases, improving up to a factor 3. This confirms
the significance of the contributions at the core of CentRA.
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Figure 5: Bounds to the SD using CentRA (Figures (a)-(b)) and HEDGE (Figures (c)-(d)) as functions of𝑚, for 𝑘 = 50 and 𝑘 = 100.105 106
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Figure 6: Additional Figures comparing the bounds to the SupremumDeviation D(F ,H) obtained by HEDGE (𝑦 axes, based on

the union bound) and CentRA (𝑥 axes, Section 4.2) on samples of size𝑚, for 𝑘 ∈ {25, 50, 75}. Figures (a)-(c): undirected graphs.

Figures (d)-(f): directed graphs. Each point corresponds to a different value of𝑚. The black diagonal line corresponds to 𝑦 = 𝑥 .



Efficient Centrality Maximization with Rademacher Averages KDD ’23, August 6–10, 2023, Long Beach, CA, USA105 106

Number of samples m

10 2

10 1

Bo
un

d 
to

 S
up

re
m

um
 D

ev
ia

tio
n

Bounds to Supremum Deviation vs. m for CentRA (k = 50)

actor-collaboration com-amazon com-dblp com-youtube email-Enron soc-LiveJournal1 soc-pokec wiki-Talk wiki-Vote wiki-topcats

104 105 106

CentRA

105

106

107

HE
DG

E-
P

Number of samples (k=10)

100 101 102 103

CentRA

101

102

103

104

HE
DG

E-
P

Running time (s) (k=10)

104 105 106 107

CentRA

105

106

107

108

HE
DG

E-
P

Number of samples (k=10)

100 101 102 103

CentRA

101

102

103

104

HE
DG

E-
P

Running time (s) (k=10)

104 105 106

CentRA

106

107

108

HE
DG

E-
P

Number of samples (k=100)

100 101 102 103

CentRA

102

103

104

105

HE
DG

E-
P

Running time (s) (k=100)

104 105 106 107

CentRA

106

107

108

109

HE
DG

E-
P

Number of samples (k=100)

101 102 103

CentRA

103

104

105

HE
DG

E-
P

Running time (s) (k=100)

Figure 7: Additional results (analogous to Figure 2) for 𝑘 = 10 and 𝑘 = 100.105 106
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Figure 8: Comparison between the bounds to the Supremum Deviation D(F ,H) obtained by HEDGE (𝑦 axes, based on the

union bound) and CentRA-VC (𝑥 axes, using the VC-dimension bounds of Section 4.3) on samples of size𝑚 ∈ {5 · 104, 105, 2 ·
105, 5 · 105, 106}, for 𝑘 ∈ {10, 50, 100}. Each point corresponds to a different value of𝑚. The black diagonal line is at to 𝑦 = 𝑥 .
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Figure 9: Comparison between the bounds to the Supremum Deviation D(F ,H) obtained by CentRA-VC (𝑦 axes, using the

VC-dimension bounds of Section 4.3) and CentRA (𝑥 axes, using the Rademacher averages bounds of Section 4.1) on samples

of size𝑚 ∈ {5 ·104, 105, 2 ·105, 5 ·105, 106}, for 𝑘 ∈ {10, 50, 100}. Each point corresponds to a different value of𝑚. The black diagonal

line is at to 𝑦 = 𝑥 .
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