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Abstract 

In this paper we address the problem of tracking 
an unknown contour by commanding the translation 
and rotational velocities of a vehicle. We propose an 
on-line contour estimator based on a recursive spline 
approximation and we discuss its applicability to a 
model-based predictive control strategy. 

1. Introduction 

An autonomous vehicle moving on a plane must 
follow a contour described by some unknown curve 
I' in the plane. The contour may describe the boun- 
dary of some unknown obstacle or one of the borders 
of an unknown road that the vehicle must follow. In 
most applications it is particularly important that the 
vehicle avoids impact with the border. A sensor ( ty- 
pically a TV camera) provides measurements of the 
distance of the curve from the 2 axis of the moving 
frame (we assume this coincides with the optical axis 
of the camera) at N points placed at fixed distan- 
ces (21, . . . , ZN} from the origin of the vehicle-fixed 
coordinate system (2, y} (the origin conventionally 
coincides with the optical center of the camera). See 
fig. (1). 

' t  

X 

Figure 1: Path-following of an unknown trajectory 
in a plane. 

The above is a prototype problem of autonomous 
navigation and has been studied by many [?] but 
mostly in an ad hoc context. A solution which uses 
the paradigmes of modern control and estimation the- 
ory was first proposed by Dickmanns and his group 
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[2, 31. Dickmann's work is based on setting up a 
stochastic state-space model of the dynamics of the 
unknown contour as seen by an observer sitting on the 
moving vehicle-fixed frame. An extended Kalman fil- 
ter built from this model serves to estimate on-line 
the contour. The contour estimate is then tracked by 
applying a suitable state feedback control law. 

The idea is quite appealing and has shown to work 
well for tracking borders of highways. These borders 
however satisfy rather stringent geometric conditions 
which were suitably incorporated in the a priori state- 
space model of the contour. In fact it is not clear how 
to generalize Dickmann's approach to more general 
type of contours and it seems worthy trying to build a 
modeling philosophy which will work for more general 
situations. This is the main motivation of this paper. 

Let the sensor provide N noisy measurements 
{yl, . . . , YN} of the N "future" distances {fi, . . . , f ~ }  
of the vehicle from the contour, say 

where x k  is the distance from the origin of k-th me- 
asurement line and the nk's are uncorrelated white 
measurement noise processes. From these data the 
on-board computer must reconstruct on-line a cur- 
rent local model of the chunk of curve seen on the 
image plane. The reconstruction should be conti- 
nuously updated based on both the current mewu- 
rements and on some a priori model of the contour. 

Assume further that the controller drives the ve- 
hicle by imposing the translational (v) and angular 
velocity (U) of the camera-fixed frame. Then the on- 
board local reconstruction of the environment chan- 
ges depending on the imposed motion. In particular 
the contour model permits to predict a! each instant 
t a set of N future distances { fi, . . . , fN) of the ve- 
hicle from the contour corresponding to the chosen 
control actions. This framework is clearly reminiscent 
of "predictive control" [5], altough it does not neces- 
sarily rely on building an actual predictor. 

A sensible "predictive control" strategy to avoid 
impact with the border and at the same time to achieve 
careful tracking would be to regulate not just the cur- 
rent distance fo but as many future distances fk as 
possible. In fact one would like to know how many 
future fk it wold be possible to regulate or track by 
our controller. 
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In this paper we propose a finite dimensional con- 
tour estimator algorithm based on a recursively upda- 
ted spline approximation of the contour. The dyna- 
mical model of the contour is called the splinator. We 
begin here a study of the attainable performances of 
systems of this kind. 

2. Problem formulation 

At timet the camera mounted on the vehicle 
a chunck of the unknown contour r. We assume the 
contour is described by the graph of some function 

w = r ( t . )  o 5 2  (1) 

in the inertial frame ({z, w } ) ,  and that the chunck 
seen by the camera is 

Y = r(z,t) 0 5 2 5 L,  (2) 

where { x , y }  is the coordinate frame fixed with the 
vehicle ( and the camera). The N noisy measure- 
ments of the ”future” distances f = [fl,. . . , f ~ ] ’  of 
the vehicle from the contour, provided by the camera 
(see fig. (l)), are then essentially sample-values in 
space of the function 7 , i.e. 

(3) 

The contour I’ seen from the vehicle-fixed reference 
frame moves as a rigid object with traslational and 
angular velocities ~ ( t )  and w ( t )  (here ~ ( t )  is expres- 
sed relative to the moving frame). Because of the 
rigid motion of the vehicle, the chunck (2) of the con- 
tour l? seen on the image plane changes in time. The 
rigid motion constraint implies that a generic point 
P of the contour I’ of inertial coordinates [z,r(z)]’,  
seen from the moving frame, moves according to the 
transformation 

where [ x ,  y]‘ are the coordinates of P with respect to 
the camera frame, 

- sin $(t) cos $(t)  R(t) := 

w ( t )  := $(t) ,  ~ ( t )  = [v,(t) v y ( t ) ] ’  is the traslational 
velocity of the vehicle and [zo(t> wo(t)]’ is the position 
of the origin of the moving frame at  time t .  In the 

following we shall assume that the vehicle can move 
only by keeping the instantaneous traslation velocity 
vector always directed in the direction of the x axis 
i.e. that vy(t)  is identically zero. If we imagine the 
x axis as being the longitudinal symmetry axis of the 
vehicle, this corresponds to the usual constraint of 
”no lateral slipping”. Henceforth we shall write TJ, as 

Now for small enough rotation angles II, it will gene- 
rally happen that the contour r can still be described 
by an explicit functional relation (namely y = y ( z , t )  
) also in the moving coordinate frame. An explicit 
equation for the dynamics of y(z, t )  can be obtained 
easily from the previous equation by just substituting 
the first scalar equation 

21. 

Z(t)  = -w( t )y (x , t )  - v( t )  (4) 

into the second, which reads 

so that one obtains the following partial differential 
equation 

T h s  equation describes the dynamics of the contour 
in the coordinate frame fixed with the vehicle. We 
shall show in this paper how, on the basis of (6), one 
can estimate the unknown contour on-line. Note that 
this equation is nonlinear and may show finite escape 
time effects. Intuitively, one should expect this phe- 
nomenon to occur when the rigid motion has twisted 
the original contour enough so that an explicit descri- 
ption ( y = y(z, t )  ) of the curve in the mobile frame 
is no longer possible. In this spirit equation ( 6 )  could 
well be called a Riccati-type PDE since it generalizes 
the classical well-known Riccati equation for the mo- 
tion of a homogeneous straight line under rotation 
around the origin. Similar (although finite dimen- 
sional) Riccati-type equations have been obtained by 
Ghosh in his work on perspective systems [4]. 

Equation ( 6 )  describes an infinite dimensional dy- 
namical system with inputs w( t )  and w ( t ) .  Note that 
the “state” of this system is not simply the contour 
chunck y(z, t )  for x E [0, L].  A simple first order finite 
differences approximation of equation ( 6 )  

, 

~ ( x ,  t + d t )  = Y ( X ,  t )  - wxdt  + 
+(Y(x + dx, t ,  - 7(z, t))(v - w 7 ( x ~  t ) )d t (7)  

shows that to integrate forward in time (6), the knowledgc 
of ~ ( x ,  t )  0 5 x 5 L and of the inputs is not sufficient. 
In particular, for this approximation of ( 6 ) ,  it is clear 
that to determine y(z, t + dt)  for z E [0, L] one ne- 
eds to know y ( x ,  t )  for z E [0, L + dz] .  Therefore, to 
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compute y ( x ,  T) for any T > t in z E [0, L] one needs 
to know y(z, t )  for 2 E [0, +CO). This is, clearly, im- 
possible. Therefore, it is necessary to introduce some 
assumptions on the shape of the unknown contour for 
x > L in inertial coordinates. 

We may, to start, assume some regularity or smo- 
othness; for example that the curve is C2 (twice conti- 
nuously differentiable), or, as in [3] that its curvature 
is a piecewise linear function of the arclength. 

Since the contour r is unknown, the a priori model 
should be a stochastic model embodying the a priori 
knowledge of the shape, possibly with specification 
of the statistical uncertainty parameters. A general 
model class is 

where ((t) is a state vector of suitable dimension, 
n ( z )  is spatial white noise and A,B,C are constant 
matrices. A particular case of (8) is obtained by 
describing the contour as a random walk (of appropriate 
order) in the variable t. In the following we shall 
mostly refer to the random walk model. Note that 
although one may have a priori informations on which 
parameters A,  B,  C are appropriate to describe a given 
class of contours, the variance of the noise driving the 
state model is in general poorly known and needs to 
be adjusted experimentally. 

It is easy to see that equation (6) can be integra- 
ted forward in time in the strip 2 E [0, L ] ,  t 2 0 if 
the inputs and the following boundary conditions are 
assigned 

which represent a possible "state space" for the dy- 
namical system (6). The problem is, however, infinite 
dimensional and, since the sensor provides only a fi- 
nite dimensional vector of N noisy measurements at 
each time, it is convenient to transform it to a finite 
dimensional one. 

3. B-splines 

We model the chunck of the contour I' seen by the 
on board camera at time t with a cubic B-spline 

N+2 

s ( z , t )  = pi(t)Bi(z) 0 5 2 5 L , t  2 0. 
i=l  

The &(z) functions are known in the literature with 
the name of basic splines El]. They are cubic polyno- 
mials with compact support on [ x i - l ,  which ge- 
nerate a partition of unity on the nodes [c l ,  . . . , X N ] .  

Once the nodes sequence [SI,. . . , " N ]  is given the ba- 
sic spline functions &,k(2) of order k can be compu- 
ted by the following recursive formula 

X i + k  - 2 + &+l , k -  1 (2) 
"i+k - xi+l 

with the initial condition 

1 
0 otherwise 

2i 5 2 < 2i+l 
Bi , l (g)  = 

In this paper, whenever a basic spline is written without 
its order k explicit then k = 3. In the textbooks usu- 
ally B : + ~ ( z ) ,  Bi+z(z) and Bd+3(z) are the only three 
basic cubic spline functions different from zero in the 
node zi. For a simpler notation we shall instead shift 
the index of the basic spline functions from ( i  + 1) to 

The local spline approximation of the contour in- 
terpolates the N values f ( t )  = [r(z l , t ) ,  . . . , 7 ( 2 N , t ) ]  
so that for i = 1,. . . , N 

2. 

which can be written in matrix form as 

f = B p  (10) 

where p = [ P I ,  . . . , p N + z ]  is the vector of coefficients 
of the spline and B is the following N x ( N  + 2) 
tridiagonal matrix 

Bi,j = [ B j ( ~ i ) ]  i = 1,. . . , N ; j  = 1,. . . ,  N + 2. 

Clearly, the interpolating conditions alone are not 
sufficient to determine the N + 2 spline coefficients 
pi .  Two more conditions are necessary. One can, 
for example, assign the first and second derivative of 
the spline at the end node "CN or the second deriva- 
tives of the spline at both end-points 51 and X N .  We 
shall assign the two extra conditions d y n a m i c a l l y  on 
the basis of the a priori model of the contour in an 
inertial reference frame. 

The dynamics o f  the S p l i n a t o r  
The s p l i n a t o r  is a nonlinear f i n i t e  d i m e n s i o n a l  dyna- 
mical system, whose states, inputs and outputs are, 
respectively, the spline coefficients p, the velocities w 
and w and the values f .  

The splinator describes the lateral dynamics of the 
vehicle with respect to the unknown contour. In par- 
ticular, writing relationship (6) at the N interpolating 
points x = [ z l ,  . . . , 2 N l T  we get a system of N first 
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order differential equations describing the dynamics 
o f t h e N o u t p u t s f , f o r  i = l ,  . . . ,  N 

-- Wt) - --w(t)xi + S ’ ( Z i , t ) ( V ( t )  - w(t)f$)) (11) 
dt 

where s’(x;, t) = $2’ Bj(xi)pj(t). 

A-priori model in inertial coordinates 
Two more dynamic equations are determined from 
the a priori stochastic model of the contour. For 
example, since the shape of the contour beyond E N  = 
L is completely unknown, the local ” a  priori” model 
could be meant to describe the time evolution of the 
derivative of the spline approximation S ‘ ( Z N ,  t )  at the 
end node XN = L. An ” a  priori” model could be a 
second order random walk. Denoting €1 := s’(L,t), 
we have in this case 

<1 = €2v (Fa = U  

where €2 N s”(L, t )  and U is white noise of appropriate 
variance. More generally, we may want to take into 
account other kinds of uncertainties in the curve like 
spline approximation error, measurement errors, un- 
certainties in the velocities v and w etc.. In this case, 
one may consider a more general linear uncertainty 
model like the following 

In any case this leads to N + 2 interpolation con- 
ditions of the form 

fl 

€1 
€2 

B 

c1,1 , . . . . . 
- - 1 c1,2 1 . . . . . :z:: 1 
= Bp. 

where the N + 2 x N + 2 matrix B must be invertible. 
The dynamic equations of the splinator can, then, be 
determined by combining 

4. Observability and contour 
estimation 

The splinator is a nonlinear finite dimensional dy- 
namical system and observability is a local property 
which depends on the state p. Local observability 
at  po of the splinator implies that any infinitesimal 
change of the state p in a neighborhood of po can be 
detected in the outputs f o r  in their time derivatives. 

It is easy to show that, as long as the translation 
velocity v(t) is not null, the state of the splinator is 
locally observable from the inputs and the outputs at 
any point p E %N+2. 

The splinator is a nonlinear finite dimensional dy- 
namical system and observability is a local property 
which depends on the state p. Local observability 
at PO of the splinator implies that any infinitesimal 
change of the state p in a neighborhood of po can be 
detected in the outputs f or in their time derivatives. 

It is easy to show that, as long as the translation 
velocity v(t) is not null, the state of the splinator is 
locally observable from the inputs and the outputs at  
any point p E %N+2.  

By contradiction, let’s assume that the splinator is 
locally unobservable around some point of %N+2 and 
that v(t) # 0. Unobservability implies the existence 
of a nonzero vector of spline coefficients p(t) such that 
the observations f = Bp are all zero at  time t .  

Then, equations (11) imply that to the unobserv- 
able vector p corresponds a contour whose measured 
values f satisfy 

ji(t) = -w(t)zi  + v(t)s’(+i,t) i = 1,. . . , N .  

For this contour, the observability codistribution C 
can be easily computed, it is 

where d denotes the gradient with respect to p. Since 
v(t) # 0, unobservability of p implies also B’p = 0. 
This is a contradiction since there is no non-trivial cu- 
bic spline which vanishes on the nodes together with 
its first derivative. 

If, instead, v(t) = 0 then df = 0 and all spline co- 
efficient vectors p corresponding to  contours satisfy- 
ing f , ( t )  = s(zi,t) = 0 are locally unobservable. An 
example of an unobservable contour is shown in fig. 

An extended Kalman filter based on the splinator 
model can be applied to estimate on-line the unknown 
contour. 

(2). 

with the kynematic differential equation (11) for f 
and with the ”stochastic” end point conditions (13). 
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Figure 2: Example of “unobservable” contour if 
v(t) = 0. 

5. Controllability of the contour 

Studying the controllability of the splinator means 
investigating how one can change the shape of the 
contour, as seen by an observer sitting on the vehicle, 
controlling the inputs v(t) and w(t). 

Equations (15) describing the dynamics of the spli- 
nator are affine in the controls v and w and can be 
written in the following form 

P = B-l(gl(P)V + g z ( p ) w )  (16) 

where 

and g 2 ( p )  is the N + 2 dimensional vector defined by 

gZ,i(p) = -2i - S’(2&(2iIt) i +  1,. . . , N  
gz,i(p) = 0 i = N + 1, N + 2. 

The controllability distribution is determined by 
g l ,  g2 and their Lie-brackets. Clearly, the integral 
manifold of the distribution cannot be of dimension 
larger than N since the last two components of both 
gl and g2 are zero. This means that (1 and <z are not 
controllable. It means, as expected, that the inertial 
shape of the contour cannot be changed acting on v 
and w .  

6. Contour tracking 

Three types of predictive control strategies will be 
discussed. The first is a simple myopic quadratic 
control based on minimizing the square distance of 
the current fk’s from a desired current sampled con- 
tour. The second is still a quadratic cost problem 
but computed by standard receding horizon predi- 
ctive control on the predicted minimum distance of 
the vehicle from the contour. The third control is 
computed by imposing the vehicle trajectory on an 
appropriate path updated on-line. 

Quadratic control 

The values of the controls v( t )  and w(t) are determi- 
ned minimizing the following cost function 

where d is the desired distance at which the vehicle 
should follow the contour, V d  is the desired velocity 
;lt which the vehicle should track the contour and 
f i ( t  + AtIt) are the prediction of the distances fi at 
time t + At given the estimate of the contour updated 
at t imet 

N + 2  

fi(t + Atlt) = Bj(zi)@i(t + Atlt). 
j=1 

In general, the goal f i ( t  + At)  = d for i = 1, . . . , M 
cannot be achieved because the values f i  depend on 
the inertial shape of the contour which is not control- 
lable. The controls tend to drive the vehicle so that 

i= l  

Predictive control 
Let C I  = [ ~ ~ , y , z ] ~  be an inertial coordinate frame 
that at time t coincides with the frame fixed with 
the camera and the vehicle. With respect to C I  the 
motion of the vehicle is described by the following 
differential equations 

x = v cos(q5) 
@ = v sin($) LW 

with initial conditions { z ( t ) ,  y( t ) ,  $(t)} = 0. Let ~(z, y )  
be the minimum distance between a point of coordi- 
nates [~,y,O]* and the on-line estimate of the con- 
tour at time t which. in the coordinate frame E;. is 

. I  

[z,  CL;^ B i ( 2 w t j ,  OF. 
The values of the controls v ( t )  and w(t) are deter- 

. I  . ,  
mined minimizing the following cost function 

min W 
u( t ) ,  V ( t  + At) ,  . . . , v ( t  + k A t )  
w ( t ) ,  Y(t  + A t ) ,  . . . , w ( t  + k A t )  

where 
k 

W = C ( r ( z ( t  + iAt) ,  y(t + ;At)) - d)’ + 
i=l 

+pi(v(t  + iAt) - vd) 

with 

z(t + iAt) = ~ ( t  + j A t )  COS($($ + jAt))At 
y(t + ;At) = xizi v(t + jA t )  cos(q5(t + jAt))At  
q5(t + iAt) w(t + jAt)At  
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Spline control 
Let se($) = cj“=tz Bj(z)rj be the cubic B-spline 
that, in the coordinate frame fixed with the vehicle, 
satisfies at time t 

S c ( O )  = 0 S/ , (O)  = 0 
& ( X i )  = 

S X X M )  = Cj,l Bj(XM)Pj(tIt) 
Bj($i)@j(tIt) + d a = 2,. . . , M 

N+2 I 

where M 5 N .  Since the heading of the vehicle at  
time t points in the direction of the tangent vector to 
the spline s, in x = 0 and the spline has continuous 
second order derivative d2sc(z ,  t ) /dz2 ,  s,(z) is a fe- 
asible trajectory for the vehicle. The controls that 
drive the vehicle along this trajectry at longitudinal 
speed vd are 

Applying these controls the vehicle reaches the right 
configuration with respect to  the unknown contour 
following the spline se(.) which we call the “control 
spline”. Note that, once the vehicle is in the right 
configuration, the control spline se(.) coincides with 
the on-line estimate of the unknown contour s(z, t ) ,  
see fig. (3). 

Figure 3: The vehicle must follow the contour s ( z , t )  
drawn with continuous line at  distance d = 0. The 
dashed line is the spline se(.) at time t with M = 3, 
and the dotted, thinner, line is the trajectory followed 
by the vehicle. 
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