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Abstract 
Any stationary Gaussian process with a rational spec- 
tral density can be represented as the output of a lin- 
ear infinite-dimensional Hamiltonian system in ”thermal 
equilibrium”. The Hamiltonian system must have con- 
tinuous spectrum of Lebesgue type. We show that on an 
extended phase space supporting invariant probability 
measures for the system, the Hamiltonian flow is Hy- 
percyclic i.e. there is a vector generating a dense orbit. 
This is a well known topological condition for chaos. In 
fact, the hamiltonian flow is chaotic according to many 
standard definitions of the term. 

1 Introduction 
In this paper we continue previous investigations ini- 
tiated in [15], [16], [17], to characterize ”complicated” 
linear deterministic systems which, through a suitable 
randomization procedure, may admit a ”simple” statis- 
tical description. I t  may happen that the external be- 
haviour of certain linear deterministic systems is exactly 
described by a stochastic dynamic model so that the lat- 
ter is equivalent to the original system, at  least from 
the point of view of an observer having access only to  
the input-output terminals. The above phenomenon of 
exact model reduction by randomization, or ”stochastic 
aggregation” as we have named it ,  can only occur when 
the time evoution of the external variables of the sys- 
tem is strongly irregular. In fact, as we shall argue in 
this paper, stochastic aggregability can essentially occur 
only when the underlying linear system is chaotic. 

The word ’lchaotic” in the literature almost invariably 
refers to the non-linear/ hyperbolic setup. The dynam- 
ical systems studied in the literature either evolve in a 
compact phase space or, in any case, the interesting in- 
variant sets on which irregular ”stochastic” behaviour 
occurs, are ”small”, tipically of zero Lebesgue measure. 
By observing these systems one can generate effectively 
”random” processes but only of the finite-state type, e.g. 
Bernoulli i . i .d.  processes. We want instead to gener- 
ate stationary processes with continuous state space, say 
Gaussian processes taking values in R. Strangely enough, 
the possibility of ”chaos” in linear systems and its nature 
has not been reputed an interesting object of study in the 
mathematical literature until very recently and there are 

very few known characterizations of linear chaos avail- 
able (see [6], [4]). 

In the present context, linear chaotic systems are very 
natural. In fact, an arbitrary purely-non-deterministic 
stationary zero-mean Gaussian random process { y ( t ) } ,  
with a prescribed rational spectral density, can be rep- 
resented (or ”realized”) as a linear observable of a lzn- 
ear ”chaotic” system. This general result follows in part 
from previous work [lS] and from the analysis presented 
here. The system will have to be infinite-dimensional. In 
fact, a natural choice (suggested by certain similarities 
with Statistical Mechanics]) leads to  infinite dimensional 
autonomuos linear Hamcltonzan systems E,, evolving on 
a real Hilbert space H .  Such systems have the general 
form 

(1) 
i ( 2 )  = F Z ( t )  
Y k ( t )  =< h k ,  z(1) >, IC = 1,. . . , m  Eo:  { 

where F is a densely defined linear skewsymmetric op- 
erator generating a group of continuous linear operators 
{ @ ( t ) ; t  E R} on H.  The variable r ( t )  E H ,  t E R is the 
microscopic state, and y k ( l )  the observables or outputs 
of the system at  time t .  

It may seem that a deterministic evolution equation 
of the type (1) has little t o  do with chaotic dynamics. 
Yet irregular behaviour must be present since a Gaus- 
sian purely non deterministic stationary output process 
{ y ( t ) } ,  must have very irregular sample paths. Note that 
irregular sample path are a fact on a countably additive 
probability space only. This may seem trivial to point 
out but is really the key to explain the apparent paradox 
above. 

Chaos really comes into play only at  the point of in- 
troducing randomization. A probabilistic setup is intro- 
duced by equipping the phase space H with a ”thermal 
equilibrium” invariant measure p for the evolution group 
{ @ ( t ) } ,  thus defining a condition of statistical steady- 
state of the system. Unfortunately the natural invariant 
Gaussian measures for the group are not a-additive on 
the Hilbert space H .  This is a well-known difficulty with 
Gaussian measures on infinite-dimensional spaces [5] ,  [7]. 
To be able to represent almost all sample paths of the 
process, with respect to a countably additive probability 
measuere p ,  a suitable extension of the system E, to a 
larger space than the ”natural” phase space H,  is neces- 
sary. It will be seen that it is precisely this extension of 
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the original dynamics (1) which shows chaotic behaviour. 

2 Stochastic aggregation 

From classical work in Statististical Mechanics, e.g. 
[ 3 ] , [ 9 ] ,  it is known that in certain situations it is pos- 
sible to  generate the output trajectories t -+ y ( t )  of 
an infinite-dimensional linear Hamiltonian system (like 
CO) in thermal equilibrium, by means of a generalized 
Langevin equation, which is nothing else but a finite di- 
mensional stochastic linear system of the type 

(2) 
d z ( t )  = A z ( t ) d t  + K d v ( t )  
Y ( t )  = W t )  

E :  { 
where z ( t )  is a finite dimensional Gauss-Markov pro- 
cess taking values say in R”, Itr E RnXP and v is a 
pdimensional Wiener process. The  problem of obtain- 
ing representations of the output of CO of the form (2) is 
in fact the stochastic aggregation problem in the present 
linear setting (the problem will actually be reformulated 
a bit more precisely below). It has been studied in a sys- 
tematic way in [15] [17],etc, using ideas from Stochastic 
Realization Theory .  

Besides being of intrinsic interest in itself, the ”ag- 
gregation problem” mentioned above is believed to be 
relevant also in understanding stochastic modeling of en- 
gineering systems. In particular one of the main moti- 
vations in this paper is the desire of understanding (ob- 
viously, in a mathematically idealized context) how to  
treat unmodelled dynamics in engineering problems, es- 
pecially in estimation and control. As a motivation one 
should think e.g. of the common engineering practice 
of describing complicated physical systems by stochastic 
low order models in which additive white noise terms are 
added to  the state equations just t o  account for ”model- 
ing errors”. This is for instance a very common practice 
in building state models for Kalman filtering. 

In engineering terminology, we may say that a ”large” 
system CO is aggregable if the state vector z can be de- 
composed into a ”low frequency” and a ”high frequency” 
(or parasytic) component, the high frequency part being, 
for an external observer having access only to  output 
measurements, equivalently ”lumpable” as an additive 
white noise input acting on the low frequency dynamics. 
The basic definition in this respect is the following (the 
need to  distinguish between ’)forward” and ”backward” 
will be clear in the following). 

DEFINITION 2.1 If, for  all t o  E R and f o r  each ini- 
tial condition % ( t o )  = z, E H there are: 

we shall say  that the sy s t em CO i s  aggregable and C i s  a 
forward aggregation of E,. 

A backward aggregation of CO is  instead a finite di- 
mensional stochastic s y s t em (2) for which the same hap- 
pens for  all t < t o  for  any initial t ime t o .  

Definition 2.1 is just formalizing the idea that the sys- 
tem E, in (1) is indistinguishable from a forward (resp. 
backward) aggregation for an observer having access only 
to  future (resp. past) trajectories of the output function 
Y .  

In Statistical Mechanics the microscopic dynamics is 
always conservative i.e. governed by a energy-preserving 
group. This means a Hamiltonian type of microscopic 
time evolution. For applications to  engineering systems 
this type of Hamiltonian structure may look restrictive. 
It can however be obtained, at least abstractly, by imbed- 
ding the actual physical (dissipative) model at hand, into 
a lossless one by means of a dilution procedure [2]. 

3 Linear Hamiltonian systems 
and stationary Gaussian pro- 
cesses 

In this section we shall show that observables of linear 
Hamiltonian systems in thermal equilibrium, generate 
stationary Gaussian processes in a natural way. 

For an Hamiltonian system with total energy H ( z ) ,  
the solution of the canonical equations determines the 
phase of the system (say configurations and momenta 
z(b) := [ q ( t )  p ( t ) ] ’  ) at each time t ,  uniquely in terms of 
the initial value z ( 0 ) .  The correspondence defines a flow 
z ( t )  = @ ( t ) z ( O )  on the phase space which leaves invariant 
the total energy, H ( z ( t ) ) ,  of the system . 

In condition of ”thermal equilibrium” the phase of the 
system is statistically distributed according to  a proba- 
bility distribution on the phase space which is invariant 
for the Hamiltonian flow @ ( t ) .  In particular the distri- 
bution of the phase variable z at time zero remains the 
same for all times. I t  is also well known known that 
in a finite-dimensional space, any absolutely continuous 
@(t)-invariant probability measure admits a density p ( z )  
of the Gibbs type, i.e. equal to  a normalization constant 
times e z p [ - + ~ ( z ) ] , P  > 0. 

It follows t i a t  in thermal equilibrium any measurable 
function f on phase space can be regarded as defining a 
stationary stochastic process. In particular, a fixed m- 
dimensional family of observables { h l ,  ..., hm} generates 
a vector-valued rn-dimensional stationary process { y ( t ) }  
with components 

z, E R” and a driving input trajectory v of a Y d t ,  4 0 ) )  := h ( W ) z ( O ) )  ( 3) 
Wiener  process for the sy s t em (2), such that the cor- 
responding output trajectories y z ,  of CO and y 2 , , ,  of 
E, respectively, coincide for  all t 2 t o  . 

z ( 0 )  being interpreted as the random elementary event 
and @ ( t )  as the measure preserving group of transforma- 
tions on the underlying probability (phase) space. 

The above ”randomization” of the phase space is intro- 
duced in Statistical Mechanics in the hope that it leads 

Conversely,  if every output trajectory of (2)  coin- 
cides f o r t  > to  with some  output trajectory of (1) 
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to a description of the process { y ( t ) }  of (3) by some sort 
of statistical model of a simpler structure than the mi- 
croscopic Hamiltonian description. However it is trivial 
to check that for linear Hamiltonian systems with a finite 
dimensional phase space, the stochastic processes { y ( t ) }  
generated by linear observables of a system in thermal 
equilibrium are purely deterministic quasi-periodic p r e  
cesses. These are quite uninteresting from the point of 
view of aggregation. In fact, it is easy to see (and has 
been stressed very early by Lewis and Thomas [9]) that 
only infinite-dimensional linear Hamiltonian systems can 
admit aggregation. Moreover, for aggregable systems the 
infinitesimal generator of the Hamiltonian group must 
have continuous Lebesgue spectrum. 

We shall then consider only infinite-dimensional lin- 
ear Hamiltonian systems with phase space a real Hilbert 
space H.  We shall further assume that the Hamilt* 
nian function can be normalized to the squared norm, 
H ( z )  = 1/211~11~, of the phase variable (the so-called en- 
ergy norm) so that the Hamiltonian flow @ ( t )  becomes 
norm preserving, i.e. an orthogonu1 group of linear oper- 
ators on H. 

The observables (state-output maps) will be taken to  
be described by m linear functionals h; : H --+ R repre- 
sented by m vectors h k  in H ,  so that the relative observa- 
tion processes y k ( t ) ,  k = 1 , .  . . ,In, of the system started 
in the initial phase z ( 0 ) ,  are described by 

where < ., . > denotes inner product in H. 
This setup is quite general and can be shown to a c c e  

modate many classical linear models of Statistical Me- 
chanics like the Brownian particle in a heat bath, the 
Lamb’s model [9], [lo] etc.. 

Linear Hamiltonian system ( l ) ,  will herea.fter be as- 
sumed irreducible, in the sense that the smallest {@( t ) } -  
invariant subspace H, containing the vectors { h k ;  k = 
1,. . . , m}, and given by 

H, := V { @ ( t ) h k ;  k = 1.. . . , 171, t E R} (5) 

will be assumed to coincide with H .  This is a natural 
condition of non-redundancy of the model. For all phase 
trajectories generated by initial phases in the orthogonal 
complement H: in H,  will live there forever and tliere- 
fore will automatically also be in the nullspace of the ob- 
servables of the system. Hence they will be completely 
invisible to an external observer. 

Note that for irreducible systems the Hamiltonian 
group { @ ( t ) }  has finite multiplicity ( 5  m) .  

A technical nuisance especially associat,ed with 
continuous-spectrum Hamiltonian systems in a infinite 
dimensional Hilbert spaces, is that the natural invariant 
probability measures for the orthogonal group @ ( t )  are 
families of Gaussian cylinder measures pp with covari- 
ance operator P I , P  > 0, which are not countably addi- 
tive on H [7]. The standard way out to this difficulty is 
to enlarge the ”natural” probability space, H,  to a larger 

Banach space on which the invariant Gaussian measures 
can be supported. The large space will in general contain 
”nonphysical” phases. 

the ”large” Banach space 
(which can sometimes be taken to be Hilbert), is usu- 
ally seen as the dual, s’, of a ’7smooth” space S c H,  
densely imbedded in H .  The crucial request for extend- 
ability of p p  to S’ is that the imbedding map S + H be 
a nuclear operator, or, which amounts to the same, that 
the dual imbedding i‘ : H -+ S‘ be nuclear. This implies 
that S’ is a separable Banach space. Note that there may 
be many different choices of such Gelfan’d triples 

As explained in [7], [5] 

S C H C S ‘  ( 6 )  

for the same system. The enlarged phase (=probability) 
space of the system, S‘ will be denoted by R hereafter. 
The dual, S, is to play the role of ambient space for 
”smooth” linear functionals (i.e. observables of the sys- 
tem) on the extended space R.  

In this setup the orginal observables (4) are only de- 
fined on the dense subset H of the probability space 
Q. They can however be extended by isometry as 
L2(Q,pp)-limits7 to the whole space (see Hida’s book 
for details). So, eventually we end u p  with a bona-fide 
m-dimensional Gaussian stationary stochastic process 
{ y ( t ) }  whose sample paths, a t  least for ”physical” ini- 
tial phases, represent the time evolution of the measured 
observables (4) .  

It should be stressed that the finite-dimensional dis- 
tributions of { y ( t ) }  d o  not depend on the extension of 
the probability measure but are completely determined 
by the linear observable maps (4) on H and by pp as 
a finitely additive (cylinder) Gaussian measure on H. 
However the extended space and the choice of a ’)best” 
S’ is crucial for the representation problem we consider 
here. As it may appear from the discussion above the 
possible choices of S’ have for example a lot to  do with 
the degree of smoothness of the sample paths of { y ( t ) } ) .  
We shall come back to this point later. 

The Spectral Distribution Matrix of the process can be 
written explicitely in terms of the spectral data of the 
Hamiltonian group ([15]). Let 

@ ( t ) Z  = e ’X ‘dE( iX )z  ( 7) s 
be the spectral representation of the unitary group 
{@(t)}7 I?(.) denoting the spectral measure mapping 
Borel subsets of the imaginary axis into orthogonal pro- 
jection operators on H. Define the random measures $ k r  
by setting 

Qk(A,w)  :=< E(A)hk ,w  >, I; = 1 , .  . . , m (8) 

where A is a Borel set of the imaginary axis and initially 
w = z ( 0 )  is taken in H c 0. Extend then the linear 
functionals (8) to the whole of R by isometric extension 
in the L2(R,pp)sense.  

It descends from the defining relation (4) and formula 
(8) that yr are the components of the random spectral 
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measure (i.e. the Fourier transform ) of the stationary 
process { y ( t ) }  (see [19]). In other words { y ( t ) }  admits 
the spectral represent a t  ion 

2. For each analytic spectral factor W define the Gaus- 
sian stationary-increments process { w ( t ) }  b y  as- 
signing its spectral measure dzir(iA) as 

YE ( t )  = e'"dyk(iX), k = 1 , .  . . , m  (9) 
-M 

dzir( i X )  := W - L  (iX)dQ(iX) t 14) 
- -- 

the superscript - L  denoting left inverse. Then 
{ w ( t ) }  is a r-dimensional vector Wiener process 
and { y ( t ) }  has the following spectral representation 

and hence its spectral distribution is an m x m matrix 
measure F with entries 

Fk,j(A) = Eyk(A)yj(A)* = p < k(A)hk,hj > k, j = 1 , .  . . , m  
(10) 

I t  is seen that the spectrum, and hence the probability 
law of the observation process is completely described 
(modulo an arbitrary "temperature" parameter p > 0 of 
the invariant measure,) by known data of the Hamilt+ 
nian system. 

At this point the problem of stochastic aggregation 
of a linear Hamiltonian system, with respect t o  a given 
family of linear observables h;,  has been seen to  be iden- 
tical to  representing a stationary Gaussian process { y ( t ) }  
given in Eq. 4 above, as a function of a finite dimensional 
p.n.d. Markov process. Of course a very natural require- 
ment on the representation is that  the Gaussianness and 
stationarity of { y ( t ) }  should be inherited by the Markov 
process. This in turn calls for linear time invariant rep- 
resentations of the type 

Y ( t >  = C 4 t )  (11) 
where C is a linear map from the state space of the 
Markov process {3:(t)} into R"'. 

4 Constructing the state of a sta- 
tionary Gaussian process 

In this section we shall briefly review the characterization 
of stationary Gaussian processes { y ( t ) }  representable by 
finite-dimensional Markov processes and the main steps 
of a procedure for constructing such Markovian repre- 
sentations. The  details can be found for example in the 
paper [ I l l .  

T H E O R E M  4.1 There are finite-dimensional Marko- 
vian representations of { y ( t ) }  if and only if the spectral 
distribution matrix F of the process is, absolutely contin- 
uous with a rational spectral density @(iX), 

d 
dX 

&( iX)  = -F(iX) 

Finite dimensional Markovian representations of y ( t )  

1. Do spectral factorization of h(iA), i.e. find a ratio- 

are computed via the following algorithm 

nal m x r matrix functon W satisfying 

i ( i X )  = W(iX)W(iX)* (13) 
and such that W extends to  an analytic matrix func- 
tion on the lefl-half complex plane (such factors are 
called analytic). W e  restrict for simplicity t o  left- 
invertible factors,  in which case r = r a n k ( @ ) ,  a.e. 

y ( t )  = 1'" e"'W(iX)dzir(iX), (15) 
-CO 

i n  t e r n s  of { w ( t ) } .  

3. Find a minimal realization of W(iX), i.e. compute 
constant real matrices { A ,  B ,  C }  with A square n x n ,  
B of dimension n x r and C of dimension mx n with 
n as small as possible,such that 

W(iX) = C(iX1- A)-'B (16) 

Then,  corresponding t o  each spectral factor  W ,  { y ( t ) }  
admits a Markovian representation of the f o r m  

d c ( t )  = A c ( t ) d t  + B d w ( t )  t 17) 
Y( t>  = C 4 t )  (18) 

the representation corresponding to  W being unique mod- 
ulo change of basis on the state space and r x r orthogonal 
transformations on the Wiener  process W .  

The Markovian Splitting Subspace associated to the 
representation described by Eqs. (17), ( lS) ,  namely 
X := s p a n { z l ( 0 ) ,  , . . , zn(0)} is not necessarily of min- 
imal dimension. For this t o  happen the spectral factor 
W must be of "smallest degree" [ll], [12]. An intrigu- 
ing feature of the Markovian representation problem is 
that even minimal  representations are non unique. This 
nonuniqueness is already present in the spectral factor- 
ization problem as it is well known that there are in gen- 
eral many minimal degree analytic spectral factors of a 
generic spectral density matrix @. The question of min- 
imality of Markovian Splitting Subspaces is examined in 
great detail in the two references cited above. 

Note that for the Gauss-Markov process 3: described 
by the stochastic equation (17), the past histories of 
the processes 3: and w coincide, i.e. we have H-(z) = 
H - ( d w ) .  This follows since the spectrum of A lies in the 
left-half plane (which is in turn a consequence of analitic- 
ity of the spectral factor W ) .  So, the subspace H-(3:) is, 
in the terminology of Lax-Phillips Scattering theory [SI, 
an outgoing subspace for the orthogonal group @(t) .  It is 
shown in [ll], [12] that  outgoing subspaces are essentially 
in one-to-one correspondence with analytic spectral fac- 
tors of the density matrix @ ( i X ) .  The "incoming" part 
of the scattering picture associated to  X comes from a 
dual construction. In fact we have, 

PROPOSITION 4.1 Let X be a (finite dimensional) 
Markovian Splitting Subspace for  the process { y t t ) } .  
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Then there is  a unique pair (W, W )  of (rational) m x r 
spectral factors corresponding to X, the first being ana- 
lytic and the second coanalytic (i .e.  analytic on the right 
half-plane), such that the T x T unitary matrix function 
K ( i X )  defined b y  

K ( i X )  := WL( iX)W( iX)  (19) 

is a (rational) inner function. 
The random measures dw,dw defined b y  

dy(iX) = W(iX)dzi, = LV(iA)dGi (20) 

and hence related b y  d&(iX) = K( iX)dG( iX)  are the 
Fourier transforms of two Wiener processes w , w  gen- 
erating, respectively, the past and future histories of the 
Markov process x. The inner funct ion (19) is i n  fact 
the scattering matrix corresponding to the scattering pair 
(H-(dw) ,  H+(dG) attached to  X. 

An obvious corollary of the existence of incoming- 
outgoing subspaces for the group @ ( t )  (which is in turn 
equivalent to factorizability conditions like (13) and its 
”conjugate analytic” cunterpart) is that @ ( t )  is unitarily 
equivalent to the translation group on the Lebesgue space 
L: := L2(R; Rr). This follows from the translation rep- 
resentation of [8]. 

5 Hypercyclic flows and chaotic 
Hamiltonian systems 

A linear bounded operator T on a separable Hilbert, or, 
more generally, Banach space, H I  is called Hypercyclic 
if there is a vector v such that the orbit generated by 
U ,  { T k v ; k  2 0) is dense in  H .  Note that this is much 
stronger than just requiring the linear span of the orbit 
to be dense. 

It is known that there are many such operators, [4]. 
Recall that a map (usually on a compact metric space) is 
called chaotic, see e.g. [l], if it has a dense orbit, a dense 
set of periodic points and has ”sensitive dependence” on 
initial conditions. A certain type of sensitive dependence 
on initial conditions is present in all Hypercyclic opera- 
tors, [4]. Thus a Hypercyclic operator defines a chaotic 
(discrete-time) dynamical system on H if it has a dense 
set of periodic points. D. Herrero, [GI, has given a spec- 
tral charaterization of a class of Hypercyclic operators 
which have a dense set of periodic points and show a 
sort of hyperbolic structure very similar to  the one lead- 
ing to chaos in finite dimensions. We may therefore call 
such operators chaotic. 

It can be proven that topologically mixing operators i.e. 
operators T such that for every two open sets U ,  V c H 
and arbitrary k, there always exist k 2 k ,  such that 
TkU n I/ # 8 have dense orbits (i.e. are Hypercyclic). 

Naturally all these definitions and properties have a 
direct counterpart in continuous-time. A stroilzly con- 
tinuous group of bounded linear operators (i.e. a linear 
flow) { @ ( t ) ; t  E R} on H is called Hypercyclic if there are 

vectors v generating dense orbits { @ ( t ) v ; t  E R} in H .  
(In this case it is most natural to define orbits relative 
to the whole time axis.) 

It turns out that Hypercyclic flows arise naturally in 
connection with ergodic stationary Gaussian processes 
{ y ( t ) } .  In fact, under very mild technical conditions, the 
shift flow on the sample space of an ergodic Gaussian 
process is necessarily hypercyclic. In particular, Gaus- 
sian processes of the type discussed in section 3 above are 
purely non-deterministic and hence ergodic. Essentially, 
in the latter case, the following conditions are needed, 

1. The countably additive extension, ji of the Gussian 
cylinder measure ,U on H to the Banach space R has 
full support, i.e. supp(fi) = R. Since the extension 
ji is a Bore1 measure on 52 ([7], Thm 4.2), all open 
subsets of R have positive fi-measure. 

2. The extended flow 6(t) : R --$ 0 is a strongly con- 
tinuous group on 0. 

The above guarantee that 6(t)  is hypercyclic on R. The 
proof of this statement ( which will be given in full detail 
elsewhere) is based on the following observations. 

For every open set U ,  the set UtC,6 ( t )U  is open and 
6(t)-invariant. By ergodicity it must have measure zero 
or one. Being open, it has obviously measure one and 
hence it must be the whole space, i.e. 

for all open U c 0. Now (21) in conjunction with strong 
continuity of the flow & ( t )  and separability of R permits 
to prove existence of a dense orbit in R .  

Recall further that the Hamiltonian flow @(t)  of aggre- 
gable systems is unitarily equivalent to  the translation 
group on L:. In this case we may as well take H = 1;: 
and @ ( t )  equal to the translation group (S ( t )w) ( r )  := 
w ( t  + T )  acting on r-dimensional functions of time w .  
This leads to a variety of possible choices for the ex- 
tended sample space 0, which will typically be spaces of 
continuous functions of time defined on R, admitting a 
strongly continuous translation group and thus satisfying 
the two conditions required for hypercyclicity. 

6 A ”canonical” example of Ag- 
gregable System 

A class of linear distributed-parameter conservative sys- 
tems admitting aggregate description will be described 
in this section. The underlying model is a generaliza- 
tion of the so-called Lamb model which was proposed in 
1900 as a mechanical model for explaining radiation. See 

Consider a semi-infinite string tautly stretched at ten- 
sion T ,  connected at the left-end point, situated at  3: = 0, 
to a lumped conservative mechanical load, for example 
composed of an arbitrary (but finite) number of point 
masses and linear springs connected together. 

[91> [ 141, [lo]. 
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Let p(t,t)  be the vertical deflection of the string at 
distance z from the load and let 

a a 

be the vertical components of the velocity and of the 
tension of the string at z. 

At e = 0 the pulling force fo(t) := f ( t , O )  acts on 
the mechanical load inducing a constrained motion along 
the vertical axis with velocity vo(t)  := v(t ,O),  related to  
the acting force by the mechanial impedence of the load. 
Using Laplace transforms we can write 

v ( t , z )  = p ( t , z ) ,  f ( t ,z)  = T-v(t,z) d X  ( 2 2 )  

G ( S )  = Z,(~)~o(S) ( 2 3 )  

where Z,(s) is the mechanical impedence of the load seen 
from the connecting point with the string. 

The system can be described by the following state 
equations 

x = A z + b , f o  ( 2 5 )  
U, = cox ( 2 6 )  

where p is the density of the string. The last two equa- 
tions ( 2 5 )  and ( 2 6 ) ,  can be thought as a realization of 
the mechanical impedence Z,(s) which will then be ex- 
pressible as 

Z,(s) = c , ( s l -  A ) - ’ b ,  ( 2 7 )  
Note that Z,(s) is a Lossless impedence function. In 

particular there is no direct feedtrough term in the real- 
ization. 

We want to  model an ( observed) output variable of 
the system which is formed as a linear combination of 
the state of the load c with perhaps a direct feedtrough 
term from the pulling force of the string fo 

y = cz + dfo  ( 2 8 )  

The string equation ( 2 4 )  is just the wave equation writ- 
ten in vector form. We assume suitable units have been 
chosen to  insure ~ / p  = 1 (so that the speed of prop- 
agation along the string is one). The  evolution of the 
composite system ( 2 4 ) , ( 2 5 )  can be seen as the evolution 
of a conservative Hamiltonian system i = Ft with state 
(phase) vector 

z : =  [ 4 1  ( 2 9 )  

taking place in the phase space H := R2” @ LE(R+). 
This space can be given a Hilbert space structure by 
introducing the energy norm 

where R is a symmetric nonnegative matrix repre- 
senting the total energy (hamiltonian) of the load, a 

quadratic form in the state e. By choosing z minimally 
we can always guarantee R > 0. 

The F operator operator corresponding to  the dynam- 
ical equations ( 2 4 ) , ( 2 5 ) ,  ( 2 6 )  is skew-adjoint on its natu- 
ral domain (of smooth functions satisfying the boundary 
conditions ( 2 3 ) )  and generates an energy preserving (i.e. 
orthogonal) group on H. 

Since the string subsystem obeys the wave equation we 
can express the displacement in the well known ”scatter- 
ing” form 

p(t, Z) = ~ ( t  + Z) + b(t - e) t E RI 5 2 0 (31 )  

where the functions a and b are called the incoming and 
outgoing waves respectively. In the present setup it is 
actually only the derivatives a’ and b’ which will enter 
the scattering representation of the state vector (v,  f)T 
as determined by the initial data  of (vertical) velocity 
and tension along the string at (say) time zero. In fact, 
putting t = 0 we have from(22), ( 3 1 )  

vi(.) := ~ ( 0 ,  Z) = u‘(z) + b ’ ( - c )  (32 )  
, f j ( ~ )  := f(0, Z) = d(z) - b ‘ ( - z )  

Note that this system of equations determines only a’(c) 
f o r  z _> 0 and b’ ( z )  for  z 5 0. Moreover, for arbitrary 
initial data (U,, , f i )T  in LE(R+) the restrictions a‘lr10 
and b’l , lo are essentially ”free variables” in L2(R+) and 
L2(R-), respectively. 

Now, we shall see that a reinterpretation of an idea 
of Scattering Theory, [8], leads to  a mathematical de- 
scriptions of the boundary variables vo( t )  and f , ,( t)  by 
linearfinite dimensional models driven by free L2-input 
variables. These linear models have similar structural 
properties t o  those of stochastic models driven by white 
noise processes. 

The procedure starts with the identities 

v o ( t )  = a’(t) + b’(t)  (33 )  
fo(t) = ~ ’ ( t )  - b’( t )  ( 3 4 )  

and then uses the ”steady-state” boundary condition at  
z = 0, relating vo( t )  and fo(t) specified by ( 2 3 ) .  It is 
immediate to  check that ( 3 4 )  and ( 3 4 )  are both inter- 
pretable as output feedback laws on the mechanical load 
system ( A ,  bo ,  c,)  i.e. they can be written 

fo(t) = -vo( t )  + 2a’ ( t )  (35 )  
fo(t) = v o ( t )  - 2b’(t)  (36 )  

and it follows then that ( 3 6 )  and, respectively, ( 3 6 ) ,  after 
substitution of ( 2 6 )  and combining with ( 2 8 ) ,  yield the 
following pair of representations of the ”output signal” 
Y ’  

Z ( t )  = ( A  - b,co)+( t )  + 2boa’(t) ( 3 7 )  

y ( t )  = [C - d c , ] z ( t )  .I 2a‘ ( t )  (38 )  

Of course we can obtain analogous representations also for the 
tension fo and velocity uo 
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and , respectively 

i ( t )  = ( A  + b,cO)a(t) - 2b$(t)  (39) 

y ( t )  = [C -t dc,]z(t) - 2b’(t) (40) 

The above calculation shows that any output y of the 
system, of the type (28) admits a bona fide Forward- 
Backward pair of representations in the spirit of stochas- 
tic realization of stationary processes [ I l l .  In fact, 

THEOREM 6.1 Assume the realization (27) is min- 
imal. Then the representatzons (37) and (39), respec- 
tively, are asymptotically stable and antistable, in  fact 

%X(A - boco) < 0 ,  u ( A  + b,c,) = -u(A - boco) 
(41) 

the symbol a ( A )  denoting the spectrum of the matrix A .  
Moreover the two representations are related b y  a 

”change of white noise input” formula of the t y p e  b’ = 
K(s)u‘ with K ( s )  an. inner function. I n  fact K ( s )  is pre- 
cisely the scattering function associated to the boundary 
condition (23), i.e. 

This generalizes a similar result presented in[18]. 
Moreover the construction can be reversed. Starting with 
a process y of assigned rational spectral density a, we can 
select an analytic-coanalytic pair of spectral factors and 
the relative scattering matrix K as in (19) and then form 
the lossless impedence 2, solving (42). The connection 
of a lossless load of impedence 2, to  a lossless infinitely 
long string will then generate a process y with the given 
spec t r urn. 

Note that, since the input function a’ is determined by 
the initial conditions of the string only on positive half 
lines { t  2 t o } ,  the Forwurd representation (37) can only 
represent the time evolution of y ( t )  on positive half lines 
{ t  2 t o }  of the time axis. The evolution of y ( t )  Back- 
wards i n  time is governed by a different model (39) which 
does not correspond to  the trivial change of direction of 
time transformation t --+ -t on (37). Hence the tempo- 
ral evolution of the variable y ( t )  is irreversible in time, a 
truly stochastic phenomenon which has no counterpart 
in finite dimensional deterministic systems. 
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