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Abstract

Motivation: Tumors are the result of a somatic evolutionary process leading to substantial intra-
tumor heterogeneity. Single-cell and multi-region sequencing enable the detailed characterization of the
clonal architecture of tumors, and have highlighted its extensive diversity across tumors. While several
computational methods have been developed to characterize the clonal composition and the evolutionary
history of tumors, the identification of significantly conserved evolutionary trajectories across tumors is still
a major challenge.
Results: We present a new algorithm, MASTRO, to discover significantly conserved evolutionary
trajectories in cancer. MASTRO discovers all conserved trajectories in a collection of phylogenetic trees
describing the evolution of a cohort of tumors, allowing the discovery of conserved complex relations
between alterations. MASTRO assesses the significance of the trajectories using a conditional statistical
test that captures the coherence in the order in which alterations are observed in different tumors. We
apply MASTRO to data from non-small-cell lung cancer bulk sequencing and to acute myeloid leukemia
data from single-cell panel sequencing, and find significant evolutionary trajectories recapitulating and
extending the results reported in the original studies.
Availability: MASTRO is available at https://github.com/VandinLab/MASTRO
Contact: fabio.vandin@unipd.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Cancer is the result of the accumulation of somatic alterations conferring
selective advantage to cells (Nowell, 1976). The accumulation of such
alterations is an evolutionary process, with subpopulations, or clones, of
tumor cells having distinct genomic alterations that arise as a tumor grows.
Such subpopulations are shaped by the processes of clonal expansion and
selection, which lead to a substantial intra-tumor heterogeneity, arguably
one of the main challenges in cancer treatment.

Recent advances in multi-region sequencing (Gerlinger et al., 2012;
Yates et al., 2015; Turajlic et al., 2018) and single-cell sequencing (Navin,
2014; Lawson et al., 2018) have enabled the collection of data providing
a more precise characterization of the clonal architecture of tumors. Such
data has shown that, while there is an inherent stochastic component in
tumor evolution, there are some features that are shared by the progression
of certain tumors, such as some constraints in the order with which

alterations arise (Ortmann et al., 2015; Kent and Green, 2017; Levine et al.,
2019). The detection of such shared features is crucial for the development
of effective therapeutic interventions (Lipinski et al., 2016; Hosseini
et al., 2019; Diaz-Uriarte and Vasallo, 2019). However, intra-tumor
heterogeneity makes it more challenging to reliably identify shared features
from the complicated genomic landscapes resulting by the presence of
several cell subpopulations with distinct genomic alterations.

A number of computational methods have been recently proposed to
infer the subclonal composition or the evolutionary history of tumors from
tumor sequencing data (El-Kebir et al., 2015; Deshwar et al., 2015; Popic
et al., 2015; Malikic et al., 2015; El-Kebir et al., 2016; Jahn et al., 2016;
Ross and Markowetz, 2016; Zaccaria et al., 2018; Eaton et al., 2018;
Govek et al., 2018; Malikic et al., 2019a,b; Zafar et al., 2019). These
methods typically produce in output a phylogenetic tree (Schwartz and
Schäffer, 2017) that represents (one of ) the inferred order of the observed
genomic alterations. The identification of recurrent trajectories from such
trees is still challenging, due to the inter-tumor heterogeneity of genomic
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Fig. 1. High level description of MASTRO. Leveraging sequencing data from a cohort of patients and phylogenetic inference algorithms, it is possible to infer the tumor trees describing
the clonal evolution of the tumors as the accumulation of different alterations (different alterations correspond to different colored shapes within the nodes of the trees). MASTRO identifies
conserved evolutionary trajectories, describing complex interactions among alterations, that are frequently observed in the tumor trees. MASTRO assesses their statistical significance and
provides sound control of false discoveries. In the example, we show three trajectories (P1 , P2 , P3) observed in at least two tumor trees (shown to the right of the root nodes).

alterations (Marusyk et al., 2020) and the significant differences observed
in the trees describing large cancer cohorts.

In recent years, several methods have been developed to identify
recurrent relations between alterations from cross-sectional multi-region
data or from single-cell sequencing data. REVOLVER (Caravagna et al.,
2018) uses a maximum-likelihood approach and transfer learning to infer
a tumor model that jointly describes all tumors in a cohort. Such model is
used to infer a tree for each individual tumor, describing the temporal order
of clonal alterations in the tumor. However, REVOLVER does not identify
significantly recurring trajectories of alterations, and focuses instead on
clustering the trees describing individual tumors with the goal of detecting
common edges within each cluster. HINTRA (Khakabimamaghani et al.,
2019) extends REVOLVER by allowing for more complex dependencies
in the order of alterations. However, its scalability to the large
number of alterations observed in tumors is limited by an exhaustive
enumeration of an exponential number of (directed two-state perfect)
phylogenies (Christensen et al., 2020). RECAP is an integer programming
approach to identify evolutionary patterns in cancer. RECAP models the
problem as the identification of a consensus tree for a set of tumors and
does not focus on the identification of conserved evolutionary trajectories,
and is thus more suitable to cluster tumors for subtype identification. cd-
CAP (Hodzic et al., 2019) identifies subnetworks of an interaction network
with conserved alteration patterns across tumor samples. However, cd-
CAP does not consider the order of alterations and, thus, does not provide
information on the evolutionary processes common in a tumor type.
GeneAccord (Kuipers et al., 2021) proposes a statistical test to identify
over-represented pairs of co-occurring or clonally exclusive mutations
in subclones. However, it does not focus on conserved evolutionary
trajectories as it considers only pairs of mutations. TreeMHN (Luo et al.,
2021) is a probabilistic framework that infers a mutual hazard network
between alterations, which can be used to predict the most likely linear
pathway of alterations for each tumor. TreeMHN is therefore focused on
linear trajectories and assumes that there is one model which recapitulates
all tumors and cancer subtypes.

CONETT (Hodzic et al., 2020) is an integer programming approach
to identify a consensus phylogenetic tree from the trees describing the
evolution of a number of tumors. While CONETT does report a tree
describing evolutionary patterns in a collection of tumors, its goal is to build
a single consensus phylogenetic tree whose topology describes ancestor-
descendant relationships for the largest possible number of tumors, and it
does not focus on finding all possible conserved evolutionary trajectories
from the data, corresponding for example to different cancer subtypes.
Moreover, in the tree reported by CONETT only paths from the root to
any other event correspond to conserved trajectories, and, thus, CONETT
cannot identify more complex evolutionary trajectories (e.g., describing
two “sibling" clones). In addition, the problem formulation of CONETT
tries to optimize the maximum total node depth (distance from the root),

which favors long alteration trajectories potentially appearing in a small
number of tumors. Finally, the statistical test used by CONETT to
assess the significance of a phylogenetic tree permutes both the order
of alterations and the set of tumors in which each alteration is found. As
a result, the significance of the results may strongly depend on the co-
occurrence of alterations in a given set of tumors, rather than on the order
of the alterations being conserved in the set of samples.

In this article we present MASTRO (MAximal tumor treeS
TRajectOries), a novel computational method for the identification of
significant evolutionary trajectories in cancer (Figure 1). MASTRO takes
in input a set of phylogenetic trees describing the evolution of tumors in a
cohort, and produces in output all trajectories observed in at leastσ tumors,
where σ is a threshold set by the user. MASTRO can report trajectories of
any structure, without restricting their topology (e.g., to linear paths).
Moreover, it does not assume that the alterations in a trajectory are
consecutive in the tumors where they are observed, but only that the order
with which alterations appear in the tumor is the same as described by the
trajectory. While, as we prove, the identification of conserved trajectories
is computationally difficult (i.e., an NP-hard problem, see Section 2),
MASTRO allows for the efficient identification of all conserved trajectories
by formulating the problem as a frequent itemset mining problem (Han
et al., 2007) and leveraging the efficient tools that have been proposed to
solve the problem. MASTRO assesses the significance of each trajectory
by using a conditional statistical test, in which the set of alterations and
the topology of the phylogenetic tree observed in each patient is fixed. In
this way MASTRO assesses the degree with which the order of alterations
in the trajectory is conserved in the tumors, and properly accounts for
cancer subtypes with different complements of alterations. MASTRO
uses resampling-based methods such as the Westfall-Young permutation
procedure (Westfall and Young, 1993) to control false discoveries, which
allows to consider the complex relation between the various trajectories
while properly correcting for multiple hypothesis testing.

We have applied MASTRO to simulated data, showing that it properly
controls for false discoveries while identifying conserved trajectories
even when they appear in a relatively low number of tumors. We also
applied MASTRO to TRACERx non-small-cell lung cancer (NSCLC)
multi-region whole-exome sequencing data (Jamal-Hanjani et al., 2017)
from 99 tumors and to acute myeloid leukemia data from single-
cell panel sequencing of 123 tumors (Morita et al., 2020). MASTRO
identifies a number of significant evolutionary trajectories recapitulating
and extending the results reported in the original studies.

2 Methods
The input to MASTRO is a multiset of n rooted tumor trees D =

{T1, . . . , Tn}, which may be obtained from one of the several
computational methods which infer the evolutionary history of the
corresponding tumors using (multi-region) bulk or single-cell data. Each
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Fig. 2. (a): tumor trees T1 and T2 . (b): the expanded tumor graphs GTi
of Ti (the gray

dashed edge denotes an anti-edge between red and blue alterations). (c): the importance
of identifying induced trajectories: examples of a trajectory observed in both trees (P1)
forming an induced subgraph on the expanded tumor graphs, and a trajectory (P2) which
satisfies all partial orders among alterations but it is not induced in the expanded tumor
graphs, suggesting a spurious clonal exclusivity relation between the grey and orange and
green alterations.

tumor treeT = (VT , ET ) ∈ D comprises a setVT of nodes and a setET
of edges. Each node ofVT corresponds to a clone in the tumor, and contains
(i.e., is labelled with) a (potentially empty) collection of alterations (e.g.,
single-nucleotide variants (SNVs), copy number aberrations (CNA)).
The root of each tree T contains the empty set, and represents normal
(germline) cells, while each non-root node v ∈ VT contains a non-empty
subset of alterations from a setA ofm alterations. The set of alterations in
a node are the alterations that appear in the corresponding clone but not in
its ancestors, and the entire complement of alterations of a clone are given
by the union of the sets of alterations found in the unique path from the
corresponding node to the root. We assume that each alteration appears at
most once in each tree, but note that the input can still encode different
events on the same genomic region (e.g., a SNV and a CNA affecting the
same gene, or the loss of a previously acquired gene’s mutation within a
clone). For any tumor tree, we say that an alteration a, contained in the
node v, is an ancestor of the alteration b, contained in the node w 6= v, if
the node v belongs to the path from w to the root of the tumor tree.

We define a trajectoryP as a tumor treeP = (VP , EP ). A trajectory
P is observed in a tree T if the set of alterations contained inP is a subset
of the alterations VT in T and if all pairwise temporal orderings of the
alterations in P are satisfied in T . Formally, we say that the trajectory P
is observed in a tree T if the following conditions hold: 1) for each pair
a, b of alterations of P such that a is an ancestor of b in P , then a is an
ancestor of b in T ; 2) for all pairs a, b of alterations ofP in the same node
in P , they belong to the same node in T (their ordering is not known);
3) for all pairs a, b of alterations of P in in different branches of P , they
belong to different branches of T (they are clonally exclusive).

An equivalent representation is given by the following. We define the
expanded tumor graph GT = (V GT , E

G
T ) of a tumor tree T as a directed

graph such that: 1) for every alteration a ofA contained in a node v ∈ VT
there is a node va ∈ V GT containing only the alteration a; 2) for each
pair a, b of alterations of A, there is a directed edge (va, vb) ∈ EGT if
and only if a is an ancestor of b in T ; 3) for each pair a, b of alterations
belonging the the same node in T , there is an (undirected) special edge
(or anti-edge) (va, vb, ?) ∈ EGT , where the edge label ? denotes that the
ordering between a and b is unknown; 4) V GT contains an empty node vr
(the root of T ) andEGT contains a directed edge from vr to all other nodes
of G. We show examples of tumor trees and their expanded tumor graphs
in Figure 2 (a)-(b).

Given a tumor tree T and its expanded tumor graph GT , it is easy
to observe that a trajectory P is observed in T if and only if GP is an
induced subgraph of GT . Our notion of tumor graph is similar to the one
proposed by Hodzic et al. (2020), but with crucial differences. First, in our
formulation the trajectory P must correspond to an induced subgraph of
T , which means that all pairwise orderings of alterations are preserved,
rather than requiring only a partial order (as in Hodzic et al. (2020)). While
our method can be adapted to trajectories composed by partial orderings
among alterations, our rationale to enforce this stricter setting is based on

the fact that, by definition, a partial order does not specify all relations
among alterations, suggesting trajectories that may not be conserved on
the underlying tumor trees. For example, consider the trajectories shown
in Figure 2 (c). Without the requirement on induced subgraphs, trajectory
P2 is considered conserved in both tumor trees T1 and T2, since all partial
orders involving the red alteration are satisfied. However, such trajectory
describes the grey alteration as belonging to a clone that does not contain
either the orange nor the green alteration, which is not supported by either
tumor tree T1, T2. On the contrary, trajectory P1 describes the clonal
exclusivity of the orange and green alterations without any ambiguity.
Moreover, our formulation strictly differentiates between directed edges,
in which a temporal ordering among alterations is known, and anti-edges:
we do not allow trajectories with a directed edge between two alterations to
be observed in a tree that does not specify their ordering, thus focusing only
on temporal relationships supported by the tumor trees (i.e., the data). (In
the example of Figure 2, a trajectory with a directed edge, in any direction,
between the red and blue alterations cannot be observed in T1.) We will
show in our experimental evaluation that these differences lead to sensibly
different results in both simulated and cancer data.

We denote with P ∈ T the fact that the trajectory P is observed in
the tumor tree T . We define the support sP of P in the dataset D =

{T1, . . . , Tn} as the number of trees ofD in which P is observed: sP =∑n
i=1 1 [P ∈ Ti], where 1 [·] is the indicator function (1 [·] = 1 if its

argument is true, and 1 [·] = 0 otherwise). Furthermore, we say that a
trajectory P is maximal if adding any alteration (in any node of P or in a
new node) not already contained inP decreases its support sP . Note that a
non-maximal trajectory describes only part of the conserved evolutionary
trajectory in a subset of the trees in D.

Our goal is to discover frequent maximal trajectories from the tumor
trees, as we formalize with the following computational problem.

Definition 1. (Frequent Maximal Trajectories (FMT) problem)
Instance: A multiset {T1, . . . , Tn} of n ≥ 1 tumor trees and a support
threshold σ ∈ [1, n].
Solution: All maximal trajectories observed in at least σ tumor trees.

The parameter σ provides a way to control the (minimum) number
of tumors in which a maximal trajectory is observed. For example, by
setting σ = 2 (as done in all our experiments), we consider all trajectories
appearing in at least two tumors.

The FMT problem is closely related to the problem of enumerating
maximal cliques from an undirected graph and to the problem of finding
common induced subgraphs from a collection of graphs (Section 5.1). We
prove that the FMT problem is NP-Hard even if we restrict to the case
σ = n (the proof is in Supplementary Material Section 5.1).

Theorem 1. The FMT problem with σ = n is NP-Hard.

Given this negative result, it is unlikely that the FMT problem can
be solved efficiently in the worst-case. However, we develop a practical
solution to this problem by reducing it to a variant of frequent itemset
mining, a well studied problem in data mining (Han et al., 2007). We
show that, by doing so, frequent maximal trajectories can be enumerated
quickly in practice, exploiting already available efficient algorithms for
frequent itemsets mining.

2.1 MASTRO: Finding Frequent Maximal Trajectories

In this Section we describe MASTRO, our algorithm to discover frequent
maximal trajectories from tumor trees. We first introduce the frequent
itemset mining problem, and then describe how MASTRO solves the FMT
problem by using frequent itemset mining.

Let I be universe of items, and let a transaction t be a subset of I. A
dataset S is a multiset of n transactions S = {t1, . . . , tn}. An itemset
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A is a subset of I, and its support set S(A) is the set of transactions
containing A: S(A) = {ti : A ⊆ ti, i ∈ [1, n]}. The support
sA of A is defined as the cardinality of S(A): sA = |S(A)|. The
problem of frequent itemset mining is to compute the set of itemsets
with support ≥ σ, that is to compute the set FI(I,S, σ) defined as
FI(I,S, σ) = {A ⊆ I : sA ≥ σ}. Note that enumerating all itemsets
to find the frequent ones is not feasible (their number is2|I|). However, this
set can often be computed efficiently by leveraging the anti-monotonicity
of the support, a key property of itemsets: the support sA ofA is an upper
bound to the support of all itemsets containing A. This allows to prune
large portions of the search space that is explored to find frequent itemsets.

The key idea behind our algorithm MASTRO is to discover frequent
trajectories from frequent sets of edges. In fact, we now show that the
set of frequent maximal trajectories in a multiset D = {T1, . . . , Tn} of
tumor trees can be obtained efficiently fromFI(I,S, σ), for appropriately
definedI andS. For a tumor treeT ∈ D, define the set of different-branch
edgesE′GT as undirected labelled edges (va, vb, /) between nodes va and
vb, where the symbol / denotes the label of different-branch edges, if
alterations a and b belong to different branches of T . Equivalently, such
edges do not belong to EGT : E′GT =

{
(va, vb, /) : a 6= b, (va, vb) /∈

EGT , (vb, va) /∈ E
G
T , (va, vb, ?) /∈ E

G
T
}

. We define the complete tumor
graph GcT = (V GT , E

Gc

T ), where EG
c

T = EGT ∪ E
′G
T . We may observe

that the complete tumor graphGcT is a complete graph composed of three
types of edges: directed edges between alterations with a known order, and
labelled undirected edges between alterations on different branches (/) or
on the same node (?). We define I as the union of the sets of edges of
all complete tumor graphs: I =

⋃
T ∈D E

Gc

T . We note that the edges of
each complete tumor graph ofD is a subset of I; therefore, we defineS =

{EGc

T : T ∈ D}, with the i-th transaction ti equal to the edges of the i-th
complete tumor graph ti = EG

c

Ti . For an itemsetA ⊆ I, denote by |A| the
number of edges inA; then, define the set of nodes V (A) that are adjacent
to at least one edge of A: V (A) =

{
v : ∃(v, w) ∈ A ∨ ∃(w, v) ∈ A

∨∃(v, w, `) ∈ A, ` ∈ {/, ?}
}
. We define the set of frequent trajectories

FT (D, σ) as the set of frequent itemsets in S such that |A| =
(|V (A)|

2

)
:

FT (D, σ) =
{
A ∈ FI(I,S, σ) : |A| =

(|V (A)|
2

)}
. The reason for

requiring |A| =
(|V (A)|

2

)
is that an itemset A ⊆ I, observed in at

least σ ≥ 1 complete tumor graphs, represents the set of edges of a
complete subgraph with node set V (A) if and only if |A| =

(|V (A)|
2

)
,

since it is a subgraph of at least one tumor graph (with unique alterations)
and there is an edge (either directed or undirected) between every pair of
nodes ofV (A). In accordance with the definition of an observed trajectory,
A ⊆ EGc

T andA ∈ FT (D, σ) imply that (V (A), A∩EGT ) is an induced
subgraph of GT , and viceversa; therefore, there is a unique mapping
between an itemset ∈ FT (D, σ) and a frequent trajectory, and that any
itemset /∈ FT (D, σ) can be safely discarded.

We now describe our algorithm MASTRO, which is based on the
relation between frequent trajectories and frequent itemsets described
above. MASTRO takes in input a multiset D = {T1, . . . , Tn} of tumor
trees and a minimum support threshold σ ∈ [1, n], and it builds the
corresponding transactional datasetS on a universe of itemsI as described
above. It then uses a known algorithm for frequent itemset mining to
extract all frequent itemsets FI(I,S, σ), and discards itemsets A such
that |A| 6=

(k
2

)
for everyk, obtaining the setFT (D, σ). It then finds the set

maximal frequent trajectories MFT (D, σ) from FT (D, σ) as follows.
For each element A of FT (D, σ), if there is no other frequent trajectory
A′ ∈ FT (D, σ) with the same support set S(A) = S(A′) and such
that A′ ⊇ A, then A is the complete tumor graph of a frequent maximal
trajectory (otherwise, we could add additional nodes, and corresponding
edges, in A without reducing its support, in contrast with the definition
of maximal trajectories). We note that this filtering is done efficiently
once FT (D, σ) has been computed, and that an element ofMFT (D, σ)

always contains the empty root node (and its corresponding edges), since
it is common to any subset of the set of complete tumor graphs and, thus,
it can be always included without reducing the support of any trajectory.
MASTRO then assesses the significance of the trajectories inMFT (D, σ)
as described in Section 2.2. We implemented MASTRO1 in Python, using
the implementation of LCM (Uno et al., 2004) (version 5.3)2 to extract
frequent itemsets.

2.2 Significance of MASTRO’s trajectories

To assess the significance of the support of a given trajectory P , we
consider how likely it is to observe P in a tumor tree T under the
assumption that alterations in T are randomly assigned to its nodes, i.e.,
assuming that alterations in the tumor are the same but arise independently
of any temporal order. Therefore, we design a statistical test that conditions
on the observed set of alterations of each patient, so to directly evaluate
the role of ordering among alterations. To do so, we quantify the expected
number of trees in which we observe P , and how likely it is to observe
a frequent trajectory just by chance. We compute the significance of
trajectory P by considering the probability of observing P in each tree
under the assumption that the tumor trees have been generated from three
different null distributions. In particular, for each tree T we consider the
following three null models: i) each alteration ofT is assigned to one of the
nodes of T chosen independently and uniformly at random; ii) alterations
of T are randomly permuted over the nodes of T , preserving the number
of alterations in each node; iii) we sample uniformly at random a topology
from D and assign the alterations of T independently and uniformly at
random to such topology, thus relaxing the conditioning on the observed
topology of T . We compute such probabilities for general trajectories,
and show that they depend on the topologies of both the trajectory and
the tumor trees; in particular, we obtain a dependence on the number of
distinct occurrences of the induced subgraph GP in GT and the number
of automorphisms of GP . Due to space constraints, we defer the details
of such computations to the Supplementary Material (Section 5.2).

We now describe how to use the probabilities described above (i.e.,
computed according to one of the null models above) to assess the
statistical significance of a trajectory. Let pi be the probability that a
trajectory P is observed in the i-th tumor tree Ti, with pi = 0 if the
set of alterations AP contained in nodes of P is not a subset of AT .
Let X1, . . . , Xn be independent Bernoulli random variables such that
Pr(Xi = 1) = E[Xi] = pi, and Pr(Xi = 0) = 1 − pi, and
define the Poisson Binomial random variable X as the sum of all Xi:
X =

∑n
i=1Xi. The expected value E[X] of X is the expected support

E[X] =
∑n
i=1 pi of the trajectory P under the null hypothesis. Let

IP ⊆ [1, n] be the set of indices such that i ∈ IP if and only if pi > 0.
The probability Pr (X ≥ sP ) of observing P with a support equal or
higher than sP , under the null hypothesis, is equal to the upper tail of a
Poisson Binomial distribution:

Pr (X ≥ sP ) =
|IP |∑
k=sP

∑
J⊆IP ,|J|=k

∏
i∈J

pi
∏
j /∈J

(1− pj).

The p-value defined by the formula above can be efficiently evaluated
using a simple dynamic programming algorithm (Barlow and Heidtmann,
1984) (Supplementary Material Section 5.2.5).

MASTRO leverages resampling-based methods to control false
discoveries, which take into account the correlation structure of the
trajectories, achieving higher statistical power than standard methods
(e.g., Bonferroni (1936) or Benjamini and Hochberg (1995) corrections).
To control the the Family-Wise Error Rate (FWER) (Bonferroni, 1936),

1 https://github.com/VandinLab/MASTRO
2 http://research.nii.ac.jp/~uno/codes.htm
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that is the probability of reporting one or more false discoveries in
output, we make use of the Westfall-Young (WY) permutation testing
procedure (Westfall and Young, 1993). We also leverage a resampling-
based procedure (Storey and Tibshirani, 2003) to estimate the False
Discovery Rate (FDR) (Benjamini and Hochberg, 1995), the expected
fraction of false discoveries that are reported as significant. We provide all
details on the procedures used by MASTRO to control false discoveries in
the Supplementary Material (Section 5.3).

3 Experiments
This section describes our experimental evaluation of MASTRO using
simulated data (Section 3.1) and cancer data (Section 3.2) from 123 acute
myeloid leukemia (AML) patients and from 99 non-small-cell lung cancer
(NSCLC) patients.

Cancer data. The AML data includes 543 somatic mutations in 31
cancer-associated genes obtained by single-cell sequencing data from 123
patients; in accordance with previous works, we grouped mutations at the
gene level, and analyzed phylogenetic trees generated by SCITE (Jahn
et al., 2016). The NSCLC data is from multi-region whole-genome
sequencing data first described in Jamal-Hanjani et al. (2017). We obtained
the data from Caravagna et al. (2018), which reports SNVs and focal copy
number alterations in 79 putative driver genes, and using the phylogenetic
trees reconstructed by CITUP (Malikic et al., 2015). We grouped SNV and
gene deletions, but kept gene amplification as a distinct alteration type, in
accordance with the analysis performed by CONETT (Hodzic et al., 2020).

3.1 Results on simulated data

In the first simulation, we evaluate the statistical guarantees of MASTRO
on false discoveries. We measured the empirical FWER incurred by
MASTRO as the fraction of datasets, resampled under the null hypothesis
(i.e., the order of all alterations is random, thus there is no significant
trajectory in the trees), from which MASTRO reports at least one trajectory
as significant (more details are in Supplementary Material Section 6.2.1).
As expected, MASTRO reports significant trajectories in a fraction ≤ α

of the trials, thus correctly controlling the FWER below α. Furthermore,
the estimated FWER is always very close to its nominal upper bound,
showing that, by using the WY method, MASTRO does not overcorrect for
multiple hypothesis testing but rather exploits existing correlations among
trajectories. Moreover, using only 103 resampled datasets is typically
sufficient to obtain accurate estimates. We performed an analogous
evaluation of CONETT, in order to elucidate possible differences with
our statistical test. We ran CONETT on the same resampled datasets,
using analogous support threshold parameters of MASTRO (all details
in Supplementary Material Section 6.2.1). Interestingly, we observed
(Figure S3) that in all configurations CONETT reports large trees with
low p-values (e.g., the majority below 10−2), and that the sizes and p-
values computed from the original (non-resampled) data are very similar
to the ones obtained in our resampled datasets. These results remark the
differences in the statistical tests employed by the two methods: CONETT
shuffles alterations across the patients, assigning higher importance to
their co-occurence in a set of patients rather than to their ordering. At the
same time, CONETT does not distinguish anti-edges with directed edges,
potentially inferring long trajectories not explicitly observed in the data.

In the second simulation we evaluate the capability of MASTRO
in finding significant trajectories implanted in the data, representing a
known ground truth. We defer all details to the Supplementary Material
(Section 6.2.2), in which we show that MASTRO is very effective and
sensible in recalling the ground truth, even in situations in which the
implanted trajectory is affected by noise or imperfect inference of the
ordering of alterations.

3.2 Results on cancer data

In this section we present the results of MASTRO on cancer data. For all
cases, we find all frequent maximal trajectories with MASTRO observed in
at leastσ = 2 tumor trees, and evaluate the empirical estimate of theFDR
of the top-k most significant results for different values of k (Figure S7).
We discard trajectories with only 1 alteration, since their p-value is 1

(there is no specified ordering between any pair of alterations). MASTRO
is always very fast: it finds all trajectories and computes all p-values in at
most 5 seconds for the first two statistical tests, and 30 seconds for the third
test. MASTRO corrects for false discoveries using 104 resampled datasets
in less than 2 hours (using multithreading over 64 cores). We also run
CONETT on the same datasets, using analogous parameters to compare it
with our method: we use the same minimum support thresholds (parameter
e for inserting alterations in the tree and t to select its root) of MASTRO,
equal toσ = 2, and use default values for other parameters. We only report
the edges of the optimal tree found by CONETT in at least σ tumor trees,
using the settings described above without imposing additional constraints
on the root (e.g., by specifying additional seeds). CONETT needs 15

seconds to find the optimal conserved tree and estimate its p-value on the
AML trees and ≈ 4.5 hours on the NSCLC trees. We describe below
the results obtained when the significance is assessed using the first null
model described in Section 2.2. A detailed description of the analyses and
additional results are in the Supplementary Material (Section 6.3).

Analysis of AML data. On AML data MASTRO finds 138 maximal
trajectories with≥ 2 alterations observed in at least 2 tumor trees, with an
estimatedFDR = 0.2 for the 40most significant trajectories (Figure S7).
Figure 3 shows a summary of the40most significant trajectories (Figure S5
shows all trajectories) into 4 types observed in different subsets of the
patients. An interesting observation is that the most frequent trajectories
are not necessarily the most significant. In fact, the set of 40 most frequent
trajectories only contains 23 of the most significant trajectories.

The first two summaries (Figure 3 (a) and (b)) are the two major tumor
progression patterns found in AML patients (Schuringa and Bonifer,
2020), as observed independently by Morita et al. (2020) and Miles
et al. (2020): a mutation in an epigenetic factor (DNMT3A, IDH1, or
IDH2) precedes mutations in nucleophosmin molecular pathway (NPM1),
which are then followed by alterations of signalling genes (KRAS, NRAS,
FLT3). MASTRO observes the latter to be almost always found in different
branches of the trajectory, confirming their known clonal exclusivity in
AML tumors. The third trajectory (Figure 3 (c)) describes an alteration
of TET2 as the initiating event, in accordance with a progression pattern
described by Miles et al. (2020) and the observation that TET2 can occur
as both an initiating and a secondary event (Schuringa and Bonifer, 2020).

In addition to the known progression patterns above, MASTRO
highlights a fourth trajectory (Figure 3 (d)), characterized by a mutation
in NPM1, and then by mutations in RAS, FLT3, and PTPN11, which
are mutually exclusive at the clonal level. Differently from the first two
trajectory types, we observed that in almost all patients in which such
progression pattern is observed, the mutation in NPM1 is not preceded
by any other mutation (i.e., NPM1 is the first alteration following the
root/germline cells). While NPM1 is a relevant gene for AML (Juliusson
et al., 2020; Falini et al., 2020; Zarka et al., 2020), this alternative
progression pattern was not previously reported, and may describe a
different modality of evolution characterizing a subset of patients not hit
by an early alteration of an epigenetic factor.

Overall, the significant trajectories found by MASTRO are complex
trajectories with multiple branches, denoting both clonally exclusive and
co-occuring alterations. The sets of exclusive alterations are in accordance
with the pairs identified by GeneAccord (Kuipers et al., 2021) (for
example, RAS with FLT3, and with PTPN11); however, MASTRO does
not restrict to the exclusivity of alterations pairs, but extends to sets
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Fig. 3. Summary of the 40 most significant results of MASTRO on AML data (FDR ≈ 0.2) into 4 types observed in different subsets of patients. Each figure shows the composition of
different trajectories found by MASTRO, highlighted with boxes of different colors. For each trajectory, we report its rank R (by increasing p-value), its support s, and its p-value p from
the statistical test described in Supplementary Material Section 5.2.1.

Fig. 4. Summary of the 15 most significant results of MASTRO on NSCLC data (FDR≈
0.3). Annotations and color coding as in Figure 3.

of alterations of higher cardinality (for example, the green trajectory of
Figure 3(d) describes 3 exclusive subclonal alterations).

We then compared the output of MASTRO with the optimal consensus
tree found by CONETT from the AML data (Figure S8). CONETT optimal
tree is rooted at TET2 and it contains some of the paths described by the
third summary found by MASTRO (and of other trajectories not shown
in the summary, see Figure S5). CONETT identifies a tree similar to only
one of the progression trajectories found by MASTRO, while including
linear trajectories observed in a smaller number of tumor trees: the most
frequent one is observed 4 times, while all others have support 3 and 2.
Moreover, 7 tumor trees support TET2→NPM1 while 3 support the longer
TET2→DNMT3A→NPM1; MASTRO finds both, while CONETT only
identifies the latter. This highlights the fact that CONETT is specifically
designed to find a consensus tree composed of a collection of linear
trajectories that maximize the total path length. Instead, MASTRO
simultaneously identifies multiple significantly conserved trajectories
observed in different subsets of the patients, providing a more complete
description of the conserved evolutionary trajectories.

Analysis of NSCLC data. In NSCLC, the 15 most significant trajectories
from MASTRO (Figure S10) have an estimated FDR ≈ 0.3. Also in this
case, we observed that the set of 15most frequent trajectories contains only
6 of the 15 most significant trajectories. The trajectories are summarized
in Figure 4. All trajectories are topologically simple, with 2 or 3 nodes in
total and with multiple alterations within each node. This is not surprising,
given the topologies of the input trees, which contain few nodes with
many alterations with unknown ordering (Figure S1). As a consequence,
the data do not contain a signal reliably supporting complex or long
trajectories, since there are very few known orderings between alterations.
This highlights the fact that bulk sequencing, even if from multi-regional

samples, may present intrinsic difficulties in reconstructing the temporal
ordering of clonal alterations, compared to the much more informative
phylogenetic trees that can be obtained from single-cell sequencing as
shown by data from AML patients.

However, in some cases MASTRO is still capable of identifying
interesting interaction patterns between alterations. In particular, the two
summary trajectories in Figure 4(a) and (b) show that MASTRO identifies
groups of alterations, with several genes (e.g., TP53, PIK3CA, CDKN2A,
FGFR1, PTEN, CCND1, SOX2) known to be important in NSCLC (Jamal-
Hanjani et al., 2017; Jeong et al., 2020), that are more frequently clonal,
i.e., they occur more frequently together and in the highest nodes of the tree
than expected by chance, in addition to trajectories involving alterations
that are more subclonal than expected.

We compared the results of MASTRO with the optimal conserved tree
computed by CONETT (Figure S12). CONETT tree is rooted at TP53, and
contains several paths connecting various alterations. Almost all alterations
belonging to the trajectories reported as significant by MASTRO (Figure 4)
belong to the CONETT tree. However, we observe that the most frequent
edges that are reported by CONETT are not actually conserved in the
underlying tumor trees: this is because CONETT does not differentiate
anti-edges (alterations without an ordering, in the same node of the tumor
tree) and directed edges (alteration pairs with a known order, in different
nodes of the tumor tree). For example, the most frequent edge reported by
CONETT is TP53→SOX2(A) (where SOX2(A) denotes the amplification
of SOX2), with 12 occurrences. We note that, in all the 12 tumor trees
containing both TP53 and SOX2(A), such alterations are always found in
the same node of the tree, therefore there is no evidence of the ordering
of such alterations in the tumor trees. This uncertainty in the ordering is
supported by the Cancer Cell Fraction (CCF) values of the alterations,
which are very close to 1 (and almost always 1) for both alterations in all
12 tumor trees. For other pairs of alterations (Table S1), the alterations
involved in the most frequent edges rarely are present in different nodes
(e.g., in 1 case over 6 tumor trees), with limited evidence supporting any
ordering.

4 Conclusion
In this paper we introduced MASTRO a novel algorithm for the discovery
of significant evolutionary trajectories in a set of phylogenetic tumor
trees. MASTRO does not assume that the alterations in a trajectory arise
consecutively in the tumors where they are observed, but only that the
order of alterations is conserved. Our experimental analysis on simulated
data shows that MASTRO properly controls for false discoveries while
identifying conserved trajectories even of relatively low support. We
showed MASTRO identifies significantly conserved trajectories in both
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multi-region whole-exome sequencing data from TRACERx non-small-
cell lung cancer study (Jamal-Hanjani et al., 2017) and in single-cell panel
sequencing data from acute myeloid leukemia (Morita et al., 2020). In both
cases MASTRO identified a number of significant evolutionary trajectories
recapitulating and extending the results reported in the original studies.
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5 Supplementary Material

5.1 Proofs

In this section we prove Theorem 1, that implies the NP-Hardness of the
MFT problem. We restrict to the particular case σ = n by defining the
following simpler problem.

Definition 2. (Maximal Trajectories (MT) problem)
Instance: A multiset of k ≥ 1 tumor trees {T1, . . . , Tk}.
Solution: All maximal trajectories observed in all tumor trees.

Theorem 2. The MT problem is NP-Hard.

Proof. Our proof is based on a reduction of the MT problem to the
problem of computing all maximal cliques from an undirected graph (the
all-clique problem), which is NP-Hard (Koch, 2001); we define it as
follows.

Definition 3. (All-clique problem, (Koch, 2001))
Instance: An undirected graph G = (V,E).
Solution: All maximal complete subgraphs of G.

Given an undirected graphG = (V,E)withV = {1, . . . , n}, denote
its complement Gc = (V,Ec) with edges (v, w) ∈ Ec if and only if
(v, w) /∈ E. LetEc = {e1, . . . , em}with ei = (ai, bi) andm = |Ec|;
define the set of m+ 1 tumor trees {T0, T1, . . . , Tm} such that:

• for each i, Ti = (V ∪ {0}, Ei);
• E0 = {(0, j), j ∈ V };
• Ei = E0 \ {(0, bi)} ∪ {ei}.

We now prove that a maximal trajectory P = (VP , EP ) is observed in
the m + 1 trees T0, T1, . . . , Tm if and only if the subgraph induced by
the set of nodes VP \ {0} is a maximal clique of G.

Consider a clique M = {i1, i2, . . . , ik} ⊆ V of G =

(V,E), and consider the maximal trajectory TM with edges
{(0, i1), (0, i2), . . . , (0, ik)}. Note that TM is observed in T0. Now
consider Tj with j > 0 and a vertex i` ∈ M . Either (0, i`) is observed
in Tj , or there is vertex v such that (0, v) and (v, i`) are observed in Tj .
Note that by construction (v, i`) 6∈ E, that is, (v, i`) is not an edge of
G, therefore v 6∈ M , which implies that TM is observed in Tj . Since
TM is observed in T0 and in Tj for all j > 0, TM is observed in all the
m+ 1 trees T0, T1, . . . , Tm. Note that the maximality of M implies the
maximality of TM .

Now consider a trajectoryP = (VP , EP ) observed in them+1 trees
T0, T1, . . . , Tm. Note that since P is observed in T0, EP = {(0, i) :

i ∈ VP}. Since P is observed in Tj for all j > 0, there is no pair i, j ∈
VP \ {0} such that (i, j) ∈ Ec, that is, there is no pair i, j ∈ VP \ {0}
such that (i, j) 6∈ E. Therefore, the set VP \ {0} is a clique of G. Note
that the maximality of P implies the maximality of VP \ {0}.

5.2 Details on MASTRO’s statistical tests

In this Section we give the details for the three statistical tests used by
MASTRO to assess the statistical significance of the trajectories.

Let k = |V GP | − 1 be the number of alterations in GP , and t =

|V GT |−1 be the number of alterations inGT (both are equal to the number
of nodes in the expanded tumor graph−1, ignoring the root empty node).
Recall that a subgraph H = (VH , EH) is isomorphic to GP if there
exists a bijection f : VH → V GP such that (v, w) ∈ EH if and only if
(f(v), f(w)) ∈ EGP . In this case, we denote H ' GP . Let the count
c(GP , GT ) of GP in GT be the number of subsets S of size |V GP | of

the vertex set V GT ofGT whose induced subgraphGT [S] is isomorphic3

to GP :

c(GP , GT ) =
∣∣∣{S ⊆ V GT , GP ' GT [S]}∣∣∣ .

Additionally, define the number of automorphism a(GP ) of GP as the
number of permutations π of the vertex set V GP , such that every edge
(a, b) belongs to EGP if and only if (π(a), π(b)) ∈ EGP ; in other words,
a permutation σ defines a graph isomorphism fromGP to itself. We have

a(GP ) =
∣∣∣{π : (a, b) ∈ EGP ⇐⇒ (π(a), π(b)) ∈ EGP

}∣∣∣ .
5.2.1 Independent assignment model
We now formally describe the first null model to assess the significance of
frequent trajectories. Let AT be the set of alterations of A contained in
the nodes of T . We assume that alterationsAT are placed independently
and uniformly at random in the nodes of T (ignoring the root of T ). Note
that, in this setting, some nodes of T may be empty: we take into account
the possibility that some of the orderings among alterations are not always
preserved. More formally, define the set W of all trees isomorphic to T
such that, for each graph T = (V,E) ∈ W , it holds that each node
v ∈ V (with v different from the root of T ) contains a disjoint subset
of AT , and whose union corresponds to AT : it holds {a ∈ v} ∩ {a ∈
w} = ∅, ∀v, w ∈ V, v 6= w, and

⋃
v∈V {a ∈ v} = AT . We define the

probability distribution µIT as the uniform distribution U(W ) on the set
W . The probability thatP ∈ T , assuming that T is a sample from µIT , is

Pr
T ∼µI

T

(P ∈ T ) =
c(GP , GT )a(GP )

tk
.

Note that the computation of the probability above requires to
compute the number c(GP , GT ) of subgraph isomorphisms, and the
number of automorphisms a(GP ). The subgraph isomorphism problem
is computationally difficult in the worst case, and in MASTRO we use
the efficient implementation of the vf2 algorithm (Cordella et al., 2001)
provided by networkx4 to compute c(GP , GT ). The computation of
a(GP ) is done by exhaustive enumeration of the permutations of the
vertices of GP , which has been efficient in all our experiments.

5.2.2 Probabilities of simple trajectories
While the computations introduced in the previous section hold for general
trajectories, we describe simplified expressions for some simpler cases.

Let a trajectory P composed of edges EP = {(r, a), (a, b)}, where
r is the root node and a, b ∈ A. The expanded tumor graph GP of P
contains the edges EGP = {(r, a), (r, b), (a, b)}. It is simple to verify
that the number of automorphisms a(GP ) of P is 1, since there is only
one permutation of the vertex labels that retains the same set of edges (the
identity). Furthermore, we observe that, for any tumor graph GT with
EGT ⊇ EGP , the number of isomorphic induced subgraphs c(GP , GT )
is simply given by the number of edges (v, w) ∈ EGP such that r /∈ v,
which is |EGT | − t, where t = |V GT | − 1. Therefore, the probability of
trajectories with the same topology of P is (|EGT | − t)/t

2.
We now consider a trajectory P composed of edges EP =

{(r, a), (r, b)}; in this example, alterations a and b belong to different
lineages and therefore show a potential pattern of clonal exclusivity. For
this case, we observe that a(GP ) = 2, since the permutation σ(r) = r,
σ(a) = b, and σ(b) = a yields an isomorphic graph (in addition to the

3 Note that labelled undirected edges in both EGT or EGP can be replaced
by two directed edges of opposite direction when checking for subgraph
isomorphism.
4 https://networkx.org/
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identity). The number of isomorphic induced subgraphs c(GP , GT ) in
GT , for any tree T , is equal to the number of (non-ordered) pairs (v, w)
such that v, w ∈ V GT and v is not an ancestor of w, and viceversa, a
quantity very easy to compute.

5.2.3 Permutation assignment
We now introduce the second null model used by MASTRO. For this
statistical test, we randomly permute alterations, keeping the topology of
the tree and the number of alterations in each node fixed. First, we define
the set W as in Section 5.2.1, but we additionally require that the number
of alterations in a node of T ∈ W is equal to the number of alterations
in the same node of T . Equivalently, the expanded tumor graph GT of
T has the same topology of the expanded tumor graph GT of T , but the
alterations are randomly permuted. We define the probability distribution
µP as the uniform distribution U(W ) on the set W . We obtain that the
probability of observingP in T , assuming that T is a sample from µP , is

Pr
T ∼µP

(P ∈ T ) =
c(GP , GT )a(GP )(t− k)!

t!
.

5.2.4 Independent assignment in random topology
In this third test, we assume that the topology of each tree T is not
fixed, but sampled uniformly at random from the set of topologies of
all tumor trees. This allows to take into account alternative topologies
that are in accordance with the ones observed in the cohort. For a
given topology, alterations are uniformly and independently assigned as
described in Section 5.2.1. Combining these two sampling steps, we denote
the probability distribution µT . It follows that the probability of observing
a trajectory P within a tree T is

Pr
T ∼µT

(P ∈ T ) =
1

n

n∑
i=1

c(GP , GTi )a(GP )(∣∣∣V GTi ∣∣∣− 1
)k .

5.2.5 Computation of the p-value
In this section we give the details on how to compute the p-value defined
in Section 2.2. First, note that by defining the quantities Y jk as the

probabilities Y jk = Pr
(∑j

i=1Xi = k
)

, the p-value can be formulated

as the sum
∑n
k=sP

Y nk . Therefore, the key idea to compute Y nk for all
values of k is to use a dynamic programming approach, exploiting the
property

Y jk = Y j−1
k (1− pj) + Y j−1

k−1 pj ,

and by observing that Y 1
1 = p1, that Y j0 =

∏j
i=1(1− pi), and that for

computing Y jk for all values of k ∈ [0, j] and for a given j ∈ [2, n], it is
only needed to keep in memory the values of Y j−1

k′ for all k′ ∈ [0, j−1].

5.3 Details on Resampling Procedures to control False
Discoveries

In this section we present the procedures we employ in MASTRO
to provide guarantees on false discoveries by correcting for multiple
hypothesis testing. In Section 5.3.1 we describe the Westfall-Young (WY)
permutation testing procedure (Westfall and Young, 1993), which allows
to control the Family-Wise Error Rate (FWER) (Bonferroni, 1936), that
is the probability of reporting one or more false discoveries in output.
In Section 5.3.2 we describe a resampling-based procedure to estimate
the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995), the
expected fraction of false discoveries that are reported as significant.

LetDi be the i-th resampled dataset according to one of the statistical
null distributions introduced in Section 2.2. In particular, considering
the null model described in Section 5.2.1, each Di = {T i1 , . . . , T in}

is obtained by sampling each T ij from µIT , i.e., assigning the alterations
observed in Tj to the nodes of Tj independently and uniformly at random.
Define piP as the p-value of the trajectory P computed from Di, and pP
as the p-value from D.

5.3.1 Bounding the FWER
Let FWER(δ) be the FWER when using the significance threshold δ to
report significant results (i.e., the set of trajectories with p-value ≤ δ).
FWER(δ) can be empirically estimated by ˜FWER(δ) as the fraction
of minimum p-values piP that are ≤ δ:

˜FWER(δ) =
1

m

m∑
i=1

1

[
min

P∈MFT (D,σ)
{piP} ≤ δ

]
.

To upper bound ˜FWER(δ) belowαwhile maximizing the set of reported
results, the WY permutation testing procedure identifies the maximum δ

such that ˜FWER(δ) ≤ α (Westfall and Young, 1993), that is to identify
δ̂ = max{δ : ˜FWER(δ) ≤ α}. The WY permutation testing method
is often very powerful (and asymptotically optimal (Meinshausen et al.,
2011)), as we will show in our experimental evaluation.

5.3.2 Empirical estimator of the FDR
In some cases controlling the FWER can be too restrictive; in many
situations, in particular in exploratory analyses, one may tolerate to
report a bounded fraction of false discoveries if the overall number
of discoveries can be significantly increased, achieving more powerful
statistical procedures. In this section we describe the procedure used by
MASTRO to compute an estimate ˜FDR(δ) of the FDR(δ), that is
the expected fraction of false discoveries reported using the significance
threshold δ.

Our approach is based on the procedure proposed by Storey and
Tibshirani (2001, 2003), which yields a conservative estimate of theFDR
under arbitrary dependance between the tested hypotheses. To obtain
a more efficiently computable estimate, we simplify the procedure of
Storey and Tibshirani (2001) by not estimating the proportion of true (null)
hypotheses among the tested hypotheses. We instead use the upper bound
1 for such value instead, obtaining a slightly more conservative but much
simpler procedure. In this way, ˜FDR(δ) is defined as the average number
of trajectories with p-value≤ δ computed on the resampled datasets {Di}
divided by the number of trajectories on D with p-value ≤ δ:

˜FDR(δ) =
1

m

m∑
i=1

∣∣{P ∈MFT (D, σ) : piP ≤ δ
}∣∣

max {|{P ∈MFT (D, σ) : pP ≤ δ}| , 1}
.

6 Additional experimental results
In this section we present in more details our experimental evaluation of
MASTRO using both simulated and cancer data. In Section 3.1 we present
a set of simulations with two goals: the first is to experimentally show
that MASTRO controls false discoveries (Section 6.2.1); the second is
to assess the effectives of MASTRO in discovering a known trajectory
implanted on the data (Section 6.2.2). In Section 3.2 we use MASTRO to
analyze data from 123 acute myeloid leukemia (AML) patients and from
99 non-small-cell lung cancer (NSCLC) patients.

6.1 Cancer data

The AML data includes 543 somatic mutations in 31 cancer-associated
genes obtained by single-cell sequencing data from 123 patients; in
accordance with previous works, we grouped mutations at the gene level,
and analyzed phylogenetic trees generated by SCITE (Jahn et al., 2016).
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Fig. S1. Distribution of number of nodes in AML (left) and NSCLC (right) tumor trees.
The average is annotated in the title.

We obtained the NSCLC multi-region whole-genome sequencing data
first described in Jamal-Hanjani et al. (2017). In particular, we obtained
the data from (Caravagna et al., 2018), which reports SNVs and focal copy
number alterations in 79 putative driver genes, and using the phylogenetic
reconstructed by CITUP (Malikic et al., 2015) trees. In accordance with the
analysis performed by CONETT (Hodzic et al., 2020), we grouped SNV
and gene deletion alterations, but kept gene amplification as a distinct
alteration type.

Figure S1 shows the distribution of the number of nodes in the trees
of both datasets. While in AML the majority of the trees have > 3 nodes
with an average of 3.42 nodes per tree, in NSCLC the trees are composed
of at most 5 of nodes (including the germline root) with an average of 2.7
nodes per tree. This is due to most alterations being observed with very
high abundance, and therefore not reliably ordered, in NSCLC.

6.2 Results on simulated data

6.2.1 Robustness on spurious discoveries
In this first set of experiments, we aim to evaluate the statistical guarantees
of MASTRO on reporting false discoveries. To do so, we generated
m resampled datasets as described in Section 5.3.1 and computed the
corrected significance threshold δ̂ with the WY method (Section 5.3.1),
bounding the FWER belowα of frequent maximal trajectories withσ = 2.
We considered α ∈ {0.01, 0.05, 0.1} and varied m ∈ [103, 104].
Note that, since the ordering of all mutations is random, no trajectory
should be flagged as significant from such resampled datasets, that is,
every reported trajectory is a false discovery. Therefore, we estimated
the empirical FWER using an independent set of 104 resampled datasets
as the fraction of datasets with at least one trajectory with p-value ≤ δ̂.
We repeat this estimate 103 times, and report in Figure S2 averages and
standard deviations. As expected, MASTRO reports significant trajectories
in a fraction ≤ α of the trials, thus correctly controlling the FWER.
Furthermore, the estimated FWER is always very close to its nominal
upper bound α, showing that, by using the WY method, MASTRO does
not overcorrect for multiple hypothesis testing but rather exploits existing
correlations among trajectories. We observed that, while we usem = 104

for all our experiments on real data, using a number m of resamples in
the order of 103 is typically enough to accurately control the FWER
at the levels we considered. Note that we do not show results on the
approximation quality of the FDR since, in this setting, all hypothesis are
true nulls hypothesis. Therefore, controlling the FWER implies a control of
the FDR and viceversa (since controlling the FDR implies a weak control
of the FWER), so we would obtain analogous results.

We performed an analogous evaluation of CONETT, in order to
elucidate possible differences with our statistical test. In fact, as stated in
Section 1, the permutation test employed by CONETT does not preserve
the set of alterations in each tumor, differently from our approach. We
considered 104 random resampled dataset of AML and NSCLC datasets.
We ran CONETT on such datasets, fixing the minimum support of the
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Fig. S2. Empirical FWER for MASTRO as function of the number m of random
permutations (x axis), with m ∈ [103, 104] and target FWER α ∈ {0.01, 0.05, 0.1}
(lines shown in different colors). In a single trial, the FWER is estimated as the fraction
of an independent set of 104 resampled datasets in which at least one significant result is
found. For eachm andαwe show the average and standard deviation, computed over 103

independent trials.
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Fig. S3. Comparison of the sizes and empirical p-values of the optimal solutions of
CONETT on original and randomly permuted datasets.

alterations to use in the root (its parameter t) to 10 (analogous to the
values used in (Hodzic et al., 2020); we observed similar results with other
values of t), and considered different values of the minimum alteration
frequencies e (alterations with support < e are not inserted in the tree).
Note that we considered only values of e ≥ 3, since CONETT needs
≈ 4.5 hours to solve its ILP formulation for finding the optimal tree on
the NSCLC tumor trees for e = 2: it is not possible to run it on 104

resampled datasets in reasonable time. For each resampled dataset we
computed the number of nodes of the reported optimal tree and the p-
value computed by CONETT (using 104 iterations). Figures S3 shows the
distribution of the size and p-value of the tree reported by CONETT for
different values of e. We note that in all configurations CONETT reports
a tree with p-value below 10−2 in most resampled datasets. Figures S3
also shows the comparison with the trees obtained on the original data (in
red), whose sizes and p-values are very similar to the ones obtained in our
resampled datasets. As discussed previously, these results are mostly due to
the permutation strategy employed by CONETT, which shuffles alterations
across the patients, assigning higher importance to their co-occurence in
a set of patients rather than to their ordering. At the same time, CONETT
does not distinguish anti-edges with directed edges, potentially inferring
long trajectories not explicitly observed in the data. This is particularly
relevant for the NSCLC data, in which there is a lower number of nodes
per tree and a higher number of alterations in the same node.
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6.2.2 Recovery of ground truth
In this section we describe our evaluation of the capability of MASTRO in
finding significant trajectories implanted in the data, representing a known
ground truth. We generated 104 pseudo-random datasets using the AML
data as follows: for a given trajectory P (composed of unique alterations
not present in the original data), a fixed value N ≥ 1, and parameter
f ∈ [0, 1], we implanted P in N patients, chosen uniformly at random
from the set of patients with at least one subgraph isomorphic toP (i.e., in
which it is possible to observe P). However, we implant P perfectly, i.e.,
preserving the ordering among its alterations as inP , only in fN of them:
in the remaining (1−f)N cases, we insert the alterations ofP randomly.
This allows to evaluate the statistical power of MASTRO in cases where
the trajectory is not always perfectly observed in the data, for example
when stochastic interferences, noise, or upstream errors in phylogenetic
reconstruction affect some occurrences of the trajectories. We repeat this
process for 4 trajectories with different number of nodes and topologies
(shows at the top of Figure S4), and for every combination ofN , f , andP
we generated 103 datasets. Figure S4 shows the fraction of trials in which
MASTRO reports the trajectory as significant with FWER at most 0.05.
We can clearly see that, in most cases, a relatively small percentage f of
occurrences is sufficient to report the trajectories, with a dependence on
N . Naturally, a trajectory observed more frequently has higher potential
to reach statistical significance, while an extremely rare trajectory may
not. Interestingly, we observe that the topology of the trajectory has a
sensible impact on the recall; a simpler topology may arise more easily
just by chance, therefore needs to be observed more frequently; on the
other hand, it is much less likely to observe more complex trajectories
from random assignments of the alterations, therefore can be reported with
high confidence from lower evidence. Furthermore, MASTRO achieves
high statistical power while controlling the (quite restrictive) FWER. We
may expect to retrieve significant trajectories with even higher power when
controlling the more flexible FDR. Overall, these observations highlight
the effectiveness of MASTRO in identifying significant trajectories from
cancer phylogenies with characteristics similar to the ones obtained from
current cancer datasets.

6.3 Results on cancer data

In this section we present the trajectories found by MASTRO on two
collections of tumor trees computed from cancer data. As previously
described, we find all frequent maximal trajectories with MASTRO that
contains at least 2 alterations and are observed in at least σ = 2 tumor
trees, and evaluate the empirical estimate of the FDR of the top-k most
significant results for different values of k (Figure S7). We present the
top-k most significant results for which the estimated FDR is low (e.g.,
≤ 0.2). We performed all our experiments on a machine equipped with a
2.30 GHz Intel Xeon CPU (with a total of 64 threads), 512 GB of RAM,
on Ubuntu 20.04. On the cancer data we considered, MASTRO is always
very fast, as it finds all trajectories and computes all p-values in at most 5
seconds for the first two statistical tests, and 30 seconds for the third test.
MASTRO corrects for false discoveries using 104 resampled datasets in
less than 2 hours (using multithreading over 64 cores). The memory to
run MASTRO was always low (at most 108 MBs). Running it in parallel
on 64 threads resulted in less than 7 GBs of memory usage. We also run
CONETT on the same datasets, using analogous parameters to compare it
with our method: we use the same minimum support thresholds (parameter
e for inserting alterations in the tree and t to select its root) of MASTRO,
equal toσ = 2, and use default values for other parameters. We only report
the edges of the optimal tree found by CONETT in at least σ tumor trees,
using the settings described above without imposing additional constraints
on the root (e.g., by specifying additional seeds).
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Fig. S4. Topologies (top) and fraction of trials in which the trajectory is found (recall rate,
y axes) when the trajectory is implanted exactly in fN patients, and randomly in (1−f)N
patients (different values ofN are different colors, f varies in the x axes).

6.3.1 Analysis of AML tumor trees
In this section we present the results from AML data. MASTRO finds
138 maximal trajectories with at least 2 alterations and observed in at
least 2 tumor trees, and estimates the FDR of the top-k results (sorted by
increasing p-value) for various values of k (Figure S7). The p-values are
computed with the independent assignment null model (Section 5.2.1).
In Figure S6 we show statistics on the maximal trajectories found
by MASTRO. We show the sorted p-values and corrected significance
thresholds from the WY correction (Figure S6 top left), observing that 13
trajectories are significant with FWER ≤ 0.05, while 16 with FWER ≤
0.1. We also show the support of the trajectories vs. the number of
alterations (Figure S6 top right), the p-values of the trajectories vs. the
number of alterations (Figure S6 bottom left), and the p-values of the
trajectories vs. the support of alterations (Figure S6 bottom right). Overall,
MASTRO finds significant results that are both frequent and rare in the
data, with either a relatively small or higher number of alterations, taking
into account the topology and individual occurrences of each alteration in
the tumor trees. We observe that MASTRO estimates the FDR of the 40
most significant trajectories as 0.2, therefore we focus on these results,
expecting most of them to be significantly more frequent than expected
by chance. We present a summary of the 40 most significant trajectories
discovered by MASTRO in Figure 3, while Figure S5 shows all such
trajectories, including their support, p-value and set of tumor trees in which
they are observed. Figure 3 shows that the 40 most significant trajectories
can be summarised with4 types of trajectories that are observed in different
subsets of the patients. We obtained them combining multiple trajectories
with common topologies and alterations (subcomponents highlighted with
coloured boxes and surrounding the nodes) that belong to the set of
the most frequent and significant trajectories. The first trajectory (a) is
characterized by a mutation in DNMT3A, followed by a mutation in
NPM1, and progressing with mutations in FLT3, NRAS, and KRAS,
which are found in different branches as clonally exclusive. The core
component of this trajectory (Germline→DNMT3A→NPM1, surrounded
by the red box in the figure) is observed in 17 tumor trees, and it is
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Fig. S5. The 40 most significant maximal trajectories found by MASTRO on AML data. For each trajectory we show its rank, its p-value p (from Section 5.2.1), its support s, and the set
of indices of the tumor trees in which the transaction is observed.
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Fig. S6. Results from AML data. Sorted p-values (computed with the independent
assignment statistical test, as described in Section 5.2.1) of the 138 trajectories with ≥ 2

alterations observed in at least two tumor trees. Black horizontal lines are significance
threshold computed with WY permutation testing over 104 permutations. Number of nodes
vs trajectories’ support. Number of nodes vs p-values. Supports vs p-values.
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Fig. S7. Empirical estimates of the FDR of the k most significant results (k varies in the
x axis).

the most significant result reported by MASTRO (rank R = 1, p-value
p = 8 · 10−8). The progression towards RAS and/or FLT3 is supported
by the most frequent and significant trajectories found by MASTRO (for
simplicity, we show only two of them in Figure 3, delimited by blue and
green lines, while others are shown in Figure S5). The second trajectory
(b) is characterized by a mutation in IDH1 or IDH2 (red and blue boxes),
both followed by alterations in NPM1 and FLT3. These trajectories are
observed in a total of 7 patients, and are among the highest scoring results
of MASTRO (ranks4 and15). Interestingly, Schuringa and Bonifer (2020)
describe these two trajectories as the two major tumor progression patterns
found in AML patients, as observed independently by Morita et al. (2020)
and Miles et al. (2020): a mutation in an epigenetic factor (DNMT3A,
IDH1, or IDH2) precedes mutations in nucleophosmin molecular pathway
(NPM1), which are then followed by alterations of signalling genes (RAS
and FLT3). Furthermore, MASTRO observes the latter to be almost
always found in different branches of the trajectory, confirming their
known exclusive relationship in AML tumors. The third type of trajectory
discovered by MASTRO (trajectory (c)) describes an alteration of TET2
as the initiating event; in 7 tumor trees, TET2 is followed by a mutation
in NPM1 (red trajectory), while in 3 of them the alteration of NPM1 is
preceded by a mutation in DNMT3A (blue trajectory). In other 2 patients,
DNMT3A is followed by a mutation in NRAS instead (green trajectory).
Schuringa and Bonifer (2020) report that TET2 can occur as both an
initiating and a secondary event, in accordance with a progression pattern
described by Miles et al. (2020). In addition to these known progression

Fig. S8. Optimal conserved tree found by CONETT on AML data (root on the left, leaf
nodes on the right). Numbers above an edge denote the number of tumor trees supporting
the path from the root to the node on the left of the edge.
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Fig. S9. Results from AML data using statistical tests based on permutations (Section 5.2.3,
top plots with (p) label) and random topologies (Section 5.2.4, bottom plots with (t) label).
Plots analogous to Figure S6 and S7.

patterns, MASTRO highlights a different trajectory (d): this trajectory is
characterized by a mutation in NPM1, and then in mutations in RAS, FLT3,
and PTPN11, which are mutually exclusive at the clonal level. Differently
from the first two trajectory types, we observed that in almost all patients
in which such different progression pattern is observed, the mutation in
NPM1 is not preceded by any other mutation (i.e., NPM1 is the first
alteration following the root/germline cells). While NPM1 is an relevant
gene for AML (Juliusson et al., 2020; Falini et al., 2020; Zarka et al.,
2020), this alternative progression pattern was not previously reported;
it may describe a different modality of evolution characterizing a subset
of patients not hit by an early alteration of an epigenetic factor, and may
suggest further investigations.

We remark that most of the trajectories identified by MASTRO
are not linear, but describe rather complex trajectories with multiple
branches (e.g., some with > 2 parallel branches). MASTRO identifies
sets of alterations with both clonally exclusive and co-occuring alterations
leveraging trajectories representing induced subgraphs (with a specified
total ordering between all alterations). We observe that the sets of
exclusive alterations are in accordance with the pairs identified by
GeneAccord (Kuipers et al., 2021) (for example, RAS with FLT3, and with
PTPN11); however, MASTRO does not restrict to testing the exclusivity
of alterations pairs, but extends the analysis to sets of alterations of higher
cardinality (for example, the red trajectory of (d) in Figure 3 describes 3
exclusive subclonal alterations).

We now compare the output of MASTRO with the optimal consensus
tree found by CONETT from the AML data, that we show in Figure S8.
We observe that the optimal tree is rooted at TET2 and that it contains
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Fig. S10. The 15 most significant maximal trajectories found by MASTRO on NSCLC data. Results shown are analogous to Figure S5.

some of the paths described by the trajectory (c) identified by MASTRO
(and of other trajectories not shown in the summary, see Figure S5).
CONETT identifies a tree similar to only one of the progression trajectories
described previously, while including linear trajectories observed in a
smaller number of tumor trees (the most frequent is observed 4 times,
all others have support 3 and 2; furthermore, 7 tumor trees support
TET2→NPM1 while 3 support the longer TET2→DNMT3A→NPM1;
MASTRO finds both, while CONETT only identifies the latter); this
highlights the fact that CONETT is specifically designed to find a
consensus tree composed by a collection of linear trajectories that
maximize the total path length, obtaining quite different results. Instead,
MASTRO simultaneously identifies different significantly conserved
trajectories observed in different subsets of the patients, providing a more
complete description of the conserved evolutionary trajectories.

We also show in Figure S9 the p-values, corrected significance
thresholds using WY, and estimated FDRs of the top-k results, using the
other two statistical tests defined in Section 5.2. We observe that, overall,
the reported p-values are mostly similar, with some differences for the
smallest ones. While the values of the p-values are, in some cases, slightly
different in magnitude, we observe the estimated FDR to be consistent for
all three tests, showing that all tests agree on the fact that we expect the
set of k most significant trajectories to contain a small fraction of false
positives, for most values of k.

6.3.2 Analysis of NSCLC data
We now present the results identified by MASTRO from NSCLC tumor
trees. We show the 15 most significant trajectories in Figure S10, that we
selected as their estimated FDR is not too large (≈ 0.3, Figure S7), and
summarize them with two trajectories in Figure 4. We show statistics for all
trajectories in Figure S11. From Figure S10 we observe that all trajectories
are topologically simple, composed by 2 or 3 nodes containing multiple
alterations within each node. This is not surprising, giving the topologies
of the input trees, which contain few nodes with many alterations with
unknown ordering. We note that MASTRO distinguishes alterations with
a known and unknown order (connected by either a directed or undirected
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Fig. S11. Results from NSCLC data. p-values (computed as described in Section 5.2.1)
of the 124 trajectories with at least two alterations and observed in at least two tumor trees.
Black horizontal lines are significance threshold computed with WY permutation testing
over 104 permutations.

anti-edge in the expanded tumor graphs, Figure 2). Relaxing this feature
may lead to finding trajectories with spurious orderings not supported
by the data: we argue that MASTRO discovers trajectories satisfying the
available temporal information and that are better supported by the input
trees. A consequence of this is that the signal that MASTRO evaluates
to identify trajectories with significant ordering is much weaker, since
there are very few known orderings between alterations. This highlights
the fact that bulk sequencing, even if from multi-regional samples, may
present intrinsic difficulties in reconstructing the temporal ordering of
clonal alterations, compared to the much more informative phylogenetic
trees that can be obtained from single-cell sequencing as shown by data
from AML patients. However, in some cases MASTRO is still capable
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Alteration pairs → ← ↔

SOX2(A), TP53 0 0 12
PIK3CA(A), TP53 0 0 10
PIK3CA(A), SOX2(A) 0 0 12
EGFR(A), TP53 1 0 5
KRAS, TP53 1 1 6
MGA, TP53 0 1 6
PIK3CA, TP53 0 1 4
TERT(A), TP53 0 2 5
EGFR, TP53 1 0 5
CDKN2A, TP53 1 0 9

Table S1. Number of times a pair of alteration X,Y (first column from the left)
is observed with a known ordering (i.e., X is an ancestor of Y or viceversa,
denoted by X → Y or Y → X, second and third column) or with an unknown
ordering (i.e., in the same node of the tumor tree, X ↔ Y , last column) in
tumor trees inferred from NSCLC data.

Fig. S12. Optimal conserved tree found by CONETT on NSCLC data (root on the left, leaf
nodes on the right). Numbers above an edge denote the number of tumor trees supporting
the path from the root to the node on the left of the edge according to CONETT.

of identifying interesting interaction patterns between alterations, that we
now describe. The first trajectory summarizing the most significant results
of MASTRO, shown in Figure 4 (a), is composed by a core trajectory
(surrounded by a red box) involving a mutation of TP53 and amplifications
of PIK3CA and SOX2 whose order is not known (they belong to the same
node). This trajectory is observed in 10 tumor trees, and it is the most
significant of all results (rankR = 1, p-value p = 10−6). This trajectory
extends in 4 ways: in 4 tumor trees, it includes an amplification of FGFR1
(orange trajectory, p = 3·10−3); in 2 tumor trees, mutations in PTEN and
KMT2D are also observed (purple trajectory, p = 7 ·10−4); 2 tumor trees
also include an amplification of CCND1 (blue trajectory, p = 10−3); in 2

tumor trees, it includes an alteration of NFE2L2, followed by a subclonal
mutation of UBR5 (green trajectory, p = 3 ·10−5). The second trajectory
shown in Figure 4 (b) is obtained composing 4 trajectories. All share a
mutation of TP53, and extend with: a subsequent mutation of NCOR,
observed in 3 tumor trees (red trajectory, p = 10−2) an amplification
of EGFR (blue trajectory, p = 10−2) observed in 7 trees; a mutation
of CDKN2A, followed by a mutation of CYLD, observed in 2 trees
(green trajectory, p = 10−2); an amplification of TERT and mutation
of CDKN2A, found in 3 trees (purple trajectory, p = 2 · 10−2). These
two trajectories summarize the fact that MASTRO identifies groups of
alterations, known to be important in NSCLC (Jamal-Hanjani et al., 2017;
Jeong et al., 2020), that are more frequently clonal, i.e., they occur more
frequently together and in the highest nodes of the tree than expected
by chance, in addition to trajectories involving alterations that are more
subclonal than expected.

We now compare the results of MASTRO with the optimal conserved
tree computed by CONETT, shown in Figure S12. We observe that this tree

is rooted at TP53, and contains several paths connecting various alterations.
Almost all alterations belonging to the trajectories reported as significant
by MASTRO (Figure 4) belong to the tree; however, we observe that
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Fig. S13. Results from NSCLC data using statistical tests based on permutations
(Section 5.2.3, top plots with (p) label) and random topologies (Section 5.2.4, bottom
plots with (t) label). Plots analogous to Figure S11 and S7.

the most frequent edges that are reported by CONETT are not actually
conserved in the underlying tumor trees: this is because CONETT does
not differentiate between anti-edges (alterations without an ordering, in
the same node of the tumor tree) with directed edges (alteration pairs
with a known order, in different nodes of the tumor tree). For example,
the most frequent edge reported by CONETT is TP53→SOX2(A) (where
SOX2(A) denotes the amplification of SOX2), with 12 occurrences. We
note that, in all the12 tumor trees containing both TP53 and SOX2(A), such
alterations are always found in the same node of the tree, therefore there
is no evidence of the ordering of such alterations in the tumor trees. This
uncertainty in the ordering is also confirmed by the reported Cancer Cell
Fraction (CCF) values (reported by Caravagna et al. (2018)), which are
always 1 (or very close to 1) in all patients with the alterations, confirming
the fact that it is unclear how to distinguish the ordering of such clonal
events. We observed similar relationships between TP53 and PIK3CA(A)
(co-occurring in 10 trees, always in the same node), and PIK3CA(A) and
SOX2(A) (co-occurring in 12 trees, always in the same node); for other
pairs of alterations, as we show in Table S1, we observe that alterations
involved in the most frequent edges rarely co-occur in different nodes (e.g.,
in 1 case over 6 tumor trees), bringing scarse evidence of their ordering.
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