

Head Office: Università degli Studi di Padova

Department: Information Engineering

Ph.D. course in: Information Engineering

Curriculum: Information and Communication Technologies (ICT)

Series: XXXIII, 2021

Rigorous and Efficient Algorithms for Significant

and Approximate Pattern Mining

Thesis written with the financial contribution of Fondazione Cariparo

Coordinator: Ch.mo Prof. Andrea Neviani

Supervisor: Ch.mo Prof. Fabio Vandin

 Ph.D. student: Leonardo Pellegrina

2

Rigorous and Efficient Algorithms for Significant and
Approximate Pattern Mining

Abstract

Massive amounts of data are generated in all areas of industry and science, such as
social networks, biomedical research, finance, and many others. Extracting useful and
reliable knowledge from such data is a fundamental task with two challenges: the first
is to provide rigorous statistical guarantees on the analysis, controlling the discovery
of spurious results. This aspect is particularly important when the validation of the
extracted results is expensive (e.g., in biology), or when data-driven decisions need
to be performed accurately (e.g., in medicine). Therefore, it is necessary to design
methods that are robust to the inherent noise and uncertainty of the data. The second
challenge is to design algorithms that scale the computation to the analysis of large
datasets, as the ones of interest from the applications. One example is the analysis
of data from large genomic experiments, whose availability is rapidly increasing as
sequencing costs continue to fall. In such settings, methods capable of computing
high quality approximations are often the only available practical option.

Pattern Mining is a key component of Knowledge Discovery that comprise meth-
ods that aim at discovering interpretable and useful structure from data. In particular,
Significant Pattern Mining aims at extracting patterns with rigorous guarantees in
terms of statistical significance of the output, controlling the retrieval of false dis-
coveries. Approximate Pattern Mining, instead, focuses on the fundamental task
of computing rigorous, high-quality approximations of collections of interesting Pat-
terns. The objective of this Thesis is to design novel e�cient and rigorous techniques
for Significant and Approximate Pattern Mining, in three scenarios.

The first scenario we consider is Mining Significant Patterns, such as Itemsets
and Subgraphs, from labelled datasets, with guarantees on false discoveries. In this
setting we tackle two problems: the problem of e�ciently extracting the set of Top-
k most Significant Patterns, providing various forms of control of false discoveries,
such as bounding the Family-Wise Error Rate (FWER), and e�ectively limiting the
output size by focusing on the k most interesting results; and the problem of Mining
Significant Patterns with an unconditional statistical test, such as Barnard’s exact
test, which, as we argue, is more appropriate for Knowledge Discovery applications
than traditionally employed conditional tests. For both problems we develop new
algorithms and provide theoretical and experimental evidence of their e�ectiveness.

In the second scenario, we develop a novel method to provide rigorous approx-
imations of the collection of frequent strings of length k, called k-mers, from mas-
sive datasets of biological reads, originating from high-throughput sequencing experi-
ments. Counting k-mers is computationally very demanding, and it is one of the first
steps in many bioinformatics pipelines. We show with extensive experiments that the

3

most frequent k-mers can be well estimated by an advanced sampling scheme that an-
alyzes a randomly chosen fraction of the data, resulting in significant computational
speedups. Approximating the most frequent k-mers allows to accurately estimate
distances between pairs of datasets from metagenomic applications in a fraction of
the time required by the exact approaches. We provide a rigorous analysis of our
algorithm using the VC dimension, a key concept from Statistical Learning Theory.

In the last scenario, we study the Monte Carlo Empirical Rademacher Average
(MCERA), a fundamental data-dependent measure of Statistical Learning Theory of
the complexity of families of functions. This important quantity allows computing
tight probabilistic uniform deviation bounds between empirical averages of sets of
functions from their expectation. First, we develop a general framework to compute
the MCERA e�ciently, exploiting a combinatorial structure of the set of functions
given by a partially-ordered set (poset). Our novel approach is general, and it can
be applied to a variety of di�erent Pattern Mining problems with this structure,
such as Itemsets, Sequences, Subgraphs, and Subgroups. Obtaining sharp uniform
convergence bounds has applications in both Significant Pattern Mining and Approx-
imate Pattern Mining; we apply this method to a specific Significant Pattern Mining
task, the discovery of True Frequent Patterns, whose goal is to identify Frequent
Patterns w.r.t. the generative process of the data. We show that this approach is
practical on several real-world dataset, and significantly outperforms recent state-
of-the-art methods. Secondly, we study the rate of probabilistic convergence of the
MCERA; we prove that it satisfies certain self-bounding properties, important con-
cepts in the theory of concentration inequalities. We show that these properties imply
novel variance-dependent convergence bounds, which result in significantly improved
bounds on its guaranteed accuracy.

4

Acknowledgments

Here I am, at the end of another journey. Looking back, this adventure was full of
joyful moments, but also many tough challenges. I did my best to learn and become
a better man every day, and for this I feel very lucky and thankful to many.

Per prima cosa, vorrei ringraziare Fabio. Mi hai trasmesso il coraggio di intrapren-
dere questa strada, convincendomi che ne sarei stato capace. Ti ringrazio per tutto
quello che ho imparato, per i consigli, le giuste critiche, la pazienza, e per come sono
cresciuto, sia dal punto di vista scientifico che personale.

Ringrazio Andrea per aver sopportato le mie interminabili presentazioni.
I had the amazing opportunity of visiting Brown; I cannot be grateful enough to

Eli for this priviledge. I learned so much from this invaluable experience. Thanks
to Matteo, Lorenzo, Cyrus, Benedetto, and Megumi; you all always made me feel
welcome, and you truly inspired me with many stimulating discussions. I was lucky
to have the best o�ce mate ever; thank you Stefan for all the good times. I will
always remember the amazing view from the window of our o�ce. Thanks to Gen,
James, and Michele, for the time out together in Providence.

Ringrazio i miei primissimi compagni di laboratorio, Matteo, Emanuele, Michele,
che hanno saputo darmi consigli preziosi. E poi Francesco, che in molte occasioni
ha saputo condividere esperienza e sane risate. Thanks to the bright fellows Diego,
Ilie, Andrea, Davide, Federico, and Tha.ch, for the spritz, dinners, and many great
discussions.

Thanks to all collaborators for their fundamental contributions. I am truly grateful
to Jilles and Andrea for their precious comments on this work.

Il ringraziamento più speciale è per Gloria. Se ce l’ho fatta e se sono felice, lo
devo a te.

5

6

Contents

1 Introduction 11

2 Background 17
2.1 Pattern Mining . 18

2.1.1 Preliminary Definitions . 18
2.1.2 Frequent and Interesting Pattern Mining 19

2.2 Statistical and Multiple Hypothesis Testing 22
2.2.1 Statistical Hypothesis Testing 22
2.2.2 Multiple Hypothesis Testing 25
2.2.3 Controlling the Family-Wise Error Rate (FWER) 26
2.2.4 Controlling other Error Rates 30

2.3 Significant Pattern Mining . 30
2.4 Statistical Learning Theory . 33

2.4.1 Uniform Convergence . 34
2.5 Approximate Pattern Mining . 36

3 Efficient Mining of the Most Significant Patterns with Permutation
Testing 37
3.1 Introduction . 38

3.1.1 Contributions . 39
3.2 Background and Problem Definition 40

3.2.1 Significant Pattern Mining . 40
3.2.2 Multiple Hypothesis Testing 41
3.2.3 Problem Definition . 43

3.3 TopKWY Algorithm . 43
3.3.1 Main Strategy . 43
3.3.2 Analysis . 45

3.4 Improved Bounds on Minimum Attainable p-value 49
3.5 Extensions of TopKWY . 52

3.5.1 Controlling the Generalized FWER 52
3.5.2 Bounding the Proportion of False Discoveries 53
3.5.3 Alternative Exploration Strategies 53

7

3.6 Implementation Details . 54
3.6.1 Significant Itemset Mining . 54
3.6.2 Significant Subgraph Mining 55

3.7 Experimental Evaluation . 55
3.7.1 Implementation and Environment 56
3.7.2 Datasets . 57
3.7.3 Parameters and Experiments 58
3.7.4 Results . 58

4 Significant Pattern Mining with Unconditional Testing 71
4.1 Introduction . 72
4.2 Preliminaries . 74

4.2.1 Conditional Testing . 76
4.2.2 Unconditional Testing . 76
4.2.3 Multiple Hypothesis Testing 77

4.3 Significant Pattern Mining with Unconditional Testing 78
4.3.1 The UT test . 78
4.3.2 SPuManTE: Mining Significant Patterns 80

4.4 Experimental Evaluation . 84
4.4.1 Results . 86

4.5 Proofs and Reproducibility . 88

5 Sampling-based Methods for Frequent k-mers Approximations 95
5.1 Introduction . 96
5.2 Preliminaries . 99

5.2.1 Frequent k-mers and Approximations 99
5.2.2 Simple Sampling-Based Algorithms and Bounds 100

5.3 Advanced and Practical Bounds and Algorithms for k-mer Approxi-
mations . 101
5.3.1 Sampling Bags of Positions and VC dimension Bound 102
5.3.2 SAKEIMA: An E�cient Algorithm to Approximate Frequent k-mers106
5.3.3 Improved Lower and Upper Bounds to k-mer Frequencies . . . 108

5.4 Experimental Results . 109
5.4.1 Datasets and Implementation 109
5.4.2 Approximation of the Frequent k-mers 110
5.4.3 Application to Metagenomics: Computation of Ecological Dis-

tances . 112
5.5 Proofs and Additional Results . 114

6 Monte Carlo Rademacher Averages for Poset Families and Approx-
imate Pattern Mining 121
6.1 Introduction . 122
6.2 Related Work . 124

8

6.3 Preliminaries . 125
6.3.1 Poset Families and Patterns 126
6.3.2 Rademacher Averages . 127

6.4 MCRapper . 129
6.4.1 Discrepancy Bounds . 129
6.4.2 Algorithms . 130
6.4.3 Improved Bound for n = 1 . 135

6.5 Applications . 136
6.6 Experiments . 139

6.6.1 Bounds on the SD . 139
6.6.2 Mining True Frequent Patterns 141
6.6.3 Running time . 141

6.7 Proofs and Reproducibility . 142

7 Sharper Convergence Bounds of Monte Carlo Rademacher Averages
through Self-Bounding Functions 149
7.1 Introduction . 150
7.2 Preliminaries . 152
7.3 Concentration Inequalities . 154

7.3.1 The Method of Bounded Di�erences 154
7.3.2 Self-Bounding Functions . 155

7.4 Standard Probabilistic Bounds . 157
7.4.1 Standard Probabilistic Bound to the ERA 157
7.4.2 Standard Probabilistic Bound to the RC 157
7.4.3 Standard Probabilistic Bounds to the SDs 158

7.5 New Probabilistic Bounds to the ERA 158
7.5.1 Self-bounding Properties of the n-MCERA 158
7.5.2 New Probabilistic Bounds on the ERA 159
7.5.3 New Direct Bound for n = 1 161

7.6 Variance-dependent Probabilistic Bounds to the Supremum Deviations 163
7.7 New Probabilistic Bounds to the Supremum Deviations 163
7.8 Proofs . 167

8 Conclusions 181

Bibliography 187

9

10

Chapter 1

Introduction

11

An overwhelming amount of data is generated at unprecedented rate from all ar-
eas of science. Knowledge Discovery and Data Mining are vast and vibrant areas of
research, whose aim is to develop methods to extract useful and reliable information
from such massive data. This fundamental problem poses two major challenges. The
first regards the need of providing rigorous guarantees on the significance of the re-
sults of the analysis; in many applications, reporting spurious insights has extremely
expensive consequences. Examples are in biology and medicine, where the results
of explorative analyses are validated through follow-up experiments. Therefore, it
is critical to design methods that are robust to the intrinsic noise and uncertainty
characterising the data. The second is to design methods that scale such complex
computations to the analysis of the massive datasets generated from applications,
such as social networks and genomic experiments. In such settings, performing an
exact analysis on the entire data may be too expensive; often the only viable ap-
proach is given by the development of algorithms that output provably high quality
approximations.

Pattern Mining is an important sub-area of Knowledge Discovery and Data Min-
ing, whose goal is to discover meaningful and interpretable structures from collections
of observations. There are many variants of Pattern Mining, depending on the type
of data at hand, and the goal of the data analysis task. For example, transactional
datasets can be analysed with Itemsets Mining, Subgroup Discovery, Sequential Pat-
tern Mining, while graphlets and subgraphs can be discovered from graphs and col-
lections of graphs. A vast literature of ingenuous algorithms for all such variants
have been proposed over the years to tackle many aspects of these fundamental tasks.
Pattern Mining methods find widespread applications, ranging from market basket
analysis, spam detection, recommendation systems, to the analysis of data generated
by biology and medicine.

Significant Pattern Mining comprehends Pattern Mining techniques whose goal is
to discover interesting patterns with rigorous guarantees on false discoveries; instead,
methods for Approximate Pattern Mining focus on the e�cient computation of high
quality approximations of collections of interesting patterns. The goal of this Thesis
is to develop new e�cient and rigorous methods for the problems of Significant and
Approximate Pattern Mining; we will argue that, in some cases, the challenges of
both such problems, apparently distinct, are deeply related.

First, we consider the problem of Significant Pattern Mining. This task is an
extension of the problem of Frequent Pattern Mining, a fundamental primitive of
Data Mining whose goal is to identify highly supported patterns over the data, for
example appearing in a su�cient fraction of all the transactions of a transactional
dataset. The main goal of Significant Pattern Mining is, instead, to discover patterns
that describe characteristics of the underlying process that generated the data; one
example is when each transaction is enriched by a label, and the goal is to identify
patterns showing association to the labels. Such methods are crucial in many ap-
plications, providing additional information w.r.t. mining patterns that are frequent

12

in the entire dataset: in market basket analysis, it serves to identify itemsets that
are purchased more frequently by one group of customers than by another one (e.g.,
married people vs. singles); in social networks, it finds features characterizing users
interested in one specific topic; in biology, it identifies sets of genetic variants ap-
pearing more frequently in cancer vs normal tissues, or in one cancer type vs another
one. In all applications, it is critical to provide rigorous guarantees on the statistical
significance of the associations. The significance of a pattern is commonly assessed
through Statistical Hypothesis Testing: a statistical test is used to obtain a p-value
that quantifies the probability that the association observed in the data is due to
chance alone. However, being able to test a single pattern is not enough to provide
such guarantees. In fact, when many hypotheses are tested, the risk of reporting
spurious associations rapidly increases. As we will discuss, providing guarantees on
the overall false discoveries without sacrificing the power of the method is extremely
challenging.

For the task of Significant Pattern Mining, this Thesis work contributes with the
following results:

1. In Chapter 3 we consider the problem of mining the most statistically significant
patterns with rigorous control of the Family-Wise Error Rate (FWER). In par-
ticular, in analogy with frequent Pattern Mining approaches, we formally define
the problem of mining Top-k Statistically Significant Patterns. Our definition
allows to properly control the size of the output set while providing guarantees
on its FWER. To solve this problem, we design a novel algorithm, called Top-

KWY, which provides guarantees on the FWER by using the Westfall-Young
permutation testing procedure. TopKWY is based on an exploration strategy
similar to the one used by TopKMiner (Pietracaprina and Vandin, 2007), an
e�cient algorithm to identify the top-k frequent patterns. We prove that the use
of such strategy guarantees that, in contrast to previous approaches, TopKWY

will never explore untestable patterns, candidates with no chance of being sig-
nificant. Then, we present variants of TopKWY to mine the top-k significant
patterns with control of the Generalized Family-Wise Error Rate (g-FWER)
and the False Discovery Proportion (FDP), more flexible error rates than the
FWER that trade an increase in the size of the output with a (potentially)
higher, but still controlled, number of false discoveries. These variants lead to
an increase in the statistical power in situations where the number of results
reported controlling the FWER is low. Our extensive experimental evaluation
shows that TopKWY enables the extraction of the most significant patterns
from large and challenging datasets which could not be analyzed by the state-
of-the-art. In addition, TopKWY improves over the state-of-the-art even for
the extraction of all significant patterns. TopKWY appeared in (Pellegrina
and Vandin, 2018, 2020).

2. In Chapter 4 we present SPuManTE, an e�cient algorithm for mining signif-

13

icant patterns from a transactional dataset using an unconditional statistical
test. SPuManTE controls the FWER, and is based on ut, our novel for-
mulation of an unconditional statistical test for evaluating the significance of
patterns; as we will discuss, an unconditional test, such as Barnard’s exact test,
requires fewer assumptions on the data generation process, and is more appro-
priate for a Knowledge Discovery setting than classical conditional tests, such as
the widely used Fisher’s exact test. Computational requirements have limited
the use of unconditional tests: ut overcomes this issue with a novel algorithm
to perform the test e�ciently. SPuManTE combines ut with recent results on
the supremum of the deviations of pattern frequencies from their expectations,
founded in Statistical Learning Theory. This combination allows SPuMan-

TE to be very e�cient, while also enjoying high statistical power. The results
of our experimental evaluation show that SPuManTE allows the discovery
of statistically significant patterns while properly accounting for uncertainties
in patterns’ frequencies due to the data generation process. SPuManTE ap-
peared in (Pellegrina et al., 2019c).

Another challenge of Pattern Mining techniques is how to perform complex analy-
ses of massive datasets. As we discussed, in many situations exact computation is
too expensive; Approximate Pattern Mining methods are based on the idea of tra-
ding accuracy with large reductions of the computational requirements. A significant
challenge in this context is how to quantify the trade-o� between such aspects, in
particular how to guarantee that the approximated results are su�ciently “close” to
the exact ones. A typical example of an Approximate Pattern Mining solution is to
perform the analysis on a small, randomly chosen, subsample of a massive dataset.
Quantifying the gap between the computed approximation and the exact solution
requires to study the e�ect of the randomness introduced by the sampling process.
Techniques from Probability and Statistical Learning Theory are critical to address
this challenging aspect.

For this second scenario, we consider the important task of estimating the abun-
dances of all substrings of length k (called k-mers) in a set of biological sequences, a
fundamental and challenging problem with many applications in computational biol-
ogy. While several methods have been designed for the exact or approximate solution
of this problem, they all require to process the entire dataset, that can be extremely
expensive for high-throughput sequencing datasets, given their massive size.

For this problem, the Thesis contributes with the following results:

1. In Chapter 5, we develop, analyze, and test, a sampling-based approach, called
SAKEIMA, to compute an approximation of the set of frequent k-mers and their
frequencies from a high-throughput sequencing dataset, while providing rigorous
guarantees on the quality of the approximation. SAKEIMA employs an advanced
sampling scheme and we show how the characterization of the VC dimension,
a core concept from Statistical Learning Theory, of a properly defined set of

14

functions leads to practical bounds on the sample size required for a rigorous
approximation. Our experimental evaluation shows that SAKEIMA allows to rig-
orously approximate frequent k-mers by processing only a fraction of a dataset.
We also show that, while in some applications it is crucial to estimate all k-mers
and their abundances, in other situations reporting only frequent k-mers, that
appear with relatively high frequency in a dataset, may su�ce. This is the case,
for example, in the computation of k-mers’ abundance-based distances among
datasets of reads, commonly used in metagenomic analyses. We show that
such task can be accelerated using the approximations computed by SAKEIMA.
SAKEIMA appeared in (Pellegrina et al., 2019a, 2020b).

Lastly, we address the problem of analyzing samples drawn from an unknown prob-
ability distribution, relevant for Approximate and Significant Pattern Mining prob-
lems. We may attribute two meanings to such random samples.

The first meaning is related to Approximate Pattern Mining: the sample is in-
tended as a small random sample of a large dataset: since it is often impossible or
extremely expensive to process massive datasets, it is then reasonable to mine only
a small random sample that fits into the main memory of the machine. In many
applications, an high-quality approximation of the set of most relevant patterns can
be e�ciently computed from a sample, with often large reductions of computational
requirements. As the sampling process introduces noise, to obtain desirable proba-
bilistic guarantees on the quality of the approximation one must study the trade-off

between the size of the sample and the quality of the approximation.
The second meaning is sample as a sample from an unknown data generating

distribution, and it is related to the problem of Significant Pattern Mining: in this
case, the whole dataset is seen as a collection of samples from an unknown distribution,
and the goal of mining patterns from the available dataset is to discover knowledge
about the distribution.

These two meanings of “sample” and distribution are not truly distinct, because
also in the first case the goal is to approximate an unknown distribution from a
sample, thus falling back into the second case. In both scenarios, advanced proba-
bilistic concepts and results from from Statistical Learning Theory are fundamental
to address this problem.

For this scenario, we contribute to novel methods that, as we discuss, find appli-
cations in both Approximate Pattern Mining and Significant Pattern Mining:

1. In Chapter 6 we present MCRapper, an algorithm for the e�cient computa-
tion of Monte-Carlo Empirical Rademacher Averages (n-MCERA) for families
of functions exhibiting poset (e.g., lattice) structure, such as those that arise in
many Pattern Mining tasks. The n-MCERA is a fundamental data-dependent
concept of Statistical Learning Theory that quantify the complexity of sets of
functions. The use of the n-MCERA allows to compute tight upper bounds
to the maximum deviation of sample averages from their expectations, much

15

sharper compared to methods based on looser approaches (i.e., that bounds the
Rademacher Complexity through tools such as Massart’s lemma). MCRapper

can be used to find both statistically-significant functions (i.e., Significant Pat-
terns) when the available data is seen as a sample from an unknown distribution,
and approximations of collections of high-expectation functions (e.g., Frequent
Patterns) when the available data is a small sample from a large dataset. The
strategy of MCRapper is based on novel upper bounds to the discrepancy of
the functions to e�ciently explore and prune the search space, a technique bor-
rowed from Pattern Mining itself. To show the practical use of MCRapper, we
employ it to develop an algorithm TFP-R for the task of True Frequent Pat-
tern (TFP) mining. TFP-R gives guarantees on the probability of including
any false positives (precision) and exhibits higher statistical power (recall) than
existing methods o�ering the same guarantees. We evaluate MCRapper and
TFP-R and show that they outperform the state-of-the-art for their respective
tasks. MCRapper appeared in (Pellegrina et al., 2020a).

2. In Chapter 7 we derive novel variance-dependent concentration bounds for the
n-MCERA, whose convergence rates depend on characteristic quantities of the
set of functions under consideration, such as the empirical wimpy-variance. Such
bounds result in a significantly improved trade-o� between the guaranteed ac-
curacy of the estimate of the n-MCERA and the number n of Monte Carlo
trials to perform. Our proofs rely on the framework of self -bounding functions,
important notions of the theory of concentration inequalities; our results follow
from the sharp exponential concentration inequalities that self-bounding func-
tions have been shown to satisfy. Such new bounds are relevant and directly
applicable to all methods based on the n-MCERA. Then, we also show that the
Supremum Deviations (SDs) between empirical averages and their expectations
are also self-bounding, for appropriate constants that depend on the maximum
and minimum expected values of the functions; consequently, we derive novel
concentration inequalities for the SDs, that may be of independent interest.
The contributions described in this Chapter appear at (Pellegrina, 2020).

16

Chapter 2

Background

17

In this Chapter we introduce the notation and the main concepts we will use for
the rest of the Thesis. In Section 2.1 we introduce the preliminary definitions on
Pattern Mining, and we present the problems of Frequent and Interesting Pattern
Mining, and compare them to the task of Significant Pattern Mining. In Section 2.2
we introduce the framework of Statistical Hypothesis Testing and the problem of
Multiple Hypothesis Testing. We introduce methods for Significant Pattern Mining
that e�ciently leverage fundamental correction procedures for Multiple Hypothesis
Testing in Section 2.3. In Section 2.4 we introduce fundamental concepts of Sta-
tistical Learning Theory, and in Section 2.5 present recents methods based on their
application to Approximate Pattern Mining.

2.1 Pattern Mining

2.1.1 Preliminary Definitions

We consider a set of real-valued functions F from a domain X to an interval [a, b] µ R.
A set of samples S and a dataset D are defined as multisets {s1, . . . , sn} of n samples
si, where each si œ S (or œ D) is a member of X . There are many possible definitions
for X , depending on the Knowledge Discovery task to be performed; we now describe
the ones we consider in this work.

In many cases, such as in Frequent Pattern Mining, X is composed by the set of
all possible transactions T . In Frequent Itemsets Mining (Agrawal et al., 1993), given
a set of items I, T is defined as the set of all possible subsets of I. Other definitions
of T we will discuss are sets of sequences or labelled graphs.

In other settings, such as Interesting or Significant Pattern Mining, the transac-
tions t œ T are also enriched by target labels from their respective domain L. In such
cases, X = T ◊ L, and therefore the samples si œ S are pairs (t, ¸) with t œ T and
¸ œ L. We will focus our attention to L composed by two binary labels L = {¸0, ¸1},
even if many of the contributions and methods we present can be extended to more
general cases.

In Pattern Mining, it is assumed to have a language L containing the patterns of
interest. For example, in Itemsets Mining, L is the set of all possible itemsets, i.e., all
non-empty subsets of I, while in Sequential Pattern Mining (Agrawal and Srikant,
1995), L is the set of sequences, and in Subgroup Discovery (Klösgen, 1992), L is
defined by the user as the set of patterns of interest.

In all these cases, for each pattern P œ L, we define a function fP œ F , such
that fP(s) denotes the “value” of the pattern P on the sample s œ S. Therefore,
the family of functions F is the set F = {fP : P œ L}. As an example, in Frequent
Pattern Mining fP are indicator functions that map X to {0, 1} so that fP(s) = 1
i� P “matches” or “is found in” s, and 0 otherwise; more formally, for an itemset
P , fP(s) is given by fP(s) = 1 [P ™ s], where 1 [·] is an indicator functions equal
to 1 when its argument is true, 0 otherwise. For the case of high-utility itemset

18

mining (Fournier-Viger et al., 2019), the value of fP(s) would be the utility of P in
the sample s. In the case of Subgroup Discovery and, more generally, in Interesting
Pattern Mining, fP(s) would correspond to a quality measure of the pattern P w.r.t.
the labelled transaction s œ T ◊ L. Similar reasoning also applies to patterns on
graphs, such as subgraphs (Jiang et al., 2013) and graphlets (Ahmed et al., 2015).

For any definition of fP , an important quantity is its average value afP
(S) com-

puted over the elements of S:

afP
(S) =

1

n

nÿ

i=1

fP (si) .

In the next Section we discuss in more details the problems of Frequent and
Interesting Pattern Mining, and we discuss how they di�er from the task of Significant
Pattern Mining.

2.1.2 Frequent and Interesting Pattern Mining

Frequent Pattern Mining

Frequent Pattern Mining is one of the fundamental primitives in Data Mining, with
applications in a large number of domains, ranging from market basket analysis to bi-
ology and medicine (Han et al., 2007). The goal of Frequent Pattern Mining (Agrawal
et al., 1993) is to discover patterns that are observed with high frequency over a set of
data. Therefore, such patterns are considered to be interesting as “highly supported”
by the observations at hand.

For a given language L and a sample S, the measure of interest of this task is the
frequency of the pattern P œ L in S, that is defined as the fraction of samples s œ S
where P is found; we will denote the event “P is found in s” for general patterns by
“P ™ s”. By defining fP (s) = 1 [P ™ s] as an indicator function equal to 1 when
this happens, and 0 otherwise, then the average value afP

(S) of fP on S is exactly
the frequency of P on S. Another important quantity is the support zP

S of P in S,
that is the number of s œ S such that P ™ s:

zP
S =

nÿ

i=1

fP (si) = nafP
(S) .

Therefore, for a given language L, a sample S, and a frequency threshold ◊ œ [0, 1],
we define the set of Frequent Patterns FP (L, S, ◊) as

FP (L, S, ◊) = {(P , afP
(S)) : P œ L, afP

(S) Ø ◊} .

The computation of the set of Frequent Patterns FP (L, S, ◊) is often extremely
challenging because of the massive size of the data at hand and the complex types of
languages of interest to the analysis; for these reasons, this has been a central problem

19

in Data Mining and in Knowledge Discovery, and many ingenious algorithms were
developed to address it e�ciently (see (Han et al., 2007) for several references).

One important property exploited by such methods is the anti-monotonicity of
the frequencies of the patterns. Given two patterns P1, P2 œ L, we say that P1 is an
ancestor of P2 and, equivalently, that P2 if a child of P1 if the following holds:

P2 ™ s =∆ P1 ™ s , ’s œ X . (2.1)

As an example, when P1 and P2 are itemsets, this translates in the subset relation
P1 ™ P2. An immediate consequence of 2.1 is that

fP1 (s) Ø fP2 (s) , ’s œ X ,

and afP1
(S) Ø afP2

(S) , ’S œ X n .

For this reason, if any pattern P1 is not frequent, i.e. afP1
(S) < ◊, then one can

exclude all of its children from consideration, as afP2
(S) Ø ◊ can never hold. This

lead to design exploration techniques, such as the algorithm Apriori (Agrawal et al.,
1993), of L that can prune large portions of the search space when such condition is
verified. We may observe that such pairwise relationship between the elements of L
forms a structure and an ordering over L; as we will formalize in Chapter 6, many
pattern languages can be organized into a partially ordered set, or poset, to fully
exploit the advantages of this key property also for more general functions.

Since the size of FP (L, S, ◊) can be extremely large, in particular for small values of
◊, and that identifying an appropriate frequency threshold to limit the number of Fre-
quent Patterns is challenging, methods to identify restricted classes of patterns, such
as Closed Patterns (Pasquier et al., 1999) or Maximal Patterns (Bayardo Jr, 1998),
have been designed. Methods that directly limit the number of patterns by reporting
the k most Frequent Closed Patterns have been designed (Han et al., 2002; Pietracap-
rina and Vandin, 2007) as well. We also note that sophisticated techniques have been
proposed to mine diverse and non-redundant sets of interesting patterns (Van Leeuwen
and Knobbe, 2012; Vreeken et al., 2011; Knobbe and Ho, 2006; Kalofolias et al., 2017).

Interesting Pattern Mining

Another important task in Data Mining and Knowledge Discovery is Interesting Pat-
tern Mining from a labelled dataset. As discussed in the previous Section, in this
scenario the samples s œ S are enriched by a target label, and thus are pairs (t, ¸)
such that t œ T and ¸ œ L. In this setting, the goal is to discover patterns that
are associated to the values of the target. One example may be to discover sets of
items bought together by customers of a given type, or somatic mutations that are
associated to a clinical variable.

20

First, we denote the multisets of samples S0 with labels ¸0 and S1 with labels ¸1

S0 =
Ó
t :

1
t, ¸0

2
œ S

Ô
, S1 =

Ó
t :

1
t, ¸1

2
œ S

Ô
,

and denote their respective sizes n0 = |S0| and n1 = |S1|. W.l.o.g., we will assume
n1 Æ n0. Other quantities of interest are the average values afP

(S0) of fP over
elements of S0 (or S1), and the support zP

S0 of P in S0 (or S1):

afP

1
S0

2
=

1

n0

ÿ

tœS0

fP (t) , zP
S0 = n0afP

1
S0

2
.

If, as before, fP (t) = 1 [P ™ t], aP (S0) is simply the frequency of P in S0. In this
case, a popular quality measure, that we denote by qS (P), quantifies the di�erence
between the proportion of labels zP

S1/zP
S over samples (t, ¸) œ S such that P ™ t and

the proportion n1/n of labels in the entire data S:

qS (P) = aP (S)

C
zP

S1

zP
S

≠ n1

n

D
.

Patterns with values of qS (P) far from 0 show an association to one of the target
labels of L: samples containing P have a di�erent proportion of labels than the
proportion of labels over the entire data. Thus, one may define the set of Interesting
(or High Quality) Patterns HQP (L, S, ◊) as, for example,

HQP (L, S, ◊) = {(P , qS (P)) : P œ L, |qS (P)| Ø ◊} .

The quality score qS (P) is widely used1 in Subgroups Discovery (Herrera et al., 2011;
Atzmueller, 2015), that is the task of mining high-quality patterns from a user-defined
language L. We remark that qS (P) does not enjoy the same monotonicity property
of afP

(S); thus, the task of mining Interesting Patterns is often more involved than
the (already very challenging) Frequent Pattern Mining problem.

While formally valid, such quality scores generally do not have a direct statistical
interpretation, and therefore it is not always possible to directly assess the statistical
properties of HQP (L, S, ◊); this hinders the often important option to provide rigorous
guarantees on the presence of false positives in the output, where false positives are
patterns that are flagged as interesting only as consequence of random fluctuations
and not because of a true association with the labels.

Methods for Significant Pattern Mining instead relies on the framework of Statis-
tical Hypothesis Testing to assess the association between the patterns and the target
label, in particular to provide rigorous statistical guarantees on the discovery of false
positives.

1qS (P) is often referred to as 1-quality of P on S.

21

Significant Pattern Mining

The goal of Significant Pattern Mining (Dong and Bailey, 2012; Hämäläinen and
Webb, 2019; Pellegrina et al., 2019b) is to identify patterns having significant sta-
tistical association with one of the class labels. Significance is commonly assessed
using a statistical test, which provides a p-value quantifying the probability that the
association observed in real data arises due to chance alone.

In the next Section we introduce the framework of Statistical Hypothesis Testing
and the issue of Multiple Hypothesis Testing, that arises in Significant Pattern Mining.

2.2 Statistical and Multiple Hypothesis Testing

In Section 2.2.1 we formally define the framework of Statistical Hypothesis Testing;
in Section 2.2.2 we describe the problem of Multiple Hypothesis Testing, and in
Section 2.2.3 we introduce the most widely used methods to tackle it by bounding
the Family-Wise Error Rate (FWER), a useful metric to control the discovery of
spurious results. We present other error rates, such as the False Discovery Proportion
(FDP) and the False Discovery Rate (FDR), in Section 2.2.4.

2.2.1 Statistical Hypothesis Testing

Let H denote a null hypothesis, representing the default theory of “nothing in-
teresting” for a question of interest. For example, the null hypothesis HP of a
given pattern P when transactions have labels would correspond to the hypothe-
sis HP = “P is not associated to the labels”. A set of observations S is used to test
the validity of H by computing a test statistic T̂ H (S), which is a function of H
computed on S. Denote by TH the random variable describing the value of the test
statistic T̂ H (S) under the null hypothesis H. From TH , we can compute a p-value
pH (S), defined as the probability of observing an outcome for TH that is equally or
more extreme than T̂ H (S), under the assumption that the null hypothesis H is true:

pH (S) = Pr
S

1
“TH more extreme than T̂ H (S)” | H

2
.

The set of outcomes that should be considered “more extreme” depends on the goal
of the test, and on the type of data at hand, as we will clarify later in this Section.

A common approach to test H is to compare pH (S) against a significance threshold
–: if pH (S) Æ –, H is rejected together with its corresponding default theory of
“nothing interesting”; otherwise, H is not rejected, as there is no su�cient evidence
to reject the default theory. By definition of pH (S), we have that the probability,
taken w.r.t. S, of rejecting H under the assumption that the null hypothesis H is

22

true is not larger than –:

Pr
S

(pH (S) Æ – | H) Æ – .

Equivalently, under the null hypothesis, pH (S) is a random variable that follows a
Uniform Distribution2 with support in [0, 1]; consequently, the probability of making
a Type I error, i.e. making a false discovery, is upper bounded by –.

While our main goal is to bound Type I errors, limiting the risk of rejecting null
hypotheses, it is also important to take into account other considerations: for example,
a Type II error is made when the hypothesis H is accepted as a null hypothesis when
it should not, and H results in a false negative. The more permissive a procedure
is in rejecting hypothesis, the higher is its risk of incurring in Type I errors; on the
other end, very a restrictive criteria incurs in many Type II errors. Therefore, there
is a clear trade-o� between false discoveries and false negatives: it is important to
balance Type I and II errors, depending on the particular application.

The definition of the p-value pH (S) depends on the assumptions we make on
the distribution of TH ; procedures that describe the computation of an appropriate
p-value for a particular set of assumptions are typically denoted by Statistical Tests.

As discussed in the previous Section, in Significant Pattern Mining the goal is
to test the association between the occurrence of patterns and a target label. We
can do so by considering appropriate random variables that model the distribution
of the p-value pH (S). For the setting of Significant Pattern Mining, it is su�cient
to focus on testing the association of pairs of binary random variables, defined over
samples (t, ¸): the first, given by the indicator functions 1 [P ™ t] and 1 [P ”™ t],
describes the occurrence of the pattern over the samples; the second, given by the
indicator functions 1 [¸ = ¸0] and 1 [¸ = ¸1], models the labelling of the samples. A
useful representation of the distribution of a pattern over the data and over the labels
is given by a 2 ◊ 2 contingency table. Table 2.1 shows a contingency table built for
describing the appearance of a pattern P over S0 and S1. The 4 innermost entries of
the table contain the counts of the samples of S that satisfy the conditions given by
the corresponding column and row headers; for example, the entry zP(S1) counts the
number of samples (t, s) œ S1 such that P ™ t. Row and column totals (i.e., n1 and
z(P)) are also called marginals of the contingency table.

In what follow, we introduce the most widely used statistical tests to assess the in-
dependence between two binary random variables: the Pearson’s ‰2 test and Fisher’s
exact test.

2In the discrete and exact case, pH (S) can be conservative, as the condition

Pr
S

(pH (S) Æ α | H) Æ α

usually holds with the rightmost inequality Æ α as a strict inequality < α for most of the values of
α, and pH (S) is said to be stochastically dominated by the Uniform Distribution.

23

Variables P ™ t P ”™ t Row totals

t œ S1 zP
S1 n1 ≠ zP

S1 n1

t œ S0 zP
S0 n0 ≠ zP

S0 n0

Column totals zP
S n ≠ zP

S n

Table 2.1: 2×2 contingency table summarizing the appearance of the pattern P in
S0 and S1.

Pearson’s ‰2 test

One of the first proposed statistical test to assess the di�erence of frequencies of
events between di�erent sets of samples is Pearson’s ‰2 test (Pearson, 1900).

Define the random variables X0
P , X1

P , X0
¬P , X1

¬P , where Xj
P models the number of

samples (t, ¸) where P ™ t and ¸ = ¸j; thus, zP (Sj) corresponds to the observed value
of Xj

P . Instead, Xj
¬P models the number of samples (t, ¸) where P ”™ t and ¸ = ¸j.

We may observe that such random variables correspond to the 4 innermost entries of
the contingency table shown in Table 2.1.

Then, define the test statistic THP
for P as

THP
=

ÿ

iœ{P,¬P}, jœ{0,1}

1
Xj

i ≠
Ë
Xj

i

È22

Ë
Xj

i

È .

An important property of THP
is that it converges in distribution to a chi-squared

random variable ‰2 with 1 degree of freedom for n æ +Œ. This observation follows
from observing that all Xj

i converge to normal distributions from the Central Limit
Theorem.

Let the observed value of THP
be T̂ HP

(S) where, under the null hypothesis

HP = “ P is not associated to the labels”, we have that
Ë
Xj

i

È
can be estimated

from the marginals of the (observed) contingency table:

Ë
Xj

P

È
=

njz
P
S

n
,

Ë
Xj

¬P

È
=

nj

1
n ≠ zP

S

2

n
.

Since THP
æ ‰2, the p-value p‰2

HP
(S) can be computed from the tails of ‰2 distri-

bution; it is defined as

p‰2

HP
(S) = Pr

1
‰2 Ø T̂ HP

(S)
2

.

As Pearson’s Chi-squared test relies on the asymptotic convergence of THP
as n æ +Œ,

it is denoted as an asymptotic test.

24

Fisher’s exact test

One of the most employed statistical test to assess the association of two categorical
random variable is Fisher’s exact test (Fisher, 1922). If di�ers from Pearson’s ‰2 test
by the fact that it is an exact test, as it considers the exact distribution of the test
statistics, and not its asymptotic distribution.

Fisher’s exact test is a conditional test: it assumes all the marginals (zP
S , n1, n) of

the contingency table for every pattern P to be fixed by design of the experiment; un-
der the null hypothesis HP of independence between variables 1 [P ™ t] and 1 [¸ = ¸1],
the number X1

P of samples with label ¸1 containing P follows a hypergeometric dis-
tribution:

Pr
1
X1

P = a | zP
S , n1, n

2
=

A
n1

a

B A
n ≠ n1

zP
S ≠ a

BMA
n

zP
S

B
= h (a, P , S) . (2.2)

The p-value pF

HP
(S) by Fisher’s test, under the null hypothesis HP for the pattern

P , is computed by summing all the probabilities h (a, P , S) that are smaller than

h
1
zP

S1 , P , S
2
:

pF

HP
(S) =

ÿ

a:h(a,P,S)Æh(zP

S1 ,P,S)

h (a, P , S) .3 (2.3)

Other tests, such as Barnard’s exact test (Barnard, 1945), rely on a less restrictive
set of assumptions on the data generative process than Fisher’s test, at the cost of
increased complexity in the definition of the p-value. In Chapter 4 we will discuss in
more detail such test, and how it is possible to integrate it e�ectively into the setting
of Significant Pattern Mining.

2.2.2 Multiple Hypothesis Testing

As we discussed in Section 2.2.1, testing a single hypothesis H can be done by compar-
ing its p-value pH (S) to a fixed threshold –; rejecting H when pH (S) Æ – guarantees
that the probability of making a false discovery (e.g., rejecting an hypothesis when
it is a true null hypothesis) is not larger than –. However, when multiple hypotheses
are considered, the critical issue of the Multiple Hypothesis Testing Problem arises. In
fact, when we test m hypotheses against a fixed significance threshold –, we expect
–m of them to have p-values below –, even if all hypotheses are true null hypotheses.

More formally, let H = {H1, . . . , Hm} be a set of m hypotheses. Let NH (H)
be the subset of true null hypotheses of H, and R (H, A, S) be the subset of the
hypotheses of H that, given a procedure A, are rejected by A using S. If A is

3This definition of the test is “two-sided”, as both ranges X1
P Ø zP

S1 and X1
P Æ zP

S1 are considered
to seek “more extreme” outcomes. Instead, a “one-sided” test would consider only one side of the
range for X1

P .

25

“reject H if pH (S) Æ –”, we have

R (H, A, S) = {H : pH (S) Æ –, H œ H} .

Assume, for now, that all H œ H are true null hypotheses, that is NH (H) = H.
Then, it holds by linearity of expectation that

S [|R (H, A, S)|] = –m .

Furthermore, this holds for any existing dependence structure between the hypothe-
ses. This problem naturally arises in Significant Pattern Mining and, more generally,
in Knowledge Discovery, since one is interested in evaluating the significance of a
large number of complex patterns that may appear in large datasets. For example,
the language L for itemsets is composed by all non-empty subsets of an alphabet I;
thus, we would have m = |L| = 2|I| ≠ 1. In many settings, reporting false discov-
eries is very expensive; in biology, for example, Knowledge Discovery methods are
often of exploratory nature, guiding successive follow-up experiments to validate the
reported interesting patterns. Thus, a large number of spurious discoveries may lead
to extremely expensive consequences; it is of critical importance to provide rigorous
guarantees on the statistical quality of the set of discovered patterns.

To do so, one has to modify the criteria “pH (S) Æ –” used to reject hypotheses
with something potentially more restrictive; at the same time, it is important to
not sacrifice the overall power of the procedure, that is, without incurring in an
unacceptable rate of false negatives.

2.2.3 Controlling the Family-Wise Error Rate (FWER)

One common approach to address the Multiple Hypothesis Testing Problem is to
design procedures that control the Family-Wise Error Rate (FWER). This metric
is defined as the probability of reporting at least one false positive. More precisely,
recall the definitions of H as a set of m hypotheses H = {H1, . . . , Hm}, NH (H) the
subset of true null hypotheses of H, and R (H, A, S) the subset of the hypotheses of
H that, given a procedure A, are rejected by A on S. The FWER of the procedure
A is then defined as

FWER = Pr
S

(|NH (H) fl R (H, A, S)| > 0) .

The goal in the design of A is to maximize the number |R (H, A, S)| of discoveries,
that is, the number of rejected hypotheses, while keeping FWER Æ –, for a given –

set by the user.

26

The Bonferroni and Holm corrections

A standard method to bound the FWER below – is the Bonferroni correction (Bon-
ferroni, 1936). Such procedure AB is based on comparing the p-values of all the m
hypotheses of H with the threshold –/m; therefore, AB is simply

reject H if pH (S) Æ –

m
.

This guarantees FWER Æ – from a union bound over m events. However, since the
number m of hypotheses can be huge, such as in many Significant Pattern Mining
tasks, this approach results in limited statistical power: it is generally very di�cult
to reject hypotheses using such small threshold (Webb, 2006, 2007, 2008). A more
refined solution than the Bonferroni correction was proposed by Holm (1979), often
referred to as the Bonferroni-Holm correction, to reject hypotheses bounding the
FWER below –. While the Bonferroni-Holm correction is uniformly more powerful
than AB, as the set of its rejected hypotheses is always a superset of the set rejected
by AB, it still requires the p-values to be very small, at least proportional to –/m
(and at least one below –/m), and thus usually do not provide significant advantages
when m is very large.

Tarone’s correction

In this Section we discuss how, in certain conditions, it is possible to obtain procedures
drastically more powerful the standard methods mentioned above.

In discrete settings, it is often the case that the p-value pH (S) for a given hypoth-
esis H is lower bounded by a positive constant ÂH , such that

pH (S) Ø ÂH , ’S .

This typically happens because statistical tests are computed on a limited number of
samples, and therefore “the evidence” for rejecting the null hypothesis cannot exceed
a certain threshold. In fact, when this holds, we may observe that H will never be
rejected when the employed significance threshold ” for H is ” < ÂH . A breakthrough
observation, that goes back to John Tuckey, Gart et al. (1979), Mantel (1980), and
Tarone (1990), is that such hypotheses, called untestable4, do not have to be taken into
account as potential false positives, as they have no chance to be rejected. Tarone
(1990) proposed a modification of the Bonferroni correction that is capable of ex-
cluding from consideration untestable hypotheses, obtaining a much more permissive
significance threshold –/mı for the remaining mı hypothesis, resulting in improved
statistical power. In particular, he remarked that when p-values pH (S) are computed
using conditional tests, such as Fisher’s exact test, then their corresponding lower

4The term “untestable” may be misleading. In fact, such hypothesis can be tested, but are “not

worth to be tested”, since there is no chance that they are rejected.

27

bounds ÂH are functions of the marginals of the observed contingency tables, and
therefore are readily available. Most importantly, the marginals do not give infor-
mation on the actual value of pH (S), but only on its range; this allows to avoid any
potential “selection bias” in discarding untestable hypothesis.

We define Tarone’s correction as follows. Let k (”) be the number of hypotheses
of H with minimum attainable p-value ÂH Æ ”:

k (”) = |{H : ÂH Æ ”, H œ H}| .

Tarone’s correction procedure AT is then

Let ”ú = max

I
” : ” Æ –

k (”)

J
. Reject all H : pH (S) Æ ”ú .

In many cases, ”ú ∫ –/m, resulting in large gains in terms of statistical power w.r.t.
Bonferroni and Bonferroni-Holm corrections.

A breakthrough method in Significant Pattern Mining is the work by Terada et al.
(2013a), that proposes LAMP, the first method to identify Significant Patterns using
Tarone’s procedure AT. An equivalent, but computationally more e�cient strategy,
was later proposed by Minato et al. (2014). We will describe in more detail such
methods in Section 2.3, and in Chapter 3 and Chapter 4.

Resampling and Permutation Testing

As we discussed, the procedure of Tarone often yields improved statistical power than
the “standard” Bonferroni and Bonferroni-Holm corrections. Nevertheless, the result-
ing significance threshold ”ı can still be fairly conservative, as it ignores correlations
between the hypothesis of H. In fact, when the corresponding test statistics are cor-
related, the effective number of hypothesis that may result in a false discovery may
be substantially smaller than k (”ı). This scenario is typical in Significant Pattern
Mining, since patterns are usually strongly correlated.

A solution to this issue is to handle the joint distribution of the test statistics of
all subsets of the hypothesis; this is often impossible in practice, due to the complex
nature of the hypotheses one is interested to test, and because such joint distributions
may not be available in closed form. An alternative solution is to rely on resampling-
based strategies to estimate such joint distributions.

One of such strategies has been proposed by Westfall and Young (1993) and it
is denoted “Westfall-Young (WY) permutation testing”. The idea is to apply to the
available data S a transformation g(·) from a space of transformations G, such that
all the test statistics of H are distributed as null hypotheses. One example of G

that applies to the setting we introduced in Section 2.1 is the set of all possible
permutations of the labels of the samples of S, where g (S) is a specific permutation
g œ G applied to S. Intuitively, we should be able to understand which hypotheses

28

should be rejected by comparing the values of the test statistics computed on the
original data S with the test statistics computed on the resampled data g (S). More
precisely, let qWY

H (G, S, –) be defined as the –-quantile of the distribution of the
maximum test statistic of H, computed over the transformations of G:

qWY

H (G, S, –) = min

Y
]
[x :

1

|G|

ÿ

gœG

1

Ë
max

Ó
T̂ H (g (S)) : H œ H

Ô
Ø x

È
Æ –

Z
^
\ .

Naturally, the computation of qWY

H (G, S, –) is often impossible as |G| may be imprac-
tically large (i.e., for permutations it is |G| = n!); still, one can sample uniformly
at random m elements G from G and evaluate the empirical version qWY

H (G, S, –) of
qWY

H (G, S, –). As m = |G| grows, the estimate qWY

H (G, S, –) converges to qWY

H (G, S, –);
in practice, values of m in the range [103, 104] are usually su�cient to get accurate
estimations.

The WY procedure AWY is defined as follows:

Sample G, and compute T̃ = qWY

H (G, S, –). Reject all H : T̂ H (S) Ø T̃ .

We remark that an equivalent formulation for qWY

H (G, S, –) that we will use is

qWY

H (G, S, –) = max

Y
]
[x :

1

|G|

ÿ

gœG

1 [min {pH (g (S)) : H œ H} Æ x] Æ –

Z
^
\ ,

where the –-quantile of p-values is of interest. In this case, AWY is

Sample G, and compute ”̃ = qWY

H (G, S, –). Reject all H : pH (S) Æ ”̃.

It is simple to prove that AWY controls the FWER at level – in the weak-sense,
that is, when all hypotheses of H are null hypotheses H = NH (H), as qWY

H (G, S, –) di-
rectly estimate the highest significance threshold to have FWER Æ –. AWY controls
the FWER at level – in the strong sense (for all NH (H) ™ H) when a su�cient,
yet not necessary (Romano and Wolf, 2005; Westfall and Troendle, 2008), condi-
tion denoted subset pivotality (Westfall and Young, 1993) is verified. Such technical
condition5 is usually not easy to verify in practice, but holds in many situations. In-
terestingly, WY permutation testing is not only very powerful and useful in practice
but it has been shown to be asymptotically optimal (Meinshausen et al., 2011).

5Subset pivotality holds (Westfall and Troendle, 2008) when the distributions of

{max {TH : H œ K} | NH (K) = K} ,

and {max {TH : H œ K} | NH (H) = H}

are identical for all K ™ H; this implies that the transformations that make all hypotheses nulls
make qWY

H (G, S, α) a consistent estimator of (an upper bound to) the FWER.

29

An e�cient application of the WY procedure AWY is not straightforward; in fact,
it requires to compute qWY

H (G, S, –) over a large set {g (S) : g œ G} of resampled
datasets and, for each one of them, to solve an optimization over the hypothesis H;
when H is large and complex, as in Significant Pattern Mining, it is not possible to
compute maxHœH

Ó
T̂ H (S)

Ô
by enumerating H exhaustively, and smarter strategies

have to be devised. We will discuss such ideas in Section 2.3.

2.2.4 Controlling other Error Rates

As we discussed in the previous Section, rigorous guarantees on the discovery of false
positives is critical in many applications. While in many settings it is crucial to avoid
any false discovery by controlling the FWER, in other cases it may be preferable to
tolerate a larger, but still controlled, number of false discoveries if this leads to an
higher number of overall discoveries and, consequently, to higher power and a lower
false negative rate. To this aim, more permissive error rates have been proposed; we
briefly introduce them here, and postpone formal definitions to later Sections.

The Generalized Family-Wise Error Rate (g-FWER) (Lehmann and Romano,
2012) is an extension of the FWER, whose aim is to bound the probability that at
least g false discoveries are in the output; when g = 1, the g-FWER reduces to the
FWER. Another fundamental measure is the False Discovery Rate (FDR) (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001), the expected proportion
of false discoveries over the set of overall discoveries. An alternative to the FDR
is the False Discovery Proportion (FDP) (Romano et al., 2006a; Lehmann and Ro-
mano, 2012; Romano et al., 2006b), defined as the probability of rejecting a set of
hypothesis with a fraction of false discoveries higher than ’, for some ’ œ [0, 1]. While
the g-FWER requires to fix g a priori, that may not be simple to do, a bound on the
FDR (or the FDP) gives more flexibility as it adapts to the number of overall discov-
eries: it is more permissive (allowing more false discoveries) when many hypothesis
can be rejected, and more restrictive otherwise.

Controlling such more permissive Error Rates in Significant Pattern Mining is
a challenge not yet addressed by available methods. We discuss in Chapter 3 how
a simple modification of WY permutation testing yields an e�cient and powerful
procedure that controls the g-FWER and the FDP .

2.3 Significant Pattern Mining

LAMP: Tarone’s correction for Significant Pattern Mining

LAMP (Terada et al., 2013a) is the first method that combined the correction of
Tarone (1990) in the context of Multiple Hypothesis Testing for Significant Pattern
Mining. In particular, it exploits the following observations.

30

For a pattern P , recall from Section 2.1.1 the definitions of the support zP
S1 in

the set of samples S1 and the support zP
S in all samples S. Here we remark that

the p-value pF

HP
(S) for P from Fisher’s exact test, defined in Section 2.2.1, can be

expressed as a function pP

1
zP

S1

2
of zP

S1 only, as the marginals
1
zP

S , n1, n
2

are fixed by
design:

pF

HP
(S) =

ÿ

a:h(a,P,S)Æh(zP

S1 ,P,S)

h (a, P , S) = pP

1
zP

S1

2
. (2.4)

The fact that marginals are fixed implies that the domain of pP (·) is finite, since

zP
S1 œ

Ë
žP

S1 , ẑP
S1

È
, with

žP
S1 = max

Ó
0, n1 ≠

1
n ≠ zP

S

2Ô
,

ẑP
S1 = min

Ó
n1, zP

S

Ô
.

This observations implies the existence of a minimum attainable p-value Â
1
zP

S

2
, which

depends on zP
S only, as n1, and n are fixed for all patterns. Â

1
zP

S

2
is computed

considering the most biased cases in equation 2.4:

Â
1
zP

S

2
= min

Ó
pP

1
žP

S1

2
, pP

1
ẑP

S1

2Ô
.

For a significance threshold ”, we denote the set of testable patterns T (”) w.r.t. ” as

T (”) =
Ó
P : Â

1
zP

S

2
Æ ”, P œ L

Ô
.

as the set of patterns that have a chance of being significant when their p-values
is compared to ”. The correction procedure of Tarone in the context of Significant
Pattern Mining can be adapted, resulting in the following procedure:

Let ”ú = max

I
” : ” Æ –

|T (”)|

J
. Output all P œ T (”ú) : pP

1
zP

S1

2
Æ ”ú .

However, computing |T (”)| is not straightforward as Â
1
zP

S

2
is not antimonotonic in

zP
S , and therefore it does not enjoy the computational advantages of methods designed

for Frequent Pattern Mining we discussed in Section 2.1.2. To address this issue, the
authors of LAMP noted that Â (x) is non-increasing for x < n1 and minimized

at x = n1; thus, they defined the monotone version Â̂ (x) (non-increasing for all
x œ [1, n]) of Â (x) as follows:

Â̂
1
zP

S

2
=

Y
]
[

Â
1
zP

S

2
, if zP

S Æ n1,

Â (n1) , otherwise.

31

This allows to define the set of testable patterns T̂ (”) w.r.t. ” and Â̂(·) as

T̂ (”) =
Ó
P : Â̂

1
zP

S

2
Æ ”, P œ L

Ô
´ T (”) .

If we denote ◊” as

◊” = min
;

x

n
: Â̂ (x) Æ ”

<
,

then, it holds
T̂ (”) = FP (L, S, ◊”) .

The equivalence of T̂ (”) with the set of Frequent Patterns FP (L, S, ◊”) is the key that
allowed LAMP to combine Tarone’s correction with existing e�cient and optimized
methods for Frequent Pattern Mining. The resulting LAMP correction to bound the
FWER below – is:

Let ”ú = max

I
” : ” Æ –

|FP (L, S, ◊”)|

J
. Output all P œ FP (L, S, ◊”ú) : pP

1
zP

S1

2
Æ ”ú.

The computation of ”ú was performed by guessing multiple values of ◊” in the first
version of LAMP (Terada et al., 2013a) and computing |FP (L, S, ◊”)| for each guess;
since repeating this operation is expensive, a more refined approach, that performs
only one depth first branch-and-bound enumeration of L was proposed by Minato
et al. (2014).

As we will discuss in the next Section, the monotone lower bound function Â̂ (·) to
p-values is also useful for embedding the Westfall-Young (WY) permutation procedure
in Significant Pattern Mining.

WY permutation testing for Significant Pattern Mining

In this Section we present the state-of-the-art methods to perform the WY correction
procedure for Multiple Hypothesis Testing in Significant Pattern Mining.

Denote with G a set of m permutations of the labels of S, wher g (S) is a permuted
sample with g œ G. To compute the significance threshold ”ı, it is required to evaluate,
for each g œ G, the minimum p-value pg over all patterns P œ L computed on g (S),
defined as

pg = min
Ó
pF

HP
(g (S)) : P œ L

Ô
.

Then, ”ı corresponds to the –-quantile of the set {pg : g œ G}.

The first method that e�ciently applied the WY permutation testing procedure to
Significant Pattern Mining is FastWY (Terada et al., 2013b), later refined by Terada
et al. (2015). The idea of FastWY is to compute each minimum p-value pg separately,
avoiding to enumerate all patterns P œ L. To do so, FastWY explores L in a
branch-and-bound fashion; let p̃ be the value of pg that is known at a given point of
the enumeration, with p̃ Ø pg. FastWY uses the function Â̂ (·) to prune portions of

32

L containing patterns that are not enough frequent in g (S) to yield p-values smaller
than p̃. Denote a pattern P1 and a child pattern P2 of P1, with, by definition,
zP1

S Ø zP2
S . We may observe that

Â̂
1
zP1

S

2
> p̃ =∆ Â̂

1
zP2

S

2
Ø Â̂

1
zP1

S

2
> p̃ Ø pg .

This means that if P1 is untestable w.r.t. p̃, because Â̂(zP1
S) > p̃, then any child P2

of P1 is untestable, since Â̂(zP2
S) > p̃, and therefore can be excluded from the search

of pg.

While drastically more e�cient than a “naïve” implementation of the WY proce-
dure, FastWY may still be computationally demanding in some cases. A method
called WYlight (Llinares-López et al., 2015) was proposed to address this issue.
WYlight focuses on computing exactly only the –-quantile of the set of minimum
p-values {pg : g œ G}: Llinares-López et al. (2015) acknowledged that only the –-
quantile is really needed to test the significance of the patterns with guaranteed
FWER Æ –, while the other minimum p-values can be ignored, as they are more
expensive to compute. For this reason, WYlight has been shown to be more e�cient
than FastWY both in terms of running time and memory.

In addition to the contributions for Significant Pattern Mining mentioned above,
recent work has extended the extraction of Statistically-sound Patterns (Hämäläinen
and Webb, 2019) in other directions, for example searching for statistical depen-
dency rules between itemsets and items (Hämäläinen, 2012), or using an holdout
approach (Webb, 2007) and layered critical values (Webb, 2008) for correcting for
Multiple Hypothesis Testing.

2.4 Statistical Learning Theory

As we discussed, Pattern Mining is a task of Knowledge Discovery and Data Mining
that aims at detecting meaningful patterns in data. In many situations, the true goal
of the analysis is not to discover interesting structures of the data itself, but rather
to study the underlying, and often unknown, process that generated it: our aim is
to understand some of its characteristics such that, possibly, we may be able to say
something meaningful about future observations.

When describing Significant Pattern Mining, we implicitly followed this direction,
in the sense that our main goal was to provide probabilistic guarantees, under proper
assumptions, that the discovered patterns were truly significant with su�cient confi-
dence w.r.t. to the underlying distribution, and not on merely interesting on the data
by itself.

Statistical Learning Theory is an important branch of the theoretical foundations
of Machine Learning that aims at providing quantitative probabilistic guarantees on
the performances of learning algorithms. As we will discuss in the next Section, key

33

concepts of Statistical Learning Theory are of central importance in many applica-
tions, and are fundamental to study generalization properties of learning methods.

Analysis of random samples for Approximate Pattern Mining

In this work we are interested in the connection between concepts of Statistical Learn-
ing Theory and probabilistic bounds on the performance of randomized algorithms
for the analysis of samples for Pattern Mining. We will assume that the data S is a
sample from an unknown probability distribution µ. From the analysis of S, our goal
is to derive guaranteed conclusions about properties of µ. We are therefore interested
in the study of the sample complexity of Pattern Mining tasks, defined as the rela-
tionship between the size of the sample and the obtainable accuracy of the analysis
performed on it. As we discussed previously, there are two meanings of “sample” and
µ in this context; they can, as we argue, be treated in an unified way.

The first meaning is sample as a small random sample of a large dataset: since
mining patterns becomes more expensive as the dataset grows, it is reasonable to mine
only a small random sample that fits into the main memory of the machine. To obtain
desirable probabilistic guarantees on the quality of the approximation, one must study
the trade-off between the size of the sample and the quality of the approximation. We
will present many recently proposed methods based on key concepts from Statistical
Learning Theory, that obtained more favourable trade-o�s than comparable methods
based on other techniques.

The second meaning is sample as a sample from an unknown data generating
distribution: the whole data is seen as a collection of samples from an unknown
distribution, and the goal of mining patterns from the available dataset is to discover
knowledge about the distribution. This area is known as statistically-sound pattern
discovery (Hämäläinen and Webb, 2019), and, as we will see in the following Sections,
there are many di�erent flavors of it, such as Significant Pattern Mining, as we already
discussed.

As we already discussed, these two meanings of “sample” and distribution are only
apparently distinct.

2.4.1 Uniform Convergence

Before describing key concepts from Statistical Learning Theory are useful for Pattern
Mining applications, we define a fundamental concept in learning theory: uniform
convergence.

As in Section 2.1.1, we consider a set of real-valued functions F from a domain
X to an interval [a, b] µ R. We denote a sample S from a probability distribution µ,
with each s œ S obtained i.i.d. from µ. We denote the average value of a function

34

f œ F over samples s œ S as

af (S) =
1

n

nÿ

i=1

f (si) .

As we saw from Section 2.1.1, functions f œ F can be used to encode some notion of
interest for patterns of a language L, such as the frequency of a given pattern P in
S. Since S is a random sample from a distribution µ, another important quantity is
the expectation of f taken w.r.t. S:

S≥µ [f] = S≥µ [af (S)] ,

that can be interpreted as the “true” value of af (S) according to µ. A natural question
is how well af (S) approximates its expectation S≥µ [f]. We already know, from
classic asymptotic results (e.g., the Central Limit Theorem), that af (S) converges
to S≥µ [f] as n = |S| goes to infinity; we are, however, interested in quantifying
the rate of the convergence with finite-sample bounds. To do so, we denote the
Supremum Deviation D(F , S) as the maximum absolute di�erence between af (S)
and its expectation S≥µ [f], over all f œ F :

D(F , S) = sup
fœF

|af (S) ≠ S≥µ [f]| .

We define uniform convergence, for a given S and Á, as having D(F , S) Æ Á; that
is, all estimates af (S) are uniformly close to (i.e., within Á from) their true values

S≥µ [f]. Equivalently, uniform convergence implies simultaneous bounds on the
expected values of f œ F from their estimates. Our goal is to derive functions
d (F , S, ”) that upper bounds D(F , S) with confidence ” such that, with probability
Ø 1 ≠ ” over S,

D(F , S) Æ d (F , S, ”) ,

possibly exploiting our knowledge of F and information obtainable from S.

As we will see in Chapter 5, Chapter 6, and Chapter 7, probabilistic bounds on
the largest error of the empirical averages are typically obtained by adding to the
empirically estimated error a term that depends on the complexity of the functions.
Both distribution-free concepts of complexity, and distribution and data-dependent
complexities, have been proposed as breakthroughs with great success for this prob-
lem.

A distribution-free complexity captures the expressive power of functions, inde-
pendently of the distribution that generates the data; for example, the VC dimen-
sion (Vapnik and Chervonenkis, 1971) is a combinatorial notion of complexity that
measures the capacity of sets of binary functions to partition in all possible subsets
a set of input points of a given size. We will define it more formally and use it to
analyze an algorithm based on random sampling in Chapter 5.

35

As distribution-free complexities need to account for worst-cases instances, data-
dependent complexities use, instead, the available data to directly measure the expres-
siveness of class of functions of interest; for this reason, such measures often provides
sharper results. One of the most interesting notions of data-dependent measure of
complexity of sets of functions is the Rademacher Complexity (Shalev-Shwartz and
Ben-David, 2014; Mitzenmacher and Upfal, 2017), extensively studied in the con-
text of classification and uniform convergence by Koltchinskii and Panchenko (2000),
Bartlett et al. (2002), Bartlett and Mendelson (2002) and others. We formally define
the Rademacher Complexity, and other related quantities, in Chapter 6 and Chap-
ter 7.

2.5 Approximate Pattern Mining

The idea of mining a small random sample of a large dataset to speed up the pat-
tern extraction step was proposed for the case of itemsets by Toivonen (1996) shortly
after the first algorithm for the task had been introduced. The trade-o� between
the sample size and the quality of the approximation obtained from the sample has
been progressively better characterized in successive works by Chakaravarthy et al.
(2009) and Pietracaprina et al. (2010), with significant improvements by Riondato
and Upfal (2014, 2015) due to the use of concepts from Statistical Learning The-
ory, such as the aforementioned VC dimension and Rademacher Complexity. Similar
concepts were also applied to mining approximate interesting subgroups by Riondato
and Vandin (2018), while Servan-Schreiber et al. (2018a) and Santoro et al. (2020)
obtained bounds on the (empirical) VC dimension and Rademacher averages for se-
quential patterns.

In the context of Statistically-sound Pattern Mining (Hämäläinen and Webb,
2019), Kirsch et al. (2012) develop an algorithm to discover Significant Frequent
Itemsets w.r.t. a probabilistic model, where each item is inserted independently at
random in transactions; Riondato and Vandin (2014) introduce the problem of find-
ing True Frequent Itemsets, i.e., the itemsets that are frequent w.r.t. the unknown
distribution using empirical VC dimension. We discuss this specific application in
more detail in Chapter 6, while in Chapter 4 we see how uniform convergence, ob-
tained though bounds on the Rademacher Complexity, can be embedded in Significant
Pattern Mining to discover significant patterns with bounded FWER.

36

Chapter 3

Efficient Mining of the Most
Significant Patterns with
Permutation Testing

37

3.1 Introduction

Significant Pattern Mining is an extension of Frequent Pattern Mining in which each
transaction is assigned a binary class label and the goal is to identify patterns having
significant association with one of the class labels. Significance is commonly assessed
using a statistical test (e.g., Fisher’s exact test, defined in Section 2.2.1), that provides
a p-value quantifying the probability that the association observed in real data arises
due to chance alone.

As we discussed in Section 2.2, one of the critical issues in Significant Pattern Min-
ing is the Multiple Hypothesis Testing Problem, due to the huge number of patterns
appearing in large datasets. Standard methods to correct for Multiple Hypothesis
Testing by controlling the Family-Wise Error Rate (FWER), such as the Bonferroni
correction (Section 2.2.3) are often too conservative for Significant Pattern Mining.
To cope with this issue, we described, in Section 2.3, the breakthrough work by Ter-
ada et al. (2013a), that proposes LAMP, the first method to identify significant
patterns based on the work by Tarone (1990) to discard large amounts of patterns
that cannot reach statistical significance, called untestable. Subsequent work by Mi-
nato et al. (2014) has improved the search strategy employed by LAMP to identify
testable patterns. Even so, such methods su�er from limited power, since they do
not account for the dependencies between the patterns.

Recently, methods based on the more powerful Westfall-Young (WY) permutation
procedure have been proposed (described in detail in Section 2.2), first by Terada et al.
(2013b) with FastWY and then by Llinares-López et al. (2015) with Westfall-Young
light (WYlight for short). These methods, presented in Section 2.3, mine several
permuted datasets to identify a threshold such that all patterns with p-value below
the threshold can be flagged as statistically significant while controlling the FWER.
Such methods achieve a higher power than methods based on Bonferroni correction,
including LAMP, and the state-of-the-art, WYlight, has proved to be more e�cient
than FastWY also in terms of runtime and memory.

However, the extraction of significant patterns from large datasets is still challeng-
ing, with three crucial issues that are not addressed by currently available methods.
First, in several cases the dependency among patterns leads to a huge number of
statistically significant patterns even after multiple hypothesis correction. A common
approach (used, e.g., by Terada et al. (2013b) and Llinares-López et al. (2015)) to
partially alleviate this problem is to consider only closed patterns (Han et al., 2007),
discarding patterns with redundant information content in terms of appearance in the
dataset and of association with the class label. Even with this restriction the number
of significant patterns can be extremely large and when this happens one would like
to focus on the most significant ones, without resorting to filtering strategies after
the expensive extraction of all significant patterns has been performed. A second and
related issue is that current methods work by first identifying the exact corrected
threshold for statistical significance, and only subsequently mining the real dataset:

38

when the number of significant patterns is huge, one would like to focus on the most
significant ones without the burden of computing the exact significance threshold.
Third, all methods may need to process several untestable patterns to identify the
correct threshold for significance, resulting in a extremely large running time in par-
ticular for datasets with many low frequency patterns. These issues make current
methods impractical in many cases, as shown by our experimental evaluation.

3.1.1 Contributions

In this work we focus on the problem of mining the most statistically significant
patterns while rigorously controlling the FWER of the returned set of patterns. In
particular, in analogy with frequent pattern mining approaches, we focus on extract-
ing the Top-k Statistically Significant Patterns. This problem is more challenging
than the extraction of Top-k Frequent Patterns, given that statistical significance
does not enjoy the anti-monotonicity property w.r.t. to pattern frequency. In this
regards, our contributions are:

• we formally define the problem of mining Top-k Statistically Significant Pat-
terns. Our definition allows to properly control the size of the output set while
providing guarantees on the FWER of the output.

• we design a novel algorithm, called TopKWY, for the problem above, which
provides guarantees on the FWER by using the Westfall-Young permutation
testing procedure. TopKWY adapts to the distribution of significant patterns:
it reports all significant patterns when their number is small, while it outputs
only the most significant patterns when the number of significant patterns is
huge. TopKWY is based on a exploration strategy similar to the one used
by TopKMiner (Pietracaprina and Vandin, 2007), an e�cient algorithm to
identify the top-k frequent patterns. We prove that the use of such strategy
guarantees that, in contrast to previous approaches, TopKWY will never ex-
plore untestable patterns.

• we introduce several bounds to prune untestable patterns that improve over
the bound introduced by LAMP and used in WYlight as well. We show that
such bounds can be e�ectively used within the exploration strategy employed
by TopKWY and that it provides a significant speed-up for real datasets.

• we present variants of TopKWY to mine the Top-k Significant Patterns with
control of the Generalized Family-Wise Error Rate (g-FWER) or the False
Discovery Proportion (FDP), which trade an increase in the size of the output
with a (potentially) higher, but still controlled, number of false discoveries.
These variants lead to an increase in the statistical power in situations where
the number of results reported controlling the FWER is low.

39

• we conduct an extensive experimental evaluation of the use of TopKWY to
extract significant itemsets and subgraphs, showing that TopKWY allows the
extraction of statistically significant patterns for large datasets while having
reasonable memory requirements. Surprisingly, for many datasets TopKWY

improves over the state-of-the-art even when it is used to find all statistically
significant patterns.

3.2 Background and Problem Definition

3.2.1 Significant Pattern Mining

In this Section we refresh the notation introduced in Section 2.1.1. Let the dataset
D = {s1, s2, . . . , sn} be a multiset of n samples, where each s œ D is an element from
a domain X . Each sample s is composed by a pair (t, ¸) such that t is a transaction
from its domain T , and ¸ is a binary label ¸ œ {¸0, ¸1}. We denote by n1 the number
of samples with label ¸1, and, without loss of generality, we assume that n1 is the
minority class, i.e. n1 Æ n/2. We define a pattern P as an element of a language L,
and for each transaction t we define the binary function fP : X æ {0, 1} such that
fP = 1 if P is contained in the transaction t of the corresponding sample s = (t, ¸)
and fP = 0 otherwise. For example: in the case of itemsets, both T and L are given
by the set of (non-empty) subsets of a universe of binary features I; for subgraphs,
T is the set of vertex-labelled graphs, while P is an element of L with the constraint
that P is connected. Given a pattern P , we define its support zP

D as the number of
transactions containing P , that is zP

D =
qn

i=1 fP (si). We denote by zP
D1 the number

of labelled ¸1 transactions containing P . In this work we assume that patterns enjoy
the anti-monotonicity property, such that for any child pattern P Õ of P (i.e., P µ P Õ)
the support zP Õ

D of P Õ is zP Õ

D Æ zP
D. This holds for itemsets, subgraphs, and many other

kind of patterns.

The objective of Significant Pattern Mining is to find patterns with significant sta-
tistical association to one of the two labels. In order to quantify the statistical associa-
tion, a rigorous statistical test is performed. The distribution of a pattern over the sets
of samples with di�erent labels is described by a 2◊2 contingency table (see Table 2.1
in Section 2.2.1). To test the association of P w.r.t. the labels, we compute a p-value
pHP

(S) that, under the null hypothesis HP = “ P is not associated to the labels ”,
quantifies the probability that the observed association is only due to chance. Fisher’s
exact test (Fisher, 1922), defined in Section 2.2.1, is often used to compute such p-
value. Here we remark that the p-value pF

HP
(S) for P from Fisher’s exact test, defined

in Section 2.2.1, can be expressed as a function pP

1
zP

D1

2
of zP

D1 only, as the marginals

40

1
zP

D, n1, n
2

are fixed by design:

pF

HP
(S) =

ÿ

a:h(a,P,S)Æh(zP

D1 ,P,S)

h (a, P , S) = pP

1
zP

D1

2
. (3.1)

3.2.2 Multiple Hypothesis Testing

As we discussed in Section 2.2, when only one pattern P is tested, it can be flagged
as significant when its p-value is smaller than a significance threshold – fixed a priori.
This guarantees that the probability of a false discovery (i.e., reporting P as significant
when it is not) is bounded by –. However, the expected number of false discoveries,
for fixed –, linearly grows with the size of the set of tested hypotheses H. Therefore,
an appropriate Multiple Hypothesis Testing correction of the significance threshold
needs to be performed in order to obtain rigorous guarantees in terms of the number
of false associations reported in output.

One common approach is to perform a correction in order to bound the Family-
Wise Error Rate (FWER), which is defined as the probability of reporting at least
one false positive (see also Section 2.2.2). Many methods are available for controlling
the FWER, such as the Bonferroni and Bonferroni-Holm corrections, and the LAMP

method, based on Tarone’s correction, all defined in Section 2.2.2. However, as we
discussed, all such methods may be conservative as they do not take into account the
dependencies between patterns.

To solve this issue, the Westfall-Young (WY) permutation testing procedure can
be used. As we discussed in Section 2.2.3, the WY procedure directly estimate the
significance threshold to use for control FWER below – as the –-quantile of minimum
p-values over a set of m resampled datasets. In our case, every resampled dataset
is given by randomly permuting the labels of samples of D. Let G be a set of m
permutations G =

Ó
g(j), j œ [1, m]

Ô
sampled uniformly at random from the set of all

possible permutations of n labels G, and let g(j) (D) be the resampled version of D
according to g(j). Let the set of hypotheses H = {HP : P œ L} corresponding to

patterns P œ L. Then, let p
(j)
min be the minimum p-value over all P œ L computed on

g(j) (D):

p
(j)
min = min

Ó
pF

HP

1
g(j) (D)

2
: P œ L

Ô
.

The corrected significance threshold ” (–) to use, according to the WY correction
procedure, to bounds the FWER Æ – is then given by ” (–) = qWY

H (G, D, –), where

” (–) = qWY

H (G, D, –) = max

Y
]
[x :

1

m

mÿ

j=1

1

Ë
p

(j)
min Æ x

È
Æ –

Z
^
\ .

As we discussed, when m is su�ciently large (typically in the order of 103 or 104) the
estimate is usually very accurate.

41

The WY method does not provide an e�cient way of computing the set {p
(j)
min}m

j=1

of minimum p-values. Therefore, a naïve implementation requires to exhaustively test
all the hypothesis on all the m permuted datasets. For significant pattern mining,
this means exploring all the patterns appearing in a dataset; since this operation
can require exponential time, it is even more challenging to repeat the entire process
m times, once for every permuted dataset. Terada et al. (2013b) proposed the first
e�cient implementation, FastWY, of the WY procedure for significant pattern min-
ing. The identification of ” (–) is based on a decremental search scheme, which starts
with processing the set of Frequent Patterns FP (L, D, ◊) with minimum frequency
threshold ◊ = 1 and iteratively decrements ◊ until an appropriate condition, guaran-
teeing that all values {p

(j)
min}m

j=1 have been computed, is achieved. Such condition is

based on the lower bound function Â̂ : [1, n] æ [0, 1] to p-values from Fisher’s exact

test, introduced in LAMP, that we described in Section 2.3; such function Â̂ (x) is
non-increasing in x œ [1, n], such that

Â̂
1
zP

D

2
Æ pF

HP
(D) ,

for all possible labelling of D (with n1 labels ¸1). A more recent method by Terada
et al. (2015), HWY, exploits a more e�cient mining strategy and parallel computing
to accelerate FastWY.

Llinares-López et al. (2015) proposed WYlight to e�ciently compute the optimal
value ” (–) of the corrected significance threshold for controlling FWER Æ –. The
main improvement of WYlight is to avoid the exact computation of all the elements
of the set {p

(j)
min}m

j=1 and to only produce its exact lower –-quantile. This result is
obtained by maintaining an estimate of the –-quantile that is only lowered through
the mining process. WYlight performs a depth first exploration of the patterns’ search
tree (Han et al., 2000) in which each pattern has support less or equal than its parent,
and performs only one pattern mining instance, testing one pattern at a time and
computing its p-value on all the m permuted datasets at the same time. WYlight
maintains a support threshold ‡, initialized at 1, that is raised during the execution of
the algorithm, pruning patterns whose p-values cannot be in the lower –-quantile of
{p

(j)
min}m

j=1. This is achieved by using the lower bound Â̂(‡) on the minimum obtainable
p-value for patterns of support Æ ‡, which allows to e�ectively prune the search tree.

However, during the computation of ” (–), some patterns with support < Â̂
≠1

(” (–))
may be processed, due to the depth first procedure considered by WYlight. After
computing ” (–), an additional mining of D is performed to extract the significant
patterns with p-value Æ ” (–). As shown in (Llinares-López et al., 2015), WYlight
significantly improves over FastWY in particular in terms of memory requirements,
allowing the extraction of significant patterns from datasets larger than the ones that
can be analyzed by FastWY.

42

3.2.3 Problem Definition

For a dataset D and the set of permutations G, let ”(–) = qWY

H (G, D, –) the threshold
obtained through the WY permutation procedure when the bound on the FWER
is set to –. Let p(k) be the p-value of the k-th pattern with patterns sorted by
(increasing) p-value. Given a dataset D and user-provided values k and –, our goal
is to extract the set TSP (D, k, –) of Top-k Statistically Significant Patterns with
FWER Æ –, defined as:

TSP (D, k, –) =
Ó
P : pP

1
zP

D1

2
Æ min

Ó
”(–), p(k)

ÔÔ
.

Note that when less than k patterns have p-value below ”(–), TSP (D, k, –) contains
all such patterns. In addition, according to our definition more than k patterns may
be in TSP (D, k, –), in case many have the same p-value p(k). We restrict our interest
only to closed patterns, i.e. patterns whose children have support strictly lower than
the one of the pattern itself, as non-closed patterns have the same p-values. Since
the definition of closed pattern does not depend on the labels, restricting to closed
patterns does not bias any analysis.

The following result establishes the required guarantees on false positives in TSP (D, k, –)
and it is a direct consequence of the fact that TSP (D, k, –) is a subset of all the pat-
terns that would be reported using the WY method.

Lemma 3.2.1. The set TSP (D, k, –) has FWER Æ –.

3.3 TopKWY Algorithm

In this section we present our algorithm TopKWY for mining the set TSP (D, k, –).
We first present its main strategy (Section 3.3.1) that can be applied to any pattern
mining problem. We then analyze TopKWY showing theoretical evidence of the
e�ciency of its strategy (Section 3.3.2) and introduce improved bounds on the mini-
mum attainable p-value used by TopKWY (Section 3.4). We also present extensions
of TopKWY (Section 3.5) to control the Generalized FWER, to control the False
Discovery Proportion (FDP), and to employ di�erent exploration strategies on the
tree of candidate patterns. Finally, we introduce some crucial implementation details
(Section 3.6), focusing on the problem of mining significant itemsets and subgraphs.

3.3.1 Main Strategy

TopKWY combines two key ideas. First, it maintains an estimate of ”k =
min{”(–), p(k)} that is updated during the exploration of the patterns and maintains
a corresponding minimum support threshold ‡ = Â≠1(”k) that is raised during the ex-
ploration of the patterns. Analogously to the strategy employed by WYlight (Llinares-
López et al., 2015) the updates of ”k and ‡ depend on –, but in addition TopKWY

43

updates them also depending on the p-values of elements of TSP (D, k, –). Second,
the search tree of all possible patterns is explored in order of decreasing support,
analogously to the strategy used by TopKMiner (Pietracaprina and Vandin, 2007)
for mining top-k frequent patterns, which guarantees that only patterns of support
greater or equal to the final value of ‡ (i.e., Â≠1(”k)) are explored.1

TopKWY is described in Algorithm 1. In line 1, the threshold ”k is initialized
to – (the threshold with no correction for multiple hypothesis) and ‡ is initialized

accordingly to Â̂
≠1

(”k). All the elements of the set of minimum p-values {p
(j)
min}m

j=1

observed on the permuted datasets are initialized to 1 (their maximum achievable
value) in line 2. The labels of the permuted datasets are generated in line 3. The
pattern exploration is organized using a priority queue Q where each entry represents a
pattern P , with key equal to the support zP

D and value representing all the information
needed by the algorithm regarding P (e.g., zP

D1) and also with relevant information
regarding the parent p (P) of pattern P in the search tree (see Section 3.4 for more
details). Q is initialized in line 4 and stores the frontier of unexplored patterns,
keeping them accessible by non-increasing support. TopKWY stores patterns having
p-value Æ ”k in a priority queue R, keeping them accessible by non-decreasing p-value.
This is the set of candidates for TSP (D, k, –), which are collected and produced in
output as soon as possible during the exploration. This allows to reduce the memory
requirements and to start analyzing the results during the exploration, without the
need of waiting for the algorithm’s termination. The first patterns in Q are obtained
by the expand(P,Q) operation on line 5 called on the empty pattern P = ÿ: this
procedure generates all patterns children of the pattern P in the search tree (and their
corresponding projected datasets), and inserts the ones of support Ø ‡ in the queue
Q. The details of e�cient implementations of expand are described in Section 3.6.
The while loop (lines 6-22) implements the main step of the exploration strategy:
the most frequent pattern P , its support zP

D, its support zP
D1 in the minority label set

D1 of D, and the relevant information for its parent p (P) are extracted from Q in

line 7. If the p-value pP = pP

1
zP

D1

2
of P is pP Æ ”k, then P is inserted in R as a

potential result in line 11. In line 8, ‡Õ is set to zP
D, which is an upper bound to the

support of all elements stored in Q. This quantity is used to identify patterns surely
in the set TSP (D, k, –) without waiting for the final corrected significance threshold
”k to be found, done in lines 12 and 13. k is updated accordingly, reducing it to the
number of patterns which still need to be found. In order to compute the corrected
significance threshold ”k, the algorithm computes the p-values of pattern P in the
m permuted datasets, updating the values of {p

(j)
min}m

j=1 if needed. This operation
is done with the test procedure. Similarly to WYlight, our algorithm processes all
the m permutations for every pattern P at once, computing only the needed exact

1This assumes that the search tree for patterns has the property that the children of a node have
support not greater than the node itself, which is a usual property of pattern mining algorithms (Han
et al., 2007; Uno et al., 2005; Nijssen and Kok, 2004) and is required by WYlight as well.

44

lower quantile of the set of minimum p-values of the WY permutations, and not the
minimum p-values of every permuted dataset. Di�erently from WYlight, we use an
improved lower bound ÂÕ(zP

D, p (P)) to the minimum attainable p-value of P to decide
(in line 14) whether to test P on the permuted datasets or not (see Section 3.4). This
allows to skip the expensive counting of the supports of P on the set of samples
g(j) (S) with permuted labels, for several patterns P .

The significance threshold ”k is decreased during the exploration in two cases:
when the estimated FWER for the current threshold ”k increases above – (line 16),
or when more than k patterns with p-value Æ ”k are observed (line 18). The corre-
sponding minimum support threshold ‡ is then updated accordingly in line 19. The
correctness of these steps are proved in Section 3.3.2. After the update of ”k and ‡,
elements which have become untestable are removed from Q in line 20, and elements
which are not significant are removed from R in line 21. The current pattern P is
expanded in line 22, and all its children having support Ø ‡ are inserted into Q. The
exploration ends when Q gets empty. When this happens, all elements still contained
in R with p-value at most ”k are reported as significant in line 23.

The strategy employed by TopKWY can be adapted to incrementally update k
for the same –, providing an interactive mining process. This can be achieved by
providing a maximum value kı in input to Algorithm 1 to definitely prune untestable
patterns, but freezing the computation after k patterns with p-value below the current
value of Â̂(‡) have been found. If the user wants to increase k, the exploration can
continue without restarting the entire mining instance.

3.3.2 Analysis

Some important properties of TopKWY algorithm can be formally stated. The first
regards the correctness of the algorithm.

Theorem 3.3.1 (Correctness of TopKWY). TopKWY outputs the set
TSP (D, k, –) of Top-k Significant Patterns with FWER Æ –.

Proof. The correctness of TopKWY follows from two observations: first, the final
threshold ”k obtained by the algorithm is correct; second, only patterns with p-value
less or equal than the final value of ”k are produced in output. We start by proving the
first statement. ”k is initialized to the value –, that is the uncorrected threshold for
significance and is always Ø ”(–). ”k is decreased (and the corresponding minimum
support threshold ‡ is increased) during the exploration in two cases. The first case
(line 16) is when the estimated FWER for the current threshold ”k increases above –.

This means that more than –m p-values {p
(j)
min}m

j=1 are below the current significance

threshold ”k = Â̂(‡), which allows for too many false positives, and the FWER is
not correctly controlled to the level –. ”k is then updated to the highest value of ” for
which the estimated FWER is Æ –. The second case is when more than k patterns
with p-value Æ ”k are observed (line 18). In this case, let p̃ be the highest p-value

45

Algorithm 1: TopKWY

Input: Transaction dataset D with class labels c, number of permutations m,
target FWER α, number of results k.

Output: Set of Top-k Significant Patterns with FWER Æ α.

1 δk Ω α; σ Ω ψ̂
≠1

(δk);

2 p
(j)
min Ω 1, ’j œ [1, m];

3 G Ω sample m permutations from G;
4 Q, R Ω empty priority queues;
5 expand(ÿ , Q);
6 while Q ”= ÿ do

7 (P, zP
D, zP

D1 , p (P)) Ω Q.removeMax();
8 σÕ Ω zP

D;

9 pP Ω pP

1
zP

D1

2
;

10 if pP Æ δk then

11 R.insert(P, pP);

/* O = patterns surely in TSP (D, k, α) */

12 O Ω {P œ R : pP < ψ̂(σÕ)}; produce O in output;
13 R Ω R \ O; k Ω k ≠ |O|;
14 if ψÕ(zP

D, p (P)) Æ δk then

15 test(P , {p
(j)
min}m

j=1) ;

/* update δk based on estimate of δ(α) */

16 δk Ω min{δk, max{δ : 1
m

qm
j=1 1

Ë
p

(j)
min Æ δ

È
Æ α}} ;

/* update δk based on top-k patterns in R */

17 p(k) Ω k-th largest p-value in R;

18 δk Ω min{δk, p(k)};
/* update σ */

19 σ Ω ψ̂
≠1

(δk);
/* remove untestable patterns from Q */

20 remove from Q all patterns P with zP
D < σ;

/* remove non-significant patterns from R */

21 remove from R all patterns P with pP > δk;
22 expand(P , Q);

23 produce in output {P œ R : pP Æ δk};

46

of the k most significant patterns observed up to this point. Then, all patterns of

support < Â̂
≠1

(p̃) cannot result in a p-value < p̃ and therefore we need to consider

(both in D and in the permuted datasets) only patterns of support at least Â̂
≠1

(p̃).

That is, the minimum support threshold ‡ can be safely increased to Â̂
≠1

(p̃) with a
corresponding significance threshold p̃. When ”k is last updated, its value will then
be equal to the minimum between ”(–) and p(k).

We now prove the second statement. This is trivially correct for patterns produced
in output by line 23. We then consider patterns produced in output in line 12.
Note that the pattern P at a given iteration has support ‡Õ and the search strategy
employed by TopKWY guarantees that all patterns with support > ‡Õ have already
been explored. Therefore, from this point on the algorithm will never encounter p-
values < Â̂(‡Õ) and therefore the corrected significance threshold ”k will be Ø Â̂(‡Õ).

Thus all patterns in R with p-value < Â̂(‡Õ) can be safely produced in output (and
removed from R).

The following result provides theoretical guarantees on which patterns will be
explored by TopKWY, providing analytical evidence of the e�ciency of our strategy.

Theorem 3.3.2 (Optimality of TopKWY). TopKWY expands only patterns of

support Ø Â̂
≠1

(”k).

Proof. Similarly to the proof of Thm. 3.3.1, when a pattern P of support ‡Õ is ex-
tracted from Q, we are guaranteed that the algorithm will never encounter p-values
< Â̂(‡Õ) again. Therefore the corrected significance threshold ”k will be Ø Â̂(‡Õ), that

is ‡Õ Ø Â̂
≠1

(”k) (i.e., P is testable).

We now show that in a simplified model for how p-values are obtained, there exists
a family of datasets for which the expected di�erence between the number of patterns
explored by a DFS strategy and the number of patterns explored by TopKWY is
exponential in the size of the dataset. In the simplified model, the p-values obtained by
random permutations are uniformly distributed in (0, 1]. (Note that we do not assume
independence among p-values from di�erent itemsets.) Consider now the family of
datasets Dn = {t1, . . . , tn} defined on the set of (binary) features I = {i1, . . . , in}
where tj = I \{ij}. Moreover, half of transactions in Dn have label ¸0 while the other
half have label ¸1.

Theorem 3.3.3. Consider a dataset Dn from the family described above. Let Á be
a constant such that 0 < Á Æ 1

2
and Án œ N. Assume that the choice of – and k

is such ”(–) = Â̂(Án) =
1

n
2

Án

2
/

1
n
Án

2
, and that m random permutations are used. Let

X be the difference between the number of patterns explored by a DFS strategy and
the number of patterns explored by TopKWY in the simplified model above. Then
E[X] = Ω (2Án/m).

47

Proof. Note that in such dataset all patterns are closed. Let W be the set of patterns
explored by TopKWY. The DFS strategy has to explore all the patterns in W (since
they are testable). We now show that it will also explore, in expectation, Ω (2Án/m)
additional patterns, that proves the statement.

It is easy to show that since Án œ N and ”(–) =
1

n
2

Án

2
/

1
n
Án

2
, the set of testable

patterns W is given by all patterns of size Æ Án. For each pattern Pi and each j with
1 Æ j Æ m, let Xij be the random variable that is 1 if Pi has p-value Æ ”(–) in the
j-th permuted dataset, and 0 otherwise. Note that Xij is a Bernoulli random variable
of parameter ”(–), for all i and j. Let Y be the number of p-values lower than ”(–),
assuming that the DFS has explored Án + N patterns. The expectation of Y is

[Y] =

S
U

Án+Nÿ

i=1

mÿ

j=1

Xij

T
V =

Án+Nÿ

i=1

mÿ

j=1

[Xij] = (Án + N)m”(–). (3.2)

Note that requiring [Y] Ø 1 provides a lower bound to the number of p-values

needed for the DFS to establish that ”(–) =
1

n
2

Án

2
/

1
n
Án

2
, since –m p-values below such

threshold must be observed.
Let v = Án. The condition [Y] = (Án + N)m”(–) Ø 1 implies

(Án + N) Ø 1

m”(–)
=

1

m

1
n
v

2

1
n
2
v

2 =
1

m

n!(n
2

≠ v)!

(n
2
)!(n ≠ v)!

=
1

m

(n ≠ v)!
rv≠1

j=0(n ≠ j)

(n ≠ v)!

(n
2

≠ v)!

(n
2

≠ v)!
rv≠1

j=0(n
2

≠ j)

=
1

m

v≠1Ÿ

j=0

(n ≠ j)

(n
2

≠ j)
Ø 1

m

v≠1Ÿ

j=0

2 =
2v

m
=

2Án

m

or, equivalently

N Ø 2Án

m
≠ Án œ Ω (2Án/m) .

Note that since the set of testable patterns includes all patterns of size Æ Án, all
the Ω (2Án/m) patterns explored by the DFS after exploring the first Án patterns and
before observing the first p-value below ”(–) have size > Án and, thus, are not in W ,
which proves the statement.

Compared to a depth first search (DFS) exploration strategy (i.e., the one em-
ployed by WYlight), the best first exploration strategy followed by TopKWY has
the additional costs required by operations involving data structures R and Q. R can
be implemented as a heap of entries (p, ¸p), where the key p is a p-value and the value
¸p is a list of patterns which contains all the patterns with the same p-value p. With
such implementation, operations involving R (lines 11, 12, 17, and 21) can be per-
fomed with O (log k) operations, since R will contain at most k entries. Analogously,

48

Q can be implemented as a heap of entries (x, ¸x), where the key x is a support and

the value ¸x is a list of patterns with the same value of Â̂(x) (that is, having the same
support x). With such implementation, operations involving Q (lines 7, 20, and 22)
can be performed with O (log n) operations (n is the number of transactions in D).
Alternatively, R and Q can be implemented so that all operations require time O (1)
by storing references to lists ¸p and ¸x in arrays of size O (n2) (since the p-value of P is
a function of the support zP

D of P and the number zP
D of transactions with label ¸1 and

containing P) and O (n), respectively. (Note that this additional space requirement
is not always impractical, since O (nm) space is needed to store the permuted labels.)
We also note that computing the improved lower bound ÂÕ(zP

D, p (P)) (line 14), has

the same cost as computing the lower bound Â̂(zP
D) to the p-value used in WYlight

(see Section 3.4). Even with the additional costs required by R and Q, the best
first strategy of TopKWY leads to significant improvements in running time, as
demonstrate by our experimental evaluation (Section 3.7).

3.4 Improved Bounds on Minimum Attainable

p-value

In this section we prove novel and e�ciently computable lower bounds on the mini-
mum p-value achievable by a pattern P that are tighter than the ones introduced by
LAMP (Terada et al., 2013a) and are of particular interest in the context of WY per-
mutation testing. These bounds are based on information computed when processing
a parent pattern Y of P ; in the case of itemsets, Y is a parent of P (or, alternatively,
P is a child of Y) when Y µ P. Such bounds can be used to skip the expensive pro-
cessing of the permutations for P when they ensure that it is not possible to improve
the current estimate of the corrected significance threshold. While we present these
bounds as a critical component of TopKWY, they may be of independent interest
since can be employed in WYlight or similar algorithms to speed-up WY permutation
testing.

Let the pattern P be a child of Y , that is P ∏ Y . Then zY
D Ø zY

D1 Ø 0 and
zY

D Ø zP
D. Since the set of transactions (i.e., the conditional dataset) containing P is

a subset of the set of transactions containing Y , we can bound the support zP
D1 of P

in the set of samples D1 with the following relations:

max(zY
D1 ≠ (zY

D ≠ zP
D), 0) Æ zP

D1 Æ min(zP
D, zY

D1).

Considering the m permuted class labels, let zY
j be the number of transactions

containing Y with label ¸1 (i.e., zY
j is the value of zY

D1 when the class labels are given
by the j-th permutation). An analogous relation holds between zP

j and zY
j , for all j:

max(zY
j ≠ (zY

D ≠ zP
D), 0) Æ zP

j Æ min(zP
D, zY

j).

49

An immediate consequence of these bounds on zP
j are lower bounds to pP

1
zP

j

2
.

Lemma 3.4.1. Let z

wP
j = max(zY

j ≠ (zY
D ≠ zP

D), 0) and z

wP
j = min(zP

D, zY
j). Then, for all

j œ [1, m],

pP

1
zP

j

2
Ø min

Ó
pP

1
z

wP
j

2
, pP

1
‚zP

j

2Ô
.

This result suggests that if we have already computed zY
j , ’j œ [1, m] while process-

ing the permuted labels of the conditional dataset of Y , we could skip the expensive
computation of zP

j , and, therefore, pP

1
zP

j

2
, ’j œ [1, m], in situations when the lower

bounds to pP

1
zP

j

2
are greater than the current value of the corrected significance

threshold. In the following, we present a bound valid for all pP

1
zP

j

2
simultaneously,

that is a function of only the minimum and maximum elements of zY
j , instead of all

of them. Let
zY

min = min
Ó
zY

j : j œ [1, m]
Ô

and
zY

max = max
Ó
zY

j : j œ [1, m]
Ô

.

Then, ’j œ [1, m] we bound zP
j as:

zP
min = max(zY

min ≠ (zY
D ≠ zP

D), 0) Æ zP
j Æ min(zP

D, zY
max) = zP

max .

This allows to compute a bound ÂÕ(zP
D, zY

D, zY
min, zY

max) to the minimum attainable p-
value of P that is tighter than Â(zP

D):

ÂÕ(zP
D, zY

D, zY
min, zY

max) = min
Ó
pP

1
zP

min

2
, pP

1
zP

max

2Ô
. (3.3)

The bound in Equation 3.3 is evaluated in constant time, assuming pP (x) is pre-
computed for all valid values of x, as done in WYlight and in TopKWY to e�ciently
implement the test function. The following are simple consequences of Lemma 3.4.1
and the fact that zP

min and zP
max are always equally or more tight than the naive bounds

on zP
D1 assumed by Â(zP

D).

Lemma 3.4.2. min
Ó
pP

1
zP

j

2
: j œ [1, m]

Ô
Ø ÂÕ(zP

D, zY
D, zY

min, zY
max) Ø Â(zP

D).

If for the current value of the significance threshold ”k it holds that
ÂÕ(zP

D, zY
D, zY

min, zY
max) > ”k, then we can infer, without computing {zP

j }m
j=1, that none

of the m p-values of P in the permuted datasets will improve the estimate of the
current lower-quantile of the set {p

(j)
min}m

j=1 and therefore cannot contribute to the
computation of ”(–) or ”k. That is, all the computation on the permuted datasets
can be skipped for the current pattern P . For all children of P , if P is not tested the
bounds zP

min and zP
max can be propagated to compute bounds also on their class distri-

bution; if P is tested, then we propagate the actual minimum and maximum values
of {zP

j }m
j=1. In Algorithm 1 we use the bound above with the values propagated by

50

the parent p (P) of P and use ÂÕ(zP
D, p (P)) to highlight this fact. This optimization

is particularly e�ective when patterns have a high degree of correlation, i.e., when
patterns share many transactions.

Note that even if P does not need to be tested, descendants of P may need to be
tested. However, using the bound ÂÕ(·) we can quickly identify cases in which none
of the descendants of P need to be explored and therefore the entire subtree can be
pruned. In particular, since all the descendants of P will have support Æ zP

D ≠ 1,
considering zP

D1 (i.e., the number of transactions containing P and with label ¸1 in
the dataset D), the algorithm can find min{ÂÕ(i, zP

D, zP
min, zP

max) : i œ [‡, zP
D ≠ 1]}, and

if such value is > ”k we can prune all the search subtrees rooted in the children of
P . This optimization is part of the expand operation in TopKWY. These novel
bounds consider the information of one common ancestor pattern to avoid useless
computations for many of its children: in practice, the number of tests to perform
across the permuted datasets can be significantly smaller than the number of testable
patterns, leading to a significant computational speed-up. The approach above can
extended to bound min

Ó
pP

1
zP

j

2
: j œ [1, m]

Ô
by considering the information com-

puted on the intersection of the conditional datasets of any pair of patterns P and
Y , even if P ”∏ Y .

Another possible extension of the techniques we derive in this section is to consider
not only one pair (zY

min, zY
max), but v pairs (zY,i

min, zY,i
max), for all i œ [1, v]: for each i, we

define the set Ji as a subset of {1, . . . , m}, with
tv

i=1 Ji = {1, . . . , m}. For all i, we
bound all values zY

j for all j œ Ji with z
Y,i
min and zY,i

max. If we define

z
Y,i
min = min

Ó
zY

j : j œ Ji

Ô
, zY,i

max = max
Ó
zY

j : j œ Ji

Ô
,

z
P,i
min = max

Ó
zY,i

max ≠ (zY
D ≠ zP

D), 0
Ô

, zP,i
max = min

Ó
zP

D, zY,i
max

Ô
,

then we simply obtain, for all i,

min
Ó
pP

1
zP

j

2
: j œ Ji

Ô
Ø min

Ó
pP

1
z

P,i
min

2
, pP

1
zP,i

max

2Ô
.

This provides a trade-o� between the memory (required to store the 2v bounds on
the expanded nodes of the search space) and the time to evaluate the bound (that is
linear in the number v of sets instead of constant), and the time the algorithm saves by
skipping computations of the permutations, that is a direct consequence of how tight
the bounds on the p-values are; in fact, the permutations that have to be processed
are only the ones belonging to the sets Ji such that min

Ó
pP

1
z

P,i
min

2
, pP

1
zP,i

max

22
is not

higher than the current value of the significance threshold.

51

3.5 Extensions of TopKWY

3.5.1 Controlling the Generalized FWER

While the main focus of TopKWY is to control the FWER of the output,
a simple modification provides an algorithm to control the generalized FWER
(g-FWER (Lehmann and Romano, 2012)). The g-FWER is defined as the proba-
bility that at least g false positives are reported in output. In several applications one
may be willing to tolerate a small amount of false discoveries in order to increase the
power of detecting significant patterns, provided the number of false discoveries can
be controlled. In such cases methods to discover significant patterns while controlling
the g-FWER are preferred to methods controlling FWER. Let FP be the number
of false positives reported by a certain procedure A using D, then,

g-FWER = Pr (FP Ø g) .

Let g-FWER(”) be the g-FWER obtained using ” as corrected significance threshold,
that is by flagging as significant patterns with p-value Æ ”. Note that the Westfall-
Young procedure can be used to estimate g-FWER(”) as

g-FWER(”) =
1

m

mÿ

j=1

[p(j)
g Æ ”]

where p(j)
g is the g-th smallest p-value (over all patterns) in the j-th permuted dataset.

Algorithm 1 can be simply modified to obtain the set of Top-k Significant Patterns
with g-FWER Æ –. To achieve this, it is su�cient to perform the following changes:
replace test(P , {p

(j)
min}m

j=1) (line 15) with test(P , {p(j)
g }m

j=1), where test(P , {p(j)
g }m

j=1)
computes the p-values of pattern P in the m permuted datasets and updates the values
of {p(j)

g }m
j=1 if needed; replace line 16 with “”k Ω max{” : g-FWER(”) Æ –}”. Let

TopKWY-g be such modified algorithm. We have the following.

Lemma 3.5.1. TopKWY-g outputs the set TSP (D, k, –) of Top-k Significant Pat-
terns with g-FWER Æ –.

The proof is analogous to the proof of Theorem 3.3.1.

In addition to finding the top-k most significant pattern with bounded g-FWER,
with g provided in input, TopKWY-g can be adapted to a di�erent scenario. In
this case, one may want to retrieve the k most significant patterns, using the random
permutations to obtain a rigorous estimate of how many of such results are likely
to be false positives. More formally, for k and – provided by the user, one may be
interested in computing the quantity gı defined as

gı = min
Ó
g : g-FWER(pk) Æ –

Ô
,

52

that is the mininum value of g such that the g-FWER is controlled when the sig-
nificance threshold is p(k), that is the highest p-value of the set of top-k results we
extracted. gı provides useful knowledge on the quality of the set of top-k results
provided to the user. In this situation the user is not required to fix a-priori g before
examining the data. Further simple modifications to TopKWY-g are su�cient to
obtain such variant, that are: remove line 16 and replace line 23 with “produce in
output {P œ R : pP Æ ”k} and gı = min

Ó
g : g-FWER(pk) Æ –

Ô
”. Let TopKWYı

be such modified algorithm; we obtain the following guarantees.

Lemma 3.5.2. TopKWYı outputs the set of patterns
Ó
P : pP

1
zP

D1

2
Æ pk

Ô
of Top-k

Significant Patterns and gı = min
Ó
g : g-FWER(pk) Æ –

Ô
.

3.5.2 Bounding the Proportion of False Discoveries

The False Discovery Proportion (FDP) (van der Laan et al., 2004; Lehmann and
Romano, 2012) of a set of rejected hypotheses V is defined as the ratio FD/|V|,
where FD is the (unknown) number of false discoveries œ V ; note that when |V| = 0,
the FDP is 0. Let ’, – œ (0, 1) and k, g œ [1, +Œ). Define the set V = {(P , pP)}
containing pairs where P is a pattern and pP its p-value in D, such that all the
following conditions hold:

max {pP : (P , pP) œ V} Æ ”ı,

”ı = max {” : g-FWER(”) Æ –} ,

g Æ ’|V|, |V| Æ k.

It is possible to prove that a set V satisfying the above conditions has size at most
k and FDP Æ ’ with probability Ø 1 ≠ –. Simple modifications to TopKWY-g
lead to an algorithm that outputs V with the aforementioned guarantees: remove
lines 12 and 13, replace line 16 with “”k Ω max{” : (Âk’Ê)-FWER(”) Æ –}”
and line 23 with “produce in output V(”ı) = {P œ R : pP Æ ”ı} where
”ı = max {” : (Â’|V(”)|Ê)-FWER(”) Æ –}”. Let such algorithm be TopKWY-’.
We obtain the following result.

Lemma 3.5.3. TopKWY-’ outputs the set of patterns V of size at most k with
False Discovery Proportion Æ ’ with probability Ø 1 ≠ –.

3.5.3 Alternative Exploration Strategies

While TopKWY builds on examining the search tree of all possible patterns in or-
der of decreasing support, i.e. with a best first strategy analogous to the one used by
TopKMiner (Pietracaprina and Vandin, 2007) for mining top-k frequent patterns,
it can also be modified to e�ciently obtain the set TSP (D, k, –) using di�erent ex-
ploration strategies, e.g. a level-wise exploration of the search tree (performed, e.g.,

53

by the Apriori algorithm (Agrawal and Srikant, 1994) for itemsets) or a depth first
search on the tree of all possible patterns (Uno et al., 2005; Nijssen and Kok, 2004).

This can be achieved by setting ‡Õ to max
Ó
zP

D : P œ Q
Ô

(instead that to zP
D) in line 8

of Algorithm 1 and by an appropriate choice of the priority for patterns in the pri-
ority queue Q, that stores the frontier of unexplored patterns: to obtain a level-wise
exploration for itemsets, the priority of pattern P is set to the total number |I| of
items minus |P|; to obtain a depth first search, the priority of patterns P is set to its
level in the search tree.

While for strategies other then the best first one the optimality (Theorem 3.3.2)
is not guaranteed, the possibility to employ other strategies allows to obtain the Top-
k Significant Patterns starting from e�cient implementations of frequent pattern
mining algorithms that build on such strategies for various types of patterns (e.g.,
subgraphs (Nijssen and Kok, 2004)).

3.6 Implementation Details

An e�cient implementation of expand and test procedures is critical for the e�ciency
of TopKWY. This crucially depends on the representation of D and the permuted
class labels, and both depend on the type of patterns of interest. In Sections 3.6.1
and 3.6.2 we now describe in more details the implementations for significant itemsets
mining and for significant subgraphs mining; in particular, for significant itemsets we
discuss the implementation of TopKWY as described in Section 3.3.1 as well as
the variant, described in Section 3.5.3 of TopKWY based on the DFS strategy,
which we denote by TopKWY-dfs; for significant subgraphs we only consider the
implementation of TopKWY-dfs.

3.6.1 Significant Itemset Mining

Our implementation of TopKWY is based upon TopKMiner (Pietracaprina and
Vandin, 2007), which mines top-k frequent closed itemsets. As for TopKMiner,
TopKWY uses a PatriciaTrie (Zandolin and Pietracaprina, 2003) to store a compact
representation of the dataset D in which transactions sharing the same prefix are
represented by the same node in the tree. The conditional dataset of (i.e., the set
transactions containing) an itemset Y is stored as a list dY of nodes of the PatriciaTrie.
An additional counter is added to every node, representing how many transactions
with prefix represented by the node have label ¸1. The same is done for the m
permutations adding m counters to each node in the trie. Since the PatriciaTrie is
built adding one transaction at a time, a technique similar to reservoir sampling is
used to generate the m permuted labels of every transaction. Let r be a vector of
length m, with all components r

(j), j = 1, . . . , m of r initialized to n1, the number of
transactions to assign labels ¸1 for every permutation of index j. For every transaction
ti, with i œ [1, n], the j-th label of ti is set as ¸1 with probability r

(j)/(n ≠ i + 1), ¸0

54

otherwise. If ¸1 is chosen, then r
(j) is decreased by one. This method guarantees that

the total number of transactions with label ¸1 will be n1 for every j œ [1, m] and that
the labels of the j-th permuted dataset are obtained by a uniformly chosen random
permutation of the class labels.

Our implementation of TopKWY-dfs is based upon LCM 3 (Uno et al., 2005),
which mines frequent closed itemsets using a depth first strategy. The third version
of LCM combines various techniques and data structures to accelerate the generation
and the computation of the frequencies of frequent closed itemsets.

3.6.2 Significant Subgraph Mining

Our implementation of TopKWY-dfs relies on Gaston (Nijssen and Kok, 2004) to
mine significant subgraphs. Gaston first considers simple patterns, such as paths and
trees, since e�cient techniques for isomorphism checking are available for such acyclic
structures. Only after this first phase, denoted as “quickstart”, general subgraphs,
containing cycles, are evaluated. The search strategy of Gaston relies on a depth
first enumeration of subgraphs. We do not provide a subgraph variant of TopKWY

because no competitive algorithms based on a best first exploration strategy are
currently available (Wörlein et al., 2005; Nijssen and Kok, 2006).

3.7 Experimental Evaluation

We implemented and tested TopKWY and TopKWY-dfs for the extraction of sig-
nificant itemsets and significant subgraphs. Our experimental evaluation has three
goals. First, to assess the number of significant patterns found in real datasets. Sec-
ond, to evaluate the performance of TopKWY: since no other tool for the extraction
of Top-k Significant Patterns exists, we compare TopKWY and TopKWY-dfs with
the state-of-the-art tool for significant pattern mining, WYlight (Llinares-López et al.,
2015). While the techniques introduced in this work can be extended to other mul-
tiple hypothesis testing procedures, such as LAMP (Terada et al., 2013a), we do
not compare with LAMP or derived strategies (Minato et al., 2014) since Llinares-
López et al. (2015) have shown that WY permutation testing results in higher power.
Third, to assess the impact of our improved bounds and implementation choices on
performances.

In Section 3.7.1 we describe the implementation and computational environment
for our experiments. In Section 3.7.2 we describe the datasets we used. In Sec-
tion 3.7.3 we describe the experiments we have performed and our choice of parame-
ters. Finally, in Section 3.7.4 we report and discuss the results of our experiments.

55

Table 3.1: Itemset Datasets statistics. For each dataset the table reports: the number
|D| of transactions; the number |I| of items; the average transaction length avg;
the fraction n1/n of transactions with label ¸1; the number SP (0.05) of significant
patterns for FWER = 0.05.

dataset |D| |I| avg n1/n SP (0.05)

svmguide3(L) 1,243 44 21.9 0.23 36,736

chess(U) 3,196 75 37 0.05 > 107

mushroom(L) 8,124 118 22 0.48 71,945

phishing(L) 11,055 813 43 0.44 > 107

breast cancer(L) 12,773 1,129 6.7 0.09 6

a9a(L) 32,561 247 13.9 0.24 348,611

pumb-star(U) 49,046 7117 50.5 0.44 > 107

bms-web1(U) 58,136 60,978 2.51 0.03 704,685

connect(U) 67,557 129 43 0.49 > 108

bms-web2(U) 77,158 330,285 4.59 0.04 289,012

retail(U) 88,162 16,470 10.3 0.47 3,071

ijcnn1(L) 91,701 44 13 0.10 607,373

T10I4D100K(U) 100,000 870 10.1 0.08 3,819

T40I10D100K(U) 100,000 942 39.6 0.28 5,986,439

codrna(L) 271,617 16 8 0.33 4,088

accidents(U) 340,183 467 33.8 0.49 > 107

bms-pos(U) 515,597 1,656 6.5 0.40 26,366,131

covtype(L) 581,012 64 11.9 0.49 542,365

susy(U) 5,000,000 190 43 0.48 > 107

3.7.1 Implementation and Environment

We implemented TopKWY in C++ as an extension of the TopKMiner algo-
rithm (Pietracaprina and Vandin, 2007). For TopKWY-dfs we modified the C im-
plementation of WYlight (based on LCM (Uno et al., 2005) and Gaston (Nijssen
and Kok, 2004))2. All implementations were compiled with gcc 4.8.4. Our experi-
ments have been performed on a 2.30 GHz Intel Xeon CPU machine with 512 GB of
RAM, running on Ubuntu 14.04. Our code and scripts to replicate all experiments
described in the paper are available at https://github.com/VandinLab/TopKWY.

2Available at https://github.com/fllinares/wylight

56

https://github.com/VandinLab/TopKWY
https://github.com/fllinares/wylight

Table 3.2: Subgraph Datasets statistics. For each dataset the table reports: the
number |D| of graphs; the average number of nodes |Vavg|; the average number of
edges |Eavg|; the fraction n1/n of graphs with label ¸1; the number SP (0.05) of
significant patterns for FWER = 0.05. The number in brackets report the maximum
number of vertexes of the explored subgraphs, that has been limited to allow practical
running times for the experiments.

dataset |D| Vavg Eavg n1/n SP (0.05)

MUTAG 188 17.93 19.79 19.79 70,184

BZR(30) 405 35.75 38.36 0.21 80,425

COX2 467 41.22 43.45 0.22 > 106

ENZYMES(10) 600 32.63 62.14 0.17 112,158

DHFR(30) 753 42.43 44.54 0.61 > 106

DD 1,178 284.32 715.66 0.58 80,256

AIDS(30) 2,000 15.69 16.20 0.2 566,727

NCI1 4,110 29.87 32.30 0.5 > 106

NCI109 4,127 29.68 32.13 0.5 > 106

Mutagenicity 4,337 30.32 30.77 0.44 > 106

Tox_21_AHR(30) 8,169 18.09 18.50 0.12 98,398

3.7.2 Datasets

For itemsets mining, we performed our experiments using 19 datasets: the 10 largest
ones used in (Llinares-López et al., 2015) and available at FIMI’043 and UCI4, all the
datasets used in (Komiyama et al., 2017), available from the libSVM repository5, and
4 additional ones (a9a, bms-web1, accidents, susy) available from libSVM, FIMI’04,
and SPMF6. The datasets’ statistics are in Table 3.1. For each dataset, we also note
if it already contained labels (L) or not (U). For unlabeled datasets we simulated a
typical analysis requiring to find itemsets correlated with a given item (feature) in
a dataset. For every unlabeled dataset we selected the single item whose frequency
is closer from below to 0.5, removed the corresponding item from every transaction,
and use its appearance to define the target label. The reported ratio n1/n for the
minority class of unlabeled datasets refers to the output of this labeling process. For
real-valued features we obtained two bins by thresholding at the mean value and using
one item for each bin (analogously to Komiyama et al. (2017)).

For subgraphs mining, we considered 11 of the largest datasets with binary target

3http://fimi.ua.ac.be
4https://archive.ics.uci.edu/ml/index.php
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
6http://www.philippe-fournier-viger.com/spmf

57

http://fimi.ua.ac.be
https://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.philippe-fournier-viger.com/spmf

labels available from a repository7 of benchmark datasets; most of them are also
analysed by Llinares-López et al. (2015). The datasets’ statistics are in Table 3.2. In
some cases, we bounded the maximum number of vertexes of the subgraphs that are
explored by Gaston, in order to obtain practical running times for the experiments.
Such limits are reported in the parenthesis after the dataset’s name in Table 3.2.

3.7.3 Parameters and Experiments

For TopKWY and TopKWY-dfs we considered k = 10i for i œ [1, 6]. For all the
datasets we analyzed, we ran TopKWY and TopKWY-dfs, for all such values of
k, and WYlight. We fixed the number of permutations m = 104, shown to be a good
choice by Llinares-López et al. (2015), and fixed the commonly used value – = 0.05
as FWER threshold. For the comparison between TopKWY, TopKWY-dfs, and
WYlight, we repeated every experiment 10 times, recording the running time and peak
memory provided by the operating system; we report the averages over the 10 runs,
standard deviations are negligible and therefore not shown. The measures reported
for TopKWY include the time and space to retrieve statistically significant patterns
and write them on file, while for TopKWY-dfs and WYlight we only report the
time and space needed to find the optimal significance threshold, which corresponds
to the first step of the method, therefore reporting a lower bound to their runtimes.
We stopped the execution of an algorithm if it did not conclude after (at least) one
month of computation; for these cases, the indicated time and peak memory are lower
bounds. For experiments testing the impact of parameters or implementation choices
on TopKWY we used only one execution.

3.7.4 Results

Itemsets Mining

Table 3.1 reports the number of significant patterns for – = 0.05 in the datasets
we considered, obtained by running TopKWY (with k = +Œ) or WYlight. For
some datasets we stopped the computation after 1 month, so only a lower bound is
available. In most cases, the number of significant patterns is extremely large: for 11
out of 19 datasets there are > 5 ◊ 105 significant patterns and in 7 datasets there are
> 107 significant patterns. Therefore a direct way to limit the number of significant
patterns in output, as provided by the Top-k Significant Patterns, is required.

Figure 3-1 compares the running time of TopKWY and WYlight. Note that for
the 11 datasets in which the number of significant patterns is < 106, TopKWY with
k = 106 identifies all the significant patterns and produces the same patterns found
with WYlight. For 15 out of 19 datasets, TopKWY (with k = 106) is faster than
WYlight by a factor at least 2. For 9 datasets TopKWY is faster than WYlight by

7https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

58

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Figure 3-1: Running time for TopKWY (with various values of k) and WYlight.
The blue horizontal line corresponds to 1 month of computation.

59

Figure 3-2: Peak memory for TopKWY (with various values of k) and WYlight.

60

at least one order of magnitude, and for 6 datasets WYlight requires > 11 days while
TopKWY identifies up to the 106 most significant patterns within one day and the
104 most significant ones in few hours. Even for the datasets where TopKWY iden-
tifies all significant patterns, producing the same patterns as WYlight, TopKWY

is always faster than WYlight, with up to one order of magnitude speed-up in some
cases. This shows that TopKWY is an e�ective tool to identify all significant pat-
terns whenever possible and enables the analysis of significant patterns when their
number is extremely high. For datasets in which the number of significant patterns is
> 106 we ran TopKWY with k = Œ to compare its strategy for finding the corrected
significance threshold for all significant patterns with the one used by WYlight. The
runtime of TopKWY is always lower than the runtime of WYlight by at least 20%,
with a significant speed-up in some case (e.g., for chess, TopKWY terminates in 2
days, while WYlight needs more than 10 days). These results show that TopKWY

outperform the state-of-the-art even for this task.

Figure 3-2 compares the peak memory required by TopKWY and WYlight.
Given the best first strategy employed by TopKWY, we expected its memory re-
quirement could be higher than WYlight, that follows a depth first strategy. Inter-
estingly, only in three cases TopKWY required 1 order of magnitude more memory
than WYlight and in both such cases the requirements are reasonable (Æ 20 GBs) for
current machines. However, in such cases WYlight required > 11 days to complete,
while TopKWY terminated in < 1 day, showing that, by using a reasonably larger
amount of memory than WYlight, TopKWY renders the identification of significant
patterns feasible. In all other cases the memory requirement of TopKWY is either
the same or within few GBs of WYlight. For some datasets TopKWY requires
significantly less memory than WYlight: surprisingly this happens for datasets (cod-
rna, covtypes) on which TopKWY reports the same significant patterns as WYlight
(i.e., all significant patterns). In some cases, memory usage decreases slightly when
k increases, due to our dynamical allocation of the p-values lookup table that may
require less space when the minimum support decreases.

We investigated the impact of our implementation choices on the memory re-
quirement of TopKWY (Figure 3-3). We compared the space required to store
the permuted labels on all the nodes of the PatriciaTrie used by TopKWY (see Sec-
tion 3.6.1) with the space required by storing the permuted labels for each transaction
(as done for example by WYlight). Since TopKWY stores, for each node of the Pa-
tricia Trie, a list of m values (i.e., the number of transactions with minority label
among the ones sharing the prefix corresponding to the node), one transaction may
have more than m values associated to its nodes. In most cases the space required
by the two methods is essentially the same, but in three cases the use of the Patricia
Trie corresponds to a significant reduction in the memory used. In particular, these
three cases are for datasets in which TopKWY identifies all the significant patterns
using less memory than WYlight, providing strong evidence of the importance of our
encoding of the permuted class labels.

61

Figure 3-3: Memory requirement for permuted class labels using PatriciaTrie and
permutation matrix.

62

Figure 3-4: Comparison between the number of tested patterns on the permuted
datasets by TopKWY and WYlight.

63

Figure 3-5: (a) Comparison between the running time of WYlight and the running

time of TopKWY using our improved bound ÂÕ(·) and the LAMP bound Â̂(·). (b)
Running time for di�erent values of – and m.

We compared the exploration strategies used by TopKWY and by WYlight by
recording the number of patterns they test (Figure 3-4), restricting to datasets in
which WYlight terminates. In all cases, TopKWY tests a lower number of patterns
than WYlight, with di�erences of almost two orders of magnitude for some datasets.
This shows the e�ectiveness of our exploration strategy and of our novel bounds ÂÕ(·)
(see Section 3.4) on reducing the number of tests to perform.

We then directly investigated the impact of our novel bounds on the runtime of
TopKWY. We compared the running time of WYlight with the running time of
two variants of TopKWY: one using our improved bound ÂÕ(·) and one using the

LAMP bound Â̂(·) (i.e., the same bound used by WYlight). The results for some
representative datasets are in Figure 3-5(a). The results for the other datasets are
similar. We observed that, for all datasets other than chess, the exploration strat-
egy employed by TopKWY to extract only the Top-k Significant Patterns already
provides a substantial (up to more than one order of magnitude) improvement in the
running time of TopKWY with respect to WYlight, even using the same LAMP

bounds. When our novel bound ÂÕ(·) is used in TopKWY we observe additional
speed-ups, for a total up to more than two orders of magnitude. Therefore, the re-
duction in the number of patterns that need to be tested on the permuted datasets,
obtained by the exploration strategy of TopKWY and our improved bound, is a
crucial component for the performance of TopKWY.

Finally, we assessed the impact of – and m on the running time of TopKWY

and WYlight on two representative datasets, cod-rna and accidents, which are rep-

64

Figure 3-6: Running time for TopKWY, TopKWY-dfs (with various values of k)
and WYlight. The blue horizontal lines corresponds to 1 month of computation.

resentative for the two scenarios of a small number of significant patterns (cod-rna)
and of a large number of significant patterns (accidents). In these experiments we
fixed k = 104. Figure 3-5(b) reports the results for cod-rna. Results for accidents are
not reported since the running time of accidents remained essentially the same for all
values of – and m. This means that for accidents using the bounds introduced in Sec-
tion 3.4 the computational e�ort is dominated by the pattern space exploration (and
not the evaluation of the permuted datasets): considering only the Top-k Significant
Patterns is therefore crucial to analyze such dataset. For cod-rna, we observe that
varying – has some but small impact on the runtime of both methods while there is
a linear dependence of the running time of WYlight on m and a similar but less pro-
nounced dependence of TopKWY. In all cases, TopKWY is faster than WYlight
(for accidents WYlight does not terminate within 1 month) showing the e�ciency of
TopKWY for di�erent ranges of the – and m parameters.

Comparison between Best First and Depth First strategies. We investigate
the impact of the best first strategy adopted by TopKWY on the computational
performances of the mining tasks. To do so, we compared TopKWY with Top-

KWY-dfs, the variant of TopKWY, which explores patterns in depth first order
(see Section 3.5.3). We ran TopKWY-dfs on the same set of experiments described
in Section 3.7.3. Figure 3-6 shows the running times of TopKWY, TopKWY-dfs,
and WYlight. We can clearly see that, for 9 datasets out of 19, there is a significant
di�erence in the running times of TopKWY and TopKWY-dfs: this means that,
in particular for smaller values of k, the exploration strategy is a critical compo-
nent of TopKWY. For accidents, one of the most challenging dataset to analyze,
both TopKWY-dfs and WYlight can not complete their execution in less than one
month, even for k = 10. Therefore, for such dataset the best first strategy adopted
by TopKWY is crucial.

65

Figure 3-7: Number of results found using TopKWY when controlling the g-FWER,
for various values of g, m = 104, k = 106, and – = 0.05.

Results for g-FWER We investigate the increase in statistical power of Top-

KWY when controlling the generalized-Family-Wise Error Rate (g-FWER) by an-
alyzing datasets described in Section 3.7.3 having less than 106 results for – = 0.05
when controlling the FWER. As we can see in Figure 3-7, for the breast-cancer
dataset the number of significant patterns increased by more then two orders of mag-
nitude as the value of g increases (i.e., when more false positives are allowed). Figure
3-8 show the running time of TopKWY when controlling the g-FWER at di�erent
values of g. As expected, the required time slightly increases but it stays practical
for all datasets. We do not compare with other methods since TopKWY is the first
algorithm to discover significant patterns with a rigorous control on the g-FWER.

In Table 3.3.a we show the computed values of gı by TopKWYı (see Section 3.5.1
for its definition) on the breast-cancer dataset for k œ {10, 102, 103, 104}. We can
see that TopKWYı is able to provide informative estimates of the quality of the
reported set of k most significant patterns, in terms of the minimum g such that the
g-FWER(pk) is Æ –, without the need of fixing g a-priori. In Table 3.3.b we show the
number of results found using TopKWY-’ for k = 104 on the breast-cancer dataset,

66

Figure 3-8: Running time for TopKWY when controlling the g-FWER, for various
values of g, m = 104, k = 106, and – = 0.05.

Table 3.3: a) Values of gı (second row of the Table) computed by TopKWYı for
di�erent values of k (first row of the Table) on breast-cancer dataset with m = 104 and
– = 0.05. b) Number of results |V| (second row of the Table) found by TopKWY-’
on breast-cancer dataset with m = 104, – = 0.05, and k = 104, for di�erent values of
’ (first row of the Table).

a)
k 10 102 103 104

gı 2 11 163 2396
b)

ζ 0.01 0.05 0.1 0.25

|V| 0 24 624 104

67

Figure 3-9: Running time for TopKWY-dfs (with various values of k) and WYlight
for significant subgraph mining. The blue horizontal line corresponds to 1 month of
computation.

varying ’ œ {0.01, 0.05, 0.1, 0.25}. From these results we can see that TopKWY-’ is
a very flexible tool to discover significant patterns with bounds on both the output
size and the maximum ratio of false discoveries, providing improved statistical power
in situations where the number of significant patterns when controlling the FWER
is very low. (We do not show the running times for TopKWYı and TopKWY-’
since those are very similar to the ones reported in Figure 3-8.)

Subgraphs Mining

We ran TopKWY-dfs on the datasets described in Section 3.7.2. Table 3.2 reports
the number of significant patterns for – = 0.05 in the datasets we considered, obtained
by running TopKWY-dfs (with k = +Œ) or WYlight. For some datasets we stopped
the computation after 1 month, so only a lower bound is available. In most cases, the
number of significant patterns is extremely large: for 6 out of 11 datasets there are
> 5 ◊ 105 significant patterns and in 5 datasets there are > 106 significant patterns.
This shows that a direct way to limit the number of significant patterns in output is
required for subgraphs mining as well.

We then compared the running time and memory requirement of TopKWY-

68

Figure 3-10: Memory usage for TopKWY-dfs (with various values of k) and WYlight
for significant subgraph mining.

69

dfs and of WYlight. Figure 3-9 compares the running times of TopKWY-dfs and
WYlight. As for itemsets mining, when the number of significant patterns is lower
than k, TopKWY-dfs finds all of them, obtaining the same output as WYlight. We
can see that TopKWY-dfs is, in all cases, faster than WYlight: for 9 datasets out
of 11 and for k = 106, TopKWY-dfs improves the running time by a factor at least
2. It is interesting to note that for 5 datasets the number of significant results is
< 106, therefore TopKWY-dfs is faster even if its output is the same of WYlight.
For 3 datasets the running time is reduced by more than two orders of magnitude, and
WYlight is not able to terminate in less than 1 month. We can observe that these three
datasets contains more than 106 significant results; this clearly shows that focusing
on the most significant patterns leads to significant computational advantages and
enables the analysis of such datasets.

Figure 3-10 compares the memory usage of TopKWY-dfs and WYlight. Both
algorithms are very memory e�cient and, while TopKWY-dfs usually requires more
memory than WYlight, the di�erence is small: for 7 of the 8 datasets where WYlight
terminates, TopKWY-dfs never requires more than 8% of the memory of WYlight,
and 23% in the case of MUTAG, where the di�erence is of few MBs. (For the three
datasets were WYlight does not terminate, we only report a lower bound to its mem-
ory usage.)

70

Chapter 4

Significant Pattern Mining with
Unconditional Testing

71

4.1 Introduction

The significance of a pattern in Significant Pattern Mining is commonly assessed
through Statistical Hypothesis Testing: a statistical test is used to obtain a p-value
that quantifies the probability that the association observed in the data is due to
chance. The most commonly used test to assess the association of a pattern with
class labels is Fisher’s exact test (Fisher, 1922). Fisher’s test is a conditional test: it
assumes that the data generating process only produces datasets in which both the
number of transactions with the same binary label and the number of transactions in
which the pattern appears are the same as in the observed dataset, i.e., it conditions
on the observed variables of interest.

In contrast, unconditional tests such as Barnard’s exact test (Barnard, 1945) as-
sume that the frequency of the pattern observed in the real dataset is (the realization
of) a random variable. Unconditional tests therefore assess the association between
a pattern and labels considering also scenarios (i.e., datasets) where the frequency
of the pattern is di�erent from what is observed in the real data. The computation
of the p-value for unconditional tests is usually more expensive than for conditional
tests, since one needs to explore the space of the possible values for nuisance param-
eters describing the (unknown) properties of the underlying process that generated
the data. In Significant Pattern Mining, the nuisance parameter of a pattern is the
probability that it appears in a transaction generated by the underlying process.

Conditional tests and unconditional tests are based on di�erent assumptions re-
garding how data is generated and collected, namely, whether the variables of interests
(e.g., patterns frequencies) would be the same in a di�erent repetition of the exper-
iment (conditional tests) or not (unconditional tests). To understand when the two
situations arise, consider for example the study of the appearance of (behavioral)
patterns (e.g., posting information regarding a specific topic) in members of two on-
line communities (defining the two classes). When deciding to collect the data (e.g.,
whether a user posted information on the topic or not), you may decide to stop once
enough members (overall) have posted about the topic. In this case the assumption
of conditional tests are met, since every repetition of the experiment would result in
the exact same number of appearances of the pattern. In a di�erent situation one
may instead decide to collect data for a fixed amount of time: the number of times
the pattern appears is, thus, not fixed, and would change among repetitions of the
experiment. In this scenario, unconditional tests better reflect the process with which
data is generated and collected.

In Data Mining, the latter scenario is far more common and natural than the
former: data is collected from two di�erent groups or conditions for some amount of
time, and then the data is analyzed. However, conditional tests such as Fisher’s are
commonly employed in such scenarios.

The popularity of Barnard’s test was hindered partially by Fisher’s criticism, and
partially by the excessive computational cost required by naïve implementations of

72

Figure 4-1: p-values from Fisher’s test (conditional) and Barnard’s tests (uncondi-
tional) vs. exact p-values under the unconditional null hypothesis. p-values of both
tests are displayed for all contingency tables with n = 104, n1/n = 0.25, f(P) = 0.1,
and all zP

D1 (see Section 4.2 for parameters’ definitions) and exact p-value Ø 10≠10.
The diagonal black line corresponds to a test p-value equal to the exact p-value. The
p-values from Fisher’s test are smaller than the exact p-values for many tables (the
values on the axes decrease toward the right and upwards) and may lead to di�erent
conclusions.

the test. We do not enter the debate on which of the two tests to use (Mehta and
Senchaudhuri, 2003; Boschloo, 1970; Yates, 1984; Berger, 1994; Choi et al., 2015), but
our results suggest that unconditional tests like Barnard’s exact test may be more
appropriate for Significant Pattern Mining. Rather, our work focuses on the compu-
tational aspects, and specifically in how to speed up the execution of the test. Our
work is similar, in spirit, to that of Hämäläinen (2016), who studied computationally
e�cient upper bounds to the p-value of Fisher’s test.

The di�erence between using conditional and unconditional tests is usually small
when testing the significance of a single pattern P : in this case one can flag P as
significant if its p-value is below a fixed threshold – with the guarantee that this
corresponds to a false discovery (i.e., reporting P as significant when it is not) is
bounded by –. The situation is dramatically di�erent in Significant Pattern Mining,
where a huge number of patterns appearing in the datasets are tested, resulting in a
Multiple Hypothesis Testing problem, as we discussed in Section 2.2. All the several
methods to correct for this issue we introduced in Section 2.2.2 require patterns to
have very small p-values in order to be flagged as significant. For patterns with very
small p-values, conditional tests and unconditional tests display strikingly di�erent p-
values (Figure 4-1), even if the size of the data is not small (i.e., when n = 104). This
discrepancy highlights the di�erence between imposing conditional and unconditional
assumptions, and shows that di�erent conclusions on the significance of the patterns

73

are very likely to be concluded. Vandin et al. (2015) observed similar discrepancies
for the log-rank test.

To the best of our knowledge, no practical method to identify significant patterns
with unconditional testing exists.

Contributions We present SPuManTE, the first e�cient algorithm for mining
significant patterns without conditioning on the observed values of the pattern fre-
quencies and while controlling the FWER. In detail, our contributions are the fol-
lowing.

• At the core of SPuManTE is ut, our novel formulation of an unconditional
statistical test for the significance of a single pattern. ut, being unconditional,
is more appropriate for Significant Pattern Mining. ut is, to our knowledge,
the first computationally e�cient unconditional test. To achieve this e�ciency,
it combines confidence intervals for the expected frequency of the pattern, with
deep insights on the computation of bounds on the p-value, and a smart strategy
to explore the space of contingency tables. ut’s usefulness extends beyond its
employment in SPuManTE, and may find applications in other Significant
Pattern Mining problems.

• SPuManTE controls the FWER at level –, for an user-specified – œ (0, 1).
To achieve this goal, we develop an e�cient way to compute a lower bound to
the p-value for ut, and use it by adapting the strategy used in LAMP (Terada
et al., 2013a). SPuManTE uses ut in combination with recently developed
bounds on the maximum deviation of the observed frequency of a pattern from
its expectation that hold simultaneously over all patterns (Riondato and Upfal,
2015), rather than having to expensively compute a di�erent confidence interval
for each pattern. To the best of our knowledge SPuManTE is the first algo-
rithm in which such uniform bounds have been used, and we believe that this
approach could be applied to other methods for Significant Pattern Mining.

• We evaluate SPuManTE on real datasets and compare its performance with
the state-of-the-art method LAMP (Terada et al., 2013a), based on Fisher’s
exact test. The results show that SPuManTE has high statistical power and
is faster than LAMP in particular for large datasets, due to the high number
of patterns that do not require the explicit computation of the p-value but can
be flagged as significant based on the confidence intervals alone.

4.2 Preliminaries

In this Section we refresh the notation introduced in Section 2.1. Let I be an al-
phabet of ordered items, and let {¸0, ¸1} be two (class) labels. A dataset D =
{(t1, ¸1), (t2, ¸2), . . . , (tn, ¸n)} is a multiset of |D| = n pairs (ti, ¸i) where ti ™ I is

74

a transaction, and ¸i œ {¸0, ¸1} is a label, for 1 Æ i Æ n. The multiset of the first ele-
ments of the pairs in D is naturally partitioned into two multisets D0 and D1, where
Di contains all and only the first elements of the pairs in D with second element ¸i,
for i œ {0, 1}. We define ni = |Di|, with n1 + n0 = n.

A pattern (or itemset) P is a set of items, P ™ I. We say that P appears in a
transaction t if P ™ t, and say that t contains P . The support zP

Di (resp. frequency
fi(P)) of P in Di is the number (resp. fraction) of transactions in Di that contain P ,
for i œ {0, 1}. We denote as zP

D (resp. f(P)) the number (resp. fraction) of transactions
in the pairs of D that contain P . Thus, fi(P) = zP

Di/ni, i œ {0, 1}, and f(P) = zP
D/n.

For any pattern P , these quantities (and their complements) are summarized in a 2×2
contingency table such as the one in Table 2.1. We conveniently define the quantities
ži,x = max{0, ni ≠ (n ≠ x)} and ẑi,x = min{ni, x}, that define the range [ži,x, ẑi,x] of
the admissible values of zP

Di for any P with zP
D = x.

In Significant Pattern Mining, the dataset D is assumed to be the outcome of
a stochastic process that generates sets of pairs (t, ⁄). Di�erent assumptions can
be made on this process (details in Sections 4.2.1 and 4.2.2). Independently on the
assumptions, for any pattern P ™ I, we let fiP,i be the probability that a pair (t, ⁄)
generated by the process is such that P ™ t and ⁄ = ¸i, for i œ {0, 1}.

The key task in Significant Pattern Mining is to identify the patterns that exhibit
a significant association with one of the two labels, i.e., for which fiP,0 ”= fiP,1. Given
a single pattern P , assessing the statistical significance of an association corresponds
to using the observed contingency table for P to evaluate whether it supports the null
hypothesis HP : fiP,0 = fiP,1, i.e., whether the observed data D is likely to have been
generated from a process satisfying HP .

All available information about P is contained in the contingency table, thus
we cannot be deterministically certain in our assessment of the significance of the
association of P with one label: due to the randomness involved in the data generation
process, there is the possibility of flagging the association as significant when it is not,
i.e., of making a false discovery.

The assessment of whether the null hypothesis for P is supported by the observed
contingency table for P involves computing a p-value pP . This quantity is defined
as the probability, w.r.t. the data generating distribution and under the assumption
that the null hypothesis is true, of observing a contingency table for P that is as
or more extreme (i.e., has equal or lower probability of being observed) than the
one that is actually observed. The set of more extreme contingency tables and the
probability associated with each of them depend on the conditions imposed on the
data generation process (we discuss this aspect in Sections 4.2.1 and 4.2.2).

No matter what the conditions are, once the value of pP or an upper bound to it
is known, rejecting the null hypothesis HP , i.e., flagging the pattern P as having a
significant association with one of the two labels iff pP Æ ” ensures that the probability
(w.r.t. the randomness in the generating process) that P is a false discovery is not
greater than ” œ (0, 1).

75

4.2.1 Conditional Testing

Let’s focus for now on a single pattern P ™ I. A set of conditions commonly imposed
on the data generating process, made for example by the widely-used Fisher’s exact
test (Fisher, 1922) we defined in Section 2.2.1, is to condition on all values in the
marginals (i.e., in the bottom row and rightmost column) of the observed contingency
table for P : the space of possible contingency tables for P contains all and only those
with the same values for n, n1 (thus n0), and zP

D, as in the observed one.
Under these conditions and assuming that the null hypothesis HP is true, the

quantity zP
D1 follows a hypergeometric distribution: given x = zP

D and a œ [ž1,x, ẑ1,x],
the probability h (a, P , D) of observing a contingency table for P where zP

D1 = a is

h (a, P , D) =

A
n1

a

BA
n0

x ≠ a

BMA
n

x

B
.

Let b be the value for zP
D1 in the observed contingency table for P , the p-value pF

HP
(D)

of P on D is then

pF

HP
(D) =

ÿ

a:h(a,P,D)Æh(b,P,D)

h (a, P , D) . (4.1)

Drawbacks Imposing on the generative process the conditions we just described
may be reasonable when only considering a single pattern P . In the Significant
Pattern Mining setting, the space of possible patterns is the powerset of I. Since
there is a single generative process, one would have to impose on it that, for each P
of the 2|I| possible patterns, the generative process only generates contingency tables
for P with the observed value of zP

D. Imposing such a large number of conditions
seems excessively restrictive.

4.2.2 Unconditional Testing

A more reasonable set of conditions is to consider only n and n1 (and thus n0) fixed as
in the observed dataset. These quantities are characteristics of the observed dataset,
and much more readily accessible than the observed frequencies (in D) of any of
the patterns. With a somewhat unfortunate name choice, tests that impose such
conditions, e.g., Barnard’s (exact) test (Barnard, 1945), are known as unconditional
tests. For a pattern P , the space of possible contingency tables contains all and only
those with the same values for n and n1 (thus n0), as in the observed one. The value
for zP

D is not fixed, hence not known a priori. This set of assumptions is much more
reasonable for the Significant Pattern Mining setting, where the value of zP

D for each
pattern P is unknown and must be obtained by running a pattern mining algorithm
on the dataset.

To define the p-value for P we need to first introduce the concept of the nuisance

76

parameter fi œ [0, 1]. The nuisance parameter is the assumed value for fiP,0 and fiP,1

under the null hypothesis that these quantities are equal.

Under the above conditions, and assuming that the null hypothesis HP is true,
and a fixed, known value for the nuisance parameter fi, the probability, given by the
function b(x, a | fi), of observing a contingency table for P with zP

D = x and zP
D1 = a,

for x œ [0, n], and a œ [ž1,x, ẑ1,x], is

b(x, a | fi) =

A
n0

x ≠ a

BA
n1

a

B
fix(1 ≠ fi)(n≠x) .

For y œ [0, n], b œ [ž1,y, ẑ1,y], and fi œ (0, 1), define T (y, b, fi) as the set of “more
extreme outcomes”, composed by pairs (x, a) such that b(x, a | fi) Æ b(y, b | fi) and
define the function

„(y, b, fi) =
ÿ

(x,a)œT (y,b,fi)

b(x, a | fi) .

The value „(y, b, fi) is the probability, under the null hypothesis fiP,0 = fiP,1 and for
a fixed value fi of the nuisance parameter, to observe a contingency table as or more
extreme than the one with zP

D = y, zP
D1 = b, and zP

D0 = y ≠ b (see Table 2.1).

To obtain the actual p-value for a pattern P or an upper bound to it (su�cient to
perform the test), it is necessary to eliminate the dependency on nuisance parameter
fi. For example, Barnard’s test (Barnard, 1945) uses as upper bound pB

P the maximum
of „(zP

D, zP
D1 , fi) over all values of fi œ [0, 1]:

pB

P = max
Ó
„(zP

D, zP
D1 , fi), 0 Æ fi Æ 1

Ô
. (4.2)

Finding this maximum is computationally expensive. One of our goals is designing
an unconditional test with an upper bound to the p-value that is e�cient to compute
(see Section 4.3.1).

4.2.3 Multiple Hypothesis Testing

When a single pattern P is tested, flagging it as significant when its p-value is smaller
than a significance threshold ” œ (0, 1), fixed a priori, guarantees that the probability
of a false discovery (i.e., reporting P as significant when it is not) is bounded by ”.
If such approach is followed when testing h > 1 patterns (i.e., multiple hypotheses),
the expected number of false discoveries grows with h. Therefore, we are interested
in deriving an appropriate significance threshold ”ı such that the Family-Wise Error
Rate (FWER) is controlled below a level –.

To identify a suitable significance threhsold ”ı to control the FWER, in SP-

uManTE we employ a strategy similar to the one in LAMP (see Section 2.3), but
using our unconditional test (see Section 4.3.1), thus requiring the development of an
e�ciently computable lower bound to the minimum attainable p-value for a pattern

77

P using such test (Section 4.3.2).

4.3 Significant Pattern Mining with Unconditional

Testing

We now describe SPuManTE, our algorithm for Significant Pattern Mining with
unconditional testing. We start by introducing ut, a novel Unconditional Test that
is based on confidence intervals for the expected frequencies of the patterns. For the
ease of exposition, some of the proofs are postponed to Section 4.5.

4.3.1 The UT test

Let P be a pattern of which we are assessing the association with the labels. Our
Unconditional Test ut assumes to know two confidence intervals C0(P) and C1(P), for
fiP,0 and fiP,1, respectively, s.t. the event EP = “fiP,0 œ C0(P) and fiP,1 œ C1(P)” holds
with probability 1≠“ (over the randomness in the data generation process). This idea
is similar to the approach by Berger (1996); however, we discuss in Section 4.3.2 how
such confidence intervals can be obtained simultaneously for all patterns P , instead
of potentially looser confidence intervals built individually. Let the interval C(P) be
C(P) = C0(P) fl C1(P). We define the p-value pP conditioned on the event EP as

pP =

Y
]
[

0 if C(P) = ÿ
max

Ó
„(zP

D, zP
D1 , fi), fi œ C(P)

Ô
otherwise.

.

This p-value should be compared with the one from (4.2). The p-value pP is a con-
ditional probability: it is the probability of observing contingency tables at least as
extreme as the one seen in the dataset conditioning on the event EP . This condi-
tioning is entirely di�erent than the conditioning made by conditional tests such as
Fisher’s (Fisher, 1922), which conditions on the observed supports of the patterns.

Given a fixed threshold –, ut flags P as significant iff pP Æ – ≠ “. The following
property holds.

Theorem 4.3.1. Let P be a fixed pattern. The probability that ut flags P as signif-
icant when it is not is at most –.

Proof. Let F be the event “ut flags P as significant when it is not”, which corresponds
to a false discovery. It holds

Pr(F) = Pr(F | EP) Pr(EP) + Pr(F | Es P) Pr(Es P) Æ Pr(F | EP) + Pr(Es P),

where Es P denotes the event complementary to EP . By the definition of confidence
interval, Pr(Es P) Æ “, while Pr(F | EP) Æ – ≠ “ since when EP holds we are using

78

the standard hypothesis testing framework with significance threshold – ≠ “ and the
p-value pP .

An upper bound to the p-value

The exact computation of pP when C(P) ”= ÿ requires an expensive search over the
values of fi œ C(P). For the purpose of testing the significance of a pattern and
ensuring that Theorem 4.3.1 still holds, only an e�cient-to-compute upper bound to
the p-value is needed. We prove the following.

Theorem 4.3.2. pP Æ b
1
zP

D, zP
D1 | f(P)

2
(n0 + 1)(n1 + 1).

Most importantly, the upper bound p̂P

p̂P = b
1
zP

D, zP
D1 | f(P)

2
(n0 + 1)(n1 + 1)

can be computed in O(1) time.

A lower bound to the p-value

We now show a lower bound to pP . More than being just of theoretical interest, this
lower bound is the starting point to derive, in Section 4.3.2, an e�ciently-computable,
monotonically-non-increasing lower bound to the minimum attainable p-value for a
pattern P (required to compute the corrected significance threshold in a way similar
to what is done by LAMP (Terada et al., 2013a)).

Computing our lower bound does not require an expensive search over the values
of fi, thanks to the following result.

Lemma 4.3.3. If C(P) ”= ÿ, then pP Ø „(y, b, fi) for any fi œ C(P).

Proof. The statement follows from the definition of pP , that is the maximum over
fi œ C(P) of the r.h.s.

Theorem 4.3.3 states that any fi œ C(P) allows to obtain a lower bound to pP , so
we choose fi = f(P), and define the lower bound p̌P to pP as

p̌P = „(zP
D, zP

D1 , f(P)) . (4.3)

Our choice for fi is driven by the objective of maximizing the number of contingency
tables in T (zP

D, zP
D1 , fi), which we try heuristically to achieve by maximizing b(zP

D, zP
D1 |

fi), which is straightforward as shown in the following result.

Proposition 4.3.4. It holds arg maxfi {b(x, a | fi)} = x/n.

We show in Section 4.4.1 that p̌P provides a tight lower bound to pP .

79

4.3.2 SPuManTE: Mining Significant Patterns

We now describe SPuManTE, our algorithm for mining significant patterns with
ut while controlling the FWER. First, we need to discuss some important technical
facts.

Simultaneous confidence intervals

For each tested pattern P , ut requires confidence intervals for fiP,0 and fiP,1. Rather
than computing these confidence intervals separately for each pattern, SPuMan-

TE uses recently developed probabilistic bounds to the maximum deviation of the
frequency of a pattern from its expectation (Riondato and Upfal, 2015) to derive
confidence intervals for the quantities fiP,0 and fiP,1 of every pattern that hold si-
multaneously with high probability. Specifically, given D and a confidence parameter
“ œ (0, 1), we use a modified version of the work by Riondato and Upfal (2015), called
amira, to obtain a value Á œ (0, 1) with the following property. Given this Á, define,
for each pattern P , the intervals C0(P) and C1(P) as

C0(P) :=
5
f0(P) ≠ Á

n

n0

, f0(P) + Á
n

n0

6
,

C1(P) :=
5
f1(P) ≠ Á

n

n1

, f1(P) + Á
n

n1

6
,

and define the event EP,Á = “fiP,0 œ C0(P) and fiP,1 œ C1(P)”. Consider the event
EÁ =

u
P™I EP,Á. The Á returned by amira when run on D with confidence parameter

“ is such that EÁ holds with probability at least 1 ≠ “ (w.r.t. the randomness in the
data generative process).

Lower bound to the minimum attainable p-value

In order to use ut in our algorithm SPuManTE to e�ciently mine significant pat-
terns while rigorously controlling the FWER, we need to define a monotone lower
bound Â̌(x) to the minimum attainable p-value of any P for which zP

D Æ x, x œ [0, n].
Having this lower bound is crucial to prune the search space of testable patterns.

Our bounds crucially hinges on the following results, under the ongoing assump-
tion n1 Æ n0.

Theorem 4.3.5. Let C0(P) fl C1(P) = C(P) ”= ÿ. Then f(P) œ C(P).

80

For x œ [0, n] let

Q(x) =

Y
]
[(r, w), r œ [ž0,y, ẑ0,y], w œ [ž1,y, ẑ1,y] s.t. y = r + w Æ x

·
3

r

n0

+ Á
n

n0

<
w

n1

≠ Á
n

n1

‚ w

n1

+ Á
n

n1

<
r

n0

≠ Á
n

n0

4Z
^
\.

Intuitively, Q(x) contains all the pairs (r, w) such that the confidence intervals around
r/n0 and w/n1 do not intersect. Checking whether Q(x) is non-empty (i.e., there ex-
ists at least one contingency table with marginal Æ x where the confidence intervals do
not intersect) can be done by checking if Q(x) contains either (ž0,x, ẑ1,x) or (ẑ0,x, ž1,x):
if Q(x) does not contain either, then it must be empty because the frequencies in each
class of less biased contingency tables have smaller absolute di�erence w.r.t. those two
cases, therefore it is not possible that the intersection of their confidence intervals is
empty. When the intersection of the confidence intervals is not empty, we need the
following result to prove our lower bound.

Theorem 4.3.6. arg mina{„(x, a, fi)} = min{x, n1}.

Thus, we can define

Â(x) =

Y
]
[

0 if Q(x) ”= ÿ
„(x, x, x/n) otherwise

as a lower bound to the minimum attainable pP for all patterns P with zP
D = x. For

our purposes, we need a monotonically non-increasing lower bound to the minimum
attainable p-value, so we define

Â̌(x) =

Y
]
[

Â(x) if x = 0

min{Â(x), Â̌(x ≠ 1)} if x œ [1, n]
.

SPuManTE uses Â̌ to check whether to mark a pattern P with zP
D = x as untestable

when looking for the corrected significance threshold ”. The computation of Â̌(x) can

be done e�ciently starting from x = 0 and increasing x, keeping the values of Â̌(x)
in memory.

Efficient computation of „

After having defined p̌P and Â̌(x), we still have to address how to compute them
e�ciently in the case C(P) ”= ÿ, i.e., how to compute the value „(y, b, fi) e�ciently.
A naïve approach is to enumerate all (x, a1) œ T (y, b, fi); since this set is not known
a priori (i.e., there is no simple algorithm to generate only pairs (x, a1) that are in

81

T (y, b, fi)), this approach requires computing b(a0 + a1, a1 | fi) for all possible pairs
(a0, a1) œ [0, n0] ◊ [0, n1], leading to the computation of Θ (n0n1) terms. As we show
in Section 4.4.1, even for samples of moderate size this approach is not feasible in
reasonable time.

Enumerating only pairs (x, a1) œ T (y, b, fi) or only pairs (x, a1) /œ T (y, b, fi) would
still require to evaluate b(x, a1 | fi) a corresponding number of times, i.e., in the order
of Θ(min{|T (y, b, fi)|, n0n1 ≠ |T (y, b, fi)|}), which is impractical for most cases. We
address this issue with an e�cient algorithm to compute „(y, b, fi) while avoiding the
enumeration of many contingency tables, thanks to the novel formulation of „(y, b, fi)
provided by the following result.

Proposition 4.3.7. Let y œ [0, n], b œ [ž1,y, ẑ1,y], and fi œ (0, 1). Let

A1 = {a1 : b (a1 + Â(n0 + 1)fiË , a1 | fi) > b(y, b | fi)} ,

and define the set

A0,a1 = {a0 : b (a1 + a0, a1 | fi) Æ b(y, b | fi)} .

Then

ÿ

(x,a)œT (y,b,fi)

b(x, a | fi) =
ÿ

a1 /œA1

B(a1, n1, fi) +
ÿ

a1œA1

Q
aB(a1, n1, fi)

ÿ

a0œA0,a1

B(a0, n0, fi)

R
b ,

(4.4)

where B(z, h, fi) =
1

h
z

2
fiz(1 ≠ fi)h≠z is the probability of obtaining z successes on h

independent trials with success probability fi.

This formulation leads to the e�cient algorithm to compute „(y, b, fi) shown in
Algorithm 2, where we use the incomplete beta function to compute the cumulative
distribution function (CDF) for Binomial distributions.

In fact, if we let F (a, n, fi) =
qa

aÕ=0 B(aÕ, n, fi) be the CDF for value a of the Bi-
nomial distribution of parameters n, fi, we can compute the terms of (4.4) with O (1)
computations of the incomplete beta function —1≠fi(n + 1 ≠ a, a + 1) = F (a, n, fi),
that is e�ciently computable using Lentz’s algorithm (Lentz, 1976), a fast and pre-
cise method to evaluate continued fractions. We prove in the Section 4.5 that the
time complexity of Algorithm 2 is O (log(n0) + n + La), where O (La) is the time
complexity of Lentz’s algorithm.

SPuManTE

Our algorithm SPuManTE outputs a set of significant patterns from D with FWER
Æ –. Its pseudocode is presented in Algorithm 3. SPuManTE first obtains (line 1)
the maximum deviation Á from amira with parameter “, so that the event EÁ holds

82

Algorithm 2: E�cient computation of „(y, b, fi)

Input: y œ [0, n], b œ [ž1,y, ẑ1,y], fi œ [0, 1].
Output: „(y, b, fi).

1 v Ω 0
2 z Ω b(y, b | fi)
3 aÕ

0 Ω Â(n0 + 1)fiË
4 A1 Ω {a1 : b (a1 + aÕ

0, a1 | fi) > z}
5 forall a1 œ A1 do
6 aÕ Ω mina0 {a0 Æ aÕ

0 | b (a0 + a1, a1 | fi) > z}
7 aÕÕ Ω mina0 {a0 > aÕ

0 | b (a0 + a1, a1 | fi) Æ z}

8 pÕ Ω
1

n1

a1

2
(fi)a1(1 ≠ fi)(n1≠a1)

9 v Ω v + pÕ (—fi(aÕ, n0 ≠ aÕ) + —1≠fi(n0 + 1 ≠ aÕÕ, aÕÕ))

10 aÕ Ω max{A1} + 1
11 aÕÕ Ω min{A1} ≠ 1
12 v Ω v + —fi(aÕ + 1, n0 + 1 ≠ aÕ) + —1≠fi(n0 + 1 ≠ aÕÕ, aÕÕ)
13 return v

with probability Ø 1 ≠ “. Then (line 2), SPuManTE uses the lower bound Â̌(x)
derived in Section 4.3.1 (and computed using Algorithm 2) together with a strategy
similar to the one in LAMP (Terada et al., 2013a; Minato et al., 2014) to e�ciently
derive a corrected significance threshold ” to use in each test while ensuring that the
FWER is at most –≠“. In particular, such strategy initializes the support threshold
of testable patterns ‡T to 1, and increases it while exploring the closed patterns,
reducing the set of testable patterns until the final value of ” is found. Hence, we can
incrementally compute the values of Â̌(x) after increasing ‡T by simply comparing

Â̌(‡T ≠ 1) to Â(‡T), therefore only keeping in memory Â̌(‡T ≠ 1) and not the entire

function Â̌(x). SPuManTE then loops over the testable patterns to test them, to
decide whether to flag them as significant or not. It does so by first generating the set
of closed patterns children(ÿ) that are extensions of the empty pattern ÿ. For every
pattern P of those, it only processes P if it is testable (therefore if the support zP

D of
P is zP

D Ø ‡T) using the processPattern(P) procedure. This procedure first computes
the interval C(P) (lines 7–9), and then computes the upper bound p̂P to the p-value
(lines 10–12). If C(P) = ÿ, p̂P is set to 0 (line 10); otherwise SPuManTE computes
p̂P using the bound from Theorem 4.3.2. SPuManTE uses the upper bound p̂P to
decide whether P is significant, returning P in output if p̂P < ” (line 13). Then
(lines 14–15), the current pattern P is “grown” generating the set of closed patterns
that are extension of P using children(P), enumerating the space of the testable
patterns exhaustively in a depth-first order.

We can show the following property of SPuManTE.

Theorem 4.3.8. The output of SPuManTE has FWER at most –.

83

Proof (Sketch). Consider the event F=“the number of false discoveries reported by
SPuManTE is > 0”. The FWER of the output of SPuManTE is Pr(F). Recalling
the event EÁ defined in Section 4.3.2, let Es Á be the complementary event. It holds:

Pr(F) = Pr(F | EÁ) Pr(EÁ) + Pr(F | Es Á) Pr(Es Á) Æ Pr(F | EÁ) + Pr(Es Á) .

Using amira with parameter “ guarantees that Pr(Es Á) Æ “. By employing the
LAMP strategy with parameter – ≠ “ and using the upper bound p̂P to decide if P
is significant, it holds that Pr(F | EÁ) Æ –≠“. Therefore Pr(F) Æ –≠“ +“ = –.

Increasing the power of UT

SPuManTE provides an e�cient method to identify all significant patterns with
bounded FWER. However, while extremely fast to compute, the upper bound of
Theorem 4.3.2 does not always provide a tight approximation to the p-value pP of
a pattern P , resulting in a potential reduction in power, even if as we show in Sec-
tion 4.4.1 the most significant patterns are still reported. In the scenarios where one
is interested in reporting a larger number of patterns, at the expense of weakening
the guarantees of the FWER, one can use the lower bound p̌P of Section 4.3.1 in
place of the upper bound of Theorem 4.3.2 in lines 11–12. While in this case there is
no guarantee on the FWER of the reported patterns, we show in Section 4.4.1 that
p̌P is very close to the actual p-value pP , leading to a relatively low risk of reporting
false discoveries.

4.4 Experimental Evaluation

We implemented SPuManTE and tested it on several datasets. Our experimental
evaluation has the following goals:

• assess the tightness of the lower bound p̌P from (4.3) w.r.t. the exact p-value
pP .

• evaluate the computational performance of ut: since no other method for per-
forming e�ciently an unconditional test for significant patterns exists, we com-
pare ut with Fisher’s exact test, the de-facto standard conditional test employed
for Significant Pattern Mining algorithms.

• assess the e�ectiveness and the impact of the upper bound p̂P and of the AMIRA
confidence intervals on reporting significant patterns.

84

Algorithm 3: SPuManTE

Input: Dataset D, bound – œ (0, 1) to FWER, confidence par. “ œ (0, –).
Output: Set of significant patterns with FWER Æ –.

1 Á Ω amira (D, “)
2 ” Ω correctedSignificanceThreshold(– ≠ “)

3 ‡T Ω min{x : Â̌(x) Æ ”, 1 Æ x Æ n}
4 forall P œ children(ÿ) do
5 if zP

D Ø ‡T then processPattern(P)

6 Function processPattern(P)
7 C0(P) Ω [f0(P) ≠ Á n

n0
, f0(P) + Á n

n0
]

8 C1(P) Ω [f1(P) ≠ Á n
n1

, f1(P) + Á n
n1

]

9 CP Ω C0(P) fl C1(P)
10 if CP = ÿ then p̂P Ω 0
11 else

12 p̂P Ω b
1
zP

D, zP
D1 | f(P)

2
(n0 + 1)(n1 + 1)

13 if p̂P Æ ” then output P
14 forall P Õ œ children(P) do
15 if zP Õ

D Ø ‡T then processPattern(P Õ)

Implementation and environment We implemented SPuManTE1 and ut by
modifying a C implementation of LAMP2. For computing the incomplete beta func-
tion in lines 9 and 12 of Algorithm 2, we use a publicly available implementation3

based on Lentz’s algorithm (Lentz, 1976). All the code was compiled with GCC 8
and run on a machine with a 2.30 GHz Intel Xeon CPU, 512 GB of RAM, on Ubuntu
14.04.

Datasets We tested SPuManTE on eight datasets commonly used for the bench-
mark of Significant Pattern Mining algorithms, gathered from FIMI’044 and libSVM5.
Due to space constraints we only report results for three datasets (the results for other
datasets are analogous). Descriptive statistics and preprocessing for these datasets
are in Section 4.5.

1The code of SPuManTE and the scripts to replicate all experiments are available at https:

//github.com/VandinLab/SPuManTE. See also Section 4.5.
2https://github.com/fllinares/wylight
3https://github.com/codeplea/incbeta
4http://fimi.ua.ac.be
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

85

https://github.com/VandinLab/SPuManTE
https://github.com/VandinLab/SPuManTE
https://github.com/fllinares/wylight
https://github.com/codeplea/incbeta
http://fimi.ua.ac.be
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Parameters and experiments In all our experiments, we set – = 0.05 and
“ = 0.01. In order to study the impact of the dataset size on SPuManTE’s perfor-
mance, for all datasets we generate a random sample of size s by taking s transactions
uniformly at random with replacement, varying s in the interval [103, 106].

We compare SPuManTE to three di�erent variants: the first, that we denote
SPuManTE*, uses the lower bound p̌P instead of the upper bound p̂P to flag sig-
nificant patterns, providing increased power at the expense of relaxed guarantees on
FWER; the second version, SPuManTEC, flags an itemset P as significant only if
its confidence interval C(P) is C(P) = ÿ; the last one, SPuManTEn, uses a naïve
implementation of Algorithm 2, that enumerates all the contingency tables for every
pattern P , fixing fi to f(P). However, we do not include the results for SPuMan-

TEn, since its naïve enumeration strategy results in impractical running times: for
s = 103, the running time of SPuManTEn is always at least one order of magnitude
higher than all other approaches, and could not complete in one day for s Ø 104.
SPuManTEn would require even more time if an expensive search over the values
of fi is performed to compute pP exactly.

Figure 4-2: Values of „(zP
D, zP

D1 , fi) for 103 equally spaced values of fi œ If(P) = [0.9 ·
f(P), 1.1 · f(P)] with n = 103, n1 = 500, zP

D = 100, zP
D1 = 40. The red vertical line

corresponds to fiú = arg maxfiœIf(P)
{„(zP

D, zP
D1 , fi)}, the black vertical line to f(P), the

red horizontal line to „(zP
D, zP

D1 , fiú), the black horizontal line to „(zP
D, zP

D1 , f(P)).

4.4.1 Results

Quality of the lower bound Our first experiment aims at evaluating the quality
of the lower bound p̌P . For fixed n, n1 and P (described in Figure 4-2), we compute
„(zP

D, zP
D1 , fi) varying fi over 103 equally spaced values in a fixed interval. The value

„(zP
D, zP

D1 , f(P)) coincides with our lower bound p̌P . Figure 4-2 shows the resulting
curve: even if p̌P ”= pP (therefore fi = f(P) does not maximize „(zP

D, zP
D1 , fi)), using

p̌P provides a principled choice to obtain a very tight lower bound to pP . Similar
results, not shown for space constraints, hold for di�erent choices of n, n1, and P .

86

Figure 4-3: Comparison between LAMPF, SPuManTE and SPuManTE* in terms
of: (a) running time; (b) number of patterns in output. In (c) we compare the number
of patterns in output found with SPuManTE and SPuManTEC.

Running time of SPuManTE In Figure 4-3.(a), we compare the running times of
SPuManTE and SPuManTE* w.r.t. the state-of-the-art by LAMP with Fisher’s
exact test, denoted with LAMPF. Contrary to the common belief that unconditional
tests are computationally expensive, SPuManTE is, in almost all cases, faster than
LAMPF. These results stress the e�ciency of the upper bound from Theorem 4.3.2.
The only cases where SPuManTE is slower is for small sample sizes (s Æ 104), for
running times Æ 10 seconds, and for retail dataset. When s is small, the time
to compute Á in SPuManTE dominates on the total execution time. For larger
sample sizes, SPuManTE is faster than LAMPF by up to almost one order of
magnitude. SPuManTE*, despite computing p̌P for every P , generally requires
comparable running time w.r.t. LAMPF, thanks to our e�cient strategy for com-
puting p̌P (Section 4.3.1). These results show that SPuManTE provides an e�cient
strategy for Significant Pattern Mining, even more e�cient than the state-of-the-art
even if it (correctly) employs an unconditional test.

Statistical power of SPuManTE We evaluate the e�ectiveness of the upper
bound from Theorem 4.3.2 in reporting significant patterns. Figure 4-3.(b) displays
the number of patterns in the output of SPuManTE, SPuManTE*, and LAMPF.
The set of results reported by SPuManTE* is always a super-set of the set of results
with guarantees on the FWER, since SPuManTE* uses a lower bound to the exact
p-value. In all cases SPuManTE reports a large set of results, comparable in size
with the output of SPuManTE*, therefore ut retains most of the statistical power
that would be achieved with the expensive computing of the exact value of pP . We can
observe that, in almost all cases, LAMPF reports more (in some cases, twice as many)
patterns than SPuManTE*. This di�erence between unconditional and conditional
procedures is due to the di�erence between their small p-values (see Figure 4-1),
and also because the set of selected testable patterns by the two procedures is often
di�erent; elucidating the implication of these results is an important investigation for
future research.

87

Lastly, we investigate the impact of using the confidence intervals in SPuManTE.
Figure 4-3.(c) shows the number of output patterns by SPuManTE and the ones
reported by SPuManTEC (the variant of SPuManTE that only checks whether
C(P) = ÿ to flag a pattern P as significant): the larger the sample, the higher is
the number of patterns flagged as significant by SPuManTEC, since Á decreases as
the sample size grows, so the confidence intervals are more narrow. For the majority
of the datasets we considered, a large number of patterns are marked as significant
just by checking whether C(P) = ÿ, proving that the use of confidence intervals is a
crucial component of SPuManTE.

4.5 Proofs and Reproducibility

In this Section we present the proofs not included in the main text and describe how
to reproduce our experimental results.

Missing proofs

The proofs of our results are provided here.

Theorem 4.5.1 (Theorem 4.3.2 in the main text). It holds

pP Æ b
1
zP

D, zP
D1 | f(P)

2
(n0 + 1)(n1 + 1) .

Proof. It holds

pP = max
fiœCP

Y
_]
_[

ÿ

(x,a)œT (zP

D
,zP

D1 ,fi)

b(x, a | fi)

Z
_̂

_\

Æ max
fiœCP

Ó
b

1
zP

D, zP
D1 | fi

2
|T (zP

D, zP
D1 , fi)|

Ô

Æ max
fiœCP

Ó
b

1
zP

D, zP
D1 | fi

2Ô
max
fiœCP

Ó
|T (zP

D, zP
D1 , fi)|

Ô

Æ b
1
zP

D, zP
D1 | f(P)

2
(n0 + 1)(n1 + 1).

where in the last step we use Theorem 4.3.4 and the fact that the total number of
contingency tables is (n0 + 1)(n1 + 1), that is an upper bound to the size of T (a, b, fi)
for any a, b, fi.

Proposition 4.5.2 (Theorem 4.3.4 in the main text). It holds

arg max
fi

{b(x, a | fi)} = x/n.

88

Proof. Define the function g(fi) = aÕ(fi)b(1 ≠ fi)(c≠b) for some constants aÕ > 0, b = x,
c = n. Then

ˆg(fi)

ˆfi
=

aÕ(1 ≠ fi)(c≠b)
fi(b≠1)(cfi ≠ b)

fi ≠ 1
.

The only root of ˆg(fi)
ˆfi

for fi œ (0, 1) is given by fi = b
c

= x
n
. It is trivial to check

that the sign of the second order derivative is always < 0, and this fact completes the
proof.

Theorem 4.5.3 (Theorem 4.3.5 in the main text). Let C0(P) fl C1(P) = CP ”= ÿ.
Then f(P) œ CP .

Proof. We prove the result assuming zP
D0/n0 > zP

D1/n1 (the proof for the other case
is analogous) and assuming that the confidence intervals have the form provided by
amira. Recall that f(P) = zP

D/n. C0(P) fl C1(P) ”= ÿ is equivalent to

zP
D1

n1

+ Á
n

n1

Ø zP
D0

n0

≠ Á
n

n0

. (4.5)

and that proving zP
D/n œ C0(P) fl C1(P) corresponds to prove that

zP
D1

n1

+ Á
n

n1

Ø zP
D

n
(4.6)

and
zP

D0

n0

≠ Á
n

n0

Æ zP
D

n
(4.7)

both hold. Equation (4.5) above is equivalent to

zP
D0

n0

≠ zP
D1

n1

Æ Án
3

1

n0

+
1

n1

4
. (4.8)

It holds
zP

D

n
=

zP
D1

n1

+
n0

n

A
zP

D0

n0

≠ zP
D1

n1

B

and from (4.8) we derive

zP
D

n
=

zP
D1

n1

+
n0

n

A
zP

D0

n0

≠ zP
D1

n1

B
Æ zP

D1

n1

+
n0

n
Án

3
1

n0

+
1

n1

4

=
zP

D1

n1

+ n0Á

3
1

n0

+
1

n1

4
=

zP
D1

n1

+ Á

3
1 +

n0

n1

4
=

zP
D1

n1

+ Á
n

n1

,

that proves (4.6).

89

For (4.7), it holds
zP

D

n
=

zP
D0

n0

≠ n1

n

A
zP

D0

n0

≠ zP
D1

n1

B

and from (4.8) we derive

zP
D

n
=

zP
D0

n0

≠ n1

n

A
zP

D0

n0

≠ zP
D1

n1

B
Ø zP

D0

n0

≠ n1

n
Án

3
1

n0

+
1

n1

4

=
zP

D0

n0

≠ n1Á

3
1

n0

+
1

n1

4
=

zP
D0

n0

≠ Á

3
1 +

n1

n0

4
=

zP
D0

n0

≠ Á
n

n0

,

that proves (4.7).

Theorem 4.5.4 (Theorem 4.3.6 in the main text).

arg min
a

{„(x, a, fi)} = min{x, n1}.

Proof. We assume n1 Æ n0. Let ǎ = ž1,x and â = ẑ1,x. We first prove that

min
a

{b(x, a, fi)} = b(x, â, fi) (4.9)

by observing that, ’a œ [ǎ, â],

b(x, a, fi)

b(x, â, fi)
=

B(x ≠ a, n ≠ n1, fi)B(a, n1, fi)

B(x ≠ â, n ≠ n1, fi)B(â, n1, fi)
=

1
n≠n1

x≠a

21
n1

a

2

1
n≠n1

x≠â

21
n1

â

2 Ø 1.

A direct consequence of (4.9) and the definition of T (x, a, fi) is

T (x, â, fi) ™ T (x, a, fi), ’a œ [ǎ, â]. (4.10)

Then (4.10) leads to

„(x, a, fi)

„(x, â, fi)
=

q
(y,b)œT (x,a,fi) b(y, b | fi)

q
(y,b)œT (x,â,fi) b(y, b | fi)

Ø 1, ’a œ [ǎ, â],

that proves the statement.

Theorem 4.5.5 (Theorem 4.3.7 in the main text). Let y œ [0, n], b œ [ž1,y, ẑ1,y], and
fi œ (0, 1). Let

A1 = {a1 : b (a1 + Â(n0 + 1)fiË , a1 | fi) > b(y, b | fi)} ,

90

and define the set A0,a1 = {a0 : b (a1 + a0, a1 | fi) Æ b(y, b | fi)}. Then

ÿ

(x,a)œT (y,b,fi)

b(x, a | fi) =
ÿ

a1 /œA1

B(a1, n1, fi) +
ÿ

a1œA1

Q
aB(a1, n1, fi)

ÿ

a0œA0,a1

B(a0, n0, fi)

R
b ,

where B(z, h, fi) =
1

h
z

2
fiz(1 ≠ fi)h≠z is the probability of obtaining z successes on h

independent trials with success probability fi.

Proof. We formulate
q

(x,a)œT (y,b,fi) b(x, a | fi) as

ÿ

(x,a)œT (y,b,fi)

b(x, a | fi)

=
ÿ

(a0+a1,a1)œT (y,b,fi)

A
n0

a0

BA
n1

a1

B
fia0+a1(1 ≠ fi)(n0+n1≠a0+a1)

=
ÿ

(a0+a1,a1)œT (y,b,fi)

B(a0, n0, fi)B(a1, n1, fi)

Let ÂaË denote the closest integer to a. It holds

b (a1 + Â(n0 + 1)fiË , a1 | fi) Ø b (a1 + a0, a1 | fi) , ’a0 œ [0, n0] .

Given the above and the definition of A1 and A0,a1 , we obtain

ÿ

(x,a)œT (y,b,fi)

b(x, a | fi)

=
ÿ

(a0+a1,a1)œT (y,b,fi)

B(a0, n0, fi)B(a1, n1, fi)

=
ÿ

a1 /œA1

B(a1, n1, fi) +
ÿ

a1œA1

Q
aB(a1, n1, fi)

ÿ

a0œA0,a1

B(a0, n0, fi)

R
b

Proposition 4.5.6. The time complexity of Algorithm 2 is

O (log(n0) + n + La) ,

where O (La) is the time complexity of Lentz’s algorithm.

Proof. The O(n) term follows from the following observations: all quantities to be re-
quired inside the forall loop can be be computed “from scratch” at the first iteration,
and then updated with few operations at each new iteration. Using this strategy,
it is simple to show that the overall cumulative work of the forall loop over all its
|A1| Æ n1 iterations does not exceed O(n). This is because the indexes aÕ and aÕÕ

91

are modified from their values computed at the first iterations at most n0 times, over
all iterations. Therefore, the other terms are referred to the work done at the first
iteration of the loop; operations outside the loop are O (n1) for the computation of
A1, therefore included in the O (n) term. The O(log(n0)) term follows from a binary
search over n0 sorted elements, that is performed on the first iteration of the forall
loop. The O (La) term follows since the total number of calls to Lentz’s algorithm is
constant, as tails of binomial distribution are updated during the iterations.

Reproducibility

We now describe how to reproduce our experimental results. Code and data are
available at https://github.com/VandinLab/SPuManTE.

Datasets and preprocessing The statistics of the datasets we analysed are de-
scribed in Table 4.1. For datasets whose transactions are not naturally divided in two
groups (marked with U), we selected the single item whose frequency is closer from
below to 0.5, removed the corresponding item from every transaction, and use its
appearance to divide the dataset in two groups. The reported ratio n1/n refers to the
output of this process. For real-valued features we obtained two bins by thresholding
at the mean value and using one item for each bin.

dataset |D| |I| avg n1/n

breast cancer 12,773 1,129 6.7 0.09

retail(U) 88,162 16,470 10.3 0.47

covtype 581,012 64 11.9 0.49

Table 4.1: Datasets statistics. For each dataset we report: name (see Section 4.4
for the meaning of U), number |D| of transactions; the number |I| of items; average
transaction length avg; fraction n1/n of transactions in D1.

Reproducing our simulations The plot of Figure 4-1 can be created with the
Python script fisher_simulations.py in the scripts/ folder. The results of Fig-
ure 4-2 can be obtained using the find_max_pi.py script. All the parameters of
the experiments can be modified with appropriate input parameters, or by directly
modifying the scripts.

Reproducing our experiments The code of SPuManTE and all variants of ut

are in the sub-folder unconditional/, while the code for LAMPF is in the sub-folder
fisher/. Inside each folder, the correct/ directory contains the code for computing
the corrected significance threshold ”, while the enumerate/ directory contains the
code to actually compute the significant patterns.

92

https://github.com/VandinLab/SPuManTE

To compile all the software, use the make command inside all correct/ and
enumerate/ sub-folders. Then, also compile amira by running make inside the
amira/ folder. A recent version of GCC (e.g., GCC 8.0) is needed to compile amira.

Once everything has been compiled, convenient scripts can be used to run
the experiments. In particular, run_amira.py, run_unconditional.py and
run_fisher.py automatically execute amira, SPuManTE, and LAMPF, respec-
tively. These scripts accept a variety of input parameters. In particular, you need
to specify a particular dataset and the size of a random sample to create using the
flags -db and -sz. As an example, the command line to process with SPuManTE

a random sample of 103 transactions from the dataset mushroom is

run_unconditional.py -db mushroom -sz 1000

and it automatically executes amira and SPuManTE.
The run_all_datasets.py script runs all the instances of SPuManTE ad

LAMPF in parallel, and can be used to reproduce all the experiments described
in Section 4.4.

93

94

Chapter 5

Sampling-based Methods for
Frequent k-mers Approximations

95

5.1 Introduction

The analysis of substrings of length k, called k-mers, is ubiquitous in biological se-
quence analysis and is among the first steps of processing pipelines for a wide spec-
trum of applications, including: de novo assembly (Pevzner et al., 2001; Zerbino
and Birney, 2008), error correction (Kelley et al., 2010; Salmela et al., 2016), repeat
detection (Li and Waterman, 2003), genome comparison (Sims et al., 2009), digital
normalization (Brown et al., 2012), RNA-seq quantification (Patro et al., 2014; Zhang
and Wang, 2014), metagenomic reads classification (Wood and Salzberg, 2014) and
binning (Girotto et al., 2016), fast search-by-sequence over large high-throughput
sequencing repositories (Solomon and Kingsford, 2016). A fundamental task in k-
mer analysis is to compute the frequency of all k-mers, with the goal to distinguish
frequent k-mers from infrequent k-mers (Marçais and Kingsford, 2011; Melsted and
Pritchard, 2011). For example, this task is relevant in the analysis of high-throughput
sequencing data, since infrequent k-mers are often assumed to result from sequencing
errors. For several applications, the computation of k-mer frequencies is among the
most computationally demanding steps of the analysis.

Many algorithms have been proposed for computing the exact frequency of all k-
mers, such as Tallymer (Kurtz et al., 2008), Jellyfish (Marçais and Kingsford, 2011),
BFCounter (Melsted and Pritchard, 2011), DSK (Rizk et al., 2013), KAnalyze (Au-
dano and Vannberg, 2014), Turtle (Roy et al., 2014), KMC 3 (Kokot et al., 2017),
and Squeakr-exact (Pandey et al., 2017). These methods typically perform a linear
scan of the sequences to analyze, and use a combination of parallelism and e�cient
data structures (such as Bloom filters and Hash tables) to maintain membership and
counting information associated to all k-mers. Since the computation of exact k-mer
frequencies is computationally demanding, in particular for large sequence analysis
or for high-throughput sequence datasets, recent methods have focused on providing
approximate solution to the problem, improving the time and memory requirements.
KmerStream (Melsted and Halldórsson, 2014), Kmerlight (Sivadasan et al., 2016) and
ntCard (Mohamadi et al., 2017) proposed streaming approaches for the approximation
of the k-mer frequencies histogram. KmerGenie (Chikhi and Medvedev, 2013) per-
forms a linear scan of the input, counting a random subset (chosen before processing
the dataset) of all possible k-mers to approximate the abundance histogram, provid-
ing an exploratory tool to choose the value of k. khmer (Zhang et al., 2014) and the
recently proposed Squeakr (Pandey et al., 2017) rely on probabilistic data structures
to approximate the counts of individual k-mers. With the only exception of Kmer-
Genie, all these methods processes all the k-mer occurrences in the input dataset;
in addition, all the aforementioned approximate methods that report the counts of
individual k-mers do not provide simultaneous estimates with rigorous guarantees for
all the counts k-mers that are provided in output.

All the methods cited above try to estimate the frequency of all k-mers or of all
k-mers that appear at least few times (e.g., twice) in the dataset. While this is crucial

96

in some applications (e.g., in genome assembly k-mers that occur exactly once often
represents sequencing errors and it is therefore important to estimate the count of
all observed k-mers), in other applications this is less justified. For example, in the
comparison of high-throughput sequencing metagenomic datasets, abundance-based
distances or dissimilarities (e.g., the Bray-Curtis dissimilarity) between k-mer counts
of two datasets are often used (Benoit et al., 2016; Danovaro et al., 2017; Dickson
et al., 2017) to assess the distance between the corresponding datasets. In contrast
to presence-based distances (Ondov et al., 2016) (e.g., Jaccard distance), abundance-
based distances take into account the frequency of each k-mer, with frequent k-mers
contributing more to the distance than k-mers that appear with low frequency, but
still more than a handful of times, in the dataset. Thus, two natural questions are
(i) whether the results obtained considering all k-mers can be estimated by considering
the abundances of frequent k-mers only, and (ii) if the abundances of frequent k-mers
can be computed more e�ciently than the counts of all k-mers. Recently, preliminary
work (Hrytsenko et al., 2018) has shown that, for the cosine distance and k = 12,
the answer to the first question is positive, and in Section 5.4 we show that this
indeed the case for larger values of k and other abundance-based distances as well as
presence-based distances (e.g., the Jaccard distance). To the best of our knowledge,
the second question is hitherto unexplored. In addition, considering only frequent
k-mers allows to focus on the most reliable information in a metagenomic dataset,
since a high stochastic variability in low frequency k-mers is to be expected due to
the sampling process inherent in sequencing.

A natural approach to reduce time and memory requirements for frequency esti-
mation problems is to process only a portion of the data, for example by sampling
some parts of a dataset. Sampling approaches are appealing because infrequent k-
mers naturally tend to appear with lower probability in a sample, allowing to directly
focus on frequent k-mers in subsequent steps. However, major challenges in sampling
approaches are (i) to provide rigorous guarantees relating the results obtained by pro-
cessing the sample and the results that would be obtained from the whole dataset,
and (ii) to provide e�ective bounds on the size of the sample required to achieve such
guarantees. The application of sampling to k-mers is even more challenging than in
other scenarios since, for values of k in the typical range of interest to applications
(e.g., 20-60), even the most frequent k-mers have relatively low frequency in the data.
To the best of our knowledge, no approach based on sampling a portion of the in-
put dataset has been proposed to approximate frequent k-mers and their frequencies
while providing rigorous guarantees.

Our Contribution. We study the problem of approximating frequent k-mers,
i.e., k-mers that appear with frequency above a user-defined threshold ◊ in a high-
throughput sequencing dataset. In these regards, our contributions are fourfold. First,
we define a rigorous definition of approximation, governed by an accuracy parameter Á.
Second, we propose a new method, Sampling Algorithm for K-mErs approxIMAtion
(SAKEIMA), to obtain an approximation to the set of frequent k-mers using sampling.

97

Figure 5-1: SAKEIMA computes a fast and rigorous approximation of the frequent k-
mers in a high-throughput sequencing dataset by sampling a fraction of all k-mer
occurrences in a dataset, providing a significant speed-up for the computation of k-
mer’s abundance-based distances between datasets of reads (e.g., in metagenomics).

SAKEIMA is based on a sampling scheme that goes beyond naïve sampling of k-mers and
allows to estimate k-mers of relatively low frequency considering only a fraction of all
k-mers occurrences in the dataset. Third, we provide analytical bounds to the sample
size needed to obtain rigorous guarantees on the accuracy of the estimated k-mer
frequencies, with respect to the ones measured on the entire dataset. Our bounds are
based on the notion of Vapnik-Chervonenkis (VC) dimension, a fundamental concept
from Statistical Learning Theory, which has been used to design e�cient algorithms
to identify frequent patterns in other scenarios (Riondato and Upfal, 2015; Riondato
and Kornaropoulos, 2016; Servan-Schreiber et al., 2018b). To our knowledge, ours is
the first method that applies concepts from statistical learning to provide a rigorous
approximation of the k-mer frequencies. Fourth, we use SAKEIMA to extract frequent
k-mers from metagenomic datasets from the Human Microbiome Project (HMP) and
to approximate abundance-based and presence-based distances among such datasets,
showing that SAKEIMA allows to accurately estimate such distances by analyzing only
a fraction of the entire dataset, resulting in a significant speed-up.

Our approach is essentially orthogonal to previous work: most of the exact or
approximate algorithms for k-mer counting can be applied to the sample extracted
by SAKEIMA, that can therefore be used before applying previously proposed methods,
thus reducing their computational requirements while providing rigorous guarantees
on the results w.r.t. to the entire dataset. While we present our methodology in the
case of finding frequent k-mers from a set of sequences representing a high-throughput
sequencing dataset of short reads, our results can be applied to datasets of long reads
and to whole-genome sequences as well.

98

5.2 Preliminaries

Let a dataset D be a bag of n reads D = {r0, . . . , rn≠1}, where each read ri, 0 Æ
i Æ n ≠ 1, is a string of length ni from an alphabet Σ of cardinality |Σ| = ‡.
For j œ {0, . . . , ni ≠ 1}, let ri[j] be the j-th character of ri. For a given integer
k Æ mini{ni : ri œ D}, we define a k-mer A as a string of length k from Σ, that
is A œ Σk. We say that a k-mer A appears in ri at position j œ {0, . . . , ni ≠ k}
if ri[j + h] = A[h], ’h œ {0, . . . , k ≠ 1}. For every i, 0 Æ i Æ n ≠ 1, and every
j œ {0, . . . , ni ≠ k}, we define the indicator function „ri,A(j) that is 1 if the k-mer A
appears in ri at position j, while „ri,A(j) = 0 otherwise. The total number of k-mers in
D is tD,k =

qn≠1
i=0 (ni ≠k+1). We define the support oD(A) of a k-mer A as the number

of distinct positions in D where A appears: oD(A) =
qn≠1

i=0

qni≠k
j=0 „ri,A(j). We define

the frequency fD(A) of A in D as the ratio between the number of distinct positions
where A appears in D and the total number of k-mers in D: fD(A) = oD(A)/tD,k.

5.2.1 Frequent k-mers and Approximations

We are interested in obtaining the set FK(D, k, ◊) of frequent k-mers in a dataset D
with respect to a minimum frequency threshold ◊, defined as follows.

Definition 5.2.1. Given a dataset D, an integer k > 0, and a frequency threshold
◊ œ (0, 1], the set FK(D, k, ◊) of Frequent k-Mers in D w.r.t. ◊ is the collection of all
k-mers with frequency at least ◊ in D and of their corresponding frequencies in D:

FK(D, k, ◊) = {(A, fD(A)) : fD(A) Ø ◊}. (5.1)

FK(D, k, ◊) can be computed with a single scan of all the k-mers occurrences
in D maintaining the k-mers supports in an appropriate data structure; however,
when D is extremely large and k is not small, the exact computation of FK(D, k, ◊)
is extremely demanding in terms of time and memory, since the number of k-mers
grows exponentially with k. In this case, a fast to compute approximation of the set
FK(D, k, ◊) may be preferable, provided it ensures rigorous guarantees on its quality.
In this work, we focus on the following approximation.

Definition 5.2.2. Given a dataset D, an integer k > 0, a frequency threshold ◊ œ
(0, 1], and a constant Á œ (0, ◊), an Á-approximation of FK(D, k, ◊) is a collection
C = {(A, fA) : fA œ (0, 1]} such that:

• for any (A, fD(A)) œ FK(D, k, ◊) there is a pair (A, fA) œ C;

• for any (A, fA) œ C it holds that fD(A) Ø ◊ ≠ Á;

• for any (A, fA) œ C it holds that |fD(A) ≠ fA| Æ Á/2.

99

The definition above guarantees that every frequent k-mer of D is in the approxi-
mation and that no k-mer with frequency < ◊ ≠ Á is in the approximation. The third
condition guarantees that the estimated frequency fA of A in the approximation is
close (i.e, within Á/2) to the frequency fD(A) of A in D. It is easy to show that ob-
taining a Á-approximation of FK(D, k, ◊) with absolute certainty requires to process
all k-mers in D.

5.2.2 Simple Sampling-Based Algorithms and Bounds

We aim to provide an approximation to FK(D, k, ◊) with sampling, by processing
only randomly selected portions of D. The simplest sampling scheme is the one in
which a random sample is a bag P of m positions taken uniformly at random, with
replacement, from the set PD,k = {(i, j) : i œ [0, n ≠ 1], j œ [0, ni ≠ k]} (note that
|PD,k| = tD,k) of all positions where k-mers occurs in the dataset D, corresponding
to m occurrences of k-mers (with repetitions) taken uniformly at random. Given
such sample P , an integer k > 0, and a minimum frequency threshold ◊ œ (0, 1]
one can define the set of frequent k-mers (and their frequencies) in the sample P as
FK(P, k, ◊) = {(A, fP (A)) : fP (A) Ø ◊}, where fP (A) is the frequency of k-mer A in
the sample.

Obtaining a Á-approximation from a random sample with absolute certainty is
impossible, thus we focus on obtaining a Á-approximation with probability 1 ≠ ” > 0,
where ” œ (0, 1) is a confidence parameter, whose value is provided by the user.
Intuitively, the set FK(D, k, ◊) of frequent k-mers is well approximated by the set
of frequent k-mers in a random sample P when P is su�ciently large. One natural
question regards how many samples are needed to obtain the desired Á-approximation.
By using Hoe�ding’s inequality (Mitzenmacher and Upfal, 2017) to bound the devi-
ation of the frequency of a k-mer A in the sample from fD(A) and a union bound
on the maximum number ‡k of k-mers, where ‡ = |Σ|, we have the following result
that provides a first such bound, and a corresponding first algorithm to obtain a
Á-approximation to FK(D, k, ◊).

Proposition 5.2.3. Consider a sample P of size m of D. If m Ø
2
Á2

1
ln

1
2‡k

2
+ ln

1
1
”

22
for fixed Á œ (0, ◊), ” œ (0, 1), then, with probability Ø 1 ≠ ”,

FK(P, k, ◊ ≠ Á/2) is a Á-approximation of FK(D, k, ◊).

Proof. We first prove that when m Ø 2
Á2

1
ln

1
2‡k

2
+ ln

1
1
”

22
, then, with probability

Ø 1 ≠ ”, for every k-mer A simultaneously we have |fP (A) ≠ fD(A)| Æ Á/2.

For an arbitrary k-mer A, given the definition of fP (A) we have that fP (A) =q
(i,j)œP „ri,A(j)/m where

q
(i,j)œP „ri,A(j) is the sum of m 0-1 independent random

variables. Since [„ri,A(j)] = fD(A), we have that [fP (A)] = fD(A), and by Ho-

100

e�ding’s inequality (Mitzenmacher and Upfal, 2017) we have

Pr(|fP (A)≠fD(A)| Ø Á) = Pr

Q
a

ÿ

(i,j)œP

„ri,A(j) ≠ mfD(A)

Ø mÁ

R
b Æ 2e

≠2m2Á2

m = 2e≠2mÁ2

.

(5.2)
Now define the event EA = “|fP (A)≠fD(A)| Æ Á/2” and let ĒA be the complementary
event. From Equation 5.2 and the choice of m, Pr(ĒA) Æ 2e≠mÁ2/2 = ”/‡k. By union
bound, the probability that at least one ĒA holds is bounded by

q
AœΣk Pr(ĒA) Æ ”.

Therefore with probability at least 1 ≠ ” all events EA hold.
We now prove that when |fP (A) ≠ fD(A)| Æ Á/2 for every k-mer A, then

FK(P, k, ◊ ≠ Á/2) is a Á-approximation of FK(D, k, ◊). Consider an arbitrary pair
(A, fD(A)) œ FK(D, k, ◊). By the definition of FK(D, k, ◊) we have that fD(A) Ø ◊,
and, since |fP (A) ≠ fD(A)| Æ Á/2, we have that fP (A) Ø ◊ ≠ Á/2, that is there is a
pair (A, fA) œ FK(P, k, ◊ ≠ Á/2). Now consider a k-mer A with fD(A) < ◊ ≠ Á: since
|fP (A) ≠ fD(A)| Æ Á/2 we have that fP (A) Æ fD(A) + Á/2 < ◊ ≠ Á/2, that is there is
no pair (A, fA) œ FK(P, k, ◊ ≠ Á/2).

In addition, by using known results in Statistical Learning Theory (Vapnik and
Chervonenkis, 1971; Mitzenmacher and Upfal, 2017) relating the VC dimension (see
Section 5.3 for its definition) of a family of functions to a newly derived bound on the
family of functions {fD(A)}, we obtain the following improved bound and algorithm.
(The derivation is in Section 5.5.)

Proposition 5.2.4. Let P be a sample of size m of D. For fixed Á œ (0, ◊), ” œ (0, 1),

if m Ø 2
Á2

1
1 + ln

1
1
”

22
then FK(P, k, ◊ ≠ Á/2) is an Á-approximation for FK(D, k, ◊)

with probability Ø 1 ≠ ”.

5.3 Advanced and Practical Bounds and Algo-

rithms for k-mer Approximations

While the bound of Proposition 5.2.4 significantly improves the simple bounds of
Section 5.2.3, since the factor ln(2‡k) has been reduced to 1, it still has an inverse
quadratic dependency with respect to the accuracy parameter Á, that is problematic
when the quantities to estimate are small. In these cases, one needs a small Á to pro-
duce a meaningful approximation (since Á < ◊), and the inverse quadratic dependence
of the sample size from Á often results in a sample size larger than the entire input,
defeating the purpose of sampling. The case of k-mers is particularly challenging,
since the sum

q
AœΣk fD(A) of all k-mer frequencies is exactly 1. Therefore the higher

the number of distinct k-mers appearing in the input, the lower their frequencies
will be, with the consequence that ◊ (and therefore Á) typically needs to be set to a
very low value. For example, a typical dataset from the Human Microbiome Project

101

(HMP) has n ¥ 108 reads of (average) length ¥ 100: therefore if we are interested
in k-mers for k = 31, by setting ” = 0.05 the bound of Section 5.2.2 gives Á ¥ 10≠5,
that is only k-mers with frequency Ø 10≠5 could be reliably reported by sampling.
However, in datasets we considered, no or a very small number (Æ 30) of k-mers have
frequency Ø 10≠5, therefore according to the result from Section 5.2.2 we cannot ob-
tain a meaningful approximation of k-mers and their frequencies (see also Section 5.5
for more details). In the remainder of this section we develop more refined sampling
schemes and estimation techniques leading to a practical sampling-based algorithm.

5.3.1 Sampling Bags of Positions and VC dimension Bound

We propose a method to provide an e�ciently computable approximation to
FK(D, k, ◊) when the minimum frequency ◊ is low, by properly defining samples
so that any k-mer A will appear in a sample with probability higher than fD(A),
thus lessening the dependence of the sample size from 1/Á2. For this to be achievable,
we need to relax the notion of approximation defined in Section 5.2. In particular,
the guarantees, provided by our method, in such relaxed approximation are that all
k-mers with frequency above ◊Õ, with ◊Õ slightly higher than ◊, are reported in output,
and that no k-mer having frequency below ◊ ≠ Á is reported in output. (See Proposi-
tion 5.3.5 for the definition of ◊Õ.) Our experiments show that the fraction of k-mers
having frequency œ [◊, ◊Õ) which are non reported is very small. Our method works
by sampling bags of positions instead of single positions. In particular, an element of
the sample is now a set of ¸ positions chosen independently at random from the set
PD,k of all positions.

Let I¸ = {(i1, j1), (i2, j2), . . . , (i¸, j¸)} be a bag of ¸ positions for k-mers in D, chosen

uniformly at random from the set PD,k. We define the indicator functions „̂A(I¸) that,
for a given bag I¸ of ¸ positions, is equal to 1 if k-mer A appears in at least one of the ¸

positions in I¸ and is equal to 0 otherwise. That is „̂A(I¸) = min
Ó
1,

q
(i,j)œI¸

„ri,A(j)
Ô

.

We define the ¸-positions sample P¸ as a bag of m bags {I¸,0, I¸,1, . . . , I¸,m≠1}, where
each I¸,j, 0 Æ j Æ m ≠ 1 is a bag of ¸ positions, sampled independently, and

f̂P¸
(A) =

1

m

ÿ

I¸,iœP¸

„̂A(I¸,i)

¸
. (5.3)

Intuitively, f̂P¸
(A) is the biased version of the unbiased estimator

fP¸
(A) =

1

m

ÿ

I¸,iœP¸

q
(i,j)œI¸,i

„ri,A(j)

¸
(5.4)

of fD(A), where the bias arises from considering a value of 1 every timeq
(i,j)œI¸,i

„ri,A(j) > 1.

In our analysis we use the VC dimension (Vapnik and Chervonenkis, 1971; Vapnik,

102

1998), a statistical learning concept that measures the expressivity of a family of
binary functions. We define a range space Q as a pair Q = (X, RX) where X is
a finite or infinite set and RX is a finite or infinite family of subsets of X. The
members of RX are called ranges. Given D µ X, the projection of RX on D is
defined as projRX

(D) = {r fl D : r œ RX}. We say that D is shattered by RX if
projRX

(D) = 2|D|. The VC dimension of Q, denoted as V C(Q), is the maximum
cardinality of a subset of X shattered by RX . If there are arbitrary large shattered
subsets of X shattered by RX , then V C(Q) = Œ.

A finite bound on the VC dimension of a range space Q implies a bound on the
number of random samples required to obtain a good approximation of its ranges,
defined as follows.

Definition 5.3.1. Let Q = (X, RX) be a range space and let D be a finite subset of
X. For Á œ (0, 1], a subset B of D is an Á-approximation of D if for all r œ RX we

have:
--- |D fl r|

|D|
≠ |B fl r|

|B|

--- Æ Á/2.

The following result (Mitzenmacher and Upfal, 2017) relates Á and the probability
that a random sample of size m is an Á-approximation for a range space of VC
dimension at most v.

Proposition 5.3.2. There is an absolute positive constant c such that if (X, RX)
is a range-space of VC dimension at most v, D is a finite subset of X, and 0 < Á,
” < 1, then a random subset B µ D of cardinality m with m Ø 4c

Á2

1
v + ln

1
1
”

22
is a

Á-approximation of D with probability at least 1 ≠ ”.

The universal constant c has been experimentally estimated to be at most 0.5
(Lö�er and Phillips, 2009).

We now prove an upper bound to the VC dimension V C(Q) of the range space Q

associated to the class of functions „̂A that grows sub-linearly with respect to ¸. To
this aim, we first define the range space associated to bags of ¸ positions of k-mers.

Definition 5.3.3. Let D be a dataset of n reads and let k and ¸ be two integers Ø 1.
We define Q = (XD,k,¸, RD,k,¸) to be the following range space:

• XD,k,¸ is the set of all bags of ¸ positions of k-mers in D, that is the set of all
possible subsets, with repetitions, of size ¸ from from PD,k;

• RD,k,¸ = {PD,¸(A)|A œ Σk} is the family of sets of starting positions of k-mers,
such that for each k-mer A, the set PD,¸(A) is the set of all bags of ¸ starting
positions in D where A appears at least once.

We prove the following results on the VC dimension of the above range space.

Proposition 5.3.4. Let Q be the range space from Definition 5.3.3. Then:

V C(Q) Æ Âlog2(¸)Ê + 1 .

103

Proof. If V C(Q) Ø v, then there must exists a set Z ™ XD,k,¸ with |Z| = v that
is shattered. This means that 2v subsets of Z must be in projection of RD,k,¸ on
Z. If this is true, then every element of Z needs to belong to exactly 2v≠1 such sets.
Therefore, every element of Z needs to contain at least ¸ = 2v≠1 distinct k-mers. This
implies that v Æ log2(¸) + 1, and the thesis follows.

Using the result above, we prove the following.

Proposition 5.3.5. Let ¸ Ø 1 be an integer and P¸ be a bag of m bags of ¸ positions
of D with

m Ø 2

(¸Á)2

3
Âlog2 min(2¸, ‡k)Ê + ln

3
1

”

44
. (5.5)

Then, with probability at least 1 ≠ ”:

• for any k-mer A œ FK(D, k, ◊) such that

fD(A) Ø ◊Õ = 1 ≠ (1 ≠ ¸◊)1/¸ ,

it holds f̂P¸
(A) Ø ◊ ≠ Á/2;

• for any k-mer A with f̂P¸
(A) Ø ◊ ≠ Á/2 it holds fD(A) Ø ◊ ≠ Á;

• for any k-mer A œ FK(D, k, ◊) it holds fD(A) Ø f̂P¸
(A) ≠ Á/2;

• for any k-mer A with f̂P¸
(A) ≠ Á/2 Ø 0, it holds

fD(A) Ø 1 ≠ (1 ≠ ¸(f̂P¸
(A) ≠ Á/2))1/¸ ;

• for any k-mer A with ¸(f̂P¸
(A) + Á/2) Æ 1 it holds

fD(A) Æ 1 ≠ (1 ≠ ¸(f̂P¸
(A) + Á/2))1/¸ .

Proof. For a given k-mer A, consider the event EA = “| [f̂P¸
(A)] ≠ f̂P¸

(A)| Æ Á/2”.

Note that it is equivalent to “| [¸f̂P¸
(A)] ≠ ¸f̂P¸

(A)| Æ ¸Á/2” and that ¸f̂P¸
(A) =

1
m

qm≠1
i=0 „̂A(I¸,i), therefore [¸f̂P¸

(A)] = [„̂A(I¸,i)]. Now note that if for the range

space Q = (XD,k,¸, RD,k,¸) we consider rA = PD,¸(A), we have that
|XD,k,¸flrA|

|XD,k,¸|
=

[„̂A(I¸,i)], since I¸,i is a bag of ¸ positions taken uniformly at random among all

possible such bags and therefore [„̂A(I¸,i)] is the fraction of bags of ¸ positions that

contain at least a position where A occurs (i.e., [„̂A(I¸,i)] is w.r.t. the uniform
distribution over bags of ¸ positions). Therefore, combining Proposition 5.3.4 and
Proposition 5.3.2, for the given choice of m we have that with probability 1 ≠ ” it
holds that | [¸f̂P¸

(A)]≠¸f̂P¸
(A)| Æ ¸Á/2, ’A, or, equivalently, | [f̂P¸

(A)]≠ f̂P¸
(A)| Æ

Á/2, ’A: we assume that this holds in the rest of the proof.

104

Consider a k-mer A with frequency fD(A) in D. From the definition of f̂P¸
(A),

we have [f̂P¸
(A)] Æ [fP¸

(A)] = fD(A). Let Xi = „̂A(I¸,i)/¸ be the random variable
taking value 1/¸ if the k-mer A appears at least once in the ¸ positions of I¸,i, and
value 0 otherwise. We have that:

Ë
f̂P¸

(A)
È

=
1

m

ÿ

I¸,iœP¸

[Xi] =
1

m

ÿ

I¸,iœP¸

1

¸
Pr (Xi Ø 1) =

1
1 ≠ (1 ≠ fD(A))¸

2
/¸ .

Now consider a k-mer A with fD(A) Ø 1 ≠ (1 ≠ ¸◊)1/¸. By the derivation above we

have that
Ë
f̂P¸

(A)
È

Ø ◊, and therefore its frequency f̂P¸
(A) in the sample P¸ satisfies

f̂P¸
(A) Ø ◊ ≠ Á/2, that completes the proof of the first part.

For the second part, consider a k-mer A with fD(A) < ◊ ≠ Á. By the derivation

above, we have that [f̂P¸
(A)] Æ [fP¸

(A)] = fD(A) < ◊ ≠ Á. Since | [f̂P¸
(A)] ≠

f̂P¸
(A)| Æ Á/2, ’A, we have that f̂P¸

(A) < ◊ ≠ Á/2, which proves the second part of
the result.

The third result follows from | [f̂P¸
(A)] ≠ f̂P¸

(A)| Æ Á/2 and [f̂P¸
(A)] Æ fD(A).

The last two results follow from | [f̂P¸
(A)] ≠ f̂P¸

(A)| Æ Á/2 and [f̂P¸
(A)] =

(1 ≠ (1 ≠ fD(A))¸)/¸.

Note that from Proposition 5.3.5 the set {(A, fP¸
(A)) : f̂P¸

(A) Ø ◊ ≠ Á/2} is
almost a Á-approximation of FK(D, k, ◊): in particular, there may be k-mers A for

which [f̂P¸
(A)] = (1 ≠ (1 ≠ fD(A))¸)/¸ < ◊ while fD(A) = [fP¸

(A)] Ø ◊ and such

that for the given sample P¸ we have f̂P¸
(A) ¥ [f̂P¸

(A)] ≠ Á/2. While this can
happen, we can limit the probability of this happening by appropriately choosing ¸,
and still enjoy the reduction in sample size of the order of log2 ¸

¸2 w.r.t. Proposition
5.2.4 obtained by considering bags of bags of ¸ positions. In particular, this result
allows the user to set ◊, Á, ”, and ¸ to e�ectively find, with probability at least
1 ≠ ”, all frequent k-mers A for which fD(A) Ø ◊Õ and do not report any k-mer with
frequency below ◊≠Á, while still being able to report in output almost all k-mers with
frequency œ [◊, ◊Õ). Our experimental analysis (Section 5.4) shows that in practice
choosing ¸ close from below to 1/◊ is very e�ective to obtain such result. Then,
the third, fourth, and fifth guarantees from Proposition 5.3.5 state that we can use
the biased estimates f̂P¸

(A) to derive guaranteed upper and lower bounds to fD(A)
that will be much tighter than the one obtained using the bounds of Section 5.2.2.
We will show how to obtain further improved upper and lower bounds to fD(A) in
Section 5.3.3. Such lower bounds ¸bA can be used, for example, to prove that the set
{(A, fP¸

(A)) : ¸bA Ø ◊≠Á} enjoys the same last four guarantees from Proposition 5.3.5
while the first one holds for a ◊Õ < 1 ≠ (1 ≠ ¸◊)1/¸; therefore, when false negatives
are problematic, the set {(A, fP¸

(A)) : ¸bA Ø ◊ ≠ Á} can be used to obtain a di�erent
approximation of FK(D, k, ◊) with fewer false negatives.

105

Algorithm 4: SAKEIMA

Input: dataset D, total number of k-mers tD,k in D,
frequency threshold ◊, accuracy parameter Á œ (0, ◊),
confidence parameter ” œ (0, 1), integer ¸ Ø 1.
Output: approximation {(A, fA)} of FK(D, k, ◊) with probability Ø 1 ≠ ”.

1 m Ω
Ï

2
(¸Á)2

1
Âlog2 min(2¸, ‡k)Ê + ln

1
2
”

22Ì
; ⁄ Ω m¸

tD,k
;

2 T Ω empty hash table;
3 forall reads ri œ D do
4 forall j œ [0, ni ≠ k] do
5 A Ω k-mer in position j of read ri;
6 a Ω Poisson(⁄);
7 if a > 0 then T [A] Ω T [A] + a;

8 O Ω ÿ; t Ω q
AœT T [A];

9 P¸ Ω random partition of the occurrences in T into m bags;
10 forall k-mers A œ T do
11 fA Ω T [A]/t;
12 PA Ω bags of P¸ where A appears at least once;

13 f̂A Ω |PA|/(m¸);

14 if f̂A Ø ◊ ≠ Á/2 then O Ω O fi (A, fA);

15 return O;

5.3.2 SAKEIMA: An Efficient Algorithm to Approximate Fre-
quent k-mers

We now present our Sampling Algorithm for K-mErs approxIMAtion (SAKEIMA), that
builds on Proposition 5.3.5 and e�ciently samples a bag P¸ of bags of ¸-positions from
D to obtain an approximation of the set FK(D, k, ◊) with probability 1 ≠ ”, where ”

is a parameter provided by the user.
SAKEIMA is described in Algorithm 4. While SAKEIMA performs a linear scan

of the input dataset, it practically reduces the number of k-mers that need to be
processed with the following stategy. SAKEIMA performs a pass on the stream of k-
mers appearing in D, and for each position in the stream it draws the number a
of times that the position appears in the sample P¸ independently at random from
the Poisson distribution Poisson(⁄) of parameter ⁄ = m¸/tD,k. SAKEIMA stores such
values, if strictly positive, in a counting structure T (lines 3-7) that keeps, for each
k-mer A, the total number of occurrences of A in the sample P¸. We implicitly
assume that obtaining A, in line 5, is not costly, while it is expensive to count it,
i.e. inserting it in T , as done in line 7 when a > 0. Depending on the value of ⁄,
an alternative strategy may be to sample the number of positions to skip, reducing
the number of draws from the Poisson distribution. Then, we note that tD,k can be

106

computed with a very quick linear scan of the dataset, where ni is computed for every
ri œ D without extracting and processing (e.g., inserting or updating information
for) k-mers; in alternative a lower bound to tD,k can be used, simply resulting in a
number of samples higher than needed. For each k-mer A appearing at least once
in the sample, the unbiased estimate fA is computed in line 11 as the number T [A]
of occurrences of A in the sample P¸ divided by the total number of positions in the
sample t. The biased estimate f̂A can be computed partitioning the T [A] occurrences

of A into m bags I¸,0, . . . , I¸,m≠1; f̂A is then simply the ratio between the number
of bags where A appears at least once and m¸. We describe a more e�cient way of
computing such biased estimate at the end of this section. Then SAKEIMA flags A as
frequent if f̂A Ø ◊ ≠ Á/2 (line 14) and, in this case, the couple (A, fA) is added to the
output set O (line 15), since fA is the best (and unbiased) estimate to fD(A).

Note that SAKEIMA does not sample m bags of exactly ¸ positions each, since the
number of occurrences of each position in D in the sample P¸ is sampled independently
from a Poisson distribution, even if the expected number of total occurrences sampled
from the algorithm is m¸. However, the independent Poisson distributions used by
SAKEIMA provide an accurate approximation of the random sampling of exactly m¸

positions used in the analysis of Section 5.3.1. In particular, this holds when one
focuses on the events of interests for our approximation of Section 5.3.1 (e.g., the

event “there exists a k-mer A such that | [f̂P¸
(A)] ≠ f̂P¸

(A)| > Á/2”). In fact,
a simple adaptation of a known result (Corollary 5.11 of (Mitzenmacher and Upfal,
2017)) on the relation between sampling with replacement and the use of independent
Poisson distributions gives the following.

Proposition 5.3.6. Let E be an event whose probability is either monotonically in-
creasing or monotonically decreasing in the number of sampled positions. If E has
probability p when the independent Poisson distributions are used, then E has proba-
bility at most 2p when the sampling with replacement is used.

As a simple corollary, the output O features the guarantees of Proposition 5.3.5
with probability Ø 1 ≠ ”Õ, with ”Õ = 2”.

The technique we just described can be used to avoid the exact computation of f̂A,
which requires to maintain and update the counters for the m buckets; in fact, we can
approximate the number of occurrences of a k-mer A, appearing T [A] times in the ran-
dom sample of SAKEIMA into a given bucket as a sample from Poisson(T [A]/m). This
means that the number of buckets where A will be inserted at least once is well ap-
proximated by a sample from Binomial(m, 1≠e≠T [A]/m), which models the number of
successes in m independent trials with probability of success 1≠e≠T [A]/m. Due to this
second Poisson approximation, we obtain that the output O provides the guarantees
of Proposition 5.3.5 with probability Ø 1≠”ÕÕ, with ”ÕÕ = 4”. In terms of Algorithm 4,
such modification simply requires to substitute 2

”
with 4

”
in line 1, to remove line 9,

and to substitute lines 12-13 with “f̂A Ω Binomial(m, 1≠e≠T [A]/m)/(m¸)”. This also

allows to e�ciently compute multiple values of f̂A, corresponding to di�erent values

107

of ¸, by simply taking samples from binomial distributions of di�erent appropriate
parameters. (In particular, if one samples a total t of k-mers, then the value m to be
used for both parameters of the binomial distribution is t/¸.) The next section shows
why this is useful.

5.3.3 Improved Lower and Upper Bounds to k-mer Frequen-
cies

Note that Proposition 5.3.5 guarantees that we can obtain upper and lower bounds
to fD(A) for every A œ FK(D, k, ◊) from the sample of bags of ¸ positions. These
bounds are meaningful only in specific ranges of the frequencies; for example, the
lower bound from the third guarantee in Proposition 5.3.5 is meaningful when the
frequency of A is fairly low, i.e fD(A) ¥ 1/¸, while for very frequent k-mers they
could be a multiplicative factor 1/¸ away from than the correct value. For example,
if a k-mer is very frequent and appears in all bags of ¸ k-mers in a sample S, its
corresponding lower bound is still only 1/¸ ≠ Á/2.

However, Proposition 5.3.5 can be generalized to obtain tighter upper and lower
bounds to the frequency of all k-mers. For given ¸, Á, and ”, let m as given in
Proposition 5.3.5. Note that the total number of k-mer’s positions in the sample P¸

is m¸. Let L be a set of integer values L = {¸i} with ¸i œ [1, m¸], ’i = 0, . . . , |L| ≠ 1.
Now, for every ¸i œ L, we can partition the same m¸ k-mers that are in P¸ into
mi = m¸/¸i partitions having size ¸i. Let P¸i

be such a random partition of such
positions into mi bags of ¸i positions each. Note that each P¸i

is a “valid” sample
(i.e., a sample of independent bags of positions, each obtained by uniform sampling
with replacement) for Proposition 5.3.5, even if the P¸i

’s are not independent. From
each P¸i

, we define a maximum deviation Ái from Proposition 5.3.5 as

Ái =
1

¸i

ı̂ıÙ 2

mi

A
Âlog2(min(2¸i, ‡k))Ê + ln

A
|L|

”

BB
.

We have the following result.

Proposition 5.3.7. With probability at least 1 ≠ ”, for all k-mers A simultaneously
and for all the random partitions induced by L it holds

• fD(A) Ø max{f̂P¸i
(A) ≠ Ái/2 : i œ [0, |L| ≠ 1]};

• fD(A) Ø max{1≠(1≠¸i(f̂P¸i
(A)≠Ái/2))1/¸i : i œ [0, |L|≠1], f̂P¸i

(A)≠Ái/2 Ø 0};

• fD(A) Æ min{1 ≠ (1 ≠ ¸i(f̂P¸i
(A) + Ái/2))1/¸i : i œ [0, |L| ≠ 1], f̂P¸i

(A) + Ái/2 Æ 1/¸i}.

Proof. Combining Proposition 5.3.4 and Proposition 5.3.2 and by union bound on the
|L| values of i, we have that with probability 1≠” it holds that | [f̂P¸i

(A)]≠f̂P¸i
(A)| Æ

108

Ái/2, ’A and ’i œ [0, |L| ≠ 1]: we assume that this holds in the rest of the proof. To

prove the lower bound, note that since [f̂P¸i
(A)] = (1 ≠ (1 ≠ fD(A))¸i)/¸i, from the

above we have that

(1 ≠ (1 ≠ fD(A))¸i)/¸i Ø f̂P¸i
(A) ≠ Ái/2

that is equivalent to

fD(A) Ø 1 ≠ (1 ≠ ¸i(f̂P¸i
(A) ≠ Ái/2))1/¸i

when f̂P¸i
(A) ≠ Ái/2 Ø 0. The proof of the upper bound is analogous.

In our experiments, we use L = {¸i} with ¸i = ¸/2i, ’i œ [0, Âlog2 ¸Ê ≠ 1]; in
this case, note that P¸0 = P¸. Using this scheme, we can compute upper and lower
bounds for k-mers having frequencies of many di�erent orders of magnitude, but any
(application dependent) distribution can be specified by the user. Then, these upper
and lower bounds can be used to obtain di�erent approximations of FK(D, k, ◊) with
di�erent guarantees. For example, by reporting all k-mers (and their frequencies)
that have an upper bound Ø ◊, we have an approximation that guarantees that all
k-mers A with fD(A) Ø ◊ are in the approximation.

5.4 Experimental Results

In this section we present the results of our experimental evaluation for SAKEIMA. Sec-
tion 5.4.1 describes the datasets, our implementation for SAKEIMA1, and the baseline
for comparisons. In Section 5.4.2, we report the results for computing the approx-
imation of the frequent k-mers using SAKEIMA. Section 5.4.3 reports the results of
using our approximation to compute abundance-based and presence-based distances
between metagenomic datasets.

5.4.1 Datasets and Implementation

We considered six datasets from the Human Microbiome Project (HMP)2, one of the
largest publicly available collection of metagenomic datasets from high-throughput
sequencing. In particular, we selected the three largest datasets of stool and the
three largest of tongue dorsum (Table 5.1). These datasets constitute the most chal-
lenging instances, due to their size, and provide a test case with di�erent degrees of
similarities among datasets. We implemented SAKEIMA in C++ as a modification of
Jellyfish (Marçais and Kingsford, 2011) (the version we used is 2.2.103), a very pop-

1Available at https://github.com/VandinLab/SAKEIMA
2https://hmpdacc.org/HMASM
3https://github.com/gmarcais/Jellyfish

109

ular and e�cient algorithm for exact k-mer counting. Doing so, our algorithm enjoys
the succinct counting data structure provided by Jellyfish publicly available imple-
mentation. We remark that our sampling-based approach can be used in combination
with any other highly tuned method available for exact, approximate, and parallel
k-mer counting. For this reason, we only compare SAKEIMA with the exact counting
performed by Jellyfish, since they share the underlying characteristics, allowing us to
evaluate the impact of SAKEIMA’s sampling strategy.

For running time and memory we computed the average from 10 runs. When
comparing Jellyfish and SAKEIMA using 1 worker, we show the CPU time, while when
using multiple threads we show the overall running time. We did not include the
time to compute tD,k in our experiments since we assume it is provided in input (for
example, computed while the dataset of read is created). In cases when it is not
known in advance, tD,k can be computed by simply scanning all the k-mers without
counting them. We computed the time required for this task for the datasets we
consider and it was always small (i.e., always less than 175 seconds with 1 worker,
and than 70 seconds with 32 workers) compared to the time for counting k-mers.

For the computation of the abundance-based distances from the k-mer counts
of two dataset, we implemented in C++ a simple algorithm that loads the counts of
one dataset in main memory and then performs one pass on the counts of the other
dataset, producing the distances in output. We executed all our experiments on
the same machine with 512 GB of RAM and 2.30 GHz Intel Xeon CPUs (with 64
cores in total), compiling both implementations with GCC 8. SAKEIMA can be used in
combination with more e�cient algorithms and implementations for the computation
of these (and other) distances (Benoit et al., 2016), resulting in speed-ups analogous
to the ones we present below. For all the experiments of SAKEIMA, given ◊ and a
dataset D, we fixed the parameters ” = 0.1, Á = ◊ ≠ 2/tD,k, and we fix ¸ = Â0.9/◊Ê.

5.4.2 Approximation of the Frequent k-mers

We fixed k = 31, and we compared SAKEIMA with the exact counting of all k-mers
(from Jellyfish) in terms of: (i) running time, including, for both algorithms, the time
required to write the output on disk; (ii) memory requirement. We also assessed the
accuracy of the output of SAKEIMA.

Figure 5-2 shows the average running times and peak memory as function of ◊,
using 1 worker. Note that for the exact counting algorithm these metrics do not
depend on ◊, since it always counts all k-mers. SAKEIMA is always faster than the
exact counting, with a di�erence that increases when ◊ increases and a speed-up
around 2 even for ◊ = 2 · 10≠8. The memory requirement of SAKEIMA reduces when
◊ increases, and for ◊ = 2 · 10≠8 it is half of the memory required by the exact
counting. This is due to SAKEIMA’s sample size being much smaller than the dataset
size (Figure 5-2(d)), therefore a large portion of extremely low frequency k-mers are
naturally left out from the random sample and do not need to be accounted for in the

110

Figure 5-2: Running time, memory requirements, and number of distinct k-mers
counted, for SAKEIMA and exact counting as function of ◊. (a) Running time (average
±2 standard deviations from 10 runs). (b) Memory requirement (the standard devi-
ation is not shown when all the 10 runs have the same peak memory). (c) Number of
distinct k-mers counted. (d) Sample sizes of SAKEIMA, total size tD,k of the datasets,
and number (c.p.) of dataset’s distinct covered positions (i.e., included in SAKEIMA’s
sample), as function of ◊.

counting data structure, as confirmed by counting the number of distinct k-mers that
are inserted in the counting data structure by the two algorithms (Figure 5-2(c)).
(The di�erence between the memory requirement and the number of distinct k-mers
is given by Jellyfish’s strategy to doubles the size of the counting data structure when
it is full.)

Figure 5-3 shows the average running times of SAKEIMA and Jellyfish as function
of ◊ and the number of workers w for counting k-mer from dataset SRS043663. The
memory used by both approaches does not depend on w, therefore it is the same of
Figure 5-2. We can see that increasing w reduces the running time of both approaches,
and that the relative improvements provided by the sampling strategy of SAKEIMA

is mantained. This shows that SAKEIMA is well suited to be combined with parallel
approaches.

In terms of quality of the approximation, the output of SAKEIMA satisfied the

111

Figure 5-3: Running time for SAKEIMA and exact counting for dataset SRS043663, as
function of ◊ and the number of workers w.

guarantees given by Proposition 5.3.5 for all runs of our experiments, therefore with
probability higher than 1 ≠ ”. While SAKEIMA may incur in false negatives, its false
negative ratio (i.e., the fraction of k-mers in FK(D, k, ◊) not reported by SAKEIMA) is
always Æ 3 ·10≠4 (Figure 5-4(a)), even if the sampling technique of Section 5.3.1 does
not provide rigorous guarantees on such quantity. Therefore SAKEIMA is very e�ective
in reporting almost all frequent k-mers. As mentioned in Section 5.3.3, SAKEIMA can
be easily modified so to report all frequent k-mers in output, even if at the cost of
reporting also more k-mers with frequency between ◊ ≠ Á and ◊. In addition, the
estimated frequencies fA reported by SAKEIMA are always close to the true values
fD(A), with a small maximum deviation |fA ≠ fD(A)| (Figure 5-4(b)), and an even
smaller average deviation (Figure 5-4(c)). In addition, the upper and lower bounds
computed as in Section 5.3.3 provide small confidence intervals always containing the
value fD(A) (e.g., Figure 5-4(d) for dataset SRS062761), and could be used to obtain
sets of k-mers with various guarantees from the sample used by SAKEIMA.

5.4.3 Application to Metagenomics: Computation of Ecolog-
ical Distances

We evaluate the use of SAKEIMA to speed up the computation of commonly used k-mer
based ecological distances (Benoit et al., 2016) between datasets of Next-Generation
Sequencing (NGS) reads. We present results for the Bray-Curtis distance; analogous
results hold for other distances (see Section 5.5).

We first investigated how the distances change when those are computed consid-
ering only the frequent k-mers (w.r.t. a frequency threshold ◊) instead that the full

112

Figure 5-4: Quality of the approximation of FK(D, k, ◊) produced by SAKEIMA. (a)
False negative rate, i.e., the fraction r of k-mers in FK(D, k, ◊) not reported by
SAKEIMA. (b) Maximum deviation |fA ≠ fD(A)| of the estimates reported by SAKEIMA

for various ◊. (c) Average value of |fA ≠fD(A)| for the k-mers A reported by SAKEIMA

for various ◊. (d) Frequencies and bounds for dataset SRS062761 and ◊ = 10≠8 shown
for k-mers sorted in increasing order of exact frequencies. Red: exact frequencies
fD(A). Green: estimate fA of fD(A) from SAKEIMA. Blue: lower bound lbA to fD(A)
from SAKEIMA. Brown: upper bound ubA to fD(A) from SAKEIMA.

113

spectrum of k-mers appearing in the data. Therefore, given a pair of datasets D1 and
D2 and ◊, we computed the sets O1 = FK(D1, k, ◊) and O2 = FK(D2, k, ◊) using
Jellyfish and then computed a generalized version of the distances for all pairs of
datasets we used for our experiments. For the Bray-Curtis distance, this generaliza-
tion is defined as:

BC(D1, D2, O1, O2) = 1 ≠ 2

q
AœO1flO2

min{oD1(A), oD2(A)}
q

AœO1
oD1(A) +

q
AœO2

oD2(A)
.

Note that when ◊ Æ 10≠10 then FK(D, k, ◊) coincides with the set of all k-mers,
for any of the datasets we tested. The results (Figure 5-5(a)) show that for ◊ up to
5◊10≠8 the values of the distances are fairly stable and therefore one can use only fre-
quent k-mers for such values of ◊ to compute the distances, and that for ◊ up to 10≠7

the relation between distances of di�erent pairs of datasets are almost always con-
served. We underline that the exact counting approach needs to count all the k-mers
and only afterwards can filter the infrequent ones before writing them to disk to com-
pute FK(D, k, ◊). We then used SAKEIMA to extract approximations (of k-mers and
their frequencies) of FK(D1, k, ◊) and FK(D2, k, ◊) and used such approximations to
compute the distances among datasets (Figure 5-5(b)). Strikingly, the distances com-
puted from the output of SAKEIMA are very close to their exact variant (Figure 5-5(c)).
Interestingly this holds also for the Jaccard distance, a presence-based distance that
does not depend neither on k-mer abundances nor on k-mer ranking by frequencies.

We then compared, for di�erent values of ◊, the total running time required to
compute the approximations of the frequent k-mers using SAKEIMA for all datasets in
Table 5.1 and all distances among such datasets using SAKEIMA approximations with
the running time required when the exact counting algorithm is used for the same
tasks. SAKEIMA reduces the computing time by more than 75% (Figure 5-5(d)). This
result comes from both the e�ciency of SAKEIMA and from the fact that by focusing
on the the most frequent k-mers we greatly reduce the number of distinct k-mers that
need to be processed for computing the distances. Therefore SAKEIMA can be used
for a very fast comparison of metagenomic datasets while preserving the ability of
distinguishing similar datasets from di�erent ones.

5.5 Proofs and Additional Results

In this Section we provide more details and missing proofs for some of the results
presented in this Chapter.

A first VC Dimension-based Bound

In this section we prove Proposition 5.2.4, which gives an improved bound on the
sample size required to obtain a rigorous approximation to FK(D, k, ◊) w.r.t. the

114

Figure 5-5: Results for Bray-Curtis (BC) distances of metagenomic datasets. (a) BC
distance computed using k-mers with frequency Ø ◊. (b) BC distances computed
using the approximation of k-mers with frequency Ø ◊ from SAKEIMA. (c) Compar-
ison of the BC distance using all k-mers with exact counts and the approximation
of frequent k-mers by SAKEIMA. (d) Total time required by SAKEIMA and the exact
approach to find frequent k-mers and compute all distances between datasets as a
function of ◊.

Table 5.1: Datasets for our experimental evaluation. For each dataset D the table
shows: the dataset name and site ((s) for stool, (t) for tongue dorsum); the total
number tD,k of k-mers (k = 31) in D; the number |D| of reads it contains; the
maximum read length maxni

= maxi{ni|ri œ D}; the average read length avgni
=qn≠1

i=0 ni/n.

dataset tD,k |D| maxni
avgni

SRS024388(s) 7.92 · 109 1.20 · 108 102 97.21
SRS011239(s) 8.13 · 109 1.24 · 108 102 96.69
SRS024075(s) 8.82 · 109 1.38 · 108 96 94.88
SRS075404(t) 7.75 · 109 1.22 · 108 102 94.51
SRS062761(t) 8.26 · 109 1.18 · 108 101 101.00
SRS043663(t) 9.15 · 109 1.31 · 108 101 101.00

115

one given by 5.2.3. In our analysis we use the Vapnik-Chervonenkis (VC) dimension
(Vapnik, 1998), a statistical learning concept that measures the expressivity of a
family of binary functions.

We now define the range space associated to k-mers and derive an upper bound
to its VC dimension.

Definition 5.5.1. Let D be a bag of n reads and let k > 0 be an integer. For any
k-mer A, let PD,k(A) be the set of elements of PD,k corresponding to the occurrences
of A in D. We define the range space Q = (XD,k, RD,k) associated to the k-mers in
D as follows:

• XD,k is the set of all occurrences of k-mers in D, that is: XD,k = PD,k;

• RD,k = {PD,k(A)|A œ Σk}.

Note that for any A, if we consider r = PD,k(A) ™ PD,k we have |XD,k flr|/|XD,k| =
fD(A). Therefore, by taking D = XD,k and RX = RD,k in Definition 5.3.1, we have
that an Á-approximation B of XD,k guarantees that |fD(A) ≠ fB(A)| Æ Á/2.

A trivial upper bound (Shalev-Shwartz and Ben-David, 2014) to the VC dimension
v of the range space Q = (XD,k, RD,k) is given by v Æ Âlog2 |RD,k|Ê = Âlog2 ‡kÊ. How-
ever, we are able to precisely characterize V C(Q), that is instrumental in obtaining
an improved bound on the number of samples required for a Á-approximation.

Proposition 5.5.2. Let D be a bag of n reads, k > 0 an integer, and Q = (XD,k, RD,k)
be the corresponding range space. Then the VC dimension V C(Q) of Q is 1.

Proof. The proof is by contradiction. Assume that V C(Q) = vÕ > 1: therefore there
exists a set X ™ XD,k with |X| = vÕ that can be shattered by RD,k. In order to
be shattered, there should exist at least 2vÕ

k-mers A1, A2, . . . , A2vÕ such that the
projection of their corresponding ranges on X gives all subsets of X. Consider two
subsets X Õ, X ÕÕ of X for which X Õ ”= X ÕÕ and X Õ fl X ÕÕ ”= ÿ. Since X Õ and X ÕÕ must
be in the projection of the ranges corresponding to A1, A2, . . . , A2vÕ on X, there must
exist two distinct k-mers Ai and Aj for which PD,k(Ai) = X Õ and PD,k(Aj) = X ÕÕ.
This is a contradiction, since if X Õ fl X ÕÕ ”= ÿ, then each position in X Õ fl X ÕÕ must be
the starting position for the two distinct k-mers Ai and Aj, while a position can be
the starting position for only one k-mer.

Proposition 5.2.4 follows directly from Proposition 5.3.2 and from Proposi-
tion 5.5.2; it provides a VC dimension-based bound on the number of samples required
to obtain an Á-approximation of FK(D, k, ◊).

Frequency Histograms of 31-mers

We show in Figure 5-6 the exact frequency histograms we computed with Jellyfish
of the k-mers (with k = 31) for all the datasets we considered in our experiments.

116

Figure 5-6: Histograms of the exact frequencies of the datasets we tested. The vertical

red line is drawn in correspondence of a lower bound to ◊≠Á/2 = 1
2

Ú
2

tD,k

1
1 + log(1

”
)
2

(with ” = 0.05), that is the lowest achievable frequency threshold using the results of
Section 5.5.

For every dataset we computed 1
2

Ú
2

tD,k

1
1 + log(1

”
)
2

(with ” = 0.05), that is a lower

bound to the frequency threshold ◊ ≠ Á/2 (drawn in the plots with red vertical lines)
that can be obtained from the results of Section 5.5.

Distances between Datasets of Reads

In our experimental evaluation we considered three abundance-based distances
and one presence-based distance commonly used to compare metagenomic
datasets (Benoit et al., 2016), and generalized them to the scenario in which only
a set of all k-mers are observed. Let O be a subset of the set of all possible k-mers.
Define the indicator functions:

• fD,O(A) = fD(A) if A œ O, fD,O(A) = 0 otherwise; and

• oD,O(A) = oD(A) if A œ O, oD,O(A) = 0 otherwise.

Given two datasets D1, D2, let O1 and O2 be the k-mers observed for D1 and D2,
respectively. We considered the following distances:

• the Bray-Curtis distance:

BC(D1, D2, O1, O2) = 1 ≠ 2

q
AœΣk min{oD1,O1(A), oD2,O2(A)}

q
AœΣk oD1,O1(A) +

q
AœΣk oD2,O2(A)

;

117

Figure 5-7: Bray-Curtis distance on the
exact set of frequent k-mers.

Figure 5-8: Bray-Curtis distance on out-
put of SAKEIMA.

• the Whittaker distance:

Wt(D1, D2, O1, O2) =
1

2

ÿ

AœΣk

|fD1,O1(A) ≠ fD2,O2(A)|;

• the Chord distance:

Ch(D1, D2, O1, O2) =

ı̂ııÙ2 ≠ 2
ÿ

AœΣk

oD1,O1(A)oD2,O2(A)Òq
AœΣk oD1,O1(A)2

Òq
AœΣk oD2,O2(A)2

;

• the Jaccard distance:

Jc(D1, D2, O1, O2) = 1 ≠ |O1 fl O2|

|O1 fi O2|
.

For the Jaccard distance, we considered only k-mers appearing at least twice in
the datasets, since k-mers with count 1 often represents sequencing errors and greatly
a�ect the accuracy of presence-based distances, such as the Jaccard distance.

In Figures 5-7 - 5-14 we show the distances computed using the exact sets of
frequent k-mers, for di�erent values of ◊, and using the corresponding approximated
sets given by SAKEIMA. Figures 5-15 - 5-18 directly compare them.

118

Figure 5-9: Whittaker distance on the ex-
act set of frequent k-mers.

Figure 5-10: Whittaker distance on out-
put of SAKEIMA.

Figure 5-11: Chord distance on the exact
set of frequent k-mers.

Figure 5-12: Chord distance on output of
SAKEIMA.

Figure 5-13: Jaccard distance on the ex-
act set of frequent k-mers.

Figure 5-14: Jaccard distance on output
of SAKEIMA.

119

Figure 5-15: Bray-Curtis distance. Figure 5-16: Whittaker distance.

Figure 5-17: Chord distance. Figure 5-18: Jaccard distance.

120

Chapter 6

Monte Carlo Rademacher Averages
for Poset Families and
Approximate Pattern Mining

121

6.1 Introduction

Pattern Mining is a key sub-area of Knowledge Discovery from data, with a large
number of variants tailored to applications ranging from market basket analysis, to
spam detection, and to recommendation systems.

In this Chapter we are interested in the analysis of samples for Pattern Mining.
There are two meanings of “sample” in this context, but, as we now argue, they are
really two sides of the same coin, and our methods work for both sides.

The first meaning is sample as a small random sample of a large dataset: since
mining patterns becomes more expensive as the dataset grows, it is reasonable to
mine only a small random sample that fits into the main memory of the machine.
Recently, this meaning of sample as “sample-of-the-dataset” has been used also to
enable interactive data exploration using progressive algorithms for pattern min-
ing (Servan-Schreiber et al., 2018a). The patterns obtained from the sample are
an approximation of the exact collection, due to the noise introduced by the sampling
process. To obtain desirable probabilistic guarantees on the quality of the approxi-
mation, one must study the trade-off between the size of the sample and the quality
of the approximation. Many works have progressively obtained better characteriza-
tions of the trade-o� using advanced probabilistic concepts (Toivonen, 1996; Chakar-
avarthy et al., 2009; Riondato and Upfal, 2014, 2015; Riondato and Vandin, 2018;
Servan-Schreiber et al., 2018a). Recent methods (Riondato and Upfal, 2014, 2015;
Riondato and Vandin, 2018; Servan-Schreiber et al., 2018a) use VC-dimension, pseu-
dodimension, and Rademacher averages (Bartlett and Mendelson, 2002; Koltchinskii
and Panchenko, 2000), key concepts from statistical learning theory (Vapnik, 1998)
(see also Sections 6.2 and 6.3.2), because they allow to obtain uniform (i.e., simul-
taneous) probabilistic guarantees on the deviations of all sample means (e.g., sample
frequencies, or other measure of interestingness, of all patterns) from their expecta-
tions (the exact interestingness of the patterns in the dataset).

The second meaning is sample as a sample from an unknown data generating
distribution: the whole dataset is seen as a collection of samples from an unknown
distribution, and the goal of mining patterns from the available dataset is to gain ap-
proximate information (or better, discover knowledge) about the distribution. This
area is known as Statistically-sound Pattern Discovery (Hämäläinen and Webb, 2019),
and there are many di�erent flavours of it, from Significant Pattern Mining (Terada
et al., 2013a) from transactional datasets (Pellegrina et al., 2019c; Kirsch et al., 2012),
sequences (Tonon and Vandin, 2019), or graphs (Sugiyama et al., 2015), to True Fre-
quent Itemset Mining (Riondato and Vandin, 2014), to, at least in part, Contrast
Pattern Mining (Bay and Pazzani, 2001). Many works in this area also use con-
cepts from statistical learning theory such as empirical VC dimension (Riondato and
Vandin, 2014) or Rademacher averages (Pellegrina et al., 2019c), because, once again,
these concepts allow to get very sharp bounds on the maximum di�erence between the
observed interestingness on the sample and the unknown interestingness according to

122

the distribution.
The two meanings of “sample” are really two sides of the same coin, because also in

the first case the goal is to approximate an unknown distribution from a sample, thus
falling back into the second case. Despite this similarity, previous contributions have
been extremely point-of-view-specific and pattern-specific. In part, these limitations
are due to the techniques used to study the trade-o� between sample size and quality
of the approximation obtained from the sample. Our work instead proposes a unifying
solution for mining approximate collections of patterns from samples, while giving
guarantees on the quality of the approximation: our proposed method can easily
be adapted to approximate collections of frequent itemsets, frequent sequences, true
frequent patterns, significant patterns, and many other tasks, even outside of pattern
mining.

At the core of our approach is the n-Samples Monte-Carlo (Empirical)
Rademacher Average (n-MCERA) (Bartlett and Mendelson, 2002) (see (6.4)), which
has the flexibility and the power needed to achieve our goals, as it gives much sharper
bounds to the deviation than other approaches. The challenge in using the n-MCERA,
like other quantities from statistical learning theory, is how to compute it e�ciently.

Contributions We present MCRapper, an algorithm for the fast computation of
the n-MCERA of families of functions with a poset structure, which often arise in
pattern mining tasks (Section 6.3.1).

• MCRapper is the first algorithm to compute the n-MCERA e�ciently. It
achieves this goal by using sharp upper bounds to the discrepancy of each
function in the family (Section 6.4.1) to quickly prune large parts of the function
search space during the exploration necessary to compute the n-MCERA, in a
branch-and-bound fashion. We also develop a novel sharper upper bound to
the supremum deviation using the 1-MCERA (Theorem 6.4.6). It holds for any
family of functions, and is of independent interest.

• To showcase the practical strength of MCRapper, we develop TFP-R (Sec-
tion 6.5), a novel algorithm for the extraction of the True Frequent Patterns
(TFP) (Riondato and Vandin, 2014). TFP-R gives probabilistic guarantees on
the quality of its output: with probability at least 1 ≠ ” (over the choice of the
sample and the randomness used in the algorithm), for user-supplied ” œ (0, 1),
the output is guaranteed to not contain any false positives. That is, TFP-R

controls the Family-Wise Error Rate (FWER) at level ” while achieving high
statistical power, thanks to the use of the n-MCERA and of novel applications of
variance-aware tail bounds (Theorem 6.3.2). We also discuss other applications
of MCRapper, to remark on its flexibility as a general-purpose algorithm.

• We conduct an extensive experimental evaluation of MCRapper and TFP-R

on real datasets (Section 6.6), and compare their performance with that of state-

123

of-the-art algorithms for their respective tasks. MCRapper, thanks to the n-
MCERA, computes much sharper (i.e, lower) upper bounds to the supremum
deviation than algorithms using the looser Massart’s lemma (Shalev-Shwartz
and Ben-David, 2014, Lemma 26.8). TFP-R extracts many more TFPs (i.e.,
has higher statistical power) than existing algorithms with the same guarantees.

6.2 Related Work

Our work applies to both the “small-random-sample-from-large-dataset” and the
“dataset-as-a-sample” settings, so we now discuss the relationship of our work to
prior art in both settings. We do not study the important but di�erent task of out-
put sampling in pattern mining (Boley et al., 2011; Dzyuba et al., 2017). We focus on
works that use concepts from statistical learning theory: these are the most related to
our work, and most often the state of the art in their areas. More details are available
in surveys (Riondato and Upfal, 2014; Hämäläinen and Webb, 2019).

The idea of mining a small random sample of a large dataset to speed up the pat-
tern extraction step was proposed for the case of itemsets by Toivonen (1996) shortly
after the first algorithm for the task had been introduced. The trade-o� between the
sample size and the quality of the approximation obtained from the sample has been
progressively better characterized (Chakaravarthy et al., 2009; Pietracaprina et al.,
2010; Riondato and Upfal, 2014, 2015), with large improvements due to the use of
concepts from statistical learning theory. Riondato and Upfal (2014) study the VC-
dimension of the itemsets mining task, which results in a worst-case dataset-dependent
but sample- and distribution-agnostic characterization of the trade-o�. The major ad-
vantage of using Rademacher averages (Koltchinskii and Panchenko, 2000), as we do
in MCRapper is that the characterization is now sample-and-distribution-dependent,
which gives much better upper bounds to the maximum deviation of sample means
from their expectations. Rademacher averages were also used by Riondato and Upfal
(2015), but they used worst-case upper bounds (based on Massart’s lemma (Shalev-
Shwartz and Ben-David, 2014, Lemma 26.2)) to the empirical Rademacher average of
the task, resulting in excessively large bounds. MCRapper instead computes the ex-
act n-MCERA of the family of interest on the observed sample, without having to con-
sider the worst case. For other kinds of patterns, Riondato and Vandin (2018) studied
the pseudodimension of subgroups, while Servan-Schreiber et al. (2018a) and Santoro
et al. (2020) considered the (empirical) VC-dimension and Rademacher averages for
sequential patterns. MCRapper can be applied in all these cases, and obtains bet-
ter bounds because it uses the sample-and-distribution-dependent n-MCERA, rather
than a worst case dataset-dependent bound.

Significant pattern mining considers the dataset as a sample from an unknown
distribution. Many variants and algorithms are described in the survey by Hämäläinen
and Webb (2019). We discuss only the two most related to our work. Riondato and
Vandin (2014) introduce the problem of finding the true frequent itemsets, i.e., the

124

itemsets that are frequent w.r.t. the unknown distribution. They propose a method
based on empirical VC-dimension to compute the frequency threshold to use to obtain
a collection of true frequent patterns with no false positives (see also Section 6.5).
Our algorithm TFP-R uses the n-MCERA, and as we show in Section 6.6, it greatly
outperforms the state-of-the-art (a modified version of the algorithm by Riondato
and Upfal (2015) for approximate frequent itemsets mining). Pellegrina et al. (2019c)
use empirical Rademacher averages in their work for Significant Pattern Mining. As
their work uses the bound by Riondato and Upfal (2015), the same comments about
the n-MCERA being a superior approach hold.

Our approach for bounding the supremum deviation by computing the n-MCERA
with e�cient search space exploration techniques is novel, not just in knowledge
discovery, as the n-MCERA has received scant attention. De Stefani and Upfal (2019)
use it to control the generalization error in a sequential and adaptive setting, but do
not discuss e�cient computation. We believe that the lack of attention to the n-
MCERA can be be explained by the fact that there were no e�cient algorithms for
it, a gap now filled by MCRapper.

6.3 Preliminaries

We now define the most important concepts and results that we use throughout this
work, recalling them from Section 2.1.1. Let F be a class of real valued functions
from a domain X to the interval [a, b] µ R. We use c to denote |b≠a| and z to denote
max{|a|, |b|}. In this work, we focus on a specific class of families (see Section 6.3.1).
In pattern mining from transactional datasets, X is the set of all possible transactions
(or, e.g., sequences). Let µ be an unknown probability distribution over X and the
sample S = {s1, . . . , sm} be a bag of m i.i.d. random samples from X drawn according
to µ. We discussed in Section 6.1 how in the pattern mining case, the sample may
either be the whole dataset (sampled according to an unknown distribution) or a
random sample of a large dataset (more details in Section 6.3.1). For each f œ F , we
define its empirical sample average (or sample mean) af (S) on S and its expectation

[f] respectively as

af (S)
.
=

1

m

ÿ

siœS

f(si) and [f]
.
= µ

S
U 1

m

ÿ

siœS

f(si)

T
V .

In the pattern mining case, the sample mean is the observed interestingness of a
pattern, e.g., its frequency (but other measures of interestingness can be modeled as
above, as discussed for subgroups by Riondato and Vandin (2018)), while the expec-
tation is the unknown exact interestingness that we are interested in approximating,
that is, either in the large datasets or w.r.t. the unknown data generating distribu-
tion. We are interested in developing tight and fast-to-compute upper bounds to the

125

supremum deviation (SD) D(F , S) of F on S between the empirical sample average
and the expectation simultaneously for all f œ F , defined as

D(F , S) = sup
fœF

|af (S) ≠ µ[f]| . (6.1)

The supremum deviation allows to quantify how good the estimates obtained from the
samples are. Because µ is unknown, it is not possible to compute D(F , S) exactly. We
introduce concepts such as Monte-Carlo Rademacher Average and results to compute
such bounds in Section 6.3.2, but first we elaborate on the specific class of families
that we are interested in.

6.3.1 Poset Families and Patterns

A partially-ordered set, or poset is a pair (A, ∞) where A is a set and ∞ is a bi-
nary relation between elements of A that is reflexive, anti-symmetric, and transitive.
Examples of posets include the A = N and the obvious “less-than-or-equal-to” (Æ)
relation, and the powerset of a set of elements and the “subset-or-equal” (™) relation.
For any element y œ A, we call an element w œ A, w ”= y a descendant of y (and call
y an ancestor of w) if y ∞ w. Additionally, if y ∞ w and there is no q œ A, q ”= y,
q ”= w such that y ∞ q ∞ w, then we say that w is a child of y and that y is a parent
of w. For example, the set {0, 2} is a parent of the set {0, 2, 5} and an ancestor of
the set {0, 1, 2, 7}, when considering A to be all possible subsets of integers and the
™ relation.

In this work we are interested in posets where A is a family F of functions as in
Section 6.3.2, and the relation ∞ is the following: for any f, g œ F

f ∞ g i�

Y
]
[

f(x) Ø g(x) for every x œ X s.t. f(x) Ø 0

f(x) Æ g(x) for every x œ X s.t. f(x) < 0
. (6.2)

The very general but a bit complicated requirement often collapses to much simpler
ones as we discuss below. We aim for generality, as our goal is to develop a unifying
approach for many pattern mining tasks, for both meanings of “sample”, as discussed
in Section 6.1. For now, consider for example that requiring |f(x)| Ø |g(x)| for every
x œ X is a specialization of the above more general requirement. We assume to have
access to a blackbox function children that, given any function f œ F , returns the
list of children of f according to ∞, and to a blackbox function minimals that, given
F , returns the minimal elements w.r.t. ∞, i.e., all the functions f œ F without any
parents. We refer to families that satisfy these conditions as poset families, even if
the conditions are more about the relation ∞ than about the family. We now discuss
how poset families arise in many pattern mining tasks.

In pattern mining, it is assumed to have a language L containing the patterns
of interest. For example, in itemsets mining (Agrawal et al., 1993), L is the set of

126

all possible itemsets, i.e., all non-empty subsets of an alphabet I of items, while in
sequential pattern mining (Agrawal and Srikant, 1995), L is the set of sequences, and
in subgroup discovery (Klösgen, 1992), L is set by the user as the set of patterns of
interest. In all these cases, for each pattern P œ L, it is possible to define a function
fP from the domain X , which is the set of all possible transactions, i.e., elementary
components of the dataset or of the sample, to an appropriate co-domain [a, b], such
that fP(x) denotes the “value” of the pattern P on the transaction x. For example, for
itemsets mining, X is all the subsets of I and fP maps X to {0, 1} so that fP(x) = 1
i� P ™ x and 0 otherwise. A consequence of this definition is that af (S) is the
frequency of P in S, i.e., the fraction of transaction of S that contain the pattern P .
A more complex (due to the nature of the patterns) but similar definition would hold
for sequential patterns. For the case of high-utility itemset mining (Fournier-Viger
et al., 2019), the value of fP(x) would be the utility of P in the transaction x. The
family F is the set of the functions fP for every pattern P œ L. Similar reasoning
also applies to patterns on graphs, such as graphlets (Ahmed et al., 2015).

Now that we have defined the set that we are interested in, let’s comment on the
relation ∞ that, together with the set, forms the poset. In the itemsets case, for any
two patterns P Õ and P ÕÕ œ L, i.e., for any two functions f = fP Õ and g = fP ÕÕ œ F ,
it holds f ∞ g i� P Õ ™ P ÕÕ. For sequences, the subsequence relation ı defines ∞
instead. In all pattern mining tasks, the only minimal element of F w.r.t. ∞ is
the empty itemset (or sequence) ÿ. Our assumption to have access to the blackboxes
children and minimals is therefore very reasonable, because computing these collections
is extremely straightforward in all the pattern mining cases we just mentioned and
many others.

6.3.2 Rademacher Averages

Here we present Rademacher averages (Koltchinskii and Panchenko, 2000; Bartlett
and Mendelson, 2002) and related results at the core of statistical learning the-
ory (Vapnik, 1998). Our presentation uses the most recent and sharper results, and
we also introduce new results (Theorem 6.3.2, and later Theorem 6.4.6) that may be
of independent interest. For an introduction to statistical learning theory and more
details about Rademacher averages, we refer the interested reader to the textbook by
Shalev-Shwartz and Ben-David (2014). In this section we consider a generic family
F , not necessarily a poset family.

A key quantity to study the supremum deviation (SD) from (6.1) is the empirical

Rademacher average (ERA) R̂ (F , S) of F on S (Koltchinskii and Panchenko, 2000;
Bartlett and Mendelson, 2002), defined as follows. Let σ = È‡1, . . . , ‡mÍ be a collec-
tion of m i.i.d. Rademacher random variables, i.e., each taking value in {≠1, 1} with

127

equal probability. The ERA of F on S is the quantity

R̂ (F , S)
.
= σ

C
sup
fœF

1

m

mÿ

i=1

‡if(si)

D
. (6.3)

Computing the ERA R̂ (F , S) exactly is often intractable, due to the expectation over
2m possible assignments for σ, and the need to compute a supremum for each of these
assignments, which precludes many standard techniques for computing expectations.
Bounds to the SD are then obtained through e�ciently-computable upper bounds
to the ERA. Massart’s lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 26.2)
gives a deterministic upper bound to the ERA that is often very loose. Monte-Carlo
estimation allows to obtain an often sharper probabilistic upper bound to the ERA.
For n Ø 1, let σ œ {≠1, 1}n◊m be a n ◊ m matrix of i.i.d. Rademacher random
variables. The n-Samples Monte-Carlo Empirical Rademacher Average (n-MCERA)

R̂
n

m(F , S, σ) of F on S using σ is (Bartlett and Mendelson, 2002)

R̂
n

m(F , S, σ)
.
=

1

n

nÿ

j=1

sup
fœF

1

m

ÿ

siœS

σj,if(si) . (6.4)

The n-MCERA allows to obtain probabilistic upper bounds to the SD as follows
(proof in Section 6.7). In Section 6.4.3 we show a novel improved bound for the
special case n = 1 (Theorem 6.4.6).

Theorem 6.3.1. Let ÷ œ (0, 1). For ease of notation let

R̃
.
= R̂

n

m (F , S, σ) + 2z

ı̂ıÙ ln 4
÷

2nm
. (6.5)

With probability at least 1 ≠ ÷ over the choice of S and σ, it holds

D(F , S) Æ 2R̃ +

Ò
c(4mR̃ + c ln 4

÷
) ln 4

÷

m
+

c ln 4
÷

m
+ c

ı̂ıÙ ln 4
÷

2m
. (6.6)

Sharper upper bounds to D(F , S) can be obtained with the n-MCERA when more
information about F is available. The proof is in Section 6.7. We use this result for
a specific pattern mining task in Section 6.5.

Theorem 6.3.2. Let v be an upper bound to the variance of every function in F ,

128

and let ÷ œ (0, 1). Define the following quantities

fl
.
= Rn

m(F , S, σ) + 2z

ı̂ıÙ ln 4
÷

2nm
, (6.7)

r
.
= fl +

1

2m

Q
a

ı̂ıÙc

A
4mfl + c ln

4

÷

B
ln

4

÷
+ c ln

4

÷

R
b ,

Á
.
= 2r +

ı̂ıÙ2 ln 4
÷

(v + 4cr)

m
+

c ln 4
÷

3m
. (6.8)

Then, with probability at least 1 ≠ ÷ over the choice of S and σ, it holds

D(F , S) Æ Á .

Due to the dependency on z in Theorems 6.3.1 and 6.3.2, it is often convenient to
use R̂

n

m(Fü, S, σ) in place of R̂
n

m(F , S, σ) in the above theorems, where Fü denotes
the range-centralized family of functions obtained by shifting every function in F by
≠a ≠ c

2
. The results still hold for D(F , S) because the SD is invariant to shifting,

but the bounds to the SD usually improve since the corresponding z for the range-
centralized family is smaller.

6.4 MCRapper

We now describe and analyze our algorithm MCRapper to e�ciently compute the
n-MCERA (see (6.4)) for a family F with the binary relation ∞ defined in (6.2) and
the blackbox functions children and minimals described in Section 6.3.1.

6.4.1 Discrepancy Bounds

For j œ {1, . . . , n}, we denote as the j-discrepancy ∆j(f) of f œ F on S w.r.t. σ the
quantity

∆j(f)
.
=

ÿ

siœS

σj,if(si) .

The j-discrepancy is not an anti-monotonic function, in the sense that it does not
necessarily hold that ∆j(f) Ø ∆j(g) for every descendant g of f œ F . Clearly, it
holds

R̂
n

m(F , S, σ) =
1

nm

nÿ

j=1

sup
fœF

∆j(f) . (6.9)

A naïve computation of the n-MCERA would require enumerating all the functions
in F and computing their j-discrepancies, 1 Æ j Æ n, in order to find each of the
n suprema. We now present novel easy-to-compute upper bounds ÂΨ(f) and Ψj(f)

129

to ∆j(f) such that ÂΨ(f) Ø ∆j(g) and Ψj(f) Ø ∆j(g) for every g œ d(f), where
d(f) denote the set of the descendants of f w.r.t. ∞. This key property (which is a
generalization of anti-monotonicity to posets) allows us to derive e�cient algorithms
for computing the n-MCERA exactly without enumerating all the functions in F .
Such algorithms take a branch-and-bound approach using the upper bounds to ∆j(f)
to prune large portions of the search space (see Section 6.4.2).

For every j œ {1, . . . , n} and i œ {1, . . . , m}, let

σ
+
j,i

.
= 1(σj,i = 1), and σ

≠
j,i

.
= 1(σj,i = ≠1)

and for every f œ F and x œ X , define the functions

f+(x)
.
= f(x)1(f(x) Ø 0), and f≠(x)

.
= f(x)1(f(x) < 0) .

It holds f+(x) Ø 0 and f≠(x) Æ 0 for every f œ F and x œ X . For every j œ
{1, . . . , n} and f œ F , define

ÂΨ(f)
.
=

ÿ

siœS

|f(si)| and

Ψj(f)
.
=

ÿ

siœS

σ
+
j,if

+(si) ≠
ÿ

siœS

σ
≠
j,if

≠(si) . (6.10)

Computationally, these quantities are extremely straightforward to obtain. Both
ÂΨ(f) and Ψj(f) are upper bounds to ∆j(f) and to ∆j(g) for all g œ d(f) (proof in
Section 6.7).

Theorem 6.4.1. For any f œ F and j œ {1, . . . , n}, it holds

max {∆j(g) : g œ d(f) fi {f}} Æ Ψj(f) Æ ÂΨ(f) .

The bounds we derived in this section are deterministic. An interesting direction
for future research is how to obtain sharper probabilistic bounds.

6.4.2 Algorithms

We now use the discrepancy bounds ÂΨ(·) and Ψ·(·) from Section 6.4.1 in our algorithm
MCRapper for computing the exact n-MCERA. As the real problem is usually not
to only compute the n-MCERA but to actually compute an upper bound to the
SD, our description of MCRapper includes this final step, this also enables fair
comparison with existing algorithms that use deterministic bounds to the ERA to
compute an upper bound to the SD (see also Section 6.6).

MCRapper o�ers probabilistic guarantees on the quality of the bound it com-
putes (proof deferred to after the presentation).

130

Theorem 6.4.2. Let ” œ (0, 1). With probability at least 1 ≠ ” over the choice of S
and of σ, the value Á returned by MCRapper is such that D(F , S) Æ Á.

The pseudocode of MCRapper is presented in Algorithm 5. The division in func-
tions is useful for reusing parts of the algorithm in later sections (e.g., Algorithm 7).
After having sampled the n◊m matrix of i.i.d. Rademacher random variables (line 1),
the algorithm calls the function getSupDevBound with appropriate parameters, which
in turn calls the function getNMCERA, the real heart of the algorithm. This function
computes the n-MCERA R̂

n

m(F , S, σ) by exploring and pruning the search space (i.e.,
F) in according to the order of the elements in the priority queue Q (line 8). One
possibility is to explore the space in Breadth-First-Search order (so Q is just a FIFO
queue), while another is to use the upper bound ÂΨ(f) as the priority, with the top
element in the queue being the one with maximum priority among those in the queue.
Other orders are possible, but we assume that the order is such that all parents of
a function are explored before the function, which is reasonable to ensure maximum
pruning, and is satisfied by the two mentioned orders. We assume that the priority
queue also has a method delete(e) to delete an element e in the queue. This re-
quirement could be avoided with some additional book-keeping, but it simplifies the
presentation of the algorithm.

The algorithm keeps in the quantities ‹j, j œ {1, . . . , n}, the currently best avail-
able lower bound to the quantity supfœF ∆j(f) (see (6.9)), which initially are all ≠zm
(the lowest possible value of a discrepancy). MCRapper also maintains a dictionary
J (line 10), initially empty, whose keys will be elements of F and the values are
subsets of {1, . . . , n}. The value associated to a key f in the dictionary is a superset
of the set of values j œ {1, . . . , n} for which ÂΨ(f) Ø ‹i, i.e., for which f or one of its
descendants may be the function attaining the supremum j-discrepancy among all
the functions in F (see (6.9)). A function and all its descendants are pruned when
this set is the empty set. The set of keys of the dictionary J is, at all times, the set
of all and only the functions in F that have ever been added to Q. The last data
structure is the set H (line 11), initially empty, which will contain pruned elements
of F , in order to avoid visiting either them or their descendants.

MCRapper populates Q and J by inserting in them the minimal elements of
F w.r.t. ∞ (line 12), using the set {1, . . . , n} as the value for these keys in the
dictionary. It then enters a loop that keeps iterating as long as there are elements in
Q (line 15). The top element f of Q is extracted at the beginning of each iteration
(line 16). A set Y , initially empty, is created to maintain a superset of the set of values
j œ {1, . . . , n} for which a child of f may be the function attaining the supremum
j-discrepancy among all the functions in F (see (6.9)). The algorithm then iterates
over the elements j œ J [f] s.t. ÂΨ(f) is greater than ‹j (line 18). The elements for

which ÂΨ(f) < vj can be ignored because f and its descendants can not attain the
supremum of the j-discrepancy in this case, thanks to Theorem 6.4.1. Computing
ÂΨ(f) is straightforward and can be done even faster if one keeps a frequent-pattern
tree or a similar data structure to avoid having to scan S all the times, but we do not

131

Algorithm 5: MCRapper

Input: Poset family F , sample S of size m, ” œ (0, 1), n Ø 1
Output: Upper bound to D(F , S) with probability Ø 1 ≠ ”.

1 σ Ω draw(m, n)

2 Á Ω getSupDevBound(F , S, ”, σ)

3 return Á

4 Function getSupDevBound(F , S, ”, σ):

5 R̃ Ω getNMCERA(F , S, σ) + 2z
Ò

ln(4/”)
2nm

6 return r.h.s. of (6.6) using ÷ = ”

7 Function getNMCERA(F , S, σ):
8 Q Ω empty priority queue
9 foreach j œ {1, . . . , n} do ‹j Ω ≠zm

10 J Ω empty dictionary from F to subsets of {1, . . . , n}
11 H Ω ÿ
12 foreach f œ minimals(F) do
13 Q.push(f)

14 J [f] Ω {1, . . . , n}

15 while Q is not empty do
16 f Ω Q.pop()

17 Y Ω ÿ
18 foreach j œ J [f] s.t. ÂΨ(f) Ø ‹j do
19 if Ψj(f) Ø ‹j then
20 ‹j Ω max{‹j, ∆j(f)}
21 Y Ω Y fi {j}

22 foreach g œ children(f) \ H do
23 if g œ J then N Ω J [g] fl Y else N Ω Y
24 if N = ÿ then
25 H Ω H fi {g}
26 if g œ J then Q.delete(g)

27 else
28 if g ”œ J then Q.push(g)

29 J [g] Ω N

30 return 1
nm

qn
j=1 ‹j

132

discuss this case for ease of presentation. For the values j that satisfy the condition
on line 18, the algorithm computes ∆j(f) and updates ‹j to this value if larger than
the current value of ‹j (line 20), to maintain the invariant that ‹j stores the highest
value of j-discrepancy seen so far (this invariant, together with the one maintained
by the pruning strategy, is at the basis of the correctness of MCRapper). Finally,
j is added to the set Y (line 21), as it may still be the case that a descendant of f
has j-discrepancy higher than ‹j. The algorithm then iterates over the children of
f that have not been pruned, i.e., those not in H (line 22). If the child g is such
that there is a key g in J (because before f we visited another parent of g), then
let N be J [g] fl Y , otherwise, let N be Y . The set N is a superset of the indices
j s.t. g may attain the supremum j-discrepancy. Indeed for a value j to have this
property, it is necessary that Ψj(f) Ø ‹j for every parent f of j (where the value of
‹j in this expression is the one that ‹j had when f was visited). If N = ÿ, then g
and all its descendants can be pruned, which is achieved by adding g to H (line 25)
and removing g from Q if it is a key J (line 26). When N ”= ÿ, first g is added to
Q (with the appropriate priority depending on the ordering of Q) if it did not belong
to J yet (line 28), and then J [g] is set to N (line 29). This operation completes the
current loop iteration starting at line 15.

Once Q is empty, the loop ends and the function getNMCERA() returns the sum
of the values ‹j divided by n · m. The returned value is summed to an appropriate
term to obtain R̃ (line 5), which is used to compute the return value of the function
getSupDevBound() using (6.6) with ÷ = ” (line 6). This value Á is returned in output
by MCRapper when it terminates (line 2).

The following result is at the core of the correctness of MCRapper (proof in
Section 6.7.)

Lemma 6.4.3. getNMCERA(F , S, σ) returns the value R̂
n

m(F , S, σ).

The proof of Theorem 6.4.2 is then just an application of Theorem 6.4.3 and
Theorem 6.3.1 (with ÷ = ”), as the value Á returned by MCRapper is computed
according to (6.6).

Limiting the exploration of the search space

Despite the very e�cient pruning strategy made possible by the upper bounds to the
j-discrepancy, MCRapper may still need to explore a large fraction of the search
space, with negative impact on the running time. We now present a “hybrid” approach
that limits this exploration, while still ensuring the guarantees from Theorem 6.4.2.

Let — be any positive value and define

G(S, —)
.
=

I
f œ F :

1

m

mÿ

i=1

(f(si))
2 Ø —

J
,

133

and K(S, —) = F \ G(S, —). In the case of itemsets mining, G(S, —) would be the set
of frequent itemsets w.r.t. — œ [0, 1].

The following result is a consequence of Hoe�ding’s inequality and a union bound
over n · |K(S, —)| events.

Lemma 6.4.4. Let ÷ œ (0, 1). Then, with probability at least 1 ≠ ÷ over the choice
of σ, it holds that simultaneously for all j œ {1, . . . , n},

R̂
1

m(K(S, —), S, σj) Æ
ı̂ıÙ2— log

1
n|K(S,—)|

÷

2

m
. (6.11)

The following is an immediate consequence of the above and the definition of
n-MCERA.

Theorem 6.4.5. Let ÷ œ (0, 1). Then with probability Ø 1 ≠ ÷ over the choice of σ,
it holds

R̂
n

m(F , S, σ) =
1

n

nÿ

j=1

max
;

R̂
1

m(G(S, —), S, σj), R̂
1

m(K(S, —), S, σj)
<

Æ 1

n

nÿ

j=1

max

Y
__]
__[

R̂
1

m(G(S, —), S, σj),

ı̂ıÙ2— log
1

n|K(S,—)|
÷

2

m

Z
__̂

__\
.

The result of Theorem 6.4.5 is especially useful in situations when it is possible to
compute e�ciently reasonable upper bounds on the cardinality of K(S, —), possibly
using information from S (but not σ). For the case of pattern mining, these bounds
are often easy to obtain: e.g., in the case of itemsets, it holds |K(S, —)| Æ q

siœS 2|si|,
where |si| is the number of items in the transaction si. Much better bounds are
possible, and in many other cases, but we cannot discuss them here due to space
limitations.

Combining the above with MCRapper may lead to a significant speed-up thanks
to the fact that MCRapper would be exploring only (a subset of) G(S, —) instead of
(a subset of) the entire search space F , at the cost of computing an upper bound to

R̂
n

m(F , S, σj), rather than its exact value. We study this trade-o�, which is governed
by the choice of —, experimentally in Section 6.6.3. The correctness follows from
Theorems 6.3.1, 6.4.2 and 6.4.5, and an application of the union bound.

We now describe this variant MCRapper-H of MCRapper, presented in Algo-
rithm 6. MCRapper-H accepts in input the same parameters of MCRapper, but
also the parameters — and “ < ”, which controls the confidence of the probabilistic
bound from Theorem 6.4.5. After having drawn σ, MCRapper-H computes the
upper bound to |K(S, —)| (line 3), and calls the function getNMCERA(G(S, —), S, σ)

(line 2), slightly modified w.r.t. the one on line 30 of Algorithm 5 so it returns the
set of n values {‹1, . . . , ‹n} instead of their average. Then, it computes R̃ using the

134

r.h.s. of (6.11) and returns the bound to the SD obtained from the r.h.s. of (6.6) with
÷ = ” ≠ “.

Algorithm 6: MCRapper-H

Input: Poset family F , sample S of size m, ” œ (0, 1), — œ [0, z2], “ œ (0, ”)
Output: Upper bound to D(F , S) with prob. Ø 1 ≠ ”.

1 σ Ω draw(m, n)

2 {v1, . . . , vn} Ω getNMCERA(G(S, —), S, σ)

3 Ê Ω upper bound to |K(S, —)|

4 R̃ Ω 1
n

qn
j=1 max

I
vj

m
,

Ú
2— log(nÊ

“)
m

J
+ 2z

Ú
ln(4

”≠“)
2nm

5 return r.h.s. of (6.6) using ÷ = ” ≠ “

It is not necessary to choose — a-priori, as long as it is chosen without using any
information that depends on σ. In situations where deciding — a-priori is not simple,
one may define instead, for a given value of k set by the user, the quantity —k defined
as

—k
.
= min {— : |G(S, —)| Æ k} .

When the queue Q (line 8 of Algorithm 5) is sorted by decreasing value ofqn
i=1 (f(si))

2, the value k is the maximum number of nodes the branch-and-bound
search in getNMCERA() may enumerate. We are investigating more refined bounds
than Theorem 6.4.5.

6.4.3 Improved Bound for n = 1

For the special case of n = 1, it is possible to derive a better bound to the SD than
the one presented in Theorem 6.3.1. This result is new and of independent interest
because it holds for any family F . The proof is in Section 6.7.

Theorem 6.4.6. Let the set of functions Fü be composed by functions of F translated
by ≠a ≠ c

2
, and let ÷ œ (0, 1). With probability at least 1 ≠ ÷ over the choice of S and

‡, it holds that

D(F , S) Æ 2R̂
1

m

1
Fü, S, σ

2
+ 3c

ı̂ıÙ ln 2
÷

2m
. (6.12)

The advantage of (6.12) over (6.6) (with n = 1) is in the smaller “tail bounds”
terms that arise thanks to a single application of a probabilistic tail bound, rather
than three such applications. To use this result in MCRapper, line 2 must be
replaced with

Á Ω getNMCERA(Fü, S, σ) + 3c

Û
ln 2

”

2m
;

135

so the upper bound to the SD is computed according to (6.12). The same guarantees
as in Theorem 6.4.2 hold for this modified algorithm.

(a) n = 1. (b) n = 10. (c) n = 102.

Figure 6-1: Ratios of the SD Bound obtained by MCRapper (n œ {1, 10, 102}) and
amira for the entire F , for 4 of the datasets we analyzed. For n = 1, dashed lines
use the tail bound from Theorem 6.3.1 instead of the one from Theorem 6.4.6.

(a) (b) (c)

Figure 6-2: (a) Bound on the Supremum Deviation obtained by TFP-R and TFP-

A. (b) Number of reported patterns (left y-axis) and ratios (right y-axis) by TFP-R

and TFP-A. (c) Running times of MCRapper, MCRapper-H and amira vs cor-
responding upper bound on SD of the entire F . For MCRapper-H we use di�erent
values of —. Each marker shape corresponds to one of the datasets we considered
(other 3 shown at the end of the Chapter). For amira we also show the time for
mining the TFPs (amira +Min.), with freq. Ø — = 0.1, as needed after processing
the sample.

6.5 Applications

To showcase MCRapper’s practical strengths, we now discuss applications to var-
ious pattern mining tasks. The value Á computed by MCRapper can be used, for
example, to compute, from a random sample S, a high-quality approximation of the

136

collection of frequent itemsets in a dataset w.r.t. a frequency threshold ◊ œ (0, 1),
by mining the sample at frequency ◊ ≠ Á (Riondato and Upfal, 2014). Also, it can
be used in the algorithm by Pellegrina et al. (2019c) to achieve statistical power in
Significant Pattern Mining, or in the progressive algorithm by Servan-Schreiber et al.
(2018a) to enable even more accurate interactive data exploration. Essentially any
of the tasks we mentioned in Sections 6.1 and 6.2 would benefit from the improved
bound to the SD computed by MCRapper. To support this claim, we now discuss
in depth one specific application.

Mining True Frequent Patterns We now show how to use MCRapper together
with sharp variance-aware bounds to the SD (Theorem 6.3.2) for the specific applica-
tion of identifying the True Frequent Patterns (TFPs) (Riondato and Vandin, 2014).
The original work considered the problem only for itemsets, but we solve the problem
for a general poset family of functions, thus for many other pattern classes, such as
sequences.

The task of TFP mining is, given a pattern language L (i.e., a poset family) and
a threshold ◊ œ [0, 1], to output the set

TFP (◊,L) = {f œ L : µ[f] Ø ◊} .

Computing TFP (◊,L) exactly requires to know µ[f] for all f ; since this is almost
never the case (and in such case the task is trivial), it is only possible to compute
an approximation of TFP (◊,L) using information available from a random bag S of
m i.i.d. samples from µ. In this work, mimicking the guarantees given in Significant
Pattern Mining (Hämäläinen and Webb, 2019) and in multiple hypothesis testing
settings, we are interested in approximations that are a subset of TFP(◊,L), i.e., we
do not want false positives in our approximation, but we accept false negatives. A
variant that returns a superset of TFP(◊,L) is possible and only requires minimal
modifications ot the algorithm. Due to the randomness in the generation of S, no
algorithm can guarantee to be able to compute a (non-trivial) subset of TFP(◊,L)
from every possible S. Thus, one has to accept that there is a probability over the
choice of S and other random choices made by the algorithm to obtain a set of patterns
that is not a subset of TFP(◊,L). We now present an algorithm TFP-R with the
following guarantee (proof in Section 6.7).

Theorem 6.5.1. Given L, S, ◊ œ [0, 1], ” œ (0, 1), and a number n Ø 1 of Monte-
Carlo trials, TFP-R returns a set Y such that

Pr
S,σ

(Y ™ TFP(◊,L)) Ø 1 ≠ ”,

where the probability is over the choice of both S and the randomness in TFP-R,
i.e., an n ◊ m matrix of i.i.d. Rademacher variables σ.

137

The intuition for TFP-R is the following. Let B≠(TFP(◊,L)) be the negative
border of TFP(◊,L), that is, the set of functions in L \ TFP(◊,L) such that every
parent w.r.t. ∞ of f is in TFP(◊, F). If we can compute an Á̂ œ (0, 1) such that,
for every f œ B≠(TFP(◊,L)), it holds af (S) Æ ◊ + Á̂, then we can be sure that any
g œ L such that ag (S) > ◊ + Á̂ belongs to TFP(◊,L). This guarantee will naturally be
probabilistic, for the reasons we already discussed. Since B≠(TFP(◊,L)) is unknown,
TFP-R approximates it by progressively refining a superset C of it, starting from L.
The correctness of TFP-R is based on the fact that at every point in the execution,
it holds B≠(TFP(◊,L)) ™ C, as we show in the proof of Theorem 6.5.1.

Algorithm 7: TFP-R

Input: Poset family L, sample S of size m, ◊ œ [0, 1], ” œ (0, 1), n Ø 1.
Output: A set Y of patterns

1 Y Ω ÿ
2 σ Ω draw(m, n)

3 if ◊ Ø 1
2

then v Ω 1
4

else v Ω ◊(1 ≠ ◊)
4 C Ω L

5 repeat
6 Á̂ Ω getSupDevBoundVar(C, S, ”, σ, v)

7 C Õ Ω C
8 C Ω {f œ CÕ : af (S) < ◊ + Á̂}
9 Y Ω Y fi (C Õ \ C)

10 until C = C Õ

11 return Y

The pseudocode of TFP-R is presented in Algorithm 7. The algorithm first
draws the matrix σ (line 2), and then computes an upper bound v to the variances of
the the frequencies in B≠(TFP(◊,L)) (line 3). It then initializes, as discussed above,
the set C to L (line 4) and enters a loop. At each iteration of the loop, TFP-R

calls the function getSupDevBoundVar which returns a value Á̂ computed as in (6.8)
using F = C, and ÷ = ”. The function getNMCERA from Algorithm 5 is used inside of
getSupDevBoundVar (with parameters C, S, and σ) to compute the n-MCERA in the
value fl from (6.7). The properties of Á̂ are discussed in the proof for Theorem 6.5.1.

TFP-R uses Á̂ to refine the set C with the goal of obtaining a better approximation
of B≠(TFP(◊,L)). The set C Õ stores the current value of C, and the new value of C
is obtained by keeping all and only the patterns f œ CÕ such that af (S) < ◊ + Á̂

(line 8). All the patterns that have been filtered out, i.e., the patterns in C Õ \ C,
or in other words, all the patterns f œ C Õ such that af (S) Ø ◊ + Á̂, are added to
the output set Y (line 9). TFP-R keeps iterating until the value of C does not
change from the previous iteration (condition on line 10), and finally the set Y is
returned in output. While we focused on the a conceptually high-level description of
TFP-R, we note that an e�cient implementation only requires one exploration of F ,

138

such that Y can be provided in output as F is explored, therefore without executing
either multiple instances of MCRapper or, at the end of TFP-R, a frequent pattern
mining algorithm to compute Y .

6.6 Experiments

In this section we present the results of our experimental evaluation for MCRapper.
We compare MCRapper to amira (Riondato and Upfal, 2015), an algorithm that
bounds the Supremum Deviation by computing a deterministic upper bound to the
ERA with one pass on the random sample. The goal of our experimental evaluation
is to compare MCRapper to amira in terms of the upper bound to the SD they
compute. We also assess the impact of the di�erence in the SD bound provided
by MCRapper and amira for the application of mining true frequent patterns, by
comparing our algorithm TFP-R with TFP-A, a simplified variant of TFP-R that
uses amira to compute a bound Á on the SD for all functions in L, and returns as
candidate true frequent patterns the set G(◊ + Á, S). It is easy to prove that the
output of TFP-A is a subset of true frequent patterns with probability Ø 1 ≠ ”. We
also evaluate the running time of MCRapper and of its variant MCRapper-H.

Datasets and implementation We implemented MCRapper and MCRapper-

H in C, by modifying TopKWY (Pellegrina and Vandin, 2018). Our implementations
are available at https://github.com/VandinLab/MCRapper. The implementation
of amira (Riondato and Upfal, 2015) has been provided by the authors. We test
both methods on 18 datasets (see Table 6.1 for their statistics), widely used for the
benchmark of frequent itemset mining algorithms. To compare MCRapper to amira

in terms of the upper bound to the SD, we draw, from every dataset, random samples
of increasing size m; we considered 6 values equally spaced in the logarithmic space
in the interval [103, 106]. We only consider values of m smaller than the dataset size
|D|. For both algorithms we fix ” = 0.1. For MCRapper we use n œ {1, 10, 100}.

To compare TFP-R to TFP-A, we analyze synthetic datasets of size m = 104

obtained by random sampling transactions from each dataset: the true frequency of
a pattern corresponds to its frequency in the original dataset, which we use as the
ground truth. We use n = 10 for TFP-R, and ” = 0.1. We report the results for
◊ = 0.05 (other values of ◊ and n produced similar results).

For all experiments and parameters combinations we perform 10 runs (i.e., we
create 10 random samples of the same size from the same dataset). In all the figures
we report the averages and avg ± standard deviations of these runs.

6.6.1 Bounds on the SD

Figure 6-1 shows the ratio between the upper bound on the SD obtained by MCRap-

per and the one obtained by amira for di�erent values of n. The bound provided by

139

https://github.com/VandinLab/MCRapper

dataset |D| |I| avg. trans. len.

svmguide3 1,243 44 21.9
chess 3,196 75 37
breast cancer 7,325 396 11.7
mushroom 8,124 117 22
phishing 11,055 137 30
a9a 32,561 245 13.9
pumb-star 49,046 7,117 50.9
bms-web1 58,136 60,878 3.51
connect 67,557 129 43.5
bms-web2 77,158 330,285 5.6
retail 87,979 16,470 10.8
ijcnn1 91,701 43 13
T10I4D100K 100,000 1,000 10
T40I10D100K 100,000 1,000 40
accidents 340,183 468 34.9
bms-pos 515,420 1,657 6.9
covtype 581,012 108 12.9
susy 5,000,000 190 19

Table 6.1: Datasets statistics. For each dataset, we report the number |D| of trans-
actions; the number |I| of items; the average transaction length.

140

MCRapper is always better (i.e., lower) than the bound provided by amira (e.g.,
for n = 100 the bound from MCRapper is always at least 34% smaller than the
bound from amira). For n = 1 one can see that the novel improved bound from
Theorem 6.4.6 should really be preferred over the “standard” one (dashed lines).
Similar results hold for all other datasets. These results highlight the e�ectiveness of
MCRapper in providing a much tighter bound to the SD than currently available
approaches.

6.6.2 Mining True Frequent Patterns

We compare the final SD computed by MCRapper with the one computed by
TFP-A. The results are shown in Figure 6-2a. Similarly to what we observed in
Section 6.6.1, MCRapper provides much tighter bounds being, in most cases, less
than 50% of the bound reported by amira. We then assessed the impact of such
di�erence in the mining of TFP, by comparing the number of patterns reported by
TFP-R and by TFP-A. Since for both algorithms the output is a subset of the true
frequent patterns with probability Ø 1≠”, reporting a higher number of patterns cor-
responds to identifying more true frequent patterns, i.e., to higher power. Figure 6-2b
shows the number of patterns reported by TFP-R and by TFP-A (left y-axis) and
the ratio between such quantities (right y-axis). The SD bound from MCRapper is
always lower than the SD bound from amira, so TFP-R always reports at least as
many patterns as TFP-A, and for 10 out of 18 datasets, it reports at least twice as
many patterns as TFP-A. These results show that the SD bound computed by TFP-

R provides a great improvement in terms of power for mining TFPs w.r.t. current
state-of-the-art methods for SD bound computation.

6.6.3 Running time

For these experiments we take 10 random samples of size 104 of the 6 most demanding
datasets (accidents, chess, connect, phishing, pumb-star, susy; for the other
datasets MCRapper takes much less time than the ones shown) and use the hybrid
approach MCRapper-H (Line 30) with di�erent values of — (and n = 1, which
gives a good trade-o� between the bounds and the running time, “ = 0.01, ” = 0.1).
We naïvely upper bound |K(S, —)| with

q
siœS

2|si|, where |si| is the length of the
transaction si, a very loose bound that could be improved using more information
from S. Figures 6-2c and 6-3 show the running time of MCRapper and amira

vs. the obtained upper bound on the SD (di�erent colors correspond to di�erent
values of —). With amira one can quickly obtain a fairly loose bound on the SD, by
using MCRapper and MCRapper-H one can trade-o� the running time for smaller
bounds on the SD.

141

6.7 Proofs and Reproducibility

Missing Proofs

Before proving our proofs, we state some results that will be useful.

Theorem 6.7.1 (Symmetrization inequality (Koltchinskii and Panchenko, 2000)).
For any family F it holds

S

C
sup
fœF

(af (S) ≠ µ[f]) ≠ 2R̂(F , S)

D
Æ 0.

Theorem 6.7.2 ((Bousquet, 2002), Thm. 2.2). Let Z = supfœF (af (S) ≠ µ[f]). Let
÷ œ (0, 1). Then, with probability at least 1 ≠ ÷ over the choice of S, it holds

Z Æ µ [Z] +

ı̂ıÙ2 ln 1
÷

(v + 2c µ[Z])

m
+

c ln 1
÷

3m
. (6.13)

Proof of Theorem 6.3.2. Consider the following events

E1
.
= fl Ø R̂ (F , S) ,

E2
.
= Eµ[R̂ (F , S)] Æ R̂ (F , S)

+
1

2m

Q
a

Û

c
3

4mfl + c ln
4

”

4
ln

4

”
+ c ln

4

”

R
b .

From Theorem 6.7.4, we know that E1 holds with probability at least 1 ≠ ”
4

over
the choice of S and σ. E2 is guaranteed to with probability at least 1 ≠ ”

4
over the

choice of S (Oneto et al., 2013, (generalization of) Thm. 3.11). Define the event E3

as the event in (6.13) for ÷ = ”
4

and the event E4 as the event in (6.13) for ÷ = ”
4

and
for F = ≠F . (Bousquet, 2002, Thm. 2.2) tells us that events E3 and E4 hold each
with probability at least 1 ≠ d

4
over the choice of S. Thus from the union bound we

have that the event E = E1 fl E2 fl E3 holds with probability at least 1 ≠ ” over the
choice of S and σ. Assume from now on that the event E holds.

Because E holds, it must be r Ø µ[R̂(F , S)]. From this result and Theorem 6.7.1
we have that

µ[sup
fœF

(af (S) ≠ µ[f])] Æ 2 µ[R̂(F , S)] Æ 2r .

From here, and again because E, by plugging 2r in place of E[Z] into (6.13) (for
÷ = ”

4
), we obtain that supfœF (af (S) ≠ µ[f]) Æ Á. To show that it also holds

sup
fœF

(af (S) ≠ µ[f]) Æ Á

142

(which allows us to conclude that D(F , S) Æ Á), we repeat the reasoning above for

≠F and use the fact that R̂(F , S) = R̂(≠F , S), a known property of the ERA, thus

fl Ø R̂(≠F , S) and r Ø Eµ[R̂(≠F , S)] and

Á Ø D(≠F , S) = sup
fœF

(af (S) ≠ µ[f]) .

Theorem 6.7.3 (McDiarmid’s inequality (McDiarmid, 1989)). Let Y ™ R
¸, and let

g : Y æ R be a function such that, for each i, 1 Æ i Æ ¸, there is a nonnegative
constant ci such that:

sup
x1,...,x¸

xÕ

iœX

|g(x1, . . . , x¸) ≠ g(x1, . . . , xi≠1, xÕ
i, xi+1, . . . , x¸)| Æ ci . (6.14)

Let x1, . . . , x¸ be ¸ independent random variables taking value in R
¸ such that

Èx1, . . . , x¸Í œ Y. Then it holds

Pr (g(x1, . . . , x¸) ≠ µ[g] > t) Æ e≠2t2/C ,

where C =
q¸

i=1 c2
i .

The following result is an application of McDiarmid’s inequality to the n-MCERA,
with constants ci = 2z

nm
.

Lemma 6.7.4. Let ÷ œ (0, 1). Then, with probability at least 1 ≠ ÷ over the choice
of σ, it holds

R̂ (F , S) = σ

Ë
R̂

n

m(F , S, σ)
È

Æ R̂
n

m(F , S, σ) + 2z

ı̂ıÙ ln 1
÷

2nm
.

The following result gives a probabilistic upper bound to the supremum deviation
using the RA and the ERA (Oneto et al., 2013, Thm. 3.11).

Theorem 6.7.5. Let ÷ œ (0, 1). Then, with probability at least 1 ≠ ÷ over the choice
of S, it holds

D(F , S) Æ 2R̂ (F , S) +

Ú
c

1
4mR̂ (F , S) + c ln 3

÷

2
ln 3

÷

m
+

c ln 3
÷

m
+ c

ı̂ıÙ ln 3
÷

2m
.1 (6.15)

Proof of Theorem 6.3.1. Through Theorem 6.7.4 (using ÷ there equal to ÷
4
), Theo-

rem 6.7.5 (using ÷ there equal to 3÷
4

), and an application of the union bound.

1Slightly sharper bounds are possible at the expense of an increased complexity of the terms.

143

Proof of Theorem 6.4.1. It is immediate from the definitions of ÂΨ(f) and Ψj(f)

in (6.10) that Ψj(f) Æ ÂΨ(f), so we can focus on Ψj(f). We start by showing that
∆j(f) Æ Ψj(f). It holds

∆j(f) =
ÿ

siœS

σ
+
j,if

+(si) ≠
ÿ

siœS

σ
≠
j,if

≠(si) ≠
ÿ

siœS

σ
≠
j,if

+(si) +
ÿ

siœS

σ
+
j,if

≠(si)

Æ
ÿ

siœS

σ
+
j,if

+(si) ≠
ÿ

siœS

σ
≠
j,if

≠(si) = Ψj(f)

where the inequality comes from the fact that

ÿ

siœS

σ
≠
j,if

+(si) Ø 0 , and
ÿ

siœS

σ
+
j,if

≠(si) Æ 0.

To prove that ∆j(g) Æ Ψj(f) for every g œ d(f) it is su�cient to show that
Ψj(g) Æ Ψj(f) hold for every such g, since we just showed that ∆j(g) Æ Ψj(g) is true
for any f œ F . It holds f ∞ g, so from the definition of the relation ∞ in (6.2), we
get

Ψj(g) =
ÿ

siœS

σ
+
j,ig

+(si) ≠
ÿ

siœS

σ
≠
j,ig

≠(si)

Æ
ÿ

siœS

σ
+
j,if

+(si) ≠
ÿ

siœS

σ
≠
j,if

≠(si) = Ψj(f)

which completes our proof.

Proof of Theorem 6.4.3. For j œ {1, . . . , n}, let hj be any of the functions attaining
the supremum in supfœf ∆j(f). We need to show that the algorithm updates ‹j on
line 20 of Algorithm 5 using ∆j(hj) at some point during its execution. We focus on
a single j, as the proof is the same for any value of j.

It is evident from the description of the algorithm that ‹j is always only set to
values of ∆j(g), and since hj has the maximum of these values, ‹j will be, at any
point in the execution of the algorithm less than or equal to ∆j(hj). Let’s call this
fact F1. Thus, if the algorithm ever hits line 20 with f = hj, then we can be sure
that the value stored in ‹j will be ∆j(hj), and this variable will never take an higher
value. From fact F1 and Theorem 6.4.1 we also have that at any point in time it
must be ‹j Æ Ψj(hj) Æ ÂΨ(hj), so the conditions on lines 19 and 18 are definitively
satisfied, so the question is now whether j œ J [hj] and whether there is an iteration
of the while loop of line 15 for which f = hj.

It holds from Theorem 6.4.1 that it must be ∆j(hj) Æ Ψj(g) Æ ÂΨ(g) for every
ancestor g of hj. From this fact and from fact A then it holds that at any point in

time it must hold ‹jΨj(g) Æ ÂΨ(g) for every such ancestor g of hj. Thus, the value j
is always added to the set Y at every iteration of the while loop for which f is an
ancestor of hj. Let’s call this fact F2. Thus, as long as no ancestor of hj is pruned or

144

hj itself is pruned, j is guaranteed to be in J [hj]. But from fact F2 and from the fact
that j belongs to J [f] for all the ancestors of hj that are in minimals(f) (line 14),
then j must belong to the set N computed on line 23 for all ancestors of hj, thus N
is never empty and therefore no ancestor of hj is ever pruned and neither is f and
we are guaranteed that hj is added to Q on line 28 when the first of its parents is
visited. Thus, there is an iteration of the while loop that has f = hj, and because
of what we discussed above, then it will be the case that ‹j = ∆j(hj) and our proof
is complete.

Proof of Theorem 6.4.6. For ease of notation, let G = F ≠ a ≠ c
2
. Consider the event

E1
.
= sup

gœG
(ag (S) ≠ µ[g]) Æ 2R̂

1

m(G, S, σ) + 3c

ı̂ıÙ ln 2
÷

2m
. (6.16)

We now show that this event holds with probability at least 1 ≠ ÷
2

over the choices of
S and σ, and then we use this fact to obtain the thesis with some additional steps.

Using linearity of expectation and the fact that the n-MCERA is an unbiased
estimator for the ERA (i.e., its expectation is the ERA), we can rewrite the sym-
metrization inequality (Theorem 6.7.1) as

S,σ

C
sup
gœG

(ag (S) ≠ µ[g]) ≠ 2R̂
1

m(G, S, σ)

D
Æ 0 .

The argument of the (outmost) expectation on the l.h.s. can be seen as a function h of
the m pairs of r.v.’s (σ1,1, s1), . . . , (σ1,m, sm). Fix any possible assignment vÕ of values
to these pairs. Consider now a second assignment vÕÕ obtained from vÕ by changing
the value of any of the pairs with any other value in {≠1, 1} ◊ X . We want to show
that it holds |h(vÕ) ≠ h(vÕÕ)| Æ 3 c

m
.

We separately handle the SD and the 1-MCERA, as both depend on the values
of the assignment of values to the pairs. The SD does not depend on σ1,·, and in
the argument of the supremum, changing any sj changes a single summand of the
empirical mean af (S), with maximal change when f(sj) changes from a to b (or
viceversa), thus the SD itself changes by no more than c

m
.

We now consider the 1-MCERA, and assume that the pair changing value is
(σ1,j, sj). Then the only term of the 1-MCERA sum that changes is the j-th term.
If only the first component of the pair changes value (i.e., σ1,j changes from 1 to
≠1 or viceversa, i.e., from σ1,j to ≠σ1,j), then the j-th term in the 1-MCERA sum
cannot change by more than c, because it holds σ1,jg(sj) œ [≠ c

2
, c

2
], thus ≠σ1,jg(sj)

also belongs to this interval, and it must be |σ1,jg(sj) ≠ (≠σ1,jg(sj))| Æ c. If only
the second component of the pair changes value (i.e., sj changes value to s̄j), then
the j-th term in the 1-MCERA sum cannot change by more than c, because each
function g œ G goes from X to [≠ c

2
, c

2
], and it must be |σ1,jg(sj) ≠ σi,jg(s̄j)| Æ c.

Consider now the final case where both σ1,j and sj change value. We have once again

145

|σ1,jg(sj) ≠ (≠σ1,jg(s̄j))| Æ c.
By the adding the maximum change in the SD and the maximum change in the

1-MCERA we can conclude that function h satisfies the requirements of McDiarmid’s
inequality (Theorem 6.7.3) with constants 3 c

m
, and obtain that event E1 from (6.16)

holds with probability at least 1 ≠ ÷
2
.

Let now ≠G represent the family of functions containing ≠g for each g œ G.
Consider the event

E2
.
= sup

gœ≠G
(ag (S) ≠ µ[g]) Æ 2R̂

1

m(≠G, S, ≠σ) + 3c

ı̂ıÙ ln 2
÷

2m
.

Following the same steps as for E1, we have that E2 holds with probability at least

1 ≠ ÷
2
, as the fact that we are considering R̂

1

m(≠G, S, ≠σ) rather than R̂
1

m(≠G, S, σ)
is not influential.

It is easy to see that R̂
1

m(≠G, S, ≠σ) = R̂
1

m(G, S, σ), and that

sup
gœ≠G

(ag (S) ≠ µ[g]) = sup
gœG

(µ[g] ≠ ag (S)) .

Thus we can rewrite E2 as

E2 = sup
gœG

(µ[g] ≠ ag (S)) Æ 2R̂
1

m(G, S, σ) + 2c

ı̂ıÙ ln 2
÷

2m
.

From the union bound, we have that E1 and E2 hold simultaneously with probability
at least 1 ≠ ÷, i.e., the following event holds with probability at least 1 ≠ ÷

D(G, S, µ) Æ 2R̂
1

m(G, S, σ) + 3c

ı̂ıÙ ln 2
÷

2m
.

The thesis then follows from the fact D(F , S) = D(G, S, µ).

Proof of Theorem 6.5.1. For ease of notation, let G = B≠(TFP(◊,L)). Let fl, r, and
Á be as in Theorem 6.3.2 for ÷ = ” and F = G. Theorem 6.3.2 tells us that, with
probability at least 1 ≠ ”, it holds D(G, S) Æ Á.2 Assume from now on that that is
the case.

We use this fact to show inductively that, at the end of every iteration of the loop
of TFP-R (lines 5–10 of Algorithm 7), it holds that G ™ C and Y ™ TFP(◊,L), and
therefore the thesis will hold.

Consider the first iteration of the loop. We have C = L ´ G. Let fl̂, r̂, and Á̂ be the
values computed inside the call to the function getSupDevBoundVar on line 6 with

2We actually only need a value ε such that supf∈G (af (S) ≠ µ[f]) < ε, but the gain would be
minimal and it would make the presentation more complicated.

146

the parameters mentioned in the description of the algorithm. It holds that fl̂ Ø fl,
because the n-MCERA of a superset of a family is not smaller than the n-MCERA of
the family. It follows that r̂ Ø r, which in turn implies that Á̂ Ø Á. Since we assumed
that D(G, S) Æ Á, we have Á̂ Ø Á Ø D(G, S). No function f œ G may then have
sample mean af (S) greater than or equal to ◊ + Á̂, as every such f has µ[f] < ◊.
Call this fact A. A first consequence of A is that, at the end of the iteration, it holds
G ™ C. A second consequence of A and of the antimonotonicity property is that none
of the functions f œ L such that µ[f] < ◊ may have af (S) Ø ◊ + Á̂. Equivalently,
only functions f œ L such that µ[f] Ø ◊, i.e., such that f œ TFP(◊,L), may have
af (S) Ø ◊ + Á̂, i.e., C Õ \ C ™ TFP(◊,L), so Y ™ TFP(◊,L) at the end of the first
iteration. The base case is complete.

Assume now that G ™ C and Y ™ TFP(◊,L) at the end of all iterations from 1
to i. Following the same reasoning as for the base case, it holds that these facts are
true also at the end of iteration i + 1 and our proof is complete.

Reproducibility

We now describe how to reproduce our experimental results. Code and data are
available at https://github.com/VandinLab/MCRapper.

The code of MCRapper, TFP-R, and amira are in the sub-folders mcrapper/

and amira/. To compile with recent GCC or Clang, use the make command inside
each sub-folder.

The convenient scripts run_amira.py and run_mcrapper.py can be used to run
the experiments (i.e., run amira, MCRapper, and TFP-R). They accept many
input parameters (described using the flag -h). You need to specify a dataset and
the size of a random sample to create using the flags -db and -sz. E.g., to process a
random sample of 103 transactions from the dataset mushroom with n = 100, run

run_mcrapper.py -db mushroom -sz 1000 -j 100

and it automatically executes both amira and MCRapper. The command line
to process with TFP-R a sample of 104 transactions from the dataset retail with
n = 10 and ◊ = 0.05 is

run_mcrapper.py -db retail -sz 10000 -j 10 -tfp 0.05

The run_all_datasets.py script runs all the instances of MCRapper and amira

in parallel, and can be used to reproduce all the experiments described in Section 6.6.
The run_tfp_all_datasets.py script reproduces the experiments for TFP-R and
TFP-A.

All the results are stored in the files results_mcrapper.csv and
results_tfp_mcrapper.csv.

147

https://github.com/VandinLab/MCRapper

Figure 6-3: Running times of MCRapper, MCRapper-H and amira vs corre-
sponding upper bound on supremum deviation of the entire set of functions F . For
MCRapper-H we use di�erent values of —. y-axis in log scale but x axis is linear.
Each marker shape corresponds to one of the datasets.

148

Chapter 7

Sharper Convergence Bounds of
Monte Carlo Rademacher Averages
through Self-Bounding Functions

149

7.1 Introduction

In this Chapter we provide new convergence bounds for one of the most interesting
notions of data-dependent measure of complexity of sets of functions, the Rademacher
Complexity. In particular, we show that it can be estimated in a Monte Carlo way
obtaining “faster convergence rates” that depend on characteristic data-dependent
quantities of the set of functions.

A potential drawback of Rademacher Averages is that the “global” error that
can be obtained may be characterised by the so called “slow” convergence rate of
O(m≠1/2), where m is the number of analysed samples; while such rate is essen-
tially the best possible when some elements of a set of function F achieve maximum
variance (Boucheron et al., 2005), it may be substantially improved for the other
functions, that are often more interesting to the analysis. Therefore, a rich collection
of contributions (Koltchinskii and Panchenko, 2000; Massart, 2000; Bousquet et al.,
2002; Mendelson, 2002; Bartlett et al., 2005; Koltchinskii, 2006, 2011; Mendelson,
2014) have then focused on providing local estimates of the complexity, restricting
the estimation to a proper subset of F that contains only functions with lower vari-
ance. In such settings, one would hope to achieve sharper error bounds, with rates
between O(m≠1/2) and O(m≠1).

The slow convergence rate can be attributed to both the “global” computation
of Rademacher Averages and from the application of probabilistic concentration in-
equalities based on the method of bounded di�erences, that is essentially tight only
when there are elements of the set of functions under consideration that achieve max-
imum variance (Boucheron et al., 2013). Therefore, the study of novel concentration
inequalities for the supremum of empirical processes that take advantage of smaller
bounds to the variance has been a central focus of research, such as the fundamental
contributions of Talagrand (1994, 1995) and many others (Boucheron et al., 2000;
Bousquet, 2002; Boucheron et al., 2005, 2013).

The standard approach to bound the Rademacher Complexity is through the ap-
plication of Massart’s Lemma (Massart, 2000). An alternative, often much sharper,
approach is to directly estimate the Rademacher Averages with the n-Monte Carlo
Empirical Rademacher Average (n-MCERA) (defined formally in the next Section);
this quantity is computed by sampling a finite number of vectors of Rademacher ran-
dom variables, instead of evaluating its expectation (Bartlett and Mendelson, 2002),
and then obtaining a probabilistic upper bound to the Rademacher Complexity with
concentration of measure inequalities.

In a recent work, De Stefani and Upfal (2019) used the framework of uniform
convergence and Rademacher Complexity to obtain error bounds to empirical averages
in an adaptive setting: in their scenario, batch of functions are considered at successive
steps, while allowing the choice of the functions to process at every iteration to be
based on past information. To quantify the risk of “overfitting”, they leverage the
n-MCERA, computing it e�ciently as functions are processed. Their analysis relates

150

the n-MCERA to its expectation through Bernstein’s inequality and the Central Limit
Theorem for martingales.

In other situations, in particular when the size of F is large, it may be more
expensive to compute the n-MCERA, limiting a more widespread practical consid-
eration. We addressed this challenge in Chapter 6 in the context of Significant and
Approximate Pattern Mining, deriving a general and practical scheme to compute
the n-MCERA by exploiting the combinatorial structure of F in a branch-and-bound
strategy. In all these applications, it is critical to apply sharp concentration results
to have tight error rates.

The works we described (De Stefani and Upfal, 2019; Pellegrina et al., 2020a, de-
cribed in more details in Chapter 6) achieve error bounds that relate the n-MCERA
to its expectation, the Empirical Rademacher Average (ERA), using concentration
inequalities based on the bounded di�erence property (or, equivalently, assuming
maximum variance); for this reason, such error bounds are characterised by the slow
convergence rate of O((nm)≠1/2), analogous to the worst-case rate of uniform conver-
gence we discussed before. While, in theory, one could use an arbitrary large number
n of vectors of Rademacher random variables, and in particular n = m to achieve
O(m≠1) error rates for estimating the ERA, this would imply the computation of a
large number of supremums over F , something impractical in almost all situations.

The question of whether the n-MCERA can be tightly estimated without using
an impractically large number of Monte Carlo trials is an unexplored question. In
fact, sharp variance-dependent concentration inequalities that relate the n-MCERA
to its expectation are not available.

Our contributions. The main goal of this chapter is to provide a positive an-
swer to this question: in Section 7.5 we derive novel concentration bounds for the
n-MCERA whose convergence rates depend on characteristic quantities computable
from the data, such as the empirical wimpy-variance of the set of functions, result-
ing in a significantly improved trade-o� between the guaranteed convergence of the
estimate and the number n of required vectors of Rademacher random variables. To
do so, we first establish, in Section 7.5.1, self -bounding properties of the n-MCERA.
Then, we leverage such properties to derive, in Section 7.5.2, novel concentration
inequalities for the n-MCERA w.r.t. its expectation, the ERA; such results follow
from the sharp exponential concentration inequalities that self-bounding functions
satisfy (Boucheron et al., 2000, 2009). Furthermore, in Section 7.5.3 we study the
special case of n = 1, and prove a novel concentration inequality that directly relates
the n-MCERA to the Rademacher Complexity, though the application of Bousquet’s
inequality (Bousquet, 2002), a central result in Statistical Learning Theory. As the
rate of convergence of such bound depends on the unknown wimpy variance of the set
of functions F , we show that it can be tightly estimated from the available data using
its empirical counterpart, the empirical wimpy variance. The guaranteed accuracy
of such empirical estimator is proved with the powerful framework of self-bounding
functions.

151

The new bounds we derive in this work are relevant to all methods based on
the n-MCERA we introduced before and, given their generality, possibly others. In
particular, we believe it would be interesting to fit our results in the framework
of Localised Rademacher Averages, and that there are interesting new algorithmic
applications of the n-MCERA that may benefit from our results, in particular in
problems already tackled with methods based on Rademacher Averages; examples are
the analysis of large networks (Riondato and Upfal, 2018; de Lima et al., 2020; Sarpe
and Vandin, 2021), rigorous Pattern Mining (Riondato and Upfal, 2015; Santoro
et al., 2020), Statistical Hypothesis Testing (Pellegrina et al., 2019c; Li and Barber,
2019), and, potentially, many others.

Another interesting question we explore is whether the maximum di�erence be-
tween empirical averages and their expectation, quantities often denoted by Supre-
mum Deviations (SDs), satisfy some form of self-bounding properties. Indeed, after
introducing, in Section 7.6, the state-of-the-art variance-dependent bounds to the
SDs, in Section 7.7 we show that the SDs are also self-bounding, for appropriate con-
stants that depend on the maximum and minimum expected values of the functions
in F ; consequently, we derive novel concentration inequalities for the SDs, that may
be of independent interest.

7.2 Preliminaries

We denote F to be a class of real valued functions from a domain X to the bounded
interval [a, b] µ R, and let z

.
= max{|a|, |b|} and c

.
= b ≠ a, with b > 0 Ø a, and

c, z > 0. To simply address non-negativity issues, we assume w.l.o.g. that F contains
a constant function f0 such that f0(x) = 0, for all x œ X .

Let a sample S be a bag {s1, . . . , sm} of size m, such that s œ X , ’s œ S. We
assume that each element of S is drawn i.i.d. from X according to an unknown
probability distribution µ. Our goal is to derive tight bounds on the di�erence between
the average value of f , computed on the sample S, and its expectation [f], taken
w.r.t. S, that are valid for all functions f œ F . More formally, we define the positive
Supremum Deviation (SD) D+(F , S) and the negative supremum deviation D≠(F , S)
as

D+(F , S)
.
= sup

fœF

I
1

m

mÿ

i=1

f(si) ≠ [f]

J
, D≠(F , S)

.
= sup

fœF

I
[f] ≠ 1

m

mÿ

i=1

f(si)

J
.

As µ is unknown, it is not possible to directly compute such supremum deviations.
However, fundamental results from Statistical Learning Theory allow to obtain prob-
abilistic upper bounds to them, exploiting information obtainable from the data S.
We introduce the concepts of Rademacher Averages, that will be instrumental to
achieve this goal.

First, let σ be a n ◊ m matrix such that each component σi,j of index (i, j) is

152

either 1 or ≠1. The n-Monte Carlo Empirical Rademacher Average (n-MCERA)

R̂
n

m(F , S, σ) is defined as

R̂
n

m(F , S, σ)
.
=

1

n

nÿ

j=1

sup
fœF

1

m

mÿ

i=1

σj,if(si) .

Denote the Empirical Rademacher Average (ERA) R̂ (F , S) as the expectation of the
n-MCERA w.r.t. the assignments of the Rademacher random variables σ, where each
σi,j is 1 or ≠1 independently and with equal probability:

R̂ (F , S)
.
= σ

Ë
R̂

n

m(F , S, σ)
È

.

Then, denote the Rademacher Complexity (RC) R(F , m) as the expectation of the
ERA over S,

R(F , m)
.
= S

Ë
R̂ (F , S)

È
.

The following fundamental result, also known as “Symmetrization lemma”, show
a precise relationship between the RC and the expected supremum deviation (Shalev-
Shwartz and Ben-David, 2014; Mitzenmacher and Upfal, 2017).

Lemma 7.2.1.

S

Ë
D+(F , S)

È
Æ 2R(F , m) ,

S

Ë
D≠(F , S)

È
Æ 2R(F , m) .

Therefore, upper bounding the RC yields upper bounds on the expected supremum
deviations; consequently, one can obtain a probabilistic upper bound on the supre-
mum deviations on the sample S with the application of concentration inequalities,
important tools of probability theory. Most importantly, the RC can be estimated
directly on the available data using the n-MCERA. We now define important quan-
tities that will appear in most of our bounds. First, we denote the wimpy variance
‡2

F of F as

‡2
F

.
= sup

fœF

Ó Ë
f 2

ÈÔ
.

Then, we denote the empirical wimpy variance ‡̂2
F (S) of F computed on S as

‡̂2
F (S)

.
=

1

m
sup
fœF

I
mÿ

i=1

f(si)
2

J
.

We also define another quantity of interest ‹̂F (S), defined as the supremum mean

153

absolute value of F , computed over S, that is

‹̂F (S)
.
=

1

m
sup
fœF

I
mÿ

i=1

|f(si)|

J
.

In the next Sections we succinctly introduce the most widely used concentration
inequalities methods: in Section 7.3.1 we introduce the method of bounded di�er-
ences; in Section 7.3.2 we present the definitions and recent results on self-bounding
functions. The concept of self-bounding functions, as we will discuss later, are essen-
tial to prove our novel bounds. We remand for a more exhaustive coverage of the
topic to the book of Boucheron et al. (2013).

7.3 Concentration Inequalities

In this Section we introduce two of the most widely employed methods to prove
concentration results for functions of independent random variables.

7.3.1 The Method of Bounded Differences

Let X = (X1, . . . , Xn) be a vector of variables Xi, each taking values in a measurable
set X and let g : X n æ R be a measurable function. We now introduce the bounded
difference property, that is often easy to prove in many settings.

Definition 7.3.1 (Bounded di�erence property). A function g has the bounded dif-
ference property if, for each i, 1 Æ i Æ m, there is a nonnegative constant ci such
that:

sup
X1,...,Xm

XÕ

iœX

|g(X1, . . . , Xm) ≠ g(X1, . . . , Xi≠1, X Õ
i, Xi+1, . . . , Xm)| Æ ci . (7.1)

A central result is given by the following Theorem, that shows that g(X) is well
concentrated around its mean [g(X)] (taken w.r.t. X), and that the the rate of
convergence depends on the constants ci of the bounded di�erence property.

Theorem 7.3.2 (McDiarmid (1989)). Let g : X m æ R be a function with the bounded
difference property with constants ci, for 1 Æ i Æ m. Let X1, . . . , Xm be m indepen-
dent random variables taking value in X m, and let Z = g(X). Then it holds

Pr (Z Ø [Z] + t) Æ exp

A
≠ 2t2

qm
i=1 c2

i

B
.

Also, it holds

Pr (Z Æ [Z] ≠ t) Æ exp

A
≠ 2t2

qm
i=1 c2

i

B
.

154

7.3.2 Self-Bounding Functions

Self-bounding functions are an important class of “well-behaving” functions that enjoy
sharp concentration inequalities relating their empirical estimates to their expected
values, often much tighter than what obtainable through the bounded-di�erence
method. We report their definitions and remand to Boucheron et al. (2013) a more
in-depth exposition of the subject.

Let X = (X1, . . . , Xn) be a vector of variables Xi, each taking values in a mea-
surable set X and let g : X n æ R be a non-negative measurable function. Then
denote gi a function from X n≠1 æ R. In the following definition, we introduce (–, —)-
self-bounding functions; we note that, in some contexts (i.e., in Chapter 6.11 of
(Boucheron et al., 2013)), they may also be denoted by strongly (–, —)-self-bounding
functions.

Definition 7.3.3 ((–, —)-self-bounding function). A function g is a (–, —)-self-
bounding function if, for all X œ X n,

0 Æ g(X) ≠ gi(X
(i)) Æ 1 ,

and

nÿ

i=1

1
g(X) ≠ gi(X

(i))
2

Æ –g(X) + — ,

where X(i) = (X1, . . . , Xi≠1, Xi+1, . . . , Xn) œ X n≠1 is obtained by dropping the i-th
component of X.

An often convenient choice of gi to prove that g is self-bounding is

gi(X
(i))

.
= inf

XÕ

i
œX

g (X1, . . . , Xi≠1, X Õ
i, Xi+1, . . . , Xn) .

We now introduce weakly (–, —)-self-bounding function.

Definition 7.3.4 (Weakly (–, —)-self-bounding function). A function g is weakly
(–, —)-self-bounding if, for all X œ X n,

nÿ

i=1

1
g(X) ≠ gi(X

(i))
22 Æ –g(X) + — .

Note that a (–, —)-self-bounding function is also a weakly (–, —)-self-bounding
function.

The next Theorem shows that if g is self-bounding, then it is sharply concentrated
w.r.t. its expectation [g(X)] (taken w.r.t. X).

Theorem 7.3.5 (Boucheron et al. (2009)). Let X = (X1, . . . , Xn) be a vector of
independent random variables, each taking values in a measurable set X and let g :

155

X n æ R be a non-negative measurable function such that Z = g(X) has finite mean
[Z] < +Œ. Let –, — Ø 0, and define ‹ = (3– ≠ 1)/6. Denote (‹)+ = max {‹, 0}

and (‹)≠ = max {≠‹, 0}.
If g is (–, —)-self-bounding, then for all t > 0,

Pr (Z Ø [Z] + t) Æ exp

A
≠ t2

2 (– [Z] + — + (‹)+t)

B
.

If g is weakly (–, —)-self-bounding and for all i Æ n, all x œ X , gi(X
(i)) Æ g(x),

then for all t > 0,

Pr (Z Ø [Z] + t) Æ exp

A
≠ t2

2 (– [Z] + — + –t/2)

B
.

If g is weakly (–, —)-self-bounding and 0 Æ g(X) ≠ gi(X
(i)) Æ 11 for each i Æ n

and x œ X n, then for 0 < t Æ [Z],

Pr (Z Æ [Z] ≠ t) Æ exp

A
≠ t2

2 (– [Z] + — + (‹)≠t)

B
.

Moreover, if g is weakly (–, 0)-self-bounding with 0 Æ g(X) ≠ gi(X
(i)) Æ 1 for all

i Æ n and X œ X n, then

Pr (Z Æ [Z] ≠ t) Æ exp

A
≠ t2

2 max {–, 1} [Z]

B
.

A stronger result for (1, 0)-self-bounding functions can be stated.

Theorem 7.3.6 (Boucheron et al. (2000)). Let X = (X1, . . . , Xn) be a vector of
independent random variables, each taking values in a measurable set X and let g :
X n æ R be a non-negative and bounded measurable function. Let h(x) = (1+x) ln(1+
x) ≠ x.

If g(X) is a (1, 0)-self-bounding function, then, it holds, for 0 < t Æ [Z],

Pr ([Z] Ø Z + t) Æ exp

A
≠ [Z] h

A
≠ t

[Z]

BB
,

and, for t > 0,

Pr (Z Ø [Z] + t) Æ exp

A
≠ [Z] h

A
t

[Z]

BB
.

1The additional requirement “0 Æ g(X) ≠ gi(X
(i))” is not imposed in Theorem 1 of Boucheron

et al. (2009) and in Theorem 6.20 of Boucheron et al. (2013), but is required according to the
errata of Boucheron et al. (2013), available at http://www.econ.upf.edu/~lugosi/errata.pdf.
Our results hold regardless of the additional constraint.

156

http://www.econ.upf.edu/~lugosi/errata.pdf

7.4 Standard Probabilistic Bounds

In this Section we report standard bounds to the ERA and the SDs, that are proved
using the bounded di�erence method, and a standard bound for the RC based on the
self-bounding property of the ERA.

7.4.1 Standard Probabilistic Bound to the ERA

The following result provides a probabilistic upper bound to the ERA from its esti-
mate given by the n-MCERA; it is obtained through the application of the bounded
di�erences method.

Theorem 7.4.1.

Pr
1
R̂ (F , S) Ø R̂

n

m(F , S, σ) + Á
2

Æ exp

A
≠nmÁ2

2z2

B
.

Proof. It is simple to prove that R̂
n

m(F , S, σ) has the bounded di�erence property
with constants ci = 2z(nm)≠1, for all 1 Æ i Æ nm. Therefore, the bound follows from
Theorem 7.3.2.

7.4.2 Standard Probabilistic Bound to the RC

A known property of the ERA is that it is a self-bounding function (see, for instance,
Example 3.12 of Boucheron et al. (2013) and Oneto et al. (2013)). This implies
concentration bounds, proved by Boucheron et al. (2000), that are often sharper than
the ones obtained through the bounded di�erence property.

Theorem 7.4.2. Let, for x Ø ≠1, h(x)
.
= (1 + x) log(1 + x) ≠ x. For all 0 < Á Æ

R(F , m), it holds

Pr
1
R(F , m) Ø R̂ (F , S) + Á

2
Æ exp

A
≠mR(F , m)

c
h

A
≠ Á

R(F , m)

BB
Æ exp

A
≠mÁ2

2cR(F , m)

B
.

(7.2)
Also, with probability Ø 1 ≠ ”, it holds

R(F , m) Æ R̂ (F , S) +
c ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

c ln
1

1
”

2

m

R
b

2

+
2c ln

1
1
”

2
R̂ (F , S)

m
. (7.3)

Proof. Equation (7.2) is a consequence of the self-bounding property of the ERA, and
therefore follows from Theorem 7.3.6 (Theorem 2.1 of Boucheron et al. (2000), see
also Theorem 6.12 of Boucheron et al. (2013)). Equation (7.3) is analogous to what
derived by Theorem 3.11 of Oneto et al. (2013).

157

From (7.3) it is clear that, as the ERA R̂ (F , S) gets smaller, the rate of conver-
gence for estimating the RC R(F , m) is between O(m≠1/2) and O(m≠1), an essential
improvement in most cases (Boucheron et al., 2013). This intuitively suggests why
tight bounds to the ERA are useful and required to reach faster rates of convergence,
something not achievable with the “slow rate” bound of Theorem 7.4.1 (at least, not
achievable without impractical large n Monte Carlo trials).

7.4.3 Standard Probabilistic Bounds to the SDs

The following result gives standard bounds to the Supremum Deviations using their
bounded di�erence property.

Theorem 7.4.3. Let Z
.
= supfœF

Ó
1
m

qm
j=1 f(sj) ≠ [f]

Ô
. Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠2mÁ2

c2

B
. (7.4)

The same holds for Z
.
= supfœF

Ó
[f] ≠ 1

m

qm
j=1 f(sj)

Ô
.

Proof. It is simple to show that Z has the bounded di�erence property with constants
ci = c/m, for all 1 Æ i Æ m. Thus, the bounds follows from Theorem 7.3.2.

In Section 7.6 we will present a well known result that, when additional informa-
tion on the variance of the functions of F is available, achieve much stronger bounds
to the SDs, matching the rate of convergence of the ERA discussed in Section 7.4.2.

7.5 New Probabilistic Bounds to the ERA

In this Section we show that a careful application of recent results for self-bounding
functions allows to prove novel bounds to the ERA from the n-MCERA, whose con-
vergence rates depend on usually easy-to-compute functions of the elements of F on
the sample S. In Section 7.5.1 we show that the n-MCERA is, in fact, (–, —)-self-
bounding and weakly (–Õ, —Õ)-self-bounding for appropriate values of –, —, –Õ, and —Õ.
In Section 7.5.2 we show that this implies novel probabilistic bounds to the ERA.
First, define ẑ (S), the “empirical” version of z, as

ẑ (S) = sup
sœS,fœF

|f (s)| Æ z.

7.5.1 Self-bounding Properties of the n-MCERA

In this Section we prove self-bounding properties of the n-MCERA. We demand the
proofs to Section 7.8.

The first result states the (–, —)-self-bounding property of the n-MCERA.

158

Theorem 7.5.1. Let a n ◊ m matrix σ œ {≠1, 1}n◊m, and define the function g(σ)
as

g(σ)
.
= nmR̂

n

m(F , S, σ) .

If ẑ (S) Æ 1/2, then g(σ) is a (1, nm‹̂F (S))-self-bounding function.

The second result regards the weakly (–, —)-self-bounding property of the
n-MCERA.

Theorem 7.5.2. Let a n ◊ m matrix σ œ {≠1, 1}n◊m, and define the function g(σ)
as

g(σ)
.
= nmR̂

n

m(F , S, σ) .

Then g(σ) is a weakly (2ẑ (S) , 2nm‡̂2
F (S))-self-bounding function.

7.5.2 New Probabilistic Bounds on the ERA

In this Section, we show that the self-bounding properties of the n-MCERA we proved
yield sharp exponential concentration bounds that relate the n-MCERA to its expec-
tation, the ERA, with significantly improved convergence rates w.r.t. the standard
bound of Theorem 7.4.1. All the proofs can be found in Section 7.8.

The first result is based on the self-bounding property of the n-MCERA we proved
in Theorem 7.5.1.

Theorem 7.5.3. Let σ œ {≠1, 1}n◊m be an n ◊ m matrix of Rademacher random
variables, such that σj,i œ {≠1, 1} independently and with equal probability. Then,

for all 0 < Á Æ R̂ (F , S),

Pr
1
R̂ (F , S) Ø R̂

n

m(F , S, σ) + Á
2

Æ exp

Q
a≠ nmÁ2

4ẑ (S)
1
R̂ (F , S) + ‹̂F (S)

2

R
b . (7.5)

The second result is based on the weakly self-bounding property of the n-MCERA
we proved in Theorem 7.5.2.

Theorem 7.5.4. Let σ œ {≠1, 1}n◊m be an n ◊ m matrix of Rademacher random
variables, such that σj,i œ {≠1, 1} independently and with equal probability. Then,

for all 0 < Á Æ R̂ (F , S),

Pr
1
R̂ (F , S) Ø R̂

n

m(F , S, σ) + Á
2

Æ exp

Q
a≠ nmÁ2

4
1
ẑ (S) R̂ (F , S) + ‡̂2

F (S)
2

R
b . (7.6)

We may observe that the denominators of the exponents of (7.5) and (7.6) are

not known a priori, but depend on the ERA R̂ (F , S), the quantity we actually want

159

to bound. We remark that plugging an upper bound to R̂ (F , S) is su�cient for the
validity of the results. To this aim, we may simply observe that

R̂ (F , S) = σ

Ë
R̂

n

m(F , S, σ)
È

Æ σ [‹̂F (S)] = ‹̂F (S) ,

obtaining that the r.h.s. of (7.5) and (7.6) are upper bounded by, respectively,

exp

A
≠ nmÁ2

8ẑ (S) ‹̂F (S)

B
, and exp

Q
a≠ nmÁ2

4
1
ẑ (S) ‹̂F (S) + ‡̂2

F (S)
2

R
b .

We now present alternative bounds that only depend on empirical quantities, that
are often sharper than plugging the above upper bound to the ERA.

Theorem 7.5.5. With probability Ø 1 ≠ ” it holds

R̂ (F , S) Æ R̂
n

m(F , S, σ) +
2ẑ (S) ln

1
1
”

2

nm

+

ı̂ııÙ
Q
a

2ẑ (S) ln
1

1
”

2

nm

R
b

2

+
4ẑ (S)

1
R̂

n

m(F , S, σ) + ‹̂F (S)
2

ln
1

1
”

2

nm
.

Also, with probability Ø 1 ≠ ”, it holds

R̂ (F , S) Æ R̂
n

m(F , S, σ) +
2ẑ (S) ln

1
1
”

2

nm

+

ı̂ııÙ
Q
a

2ẑ (S) ln
1

1
”

2

nm

R
b

2

+
4

1
ẑ (S) R̂

n

m(F , S, σ) + ‡̂2
F (S)

2
ln

1
1
”

2

nm
.

We remark that appropriate lower bounds to the ERA R̂ (F , S) can be similarly
derived from the self-bounding properties proved in Section 7.5.1 and the application
of Theorem 7.3.5.

By directly comparing the bounds we derived by Theorems 7.5.3 and 7.5.4 with
the one given by Theorem 7.4.1, we can conclude that the former will be tighter when
at least one of the following is satisfied:

R̂ (F , S) + ‹̂F (S) Æ ẑ (S)

2
, 2ẑ (S) R̂ (F , S) + 2‡̂2

F (S) Æ ẑ (S)2 .

As discussed before, since R̂ (F , S) Æ ‹̂F (S), a su�cient condition for our results to
be sharper is given by

‹̂F (S) Æ ẑ (S)

4
, 2ẑ (S) ‹̂F (S) + 2‡̂2

F (S) Æ ẑ (S)2 .

160

In particular, our novel results allow to bound the ERA R̂ (F , S) below R̂
n

m(F , S, σ)+Á

with an Á of the order of

O

AÚ1
R̂

n

m(F , S, σ) + ‹̂F (S)
2

/nm

B
, or O

AÚ1
R̂

n

m(F , S, σ) + ‡̂2
F (S)

2
/nm

B
,

matching the rate of convergence of the ERA to the RC given by Theorem 7.4.2,

instead of the O(
Ò

1/nm) slow rate bound. We also remark that, when we bound

R̂ (F , S), both ‹̂F (S) and ‡̂2
F (S) are deterministic quantities since the sample S is

fixed; thus, they can be used to select the probabilistic result to apply, as they do not
depend on the realisation of any random variable.

7.5.3 New Direct Bound for n = 1

An interesting case in applications is when only n = 1 vector of m Rademacher
random variables is used to compute the n-MCERA. In addition of being faster to
compute than n > 1, Pellegrina et al. (2020a) show that in this case one may obtain
a sharper bound to the SDs with only one and direct application of the bounded
di�erence method, considering pairs composed by Rademacher random variables and
samples of S as i.i.d. random variables form an appropriate joint distribution. We
now present a variant of their result, that upper bounds the RC instead of the SDs,
that is useful to us to be compared with the novel result we prove with Theorem 7.5.7.

Theorem 7.5.6 (Theorem 4.6, (Pellegrina et al., 2020a)). It holds

Pr
3

R(F , m) Ø R̂
1

m (F , S, σ) + Á

4
Æ exp

A
≠mÁ2

2z2

B
,

thus, with probability Ø 1 ≠ ”, it holds

R(F , m) Æ R̂
1

m (F , S, σ) + z

ı̂ıÙ2 ln
1

1
”

2

m
.

They also remark that applying the result to the range centralised set of functions

Fü .
=

;
g : g(x)

.
= f(x) ≠ a ≠ c

2
, f œ F , x œ X

<

is often convenient as it gives the sharpest constants in the bound (as z for Fü is
equal to c/2).

We now derive an analogous but significantly sharper bound, whose convergence
rate depends on the wimpy variance ‡2

F of F . Our proof, postponed to Section 7.8,
is based on the application of a left tail of Bousquet’s inequality.

161

Theorem 7.5.7. With probability Ø 1 ≠ ”, it holds

R(F , m) Æ R̂
1

m(F , S, σ) +

ı̂ıÙ2(2zR(F , m) + ‡2
F) ln

1
1
”

2

m
+

z ln
1

1
”

2

8m
(7.7)

Æ R̂
1

m(F , S, σ) +

ı̂ııÙ9

8

Q
a

2z ln
1

1
”

2

m

R
b

2

+
2(2zR̂

1

m(F , S, σ) + ‡2
F) ln

1
1
”

2

m

+
17z ln

1
1
”

2

8m
. (7.8)

We may observe that (7.8) may be sharper than the combined application of (7.6)
and (7.2) when n = 1, since the empirical wimpy variance ‡̂2

F (S) appears in (7.6)
with a factor 4, while the wimpy variance in (7.8) has a factor 2. On the other hand,
one should have (or compute on the data) an upper bound to ‡2

F to apply the result,
while Theorem 7.5.4 only requires to compute its empirical counterpart ‡̂2

F (S).

Nevertheless, we show that the empirical wimpy variance ‡̂2
F (S) yields a sharp

upper bound to the wimpy variance ‡2
F . Our analysis again relies on the powerful

framework of self-bounding functions.

Theorem 7.5.8. It holds ‡2
F Æ

Ë
‡̂2

F (S)
È
, and, for Á Æ

Ë
‡̂2

F (S)
È
,

Pr
1 Ë

‡̂2
F (S)

È
Ø ‡̂2

F (S) + Á
2

Æ exp

Q
a≠

m
Ë
‡̂2

F (S)
È

z2
h

Q
a≠ ÁË

‡̂2
F (S)

È

R
b

R
b (7.9)

Æ exp

Q
a≠ mÁ2

2z2
Ë
‡̂2

F (S)
È

R
b . (7.10)

Furthermore, with probability Ø 1 ≠ ”, it holds

‡2
F Æ ‡̂2

F (S) +
z2 ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

z2 ln
1

1
”

2

m

R
b

2

+
2z2‡̂2

F (S) ln
1

1
”

2

m
. (7.11)

This result shows that the empirical wimpy variance ‡̂2
F (S) is an accurate em-

pirical estimator of the wimpy variance ‡2
F ; we believe such observation may have

interesting applications in establishing “global” fast rates of convergence of the SDs,
as shown by Oneto et al. (2016).

162

7.6 Variance-dependent Probabilistic Bounds to

the Supremum Deviations

In this section we state a central result in Statistical Learning Theory, due to Bousquet
(2002), the sharpest refinement of a number of improvements of the work of Talagrand
(1994) on bounds on the deviation of the suprema of empirical processes. This result
can be applied to derive bounds on the supremum deviations that depend on the
maximum variance ·

.
= supfœF {V ar(f)} of the functions of F . These bounds are

often significantly sharper than the ones obtainable with the bounded di�erences
method if · is su�ciently smaller than its maximum possible value (equal to c2/4
from Popoviciu (1935) inequality on variances).

We first report the result of Bousquet (in the version stated by Theorem A.1 of
Bartlett et al. (2005)).

Theorem 7.6.1 (Theorem 2.3, Bousquet (2002)). Let d > 0, Xi be independent
random variables distributed according to a probability distribution P , and let G be a
set of functions from X to R. Assume that all functions g œ G satisfy [g] = 0 and
ÎgÎŒ Æ d. Let ‡2 Ø supgœG V ar (g(Xi)). Then, for any x Ø 0,

Pr (Z Ø [Z] + x) Æ exp
3

≠vh
3

x

cv

44
,

where Z = supgœF

qn
i=1 g(Xi), h(x) = (1 + x) log(1 + x) ≠ x and v = n‡2 + 2d [Z].

Variance-dependent bounds to the SDs follow from Theorem 7.6.1.

Theorem 7.6.2. Let Z
.
= supfœF

Ó
1
m

qm
j=1 f(sj) ≠ [f]

Ô
, and define ·

.
=

supfœF {V ar(f)} and the function h(x)
.
= (1 + x) ln(1 + x) ≠ x. Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠m (· + 2c [Z]) h

A
Á

· + 2c [Z]

BB
. (7.12)

Also, with probability at least 1 ≠ ”, it holds

Z Æ [Z] +

ı̂ıÙ2 ln
1

1
”

2
(· + 2c [Z])

m
+

c ln
1

1
”

2

3m
. (7.13)

The same results are valid for Z
.
= supfœF

Ó
[f] ≠ 1

m

qm
j=1 f(sj)

Ô
.

7.7 New Probabilistic Bounds to the Supremum

Deviations

Bousquet (2003) shows that Theorem 7.6.1 can be applied to analyze the concentra-
tion of the supremum of empirical processes for sets of functions satisfying a sub-

163

additive property, a variant of the (1, 0)-self-bounding property with relaxed require-
ments; in fact, the supremum deviation is sub-additive (see Section 6 and Lemma C.1
of (Bousquet, 2003)), but is not, in general, (1, 0)-self-bounding. Still, in this Section
we show that the supremum deviation is (1, —)-self-bounding, for appropriate values
of — that depend on the maximum and minimum expectations of the elements of
F . Consequently, we obtain novel bounds to the supremum deviation by applying
concentration results for self-bounding functions, similarly to what we did for the
n-MCERA.

We first prove self-bounding properties for the supremum deviations. Define ÷F

and “F as the distance between the boundaries of the codomains of functions in F
and the boundaries of their expectations, such that

÷F = sup
fœF

[f] ≠ a , “F = b ≠ inf
fœF

[f] .

Theorem 7.7.1. Assume c Æ 1. Let g(S) be

g(S)
.
= mD+(F , S) = sup

fœF

Y
]
[

mÿ

j=1

f(sj) ≠ m [f]

Z
^
\ .

Then, g(S) is a (1, m÷F)-self-bounding function.

Theorem 7.7.2. Assume c Æ 1. Let g(S) be

g(S)
.
= mD≠(F , S) = sup

fœF

Y
]
[m [f] ≠

mÿ

j=1

f(sj)

Z
^
\ .

Then, g(S) is a (1, m“F)-self-bounding function.

We now apply the concentration inequalities given by Theorem 7.3.5 to obtain
novel bounds on the supremum deviations. The first results regards the concentration
of D+(F , S).

Theorem 7.7.3. Let Z be

Z
.
= D+(F , S) = sup

fœF

Y
]
[

1

m

mÿ

j=1

f(sj) ≠ [f]

Z
^
\ .

Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠ mÁ2

2c ([Z] + ÷F + Á/3)

B
. (7.14)

164

Consequently, with probability Ø 1 ≠ ”,

Z Æ [Z] +

ı̂ııÙ
Q
a

c ln
1

1
”

2

3m

R
b

2

+
2c ln

1
1
”

2
([Z] + ÷F)

m
+

c ln
1

1
”

2

3m
. (7.15)

An analogous result is valid for D≠(F , S).

Theorem 7.7.4. Let Z be

Z
.
= D≠(F , S) = sup

fœF

Y
]
[[f] ≠ 1

m

mÿ

j=1

f(sj)

Z
^
\ .

Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠ mÁ2

2c ([Z] + “F + Á/3)

B
. (7.16)

Consequently, with probability Ø 1 ≠ ”,

Z Æ [Z] +

ı̂ııÙ
Q
a

c ln
1

1
”

2

3m

R
b

2

+
2c ln

1
1
”

2
([Z] + “F)

m
+

c ln
1

1
”

2

3m
. (7.17)

We may observe that the novel bounds we proved are less versatile than the result
of Bousquet, as they may give faster convergence rates (w.r.t. the bounded di�erence
method) for only one side of the deviation at a time (i.e., either for D+(F , S) or
D≠(F , S)) instead of both simultaneously; this is because, for the same F , ÷F and
“F cannot be both small. However, we observe that such results may be applicable
to properly selected subsets of F , in a localized fashion. It is not trivial to directly
compare these bounds with Bousquet’s, in particular (7.12) as it is implicit. However,
we observed that our new bounds are slightly sharper than Bousquet’s for some range
of the values of the quantities involved in the equations, since some of the constants
are more favourable. In particular, we can see that, when c = 1, the dependence
of the additive error term for [Z] of (7.15) (and (7.17)) on [Z] is lower than
the one in (7.13) by a factor

Ô
2; therefore, when the squared term dominates the

error term, (7.15) (resp. (7.17)) is smaller than (7.13) when ÷F Æ [Z] + · (resp.,
“F Æ [Z] + ·). Therefore, we conclude that the combination of Theorem 7.6.2 and
our new results gives opportunities to obtain sharper bounds to the SDs of general
families of functions.

These results depend on, respectively, the maximum or minimum expected val-
ues of elements of F , while Bousquet’s inequality requires an upper bound to their
maximum variance; a problem in applications is how to handle the cases where these
quantities are not known in advance: one intuitive solution is to estimate them from

165

the data.
Regarding the maximum variance · = supfœF V ar(f), we point out that the

bounds “F and ÷F to the expectations of f œ F may be su�cient to handle it; in
fact, from Bhatia and Davis (2000), one has that, for all f ,

V ar(f) Æ (b ≠ [f]) ([f] ≠ a) , (7.18)

with equality when f has binary codomain {a, b}. Consequently, we have that

· Æ sup

I
(b ≠ x)(x ≠ a) : x œ

C
inf
fœF

[f] , sup
fœF

[f]

DJ

Æ max {“F (c ≠ “F) , ÷F (c ≠ ÷F)} Æ “F÷F .

Therefore, bounds to “F and ÷F are of interest, as they su�ce for the application
of our results and Bousquet’s inequality, and may give particularly good bounds
for binary functions. Thus, in the following, we show that it is possible to sharply
estimate both ÷F and “F from the data, analogously to the empirical estimator for
the wimpy variance we proved in Section 7.5.3. The proofs are in Section 7.8.

Define the empirical estimators ÷̂F (S) and “̂F (S) of, respectively, ÷F and “F as

÷̂F (S) = sup
fœF

I
1

m

mÿ

i=1

f (si)

J
≠ a , “̂F (S) = b ≠ inf

fœF

I
1

m

mÿ

i=1

f (si)

J
.

Theorem 7.7.5. It holds ÷F Æ [÷̂F (S)], and, for Á Æ [÷̂F (S)],

Pr ([÷̂F (S)] Ø ÷̂F (S) + Á) Æ exp

A
≠m [÷̂F (S)]

c
h

A
≠ Á

[÷̂F (S)]

BB
(7.19)

Æ exp

A
≠ mÁ2

2c [÷̂F (S)]

B
.

Furthermore, with probability Ø 1 ≠ ”, it holds

÷F Æ ÷̂F (S) +
c ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

c ln
1

1
”

2

m

R
b

2

+
2c÷̂F (S) ln

1
1
”

2

m
.

Theorem 7.7.6. It holds “F Æ [“̂F (S)], and, for Á Æ [“̂F (S)],

Pr ([“̂F (S)] Ø “̂F (S) + Á) Æ exp

A
≠m [“̂F (S)]

c
h

A
≠ Á

[“̂F (S)]

BB

Æ exp

A
≠ mÁ2

2c [“̂F (S)]

B
.

166

Furthermore, with probability Ø 1 ≠ ”, it holds

“F Æ “̂F (S) +
c ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

c ln
1

1
”

2

m

R
b

2

+
2c“̂F (S) ln

1
1
”

2

m
.

7.8 Proofs

Theorem 7.5.1. Let a n ◊ m matrix σ œ {≠1, 1}n◊m, and define the function g(σ)
as

g(σ)
.
= nmR̂

n

m(F , S, σ) .

If ẑ (S) Æ 1/2, then g(σ) is a (1, nm‹̂F (S))-self-bounding function.

Proof. Denote the function gj,i(σ), for j œ [1, n] and i œ [1, m], as

gj,i(σ)
.
= inf

σ
Õ

j,i
œ{≠1,1}

Y
__]
__[

nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + σ
Õ
j,if(si)

Z
__̂

__\

Z
__̂

__\
.

This function correspond to g(σ) where the element σj,i of coordinates (i, j) of σ is
replaced by σ

Õ
j,i œ {≠1, 1}; in addition, we take the infimum over σ

Õ
j,i œ {≠1, 1}. We

remark that, even if σ is the argument of gj,i to simplify notation, σj,i never appears
in the definition of gj,i(σ), as required in the definition of self-bounding functions. To
show that g(σ) is (–, —)-self-bounding, according to the definition, we have to show
that, for all σ œ {≠1, 1}n◊m, the inequalities

0 Æ g(σ) ≠ gj,i(σ) Æ 1 ,

and

nÿ

j=1

mÿ

i=1

(g(σ) ≠ gj,i(σ)) Æ –g(σ) + — (7.20)

all hold for some non-negative – and —. First, g(σ) Ø gj,i(σ) follows from writing
gj,i(σ) as

gj,i(σ) = min

S
U

nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) ≠ f(si)

Z
__̂

__\
,

nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + f(si)

Z
__̂

__\

T
V ,

167

and from the observation that one argument of the min is equal to g(σ), therefore
the minimum is either equal to g(σ) or < g(σ). We now prove that, if z Æ 1/2,
g(σ) Æ gj,i(σ) + 1, for all σ and for all j and i.

gj,i(σ) = inf
σ

Õ

j,i
œ{≠1,1}

Y
__]
__[

nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + σ
Õ
j,if(si)

Z
__̂

__\

Z
__̂

__\

=
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ inf

σ
Õ

j,i
œ{≠1,1}

Y
__]
__[

sup
fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + σ
Õ
j,if(si)

Z
__̂

__\

Z
__̂

__\

Ø
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

inf
σ

Õ

j,i
œ{≠1,1}

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + σ
Õ
j,if(si)

Z
__̂

__\

Z
__̂

__\

=
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if(si)

Ô
Z
__̂

__\
.

Let f ı
j be one of the functions of F attaining the supremum of supfœF

qm
h=1 σj,hf(sh).

Then we continue

gj,i(σ) Ø
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+ sup

fœF

Y
__]
__[

mÿ

h=1
h ”=i

(σj,hf(sh)) + inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if(si)

Ô
Z
__̂

__\

Ø
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+

mÿ

h=1
h ”=i

1
σj,hf ı

j (sh)
2

+ inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if

ı
j (si)

Ô

=
nÿ

v=1
v ”=j

C
sup
fœF

mÿ

h=1

σv,hf(sh)

D
+

mÿ

h=1
h ”=i

1
σj,hf ı

j (sh)
2

+ σj,if
ı
j (si) ≠ σj,if

ı
j (si)

+ inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if

ı
j (si)

Ô

= g(σ) ≠ σj,if
ı
j (si) + inf

σ
Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if

ı
j (si)

Ô
. (7.21)

We first observe that

inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if

ı
j (si)

Ô
=

Y
__]
__[

0 , if f ı
j (si) = 0 ,

≠f ı
j (si) , if f ı

j (si) > 0 ,

f ı
j (si) , if f ı

j (si) < 0 ,

168

obtaining

inf
σ

Õ

j,i
œ{≠1,1}

Ó
σ

Õ
j,if

ı
j (si)

Ô
= ≠

---f ı
j (si)

--- .

Therefore, we continue from (7.21) as follows:

gj,i(σ) Ø g(σ) ≠ σj,if
ı
j (si) ≠

---f ı
j (si)

--- Ø g(σ) ≠ 2ẑ (S) Ø g(σ) ≠ 1 .

We now prove (7.20) for – = 1 and — = nm‹̂F (S).

nÿ

j=1

mÿ

i=1

(g(σ) ≠ gj,i(σ))

Æ
nÿ

j=1

mÿ

i=1

1
g(σ) ≠ g(σ) + σj,if

ı
j (si) +

---f ı
j (si)

2

=
nÿ

j=1

mÿ

i=1

1
σj,if

ı
j (si) +

---f ı
j (si)

2

= g(σ) +
nÿ

j=1

mÿ

i=1

---f ı
j (si)

Æ g(σ) + n sup
fœF

I
mÿ

i=1

|f(si)|

J

= g(σ) + nm‹̂F (S) , (7.22)

concluding the proof.

Theorem 7.5.2. Let a n ◊ m matrix σ œ {≠1, 1}n◊m, and define the function g(σ)
as

g(σ)
.
= nmR̂

n

m(F , S, σ) .

Then g(σ) is a weakly (2ẑ (S) , 2nm‡̂2
F (S))-self-bounding function.

Proof. Denote gj,i(σ) as in the proof of Theorem 7.5.1. To prove that g(σ) is a weakly
(–, —)-self-bounding, we have to prove that, for all σ, it holds

nÿ

j=1

mÿ

i=1

(g(σ) ≠ gj,i(σ))2 Æ –g(σ) + — .

From the proof of Theorem 7.5.1, we have already proved that

gj,i(σ) Ø g(σ) ≠ σj,if
ı
j (si) ≠

---f ı
j (si)

--- Ø g(σ) ≠ 2ẑ (S) .

169

Therefore, we observe that

nÿ

j=1

mÿ

i=1

(g(σ) ≠ gj,i(σ))2

Æ
nÿ

j=1

mÿ

i=1

1
σj,if

ı
j (si) +

---f ı
j (si)

22

=
nÿ

j=1

mÿ

i=1

3
f ı

j (si)
2 +

---f ı
j (si)

2

+ 2σj,if
ı
j (si)

---f ı
j (si)

4

=
nÿ

j=1

mÿ

i=1

1
2f ı

j (si)
2 + 2σj,if

ı
j (si)

---f ı
j (si)

2

Æ 2ẑ (S)
nÿ

j=1

mÿ

i=1

σj,if
ı
j (si) + 2

nÿ

j=1

mÿ

i=1

f ı
j (si)

2

= 2ẑ (S) g(σ) + 2
nÿ

j=1

mÿ

i=1

f ı
j (si)

2

Æ 2ẑ (S) g(σ) + 2n sup
fœF

I
mÿ

i=1

f(si)
2

J

= 2ẑ (S) g(σ) + 2nm‡̂2
F (S) ,

obtaining the statement.

Theorem 7.5.3. Let σ œ {≠1, 1}n◊m be an n ◊ m matrix of Rademacher random
variables, such that σj,i œ {≠1, 1} independently and with equal probability. Then,

for all 0 < Á Æ R̂ (F , S),

Pr
1
R̂ (F , S) Ø R̂

n

m(F , S, σ) + Á
2

Æ exp

Q
a≠ nmÁ2

4ẑ (S)
1
R̂ (F , S) + ‹̂F (S)

2

R
b . (7.5)

Proof. Define the set of functions

F Õ .
= {f Õ(x)

.
= f(x)/(2ẑ (S)) : ’x œ X , f œ F} ,

composed by all functions f œ F divided by 2ẑ (S); clearly, |f Õ(s)| Æ 1/2, ’s œ S. We

now show that nmR̂
n

m(F Õ, S, σ) (consequently, also nmR̂
n

m(F , S, σ)) is a non-negative
function:

nmR̂
n

m(F Õ, S, σ)
.
=

nÿ

j=1

sup
f ÕœF Õ

ÿ

siœS

σj,if
Õ(si) Ø

nÿ

j=1

ÿ

siœS

σj,if0(si) = 0 .

From Theorem 7.5.1, we have that nmR̂
n

m(F Õ, S, σ) is a (1, mn‹̂F Õ (S))-self-bounding
function. This implies that it is also a weakly (1, mn‹̂F Õ (S))-self-bounding function.

170

Then, note that σ

Ë
nmR̂

n

m(F Õ, S, σ)
È

= nmR̂ (F Õ, S). We combine these facts with

Theorem 7.3.5, obtaining, for g(σ) = nmR̂
n

m(F Õ, S, σ),

Pr
1
nmR̂ (F Õ, S) Ø nmR̂

n

m(F Õ, S, σ) + t
2

Æ exp

Q
a≠ t2

2
1
nmR̂ (F Õ, S) + nm‹̂F Õ (S)

2

R
b .

We observe that R̂ (F Õ, S) = R̂ (F , S) /(2ẑ (S)), R̂
n

m(F Õ, S, σ) = R̂
n

m(F , S, σ)/(2ẑ (S)),
and that ‹̂F Õ (S) = ‹̂F (S) /(2ẑ (S)). We make these substitutions, obtaining

Pr

A
nm

2ẑ (S)
R̂ (F , S) Ø nm

2ẑ (S)
R̂

n

m(F , S, σ) + t

B
Æ exp

Q
a≠ ẑ (S) t2

1
nmR̂ (F , S) + nm‹̂F (S)

2

R
b .

We further substitute t by nmÁ/(2ẑ (S)), obtaining the statement.

Theorem 7.5.4. Let σ œ {≠1, 1}n◊m be an n ◊ m matrix of Rademacher random
variables, such that σj,i œ {≠1, 1} independently and with equal probability. Then,

for all 0 < Á Æ R̂ (F , S),

Pr
1
R̂ (F , S) Ø R̂

n

m(F , S, σ) + Á
2

Æ exp

Q
a≠ nmÁ2

4
1
ẑ (S) R̂ (F , S) + ‡̂2

F (S)
2

R
b . (7.6)

Proof. Let F Õ be the same set of functions defined in the proof of Theorem 7.5.3.
If we denote g(σ)

.
= nmR̂

n

m(F Õ, S, σ), then, from Theorem 7.5.2, g(σ) is a

weakly (1, 2mn‡̂2
F Õ (S))-self-bounding function. As before, σ

Ë
nmR̂

n

m(F Õ, S, σ)
È

=

nmR̂ (F Õ, S). We apply Theorem 7.3.5 on g(σ) = nmR̂
n

m(F Õ, S, σ), obtaining

Pr
1
nmR̂ (F Õ, S) Ø nmR̂

n

m(F Õ, S, σ) + t
2

Æ exp

Q
a≠ t2

2
1
nmR̂ (F Õ, S) + 2nm‡̂2

F Õ (S)
2

R
b .

We observe that R̂ (F Õ, S) = R̂ (F , S) /(2ẑ (S)), R̂
n

m(F Õ, S, σ) = R̂
n

m(F , S, σ)/(2ẑ (S)),
and that ‡̂2

F Õ (S) = ‡̂2
F (S) /(4ẑ (S)2). This implies that

Pr

A
nm

2ẑ (S)
R̂ (F , S) Ø nm

2ẑ (S)
R̂

n

m(F , S, σ) + t

B
Æ exp

Q
ca≠ t2

1
nm
ẑ(S)

R̂ (F , S) + nm
ẑ(S)2 ‡̂2

F (S)
2

R
db .

Replacing t by Ánm/(2ẑ (S)) concludes the proof.

171

Theorem 7.5.5. With probability Ø 1 ≠ ” it holds

R̂ (F , S) Æ R̂
n

m(F , S, σ) +
2ẑ (S) ln

1
1
”

2

nm

+

ı̂ııÙ
Q
a

2ẑ (S) ln
1

1
”

2

nm

R
b

2

+
4ẑ (S)

1
R̂

n

m(F , S, σ) + ‹̂F (S)
2

ln
1

1
”

2

nm
.

Also, with probability Ø 1 ≠ ”, it holds

R̂ (F , S) Æ R̂
n

m(F , S, σ) +
2ẑ (S) ln

1
1
”

2

nm

+

ı̂ııÙ
Q
a

2ẑ (S) ln
1

1
”

2

nm

R
b

2

+
4

1
ẑ (S) R̂

n

m(F , S, σ) + ‡̂2
F (S)

2
ln

1
1
”

2

nm
.

Proof. We prove the first inequality, as proving the second is analogous. From The-
orem 7.5.3, we have that, with probability Ø 1 ≠ ”,

R̂ (F , S) Æ R̂
n

m(F , S, σ) +

ı̂ıÙ4ẑ (S) (‹̂F (S) + R̂ (F , S)) ln
1

1
”

2

nm
.

An upper bound to R̂ (F , S) can be obtained by finding the fixed point of the function
r(x)

r(x)
.
= R̂

n

m(F , S, σ) +

ı̂ıÙ4ẑ (S) (‹̂F (S) + x) ln
1

1
”

2

nm
.

In fact, it is trivial to prove the following.

Lemma 7.8.1. Let u, v, y Ø 0. The fixed point of

r(x) = u +
Ô

v + yx

is at

x = u +
y

2
+

Û
y2

4
+ uy + v .

Thus, we apply Lemma 7.8.1 to obtain, after simple calculations, the statement.

172

Theorem 7.5.7. With probability Ø 1 ≠ ”, it holds

R(F , m) Æ R̂
1

m(F , S, σ) +

ı̂ıÙ2(2zR(F , m) + ‡2
F) ln

1
1
”

2

m
+

z ln
1

1
”

2

8m
(7.7)

Æ R̂
1

m(F , S, σ) +

ı̂ııÙ9

8

Q
a

2z ln
1

1
”

2

m

R
b

2

+
2(2zR̂

1

m(F , S, σ) + ‡2
F) ln

1
1
”

2

m

+
17z ln

1
1
”

2

8m
. (7.8)

Proof. Define the set of functions G as

G
.
= {g : g(x, ‡)

.
= ‡f(x), f œ F , x œ X , ‡ œ {≠1, 1}} ,

where ‡ is a Rademacher random variable. Therefore, we observe that, from inde-
pendence of the random variables ‡ and f(x),

[g] = [f] [‡] = 0 , ÎgÎŒ = sup {|‡f(x)| : ‡ œ {≠1, 1} , x œ X , f œ F} Æ z ,

sup
gœG

V ar(g) = sup
fœF

Ó Ë
‡2

È Ë
f 2

È
≠ ([‡] [f])2

Ô

= sup
fœF

Ó Ë
‡2

È Ë
f 2

ÈÔ
= sup

fœF

Ó Ë
f 2

ÈÔ
= ‡2

F .

We now need the following left tail bound of Bousquet’s inequality.

Corollary 7.8.2 (Corollary 12.2, Boucheron et al. (2013)). Consider the setup of
Theorem 7.6.1. Then, for all t Ø 0, it holds

Pr

A
Z Æ [Z] ≠

Ô
2vt ≠ dt

8

B
Æ exp(≠t) .

Thus, we apply Corollary 7.8.2 to G to obtain (7.7). The bound of (7.8) follows
from Lemma 7.8.1.

Theorem 7.5.8. It holds ‡2
F Æ

Ë
‡̂2

F (S)
È
, and, for Á Æ

Ë
‡̂2

F (S)
È
,

Pr
1 Ë

‡̂2
F (S)

È
Ø ‡̂2

F (S) + Á
2

Æ exp

Q
a≠

m
Ë
‡̂2

F (S)
È

z2
h

Q
a≠ ÁË

‡̂2
F (S)

È

R
b

R
b (7.9)

Æ exp

Q
a≠ mÁ2

2z2
Ë
‡̂2

F (S)
È

R
b . (7.10)

173

Furthermore, with probability Ø 1 ≠ ”, it holds

‡2
F Æ ‡̂2

F (S) +
z2 ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

z2 ln
1

1
”

2

m

R
b

2

+
2z2‡̂2

F (S) ln
1

1
”

2

m
. (7.11)

Proof. We first prove that

‡2
F Æ

Ë
‡̂2

F (S)
È

.

Through Jensen’s inequality, we have

‡2
F = sup

fœF

Ó Ë
f 2

ÈÔ
= sup

fœF

I C
1

m

mÿ

i=1

(f (si))
2

DJ

Æ
C
sup
fœF

I
1

m

mÿ

i=1

(f (si))
2

JD
=

Ë
‡̂2

F (S)
È

.

We now show that ‡̂2
F (S) is a (1, 0)-self-bounding function. Let the function g(S) =

m‡̂2
F (S), and, for j œ [1, m], let the function gj(S) be

gj(S) = sup
fœF

Y
__]
__[

mÿ

i=1
i”=j

(f (si))
2

Z
__̂

__\
.

First, it holds g(S) Ø 0, and gj(S) Æ g(S), for all S and all j, as (f (s))2 Ø 0, ’s. We
now prove that g(S) ≠ gj(S) Æ z2. Let f ı be one of the functions of F attaining the
supremum for g(S); then,

gj(S) = sup
fœF

Y
__]
__[

mÿ

i=1
i”=j

(f (si))
2

Z
__̂

__\
Ø

mÿ

i=1
i”=j

(f ı (si))
2 =

mÿ

i=1

(f ı (si))
2 ≠ (f ı (sj))

2

= g(S) ≠ (f ı (sj))
2 Ø g(S) ≠ z2 .

Consequently, we have

mÿ

j=1

(g(S) ≠ gj(S)) Æ
mÿ

j=1

1
(f ı (sj))

2
2

= g(S) ,

that concludes the proof that ‡̂2
F (S) is a (1, 0)-self-bounding function (we have ig-

nored the scaling of 1/z2, but analogous steps of the proof of Theorem 7.5.3 are easy
to follow). We now apply Theorem 7.3.6 to obtain a probabilistic bounds to the

174

expectation [‡̂2
F (S)] of ‡̂2

F (S); we have, for Á Æ [‡̂2
F (S)],

Pr
1

[‡̂2
F (S)] Ø ‡̂2

F (S) + Á
2

Æ exp

A
≠ [‡̂2

F (S)]

z2
h

A
≠ Á

[‡̂2
F (S)]

BB
,

obtaining (7.9). The inequality (7.10) is a consequence of the fact that h(≠x) Ø
x2/2, ’x œ [0, 1], as pointed out by Boucheron et al. (2000). Then, (7.11) follows
from bounding the rightmost term of (7.10) below ”, by applying Lemma 7.8.1, and
from ‡2

F Æ [‡̂2
F (S)].

Theorem 7.7.1. Assume c Æ 1. Let g(S) be

g(S)
.
= mD+(F , S) = sup

fœF

Y
]
[

mÿ

j=1

f(sj) ≠ m [f]

Z
^
\ .

Then, g(S) is a (1, m÷F)-self-bounding function.

Proof. Let gi (S) be

gi (S) = inf
sÕ

i

Y
__]
__[

sup
fœF

Y
__]
__[

mÿ

j=1
j ”=i

f(sj) + f(sÕ
i) ≠ m [f]

Z
__̂

__\

Z
__̂

__\
.

Notice that, as done before, si is ignored in the definition of gi (S). Let f ı be one of
the functions in F that attains the supremum for g(S). We then have

gi (S) = inf
sÕ

i

Y
__]
__[

sup
fœF

Y
__]
__[

mÿ

j=1
j ”=i

f(sj) + f(sÕ
i) ≠ m [f]

Z
__̂

__\

Z
__̂

__\

Ø inf
sÕ

i

Y
__]
__[

mÿ

j=1
j ”=i

f ı(sj) + f ı(sÕ
i) ≠ m [f ı]

Z
__̂

__\

=
mÿ

j=1
j ”=i

f ı(sj) ≠ m [f ı] + inf
sÕ

i

{f ı(sÕ
i)}

=
mÿ

j=1
j ”=i

f ı(sj) ≠ m [f ı] + a

=
mÿ

j=1
j ”=i

f ı(sj) + f ı(si) ≠ f ı(si) ≠ m [f ı] + a

= g(S) ≠ f ı(si) + a .

175

We then observe that gi (S) Ø g(S) ≠ b + a = g(S) ≠ c; assuming that c Æ 1, we have
gi (S) Ø g(S) ≠ 1. We then continue with

mÿ

j=1

(g(S) ≠ gi(S))

Æ
mÿ

j=1

(f ı(si) ≠ a)

=
mÿ

j=1

f ı(si) ≠ am

=
mÿ

j=1

f ı(si) ≠ m [f ı] + m [f ı] ≠ am

= g(S) + m [f ı] ≠ ma

Æ g(S) + m÷F ,

obtaining the statement.

Theorem 7.7.2. Assume c Æ 1. Let g(S) be

g(S)
.
= mD≠(F , S) = sup

fœF

Y
]
[m [f] ≠

mÿ

j=1

f(sj)

Z
^
\ .

Then, g(S) is a (1, m“F)-self-bounding function.

Proof. Define the set of functions F Õ .
= {f Õ(x)

.
= ≠f(x), f œ F , x œ X }. We have

that f Õ œ [≠b, ≠a], that [f Õ] = ≠ [f], and that
mq

j=1
f Õ(sj) = ≠

mq
j=1

f(sj). Therefore,

g(S) = sup
fœF

Y
]
[m [f] ≠

mÿ

j=1

f(sj)

Z
^
\ = sup

f ÕœF Õ

Y
]
[

mÿ

j=1

f Õ(sj) ≠ m [f Õ]

Z
^
\ .

Then, we may observe that

“F = b ≠ inf
fœF

[f] = b + sup
fœF

[f Õ] = sup
fœF

[f Õ] ≠ min
x

f Õ(x) .

Thus, we apply Theorem 7.7.1 to g(S) and F Õ to show that it is (1, m“F)-self bound-
ing, obtaining the statement.

Theorem 7.7.3. Let Z be

Z
.
= D+(F , S) = sup

fœF

Y
]
[

1

m

mÿ

j=1

f(sj) ≠ [f]

Z
^
\ .

176

Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠ mÁ2

2c ([Z] + ÷F + Á/3)

B
. (7.14)

Consequently, with probability Ø 1 ≠ ”,

Z Æ [Z] +

ı̂ııÙ
Q
a

c ln
1

1
”

2

3m

R
b

2

+
2c ln

1
1
”

2
([Z] + ÷F)

m
+

c ln
1

1
”

2

3m
. (7.15)

Proof. We first observe that g(S) is a non-negative function, for all S, since f0 œ F .
Then, g(S)

.
= mZ is (1, m÷F)-self-bounding from Theorem 7.7.1; therefore, we apply

Theorem 7.3.5 to obtain (7.14). The second statement follows from imposing the
r.h.s. of (7.14) to be Æ ”.

Theorem 7.7.4. Let Z be

Z
.
= D≠(F , S) = sup

fœF

Y
]
[[f] ≠ 1

m

mÿ

j=1

f(sj)

Z
^
\ .

Then, it holds

Pr (Z Ø [Z] + Á) Æ exp

A
≠ mÁ2

2c ([Z] + “F + Á/3)

B
. (7.16)

Consequently, with probability Ø 1 ≠ ”,

Z Æ [Z] +

ı̂ııÙ
Q
a

c ln
1

1
”

2

3m

R
b

2

+
2c ln

1
1
”

2
([Z] + “F)

m
+

c ln
1

1
”

2

3m
. (7.17)

Proof. We follow analogous steps taken in the proof of Theorem 7.7.3. First, g(S)
.
=

mZ is (1, m“F)-self-bounding from Theorem 7.7.2; (7.16) follows from Theorem 7.3.5.
The second statement is again obtained from bounding the r.h.s. of (7.16) below
”.

Theorem 7.7.5. It holds ÷F Æ [÷̂F (S)], and, for Á Æ [÷̂F (S)],

Pr ([÷̂F (S)] Ø ÷̂F (S) + Á) Æ exp

A
≠m [÷̂F (S)]

c
h

A
≠ Á

[÷̂F (S)]

BB
(7.19)

Æ exp

A
≠ mÁ2

2c [÷̂F (S)]

B
.

177

Furthermore, with probability Ø 1 ≠ ”, it holds

÷F Æ ÷̂F (S) +
c ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

c ln
1

1
”

2

m

R
b

2

+
2c÷̂F (S) ln

1
1
”

2

m
.

Proof. We follow similar steps taken in the proof of Theorem 7.5.8. We first prove
that

÷F Æ [÷̂F (S)]

by observing, through Jensen’s inequality, that

÷F = sup
fœF

{ [f]} ≠ a = sup
fœF

I C
1

m

mÿ

i=1

f (si)

DJ
≠ a

Æ
C
sup
fœF

I
1

m

mÿ

i=1

f (si)

JD
≠ a = [÷̂F (S)] .

We now show that ÷̂F (S) is a self-bounding function. Let the function g(S) =
m÷̂F (S), and, for j œ [1, m], let the function gj(S) be

gj(S) = inf
sÕ

j

Y
__]
__[

sup
fœF

Y
__]
__[

mÿ

i=1
i”=j

f (si) + f
1
sÕ

j

2
Z
__̂

__\

Z
__̂

__\
≠ a .

First, it holds g(S) Ø 0, as f (s) Ø a, ’s, and gj(S) Æ g(S) by definition of gj(S).
We now prove that g(S) ≠ gj(S) Æ c. Let f ı be one of the functions of F attaining
the supremum for g(S); then,

gj(S) = inf
sÕ

j

Y
__]
__[

sup
fœF

Y
__]
__[

mÿ

i=1
i”=j

f (si) + f
1
sÕ

j

2
Z
__̂

__\

Z
__̂

__\
≠ a Ø

mÿ

i=1
i”=j

f ı (si) + inf
sÕ

j

Ó
f ı

1
sÕ

j

2Ô
≠ a

=
mÿ

i=1

f ı (si) ≠ f ı (sj)

= g(S) ≠ f ı (sj) + a Ø g(S) ≠ c .

Consequently, we have

mÿ

j=1

(g(S) ≠ gj(S)) Æ
mÿ

j=1

(f ı (sj) ≠ a) = g(S) ,

that concludes the proof that ÷̂F (S) is a (1, 0)-self-bounding function. We now apply

178

Theorem 7.3.6 to a family of functions that is scaled by 1/c (i.e., as we did in the
proof of Theorem 7.5.3) to obtain a probabilistic bounds to the expectation [÷̂F (S)]
of ÷̂F (S); we have

Pr ([÷̂F (S)] Ø ÷̂F (S) + Á) Æ exp

A
≠ [÷̂F (S)]

c
h

A
≠ Á

[÷̂F (S)]

BB
,

proving (7.19). The rest follows analogously as in the proof of Theorem 7.5.8.

Theorem 7.7.6. It holds “F Æ [“̂F (S)], and, for Á Æ [“̂F (S)],

Pr ([“̂F (S)] Ø “̂F (S) + Á) Æ exp

A
≠m [“̂F (S)]

c
h

A
≠ Á

[“̂F (S)]

BB

Æ exp

A
≠ mÁ2

2c [“̂F (S)]

B
.

Furthermore, with probability Ø 1 ≠ ”, it holds

“F Æ “̂F (S) +
c ln

1
1
”

2

m
+

ı̂ııÙ
Q
a

c ln
1

1
”

2

m

R
b

2

+
2c“̂F (S) ln

1
1
”

2

m
.

Proof. First, we define the set of functions F Õ as

F Õ = {f Õ : f Õ(x) = ≠f(x), f œ F , x œ X } ,

and we define aÕ = infx f Õ(x) = ≠b, bÕ = supx f Õ(x) = ≠a. We have ÷F Õ = supf Õ [f Õ]≠
aÕ = “F , and ÷̂F Õ (S) = “̂F (S). Thus, we apply Theorem 7.7.5 and Lemma 7.8.1 to F Õ,
obtaining, after appropriate substitutions, all the statements of the Theorem for F .

179

180

Chapter 8

Conclusions

181

In this Chapter we summarize the contributions of this Thesis, and discuss future
research directions.

In Chapter 3, we presented TopKWY, a novel algorithm to mine the Top-k Sig-
nificant Patterns with rigorous control of false discoveries. Focusing on the most
significant patterns allows to bound the size of the output below k, resulting in sig-
nificant computational advantages, but without sacrificing the guaranteed statistical
significance of the set of reported results. The key to the e�ciency of TopKWY

is the combination of a novel exploration strategy of the search space of patterns,
that we prove will never explore non-interesting candidates, novel bounds to skip
the processing of many explored candidates, and the powerful Westfall-Young (WY)
permutation testing framework. We also show that simple modifications to the WY
procedure lead to variants of TopKWY to control more flexible error rates, such as
the Generalized Family-Wise Error Rate, and the False Discovery Proportion; such
rates provide, when needed, strong improvements in terms of power of the procedure,
without losing control of the overall size of the output.

In Chapter 4 we introduced SPuManTE, an e�cient algorithm for Significant Pat-
tern Mining based on Unconditional Testing. Unconditional tests are better suited
for Knowledge Discovery settings, as they assume less stringent constraints to the
generative process of the data. The use of unconditional tests in practice was limited
by computational reasons; in SPuManTE we tackle this challenge with a novel algo-
rithm to e�ciently perform the test, and with the combination of recent results on
uniformly valid probabilistic confidence intervals to the frequencies of the patterns,
leveraging key concepts from Statistical Learning Theory.

In Chapter 5 we described a new sampling-based algorithm, called SAKEIMA, to
compute approximations of the collection of frequent strings of length k, called k-mers,
from massive high-throughput sequencing datasets. The analysis of k-mers is one of
the first step in many computational biology pipelines, often very demanding because
of the size of the datasets and of the exponential number of distinct k-mers that
may appear in them. We have shown that SAKEIMA, thanks to its advanced sampling
scheme, computes an high-quality rigorous approximation of the set of frequent k-
mers by analyzing only a fraction of the data. SAKEIMA can be applied to speedup
analyses based on the abundace of k-mers, such as the computation of approximated
distances between sequencing datasets in metagenomics.

In Chapter 6 we presented MCRapper, a novel strategy for the e�cient com-
putation of Monte Carlo Empirical Rademacher Averages (n-MCERA) for pattern
languages with a poset structure. The n-MCERA is a key quantity to derive sharp,
data-dependent, uniformly valid confidence bounds on the expectations of sets of
functions from random samples. Since many pattern languages satisfy a poset struc-
ture, MCRapper has direct and wide applications in Statistically-sound, Significant
and Approximate Pattern Mining problems and, given the power and the generality
of the n-MCERA, possibly in many other settings. We discussed and tested a specific
application of MCRapper in discovering True Frequent Patterns with a novel strat-

182

egy, called TFP-R, based on variance-aware concentration inequalities and a novel
strategy to restrict the computation of the n-MCERA to properly selected subsets of
set of functions. We showed that MCRapper and TFP-R significantly outperform
other state-of-the-art methods in their respective tasks.

In Chapter 7 we proved that the n-MCERA satisfies certain self-bounding proper-
ties, important concepts in the theory of concentration of measure inequalities. These
properties imply novel variance-dependent concentration bounds of the Monte Carlo
estimated value of the n-MCERA w.r.t. its expectation, the Empirical Rademacher
Complexity. Our novel bounds represent a strong improvement in the trade-o� be-
tween n, the number of Monte Carlo trials to perform for the computation of the
n-MCERA, and the confidence bounds for its convergence when characteristic quan-
tities of the functions, such as the empirical wimpy-variance, are small. Such bounds
are particularly useful in the framework of Localized Rademacher Complexities, where
the family of functions under consideration are often restricted to subsets with small
variance. As some of these bounds depend on unknown properties of the family of
functions under consideration, such as the wimpy variance, we leverage again the
powerful framework of self-bounding functions to derive novel concentration inequal-
ities that allow to sharply estimate them from their empirical counterparts. This
is the case, for example, of the wimpy variance, that we show can be tightly esti-
mated using the empirical wimpy variance. Then, we prove self-bounding properties
for the Supremum Deviations between empirical averages of functions from a family
and their expectations, analogues to the ones satisfied by the n-MCERA. Conse-
quently, we proved novel variance-dependent concentration bounds to the Supremum
Deviations, that may be of independent interest.

There are many possible extensions of the contributions of this work and new
directions for future research. We first discuss possible future investigations in the
context of Significant Pattern Mining. The notion of Top-k Significant Patterns we
give in Chapter 3 and our algorithm TopKWY could be relevant to other mining
problems while controlling false discoveries, such as Statistical Emerging Pattern
Mining (Komiyama et al., 2017), Subgroup Discovery (Belfodil et al., 2019, 2018),
and expressive languages combining co-occurence and mutual exclusivity (Fischer and
Vreeken, 2020). Extensions considering a numeric target, numeric features (Sugiyama
and Borgwardt, 2019), correcting confounding e�ects with covariates (Terada et al.,
2016; Papaxanthos et al., 2016; Llinares-López et al., 2017, 2019), and other statistical
tests, such as the ones employed in survival analysis (Relator et al., 2018) are also
important and interesting directions.

Then, other definitions of Top-k Significant Patterns may be investigated; for
example, maximizing diversity among the set of Top-k Significant Patterns may be
important to reduce potential redundancy in the results. Sophisticated techniques
proposed to mine diverse and non-redundant sets of interesting patterns (Van Leeuwen
and Knobbe, 2012; Vreeken et al., 2011; Knobbe and Ho, 2006; Kalofolias et al., 2017)
and subjectively interesting patterns (van Leeuwen et al., 2016) are relevant to address

183

this issue; e�ciently combining such techniques with methods to provide guarantees
on the statistical significance of the output is a challenging problem.

While in TopKWY, and its variants, we focused on bounding the FWER, the
g-FWER, and the FDP , a di�erent approach would be to bound the False Discovery
Rate (FDR) (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001), that
is the expected ratio of false discoveries among all reported patterns. Furthermore,
our solution to control the FDP relies on a modification to the Westfall-Young (WY)
permutation testing procedure and an upper bound k to the maximum number of
results; controlling e�ciently the FDP with unbounded k is a challenging problem
and an interesting direction for future investigations.

In Chapter 4 we argued that unconditional assumptions are more natural in
Knowledge Discovery settings, since traditionally employed conditional assumptions
impose very restrictive constraints on the data generative process, and we have shown
their di�erence in practice in the problem of testing hypothesis in Significant Pattern
Mining. In addition to this problem, we believe there may be other settings worth in-
vestigating in which conditional assumptions are made, sacrificing statistical aspects
for computational reasons. Furthermore, combining unconditional tests with di�er-
ent procedures for Multiple Hypothesis Testing, such as WY permutation testing, is
another interesting future direction.

Computing approximations of frequent k-mers with sampling has potentially many
interesting directions for future research. While, in Chapter 5, we presented results
for k-mers from datasets of short reads, SAKEIMA may be adapted for the analysis of
k-mers with spaced seeds (B�inda et al., 2015), to process large datasets of long reads,
and whole genome sequences. Another interesting direction is to modify the sampling
strategy of SAKEIMA, in order to consider samples of entire reads (Santoro et al.,
2021) instead of individial occurences of k-mers; this would result in an even more
transparent approach to embed into existing k-mer counting tools. The challenging
analysis of this modified strategy requires to handle dependencies between k-mers
appearing in the same sequence; more sophisticated concepts of complexities, such as
the pseudodimenion (Pollard, 1984), may be relevant for this problem.

In Chapter 6 we have shown that the Monte-Carlo Empirical Rademacher Average
(n-MCERA) has the flexibility and the power needed to compute sharp bounds to the
rate of uniform convergence of empirical averages of families of functions for Pattern
Mining applications. In general, the n-MCERA has received scant attention since its
proposal, probably since computing it e�ciently is challenging. We believe that the
n-MCERA and the ideas we developed to compute it e�ciently may find applications
for many variants of Pattern Mining and outside of Pattern Mining, in particular in
problems already tackled by sampling-based algorithms and concepts from Statistical
Learning Theory; examples are the analysis of large networks (Riondato and Upfal,
2018; Borassi and Natale, 2019) and altered pathways in cancer (Vandin et al., 2016).
We believe it is likely that the improvements we observed in Chapter 6 from using
the n-MCERA w.r.t. other worst-case and distribution-free upper bounds would

184

transfer to other settings. In addition, we remark that in Chapter 4 we denoted an
interesting connection between the probabilistic guarantees of uniform convergence
with error rates of interest in Multiple Hypothesis Testing, such as the FWER;
whether techniques based on the n-MCERA apply e�ectively to this fundamental
problem is an interesting future research direction.

In Chapter 7 we studied the self-bounding properties of the n-MCERA, and have
shown that they allow to derive novel sharper concentration bounds w.r.t. its expecta-
tion. Obtaining tight error rates on the n-MCERA is of central importance to obtain
tight probabilistic upper bounds on the Rademacher Averages and, therefore, uniform
deviation bounds to the maximum deviation between empirical means and their ex-
pectations of sets of functions. We believe the novel bounds we proved in Chapter 7
to the convergence of the n-MCERA and to the Supremum Deviations should find
direct application in the Pattern Mining problems we tackled with MCRapper in
Chapter 6, and, as we discussed, possibly in other settings. Most importantly, newly
derived results on concentration bounds for general self-bounding functions would
be applicable to our settings, due to the self-bounding properties we proved on the
n-MCERA and the Supremum Deviations. Then, while in this work we focused on
deriving concentration results valid with high probability in finite samples, another
interesting direction is to combine the self-bounding properties we proved with asymp-
totical concentration results, such as the Central Limit Theorem for martingales (Hall
and Heyde, 2014). In fact, De Stefani and Upfal (2019) have shown how to apply
this asymptotic result to bound the Supremum Deviation from the n-MCERA; as
they discuss, in many applications asymptotic bounds may be preferred as they may
be sharper than their finite-sample counterparts, in particular when the size of the
analysed data is su�ciently large and the convergence to the normal distribution is
reasonably accurate. Therefore, an interesting question is whether the self-bounding
properties we proved in this work enable a sharper application of the Central Limit
Theorem for martingales.

Another fundamental and extremely interesting future reseach direction is to con-
sider the concentration of unbounded functions (Kontorovich, 2014; Mendelson, 2014;
Cortes et al., 2019; Grünwald and Mehta, 2020), of great interest in many applica-
tions.

185

186

Bibliography

Agrawal, R., ImieliÒski, T., and Swami, A. (1993). Mining association rules between
sets of items in large databases. SIGMOD Rec., 22:207–216.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules
in Large Databases. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB ’94,
pages 487–499, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of
the Eleventh International Conference on Data Engineering,, ICDE’95, pages 3–14.
IEEE.

Ahmed, N. K., Neville, J., Rossi, R. A., and N., D. (2015). E�cient Graphlet Counting
for Large Networks. In 2015 IEEE International Conference on Data Mining, pages
1–10.

Atzmueller, M. (2015). Subgroup discovery. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 5(1):35–49.

Audano, P. and Vannberg, F. (2014). KAnalyze: a fast versatile pipelined K-mer
toolkit. Bioinformatics, 30(14):2070–2072.

Barnard, G. A. (1945). A new test for 2×2 tables. Nature, 156:177.

Bartlett, P. L., Boucheron, S., and Lugosi, G. (2002). Model selection and error
estimation. Machine Learning, 48(1-3):85–113.

Bartlett, P. L., Bousquet, O., Mendelson, S., et al. (2005). Local rademacher com-
plexities. The Annals of Statistics, 33(4):1497–1537.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and Gaussian complexi-
ties: Risk bounds and structural results. Journal of Machine Learning Research,
3(Nov):463–482.

Bay, S. D. and Pazzani, M. J. (2001). Detecting group di�erences: Mining contrast
sets. Data Mining and Knowledge Discovery, 5(3):213–246.

187

Bayardo Jr, R. J. (1998). E�ciently mining long patterns from databases. ACM
Sigmod Record, 27(2):85–93.

Belfodil, A., Belfodil, A., Bendimerad, A., Lamarre, P., Robardet, C., Kaytoue, M.,
and Plantevit, M. (2019). FSSD-A Fast and E�cient Algorithm for Subgroup Set
Discovery. In 2019 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 91–99. IEEE.

Belfodil, A., Belfodil, A., and Kaytoue, M. (2018). Anytime subgroup discovery in
numerical domains with guarantees. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 500–516. Springer.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the royal statistical
society. Series B (Methodological), pages 289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. The annals of statistics, 29(4):1165–1188.

Benoit, G., Peterlongo, P., Mariadassou, M., Drezen, E., Schbath, S., Lavenier, D.,
and Lemaitre, C. (2016). Multiple comparative metagenomics using multiset k-mer
counting. PeerJ Computer Science, 2:e94.

Berger, R. (1994). Power comparison of exact unconditional tests for comparing two
binomial proportions. Institute of Statistics Mimeo Series.

Berger, R. L. (1996). More powerful tests from confidence interval p values. The
American Statistician, 50(4):314–318.

Bhatia, R. and Davis, C. (2000). A better bound on the variance. The American
Mathematical Monthly, 107(4):353–357.

Boley, M., Lucchese, C., Paurat, D., and Gärtner, T. (2011). Direct local pattern
sampling by e�cient two-step random procedures. Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD
’11.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze,
8:3–62.

Borassi, M. and Natale, E. (2019). KADABRA is an adaptive algorithm for between-
ness via random approximation. Journal of Experimental Algorithmics (JEA),
24(1):1–35.

Boschloo, R. D. (1970). Raised conditional level of significance for the 2◊ 2-table
when testing the equality of two probabilities. Statistica Neerlandica, 24(1):1–9.

188

Boucheron, S., Bousquet, O., and Lugosi, G. (2005). Theory of classification: A
survey of some recent advances. ESAIM: probability and statistics, 9:323–375.

Boucheron, S., Lugosi, G., and Massart, P. (2000). A sharp concentration inequality
with applications. Random Structures & Algorithms, 16(3):277–292.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press.

Boucheron, S., Lugosi, G., Massart, P., et al. (2009). On concentration of self-
bounding functions. Electronic Journal of Probability, 14:1884–1899.

Bousquet, O. (2002). A Bennett concentration inequality and its application to
suprema of empirical processes. Comptes Rendus Mathematique, 334(6):495–500.

Bousquet, O. (2003). Concentration inequalities for sub-additive functions using
the entropy method. In Stochastic inequalities and applications, pages 213–247.
Springer.

Bousquet, O., Koltchinskii, V., and Panchenko, D. (2002). Some local measures of
complexity of convex hulls and generalization bounds. In International Conference
on Computational Learning Theory, pages 59–73. Springer.

B�inda, K., Sykulski, M., and Kucherov, G. (2015). Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics, 31(22):3584–3592.

Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B., and Brom, T. H. (2012). A
reference-free algorithm for computational normalization of shotgun sequencing
data. arXiv preprint arXiv:1203.4802.

Chakaravarthy, V. T., Pandit, V., and Sabharwal, Y. (2009). Analysis of sampling
techniques for association rule mining. In Proc. 12th Int. Conf. Database Theory,
ICDT ’09, pages 276–283, New York, NY, USA. ACM.

Chikhi, R. and Medvedev, P. (2013). Informed and automated k-mer size selection
for genome assembly. Bioinformatics, 30(1):31–37.

Choi, L., Blume, J. D., and Dupont, W. D. (2015). Elucidating the foundations of
statistical inference with 2×2 tables. PloS one, 10(4):e0121263.

Cortes, C., Greenberg, S., and Mohri, M. (2019). Relative deviation learning bounds
and generalization with unbounded loss functions. Annals of Mathematics and
Artificial Intelligence, 85(1):45–70.

189

Danovaro, R., Canals, M., Tangherlini, M., Dell’Anno, A., Gambi, C., Lastras, G.,
Amblas, D., Sanchez-Vidal, A., Frigola, J., Calafat, A. M., et al. (2017). A sub-
marine volcanic eruption leads to a novel microbial habitat. Nature ecology &
evolution, 1(6):0144.

de Lima, A. M., da Silva, M. V., and Vignatti, A. L. (2020). Estimating the Percola-
tion Centrality of Large Networks through Pseudo-dimension Theory. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1839–1847.

De Stefani, L. and Upfal, E. (2019). A Rademacher Complexity Based Method for
Controlling Power and Confidence Level in Adaptive Statistical Analysis. In 2019
IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pages 71–80.

Dickson, L. B., Jiolle, D., Minard, G., Moltini-Conclois, I., Volant, S., Ghozlane, A.,
Bouchier, C., Ayala, D., Paupy, C., Moro, C. V., et al. (2017). Carryover e�ects of
larval exposure to di�erent environmental bacteria drive adult trait variation in a
mosquito vector. Science advances, 3(8):e1700585.

Dong, G. and Bailey, J. (2012). Contrast data mining: concepts, algorithms, and
applications. CRC Press.

Dzyuba, V., van Leeuwen, M., and De Raedt, L. (2017). Flexible constrained sam-
pling with guarantees for pattern mining. Data Mining and Knowledge Discovery,
31(5):1266–1293.

Fischer, J. and Vreeken, J. (2020). Discovering Succinct Pattern Sets Expressing
Co-Occurrence and Mutual Exclusivity. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 813–823.

Fisher, R. A. (1922). On the interpretation of ‰ 2 from contingency tables, and the
calculation of P. Journal of the Royal Statistical Society, 85(1):87–94.

Fournier-Viger, P., Chun-Wei Lin, J., Truong-Chi, T., and Nkambou, R. (2019). A
Survey of High Utility Itemset Mining. In High-Utility Pattern Mining. Springer
International Publishing.

Gart, J. J., Chu, K. C., and Tarone, R. E. (1979). Statistical issues in interpretation of
chronic bioassay tests for carcinogenicity. Journal of the National Cancer Institute,
62(4):957–974.

Girotto, S., Pizzi, C., and Comin, M. (2016). MetaProb: accurate metagenomic reads
binning based on probabilistic sequence signatures. Bioinformatics, 32(17):i567–
i575.

190

Grünwald, P. D. and Mehta, N. A. (2020). Fast Rates for General Unbounded Loss
Functions: From ERM to Generalized Bayes. Journal of Machine Learning Re-
search, 21(56):1–80.

Hall, P. and Heyde, C. C. (2014). Martingale limit theory and its application. Aca-
demic press.

Hämäläinen, W. (2012). Kingfisher: an e�cient algorithm for searching for both pos-
itive and negative dependency rules with statistical significance measures. Knowl-
edge and information systems, 32(2):383–414.

Hämäläinen, W. (2016). New upper bounds for tight and fast approximation of
Fisher’s exact test in dependency rule mining. Computational Statistics & Data
Analysis, 93:469–482.

Hämäläinen, W. and Webb, G. I. (2019). A tutorial on statistically sound pattern
discovery. Data Mining and Knowledge Discovery, 33(2):325–377.

Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery, 15:55–86.

Han, J., Pei, J., and Yin, Y. (2000). Mining Frequent Patterns without Candidate
Generation. In Chen, W., Naughton, J. F., and Bernstein, P. A., editors, SIGMOD
Conf., pages 1–12. ACM.

Han, J., Wang, J., Lu, Y., and Tzvetkov, P. (2002). Mining top-k frequent closed pat-
terns without minimum support. In Data Mining, 2002. ICDM 2003. Proceedings.
2002 IEEE International Conference on, pages 211–218. IEEE.

Herrera, F., Carmona, C. J., González, P., and Del Jesus, M. J. (2011). An overview
on subgroup discovery: foundations and applications. Knowledge and information
systems, 29(3):495–525.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70.

Hrytsenko, Y., Daniels, N. M., and Schwartz, R. S. (2018). E�cient Distance Calcula-
tions Between Genomes Using Mathematical Approximation. In Proceedings of the
2018 ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, pages 546–546. ACM.

Jiang, C., Coenen, F., and Zito, M. (2013). A survey of frequent subgraph mining
algorithms. Knowledge Engineering Review, 28(1):75–105.

Kalofolias, J., Boley, M., and Vreeken, J. (2017). E�ciently discovering locally ex-
ceptional yet globally representative subgroups. In 2017 IEEE International Con-
ference on Data Mining (ICDM), pages 197–206. IEEE.

191

Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: quality-aware
detection and correction of sequencing errors. Genome biology, 11(11):R116.

Kirsch, A., Mitzenmacher, M., Pietracaprina, A., Pucci, G., Upfal, E., and Vandin,
F. (2012). An e�cient rigorous approach for identifying statistically significant
frequent itemsets. Journal of the ACM (JACM), 59(3):12.

Klösgen, W. (1992). Problems for knowledge discovery in databases and their treat-
ment in the Statistics Interpreter Explora. International Journal of Intelligent
Systems, 7:649–673.

Knobbe, A. J. and Ho, E. K. (2006). Maximally informative k-itemsets and their e�-
cient discovery. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 237–244.

Kokot, M., D≥ugosz, M., and Deorowicz, S. (2017). KMC 3: counting and manipu-
lating k-mer statistics. Bioinformatics, 33(17):2759–2761.

Koltchinskii, V. (2006). Local Rademacher complexities and oracle inequalities in risk
minimization. The Annals of Statistics, 34(6):2593–2656.

Koltchinskii, V. (2011). Oracle Inequalities in Empirical Risk Minimization and
Sparse Recovery Problems: Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-
2008, volume 2033. Springer Science & Business Media.

Koltchinskii, V. and Panchenko, D. (2000). Rademacher processes and bounding
the risk of function learning. In High dimensional probability II, pages 443–457.
Springer.

Komiyama, J., Ishihata, M., Arimura, H., Nishibayashi, T., and Minato, S.-i. (2017).
Statistical Emerging Pattern Mining with Multiple Testing Correction. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 897–906. ACM.

Kontorovich, A. (2014). Concentration in unbounded metric spaces and algorithmic
stability. In International Conference on Machine Learning, pages 28–36.

Kurtz, S., Narechania, A., Stein, J. C., and Ware, D. (2008). A new method to
compute K-mer frequencies and its application to annotate large repetitive plant
genomes. BMC genomics, 9(1):517.

Lehmann, E. L. and Romano, J. P. (2012). Generalizations of the familywise error
rate. In Selected Works of EL Lehmann, pages 719–735. Springer.

Lentz, W. J. (1976). Generating Bessel functions in Mie scattering calculations using
continued fractions. Applied Optics, 15(3):668–671.

192

Li, A. and Barber, R. F. (2019). Multiple testing with the structure-adaptive
Benjamini–Hochberg algorithm. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 81(1):45–74.

Li, X. and Waterman, M. S. (2003). Estimating the repeat structure and length of
DNA sequences using ¸-tuples. Genome research, 13(8):1916–1922.

Llinares-López, F., Papaxanthos, L., Bodenham, D., Roqueiro, D., Investigators,
C., and Borgwardt, K. (2017). Genome-wide genetic heterogeneity discovery with
categorical covariates. Bioinformatics, 33(12):1820–1828.

Llinares-López, F., Papaxanthos, L., Roqueiro, D., Bodenham, D., and Borgwardt,
K. (2019). CASMAP: detection of statistically significant combinations of SNPs in
association mapping. Bioinformatics, 35(15):2680–2682.

Llinares-López, F., Sugiyama, M., Papaxanthos, L., and Borgwardt, K. (2015). Fast
and memory-e�cient significant pattern mining via permutation testing. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 725–734. ACM.

Lö�er, M. and Phillips, J. M. (2009). Shape fitting on point sets with probability
distributions. In European Symposium on Algorithms, pages 313–324. Springer.

Mantel, N. (1980). A biometrics invited paper. assessing laboratory evidence for
neoplastic activity. Biometrics, pages 381–399.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for e�cient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6):764–770.

Massart, P. (2000). Some applications of concentration inequalities to statistics. An-
nales de la Faculté des sciences de Toulouse: Mathématiques, 9(2):245–303.

McDiarmid, C. (1989). On the method of bounded di�erences. Surveys in combina-
torics, 141(1):148–188.

Mehta, C. R. and Senchaudhuri, P. (2003). Conditional versus unconditional exact
tests for comparing two binomials. Cytel Software Corporation, 675:1–5.

Meinshausen, N., Maathuis, M. H., Bühlmann, P., et al. (2011). Asymptotic op-
timality of the Westfall–Young permutation procedure for multiple testing under
dependence. The Annals of Statistics, 39(6):3369–3391.

Melsted, P. and Halldórsson, B. V. (2014). KmerStream: streaming algorithms for
k-mer abundance estimation. Bioinformatics, 30(24):3541–3547.

Melsted, P. and Pritchard, J. K. (2011). E�cient counting of k-mers in DNA sequences
using a bloom filter. BMC bioinformatics, 12(1):333.

193

Mendelson, S. (2002). Improving the sample complexity using global data. IEEE
transactions on Information Theory, 48(7):1977–1991.

Mendelson, S. (2014). Learning without concentration. In Conference on Learning
Theory, pages 25–39.

Minato, S.-i., Uno, T., Tsuda, K., Terada, A., and Sese, J. (2014). A fast method
of statistical assessment for combinatorial hypotheses based on frequent itemset
enumeration. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 422–436. Springer.

Mitzenmacher, M. and Upfal, E. (2017). Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press.

Mohamadi, H., Khan, H., and Birol, I. (2017). ntCard: a streaming algorithm for
cardinality estimation in genomics data. Bioinformatics, 33(9):1324–1330.

Nijssen, S. and Kok, J. N. (2004). A quickstart in frequent structure mining can make
a di�erence. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 647–652. ACM.

Nijssen, S. and Kok, J. N. (2006). Frequent subgraph miners: runtimes don’t say
everything. MLG 2006, page 173.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren,
S., and Phillippy, A. M. (2016). Mash: fast genome and metagenome distance
estimation using MinHash. Genome biology, 17(1):132.

Oneto, L., Ghio, A., Anguita, D., and Ridella, S. (2013). An improved analysis of
the Rademacher data-dependent bound using its self bounding property. Neural
Networks, 44:107–111.

Oneto, L., Ghio, A., Ridella, S., and Anguita, D. (2016). Global rademacher com-
plexity bounds: From slow to fast convergence rates. Neural Processing Letters,
43(2):567–602.

Pandey, P., Bender, M. A., Johnson, R., and Patro, R. (2017). Squeakr: an exact
and approximate k-mer counting system. Bioinformatics.

Papaxanthos, L., Llinares-López, F., Bodenham, D., and Borgwardt, K. (2016). Find-
ing significant combinations of features in the presence of categorical covariates. In
Advances in Neural Information Processing Systems, pages 2279–2287.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent
closed itemsets for association rules. In International Conference on Database The-
ory, pages 398–416. Springer.

194

Patro, R., Mount, S. M., and Kingsford, C. (2014). Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight algorithms. Nature
biotechnology, 32(5):462.

Pearson, K. (1900). X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 50(302):157–175.

Pellegrina, L. (2020). Sharper convergence bounds of Monte Carlo Rademacher Av-
erages through Self-Bounding functions. arXiv preprint arXiv:2010.12103.

Pellegrina, L., Cousins, C., Vandin, F., and Riondato, M. (2020a). MCRapper:
Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern
Mining. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2165–2174.

Pellegrina, L., Pizzi, C., and Vandin, F. (2019a). Fast Approximation of Frequent k-
mers and Applications to Metagenomics. In International Conference on Research
in Computational Molecular Biology, pages 208–226. Springer.

Pellegrina, L., Pizzi, C., and Vandin, F. (2020b). Fast Approximation of Frequent
k-mers and Applications to Metagenomics. Journal of Computational Biology,
27(4):534–549.

Pellegrina, L., Riondato, M., and Vandin, F. (2019b). Hypothesis Testing and
Statistically-sound Pattern Mining. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 3215–3216.
ACM.

Pellegrina, L., Riondato, M., and Vandin, F. (2019c). SPuManTE: Significant Pattern
Mining with Unconditional Testing. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
1528–1538, New York, NY, USA. ACM.

Pellegrina, L. and Vandin, F. (2018). E�cient mining of the most significant patterns
with permutation testing. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2070–2079. ACM.

Pellegrina, L. and Vandin, F. (2020). E�cient mining of the most significant patterns
with permutation testing. Data Mining and Knowledge Discovery, 34(4):1201–1234.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Sciences,
98(17):9748–9753.

195

Pietracaprina, A., Riondato, M., Upfal, E., and Vandin, F. (2010). Mining top-
K frequent itemsets through progressive sampling. Data Mining Knowl. Disc.,
21(2):310–326.

Pietracaprina, A. and Vandin, F. (2007). E�cient Incremental Mining of Top-K
Frequent Closed Itemsets. In Discovery Science, volume 4755 of Lecture Notes in
Computer Science, pages 275–280. Springer Berlin Heidelberg.

Pollard, D. (1984). Convergence of stochastic processes. Springer-Verlag.

Popoviciu, T. (1935). Sur les équations algébriques ayant toutes leurs racines réelles.
Mathematica, 9:129–145.

Relator, R. T., Terada, A., and Sese, J. (2018). Identifying statistically significant
combinatorial markers for survival analysis. BMC medical genomics, 11(2):45–55.

Riondato, M. and Kornaropoulos, E. M. (2016). Fast approximation of betweenness
centrality through sampling. Data Mining and Knowledge Discovery, 30(2):438–
475.

Riondato, M. and Upfal, E. (2014). E�cient Discovery of Association Rules and
Frequent Itemsets through Sampling with Tight Performance Guarantees. ACM
Trans. Knowl. Disc. from Data, 8(4):20.

Riondato, M. and Upfal, E. (2015). Mining frequent itemsets through progressive
sampling with Rademacher averages. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1005–
1014. ACM, ACM.

Riondato, M. and Upfal, E. (2018). ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages. ACM Trans. Knowl.
Disc. from Data, 12(5):61.

Riondato, M. and Vandin, F. (2014). Finding the true frequent itemsets. In Proceed-
ings of the 2014 SIAM international conference on data mining, pages 497–505.
SIAM.

Riondato, M. and Vandin, F. (2018). MiSoSouP: Mining Interesting Sub-
groups with Sampling and Pseudodimension. In Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Disc. and Data Mining, KDD ’18, pages 2130–2139. ACM.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low
memory usage. Bioinformatics, 29(5):652–653.

Romano, J. P., Shaikh, A. M., et al. (2006a). On stepdown control of the false discov-
ery proportion. In Optimality, pages 33–50. Institute of Mathematical Statistics.

196

Romano, J. P., Shaikh, A. M., et al. (2006b). Stepup procedures for control of
generalizations of the familywise error rate. The Annals of Statistics, 34(4):1850–
1873.

Romano, J. P. and Wolf, M. (2005). Exact and approximate stepdown methods
for multiple hypothesis testing. Journal of the American Statistical Association,
100(469):94–108.

Roy, R. S., Bhattacharya, D., and Schliep, A. (2014). Turtle: Identifying frequent
k-mers with cache-e�cient algorithms. Bioinformatics, 30(14):1950–1957.

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016). Accurate self-correction
of errors in long reads using de Bruijn graphs. Bioinformatics, 33(6):799–806.

Santoro, D., Pellegrina, L., and Vandin, F. (2021). SPRISS: Approximating Frequent
k-mers by Sampling Reads, and Applications. arXiv preprint arXiv:2101.07117 (to
appear at RECOMB 2021).

Santoro, D., Tonon, A., and Vandin, F. (2020). Mining Sequential Patterns with
VC-Dimension and Rademacher Complexity. Algorithms, 13(5):123.

Sarpe, I. and Vandin, F. (2021). PRESTO: Simple and Scalable Sampling Tech-
niques for the Rigorous Approximation of Temporal Motif Counts. arXiv preprint
arXiv:2101.07152 (to appear at SDM 2021).

Servan-Schreiber, S., Riondato, M., and Zgraggen, E. (2018a). ProSecCo: Progressive
Sequence Mining with Convergence Guarantees. In Proceedings of the 18th IEEE
International Conference on Data Mining, pages 417–426.

Servan-Schreiber, S., Riondato, M., and Zgraggen, E. (2018b). ProSecCo: Progres-
sive sequence mining with convergence guarantees. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 417–426. IEEE.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press.

Sims, G. E., Jun, S.-R., Wu, G. A., and Kim, S.-H. (2009). Alignment-free genome
comparison with feature frequency profiles (FFP) and optimal resolutions. Pro-
ceedings of the National Academy of Sciences, 106(8):2677–2682.

Sivadasan, N., Srinivasan, R., and Goyal, K. (2016). Kmerlight: fast and accurate
k-mer abundance estimation. arXiv preprint arXiv:1609.05626.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-read se-
quencing experiments. Nature biotechnology, 34(3):300.

197

Sugiyama, M. and Borgwardt, K. M. (2019). Finding Statistically Significant Inter-
actions between Continuous Features. In IJCAI, pages 3490–3498.

Sugiyama, M., Llinares-López, F., Kasenburg, N., and Borgwardt, K. M. (2015).
Significant subgraph mining with multiple testing correction. In Proceedings of the
2015 SIAM International Conference on Data Mining, pages 37–45. SIAM.

Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. The
Annals of Probability, 22(1):28–76.

Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in
product spaces. Publications Mathématiques de l’Institut des Hautes Etudes Scien-
tifiques, 81(1):73–205.

Tarone, R. (1990). A modified Bonferroni method for discrete data. Biometrics, pages
515–522.

Terada, A., Kim, H., and Sese, J. (2015). High-speed Westfall-Young permutation
procedure for genome-wide association studies. In Proceedings of the 6th ACM Con-
ference on Bioinformatics, Computational Biology and Health Informatics, pages
17–26. ACM.

Terada, A., Okada-Hatakeyama, M., Tsuda, K., and Sese, J. (2013a). Statistical
significance of combinatorial regulations. Proceedings of the National Academy of
Sciences, 110(32):12996–13001.

Terada, A., Tsuda, K., et al. (2016). Significant pattern mining with confounding
variables. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 277–289. Springer.

Terada, A., Tsuda, K., and Sese, J. (2013b). Fast Westfall-Young permutation proce-
dure for combinatorial regulation discovery. In 2013 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 153–158. IEEE.

Toivonen, H. (1996). Sampling Large Databases for Association Rules. In Proc. 22nd
Int. Conf. Very Large Data Bases, VLDB ’96, pages 134–145, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Tonon, A. and Vandin, F. (2019). Permutation Strategies for Mining Significant
Sequential Patterns. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 1330–1335. IEEE.

Uno, T., Kiyomi, M., and Arimura, H. (2005). LCM ver. 3: collaboration of ar-
ray, bitmap and prefix tree for frequent itemset mining. In Proceedings of the
1st international workshop on open source data mining: frequent pattern mining
implementations, pages 77–86. ACM.

198

van der Laan, M. J., Dudoit, S., and Pollard, K. S. (2004). Augmentation proce-
dures for control of the generalized family-wise error rate and tail probabilities for
the proportion of false positives. Statistical applications in genetics and molecular
biology, 3(1):1–25.

van Leeuwen, M., De Bie, T., Spyropoulou, E., and Mesnage, C. (2016). Subjective
interestingness of subgraph patterns. Machine Learning, 105(1):41–75.

Van Leeuwen, M. and Knobbe, A. (2012). Diverse subgroup set discovery. Data
Mining and Knowledge Discovery, 25(2):208–242.

Vandin, F., Papoutsaki, A., Raphael, B. J., and Upfal, E. (2015). Accurate compu-
tation of survival statistics in genome-wide studies. PLoS computational biology,
11(5):e1004071.

Vandin, F., Raphael, B. J., and Upfal, E. (2016). On the sample complexity of cancer
pathways identification. Journal of Computational Biology, 23(1):30–41.

Vapnik, V. N. (1998). Statistical learning theory. Wiley.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its
Applications, 16(2):264.

Vreeken, J., Van Leeuwen, M., and Siebes, A. (2011). Krimp: mining itemsets that
compress. Data Mining and Knowledge Discovery, 23(1):169–214.

Webb, G. I. (2006). Discovering significant rules. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
434–443. ACM.

Webb, G. I. (2007). Discovering significant patterns. Machine learning, 68(1):1–33.

Webb, G. I. (2008). Layered critical values: a powerful direct-adjustment approach
to discovering significant patterns. Machine Learning, 71(2-3):307–323.

Westfall, P. H. and Troendle, J. F. (2008). Multiple testing with minimal assumptions.
Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(5):745–
755.

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing: Exam-
ples and Methods for p-Value Adjustment.

Wood, D. E. and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome biology, 15(3):R46.

199

Wörlein, M., Meinl, T., Fischer, I., and Philippsen, M. (2005). A quantitative com-
parison of the subgraph miners MoFa, gSpan, FFSM, and Gaston. In European
Conference on Principles of Data Mining and Knowledge Discovery, pages 392–
403. Springer.

Yates, F. (1984). Tests of significance for 2◊ 2 contingency tables. Journal of the
Royal Statistical Society: Series A (General), 147(3):426–449.

Zandolin, D. and Pietracaprina, A. (2003). Mining frequent itemsets using patricia
tries. In Proceedings of FIMI03, volume 90.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research, 18(5):821–829.

Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., and Brown, C. T. (2014). These
are not the k-mers you are looking for: e�cient online k-mer counting using a
probabilistic data structure. PloS one, 9(7):e101271.

Zhang, Z. and Wang, W. (2014). RNA-Skim: a rapid method for RNA-Seq quantifi-
cation at transcript level. Bioinformatics, 30(12):i283–i292.

200

