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Abstract— The circulant band-extension problem has been
object of intense study in recent years which have led to a
solution in terms of optimization of an Entropy-like functional.
It is shown here that the problem can also be solved in terms
of a special kind of matrix spectral factorization. The extension
can be computed via a circulant analog of the matrix Levinson-
Whittle algorithm and by solving a two point boundary value
problem.

I. STATIONARY PERIODIC PROCESSES AND
BLOCK-CIRCULANT MATRICES

All random variables in this paper have zero mean and
finite variance. Stationarity is understood in the weak sense.
Random elements are denoted by lower case boldface letters
while upper case boldface symbols are for block-matrices.
Normally the blocks are of dimension m×m so an N ×N
block matrix will be actually of dimension Nm × Nm. In
particular, a N × N block-circulant matrix has a block-
Toeplitz structure of the following kind

C =


C0 CN−1 . . . . . . C1

C1 C0 CN−1 . . . . . .
...

. . .
...

...
. . . CN−1

CN−1 CN−2 . . . C1 C0

 .

where Ck ∈ Rm×m. A block-circulant matrix C is fully
specified by its first block-row (or column). It will be denoted
by

C = Circ{C0, C1, . . . , CN−1}. (I.1)

A vector-valued random process y defined on a
finite interval, say [ t1, t2 ] of the integer line Z, is
written as a column vector by listing its components
with older variables in descending order; i.e. as
y> =

[
y(t2)> . . . y(t1)>

]
. It has been shown

[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci]
that stationary processes defined on a finite interval
can be extended to a larger interval of finite length
say [−N + 1, N ] where they admit a description
as periodic processes or as skew-periodic processes
[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci],
[Levy et al.(1990)Levy, Frezza, and Krener]. In this
paper we shall just deal with the periodic extension. It is
important to keep in mind that the covariance matrix of a
periodic process needs to have a special structure. We quote
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from [Carli et al.(2011)Carli, Ferrante, Pavon, and Picci]
the following basic fact.

Theorem 1: An m-dimensional vector stochastic process
y on a finite interval [−N + 1, N ] is the restriction to the
same interval of a wide-sense stationary, periodic process ỹ
of period 2N defined on Z, if and only if its 2N×2N block
covariance matrix Σ is symmetric block-circulant.
Any periodic process of period 2N can be imagined as being
defined on the finite group Z2N of the integers mod 2N and
all the analysis of these objects can be carried on in this
finite time setting.

Examples of periodic processes are the
reciprocal processes of finite order n introduced in
[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci] 1, also
called n-reciprocal for short, which generalize the ordinary
reciprocal processes which are just of order 1. White noise
on a finite interval is a reciprocal process of order zero with
covariance I2N which is trivially (block-) circulant. Let Σ
be the 2N × 2N positive definite covariance matrix of a
vector process x which is reciprocal of order n. Then Σ
must have a block-banded inverse of badwidth n

M := Σ−1 = Circ{M0, . . . ,Mn, 0, . . . , 0, M−n, . . . ,M−1}
(I.2)

where by symmetry

M−k = M>k , k = 1, . . . , n . (I.3)

These matrices provide a dynamical model of x which is a
bilateral autoregression (AR) of order n

n∑
k=−n

Mk x(t− k) = e(t) , t ∈ Z2N (I.4)

The solution of this difference equation is completely spec-
ified by assigning 2n boundary conditions. Because of peri-
odicity we shall impose cyclic boundary conditions at the 2n
endpoints of the interval. This is automatic in the circulant
matrix formalism which will be used throughout. Introducing
column vectors with 2N blocks, the model (I.4) together with
the cyclic boundary conditions can be written compactly as

M x = e (I.5)

where M is the block-circulant matrix (I.2) and the nor-
malized conjugate process e = {e(t)} (originally called
double sided innovation by [Masani(1960)]) satisfies the
orthogonality relation

Ex e> = I2N . (I.6)

1The order of a vector reciprocal process is the number of lags appearing
in its bilateral difference equation model.
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It is easy to show that M is actually the covariance matrix
of the normalized conjugate process e. For multiplying (I.6)
from the right by e> and taking expectations, one gets
E {ee>} = ME {xe>} which obviously yields

Var {e} = M (I.7)

and, in particular, Var {e(t)} = M0.

II. PRELIMINARIES ON FINITE HARMONIC ANALYSIS

Let ζ1 := ei∆ be the primitive 2N -th root of unity; i.e.,
∆ = π/N , and define the discrete variable ζ taking the
2N values ζk ≡ ζk1 = ei∆k ; k = −N + 1, . . . , 0, . . . , N
running counterclockwise on the discrete unit circle T2N . In
particular, we have ζ−k = ζk (complex conjugate).

The discrete Fourier transform F maps a finite signal g =
{gk; k = −N + 1, . . . , N}, into a sequence of complex
numbers

ĝ(ζj) :=
N∑

k=−N+1

gkζ
−k
j , j = −N+1,−N+2, . . . , N.

(II.1)
and the signal g can be recovered from its DFT ĝ by the
formula

gk =

N∑
j=−N+1

ζkj ĝ(ζj)
∆

2π
, k = −N + 1,−N + 2, . . . , N,

(II.2)
where ∆

2π = 1
2N plays the role of a uniform discrete measure

dν with total mass one on the discrete unit circle T2N . The
map F is in fact unitary. If f̂ , ĝ are the DFT of {fk}, {gk},
then

N∑
k=−N+1

fkgk =

N∑
k=−N+1

f̂(ζk)ĝ(ζ−k)
1

2N

=

∫ π

−π
f̂(eiθ)ĝ(eiθ)∗dν(θ) (II.3)

which is Plancherel’s Theorem for DFT.

A. Spectral representation of periodic stationary stochastic
processes

Let y be a zero-mean stationary process defined on a finite
interval [−N + 1, N ] of the integer line Z and extended to
all of Z as a periodic stationary process with period 2N .
Let Σ−N+1,Σ−N+2, . . . ,ΣN be the covariance lags Σk :=
E {y(t+k)y(t)>}, so that the discrete Fourier transformation
of Σ,

Φ(ζj) :=

N∑
k=−N+1

Σk ζ
−k
j , j = −N+1, . . . , N, (II.4)

is a real-valued positive function of ζ, called by analogy, the
spectral density of the process y. Then, as seen from (II.2)
and (II.2),

Σk =

N∑
j=−N+1

ζkj Φ(ζj)
∆

2π
=

∫ π

−π
eikθΦ(eiθ)dν(θ) , (II.5)

for k = −N + 1, . . . , N . In fact, let

ŷ(ζk) :=

N∑
t=−N+1

y(t)ζ−tk , k = −N + 1, . . . , N, (II.6)

be the discrete Fourier transformation of the process y. The
random variables (II.6) turn out to be uncorrelated, and

1

2N
E {ŷ(ζk)ŷ(ζ`)

∗} = Φ(ζk)δk` (II.7)

which leads to a spectral representation of y analogous to
the usual one for stationary processes on Z, namely

y(t) =

N∑
k=−N+1

ζtk ŷ(ζk)
1

2N
=

∫ π

−π
eitθdŷ(θ), (II.8)

where dŷ(θ) := ŷ(eiθ)dν(θ).
Any block circulant matrix M can be represented in the

form,

M =

N∑
k=−N+1

MkS
−k, (II.9)

where S is the nonsingular 2N × 2N cyclic shift matrix,

S :=



0 I 0 0 . . . 0
0 0 I 0 . . . 0
0 0 0 I . . . 0
...

...
...

. . . . . .
...

0 0 0 0 0 I
I 0 0 0 0 0


, (II.10)

and the matrix products in (II.9) are Kronecker products.
Now, from (II.1) we get, for an arbitrary ζk ∈ T2N ,

ζk f̂(ζk) =

N∑
τ=−N+1

f(τ)ζ−τ+1
k =

N∑
τ=−N+1

[Sf ](τ)ζ−τk

so that the operator of multiplication by ζ on the Fourier
transform of sequences f of length 2N corresponds to the
action of the cyclic left shift on the vectorized signal f ; i.e.

ζ f̂(ζ) = F(Sf)(ζ) , ζ ∈ T2N . (II.11)

Any block-circulant matrix can be represented as a polyno-
mial in the shift whereby the action of M on a vectorized
signal f is a combination of shifted versions of the signal

Mf =

N∑
k=−N+1

Mk (S−k f)

and in the Fourier domain one gets,

F (Mf) (ζ) =

(
N∑

k=−N+1

Mk ζ
−k

)
f̂(ζ) . (II.12)

Hence, multiplication of a (vectorized) signal by a block-
circulant matrix corresponds to pointwise multiplication of
its Fourier transform by a matrix-valued polynomial in ζ.
The polynomial matrix

M(ζ) =

N∑
k=−N+1

Mk ζ
−k (II.13)
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is called the symbol of the circulant. For example, the symbol
of S is just Iζ where I is the m×m identity matrix. Note that
the word “polynomial” here is used for linear combination
of both positive and negative powers of ζ. When M is
symmetric M−k = M>k the polynomial is also symmetric,
namely

M(ζ−1) = M(ζ)> . (II.14)

For example, the right shift S−3 has a block-circulant
representative where all Mk’s are zero except for M3 which
is equal to the identity. Its symbol is therefore Iζ−3.

A matrix polynomial of degree n involving only negative
powers of ζ

M(ζ) =

n∑
k=0

Mk ζ
−k, n < N/2 (II.15)

is the symbol of a block-upper banded circulant matrix
of bandwidth n and an analogous characterization holds
for polynomials involving only positive powers of ζ as
representatives of block-lower banded circulant matrices of
bandwidth n.

Theorem 2 (Circulant convolution theorem): Let A, B
be N ×N -block circulants of the same size with blocks of
dimension m×m. Then the sum and the product C := A B
are also block circulant and the symbol of C is the product
of the symbols of A and B. In fact, the DFT is an algebra
homomorphism of the set of block-circulant matrices with
N blocks onto the m × m matrix polynomials of degree
N − 1 in the variable ζ ∈ TN .

Proof: The first block column of C is just the circulant
convolution of the first block column of A and the first block
column of B. Hence C(ζ) = A(ζ)B(ζ).
In particular, if A is non singular; i.e. there is a matrix, B,
necessarily block-circulant, such that

A B = I

then, since the symbol of I is the matrix function identi-
cally equal to the m × m identity matrix, by the circulant
convolution theorem we have

A(ζ)B(ζ) = I , ζ ∈ TN

so that
Corollary 3: The symbol of the inverse A−1 is equal to

the inverse of the symbol of A.
In other words, if A(ζ) =

∑N
−N+1 Ak ζ

−k is the symbol of
A, then the matrix polynomial B(ζ) with values

B(ζk) :=

[
N∑

−N+1

Ah ζ
−h
k

]−1

is the symbol of A−1. The polynomial with these values is
unique and is their Lagrange interpolating polynomial. The
coefficients of B(ζ) can therefore be computed by Lagrange
interpolation.

The corollary 3 is an instance of a more general spec-
tral mapping theorem [Dunford and Schwartz(1958), p. 557]
valid in much wider generality (but not valid for Toepltz

matrices). The theorem below is a matrix generalization of
a well-known result on diagonalization of scalar-circulant
matrices by the Fourier map [Tee(2005)].

Theorem 4 (Spectral decomposition of block-circulants):
The spectrum of a block-circulant M is the union
of the spectra of the DFT symbol M(ζ); i.e. is
the union of the spectra of the m × m matrices
{M(ζk) ; k = −N + 1, . . . ,−1, 0, 1, . . . , N}. If M is
symmetric then M(1/ζk)> = M(ζk); i.e. each M(ζk) is
Hermitian. Hence its spectrum and the spectrum of M are
real.

III. FACTORIZATION AND UNILATERAL AR
REPRESENTATIONS

The problem of representing periodic processes by unilat-
eral recursions leads to the problem of causal or anticausal
factorization of a (block-) circulant matrix. This problem is
discussed next.

A N -blocks upper banded block-circulant matrix of band-
width n, U = Circ{U0, 0 , . . . , 0 , Un Un−1 . . . , U1} has the
following structure

U0 U1 . . . Un−1 Un 0 . . . 0

0 U0 U1
. . . Un−1 Un . . . 0

...
. . . . . . . . . . . .

...
0 0 . . . U0 U1 . . . Un−1 Un
Un 0 . . . 0 U0 . . . Un−1

Un−1 Un . . . . . . 0 U0 . . .
...

. . . . . . . . . U1

U1 U2 . . . Un . . . . . . 0 U0


(III.1)

where the n+ 1-st block Un in the list is nonzero Dually, a
N -blocks lower banded block-circulant matrix of bandwidth
n, has the representation

L = Circ{L0, 0, . . . , 0, Ln, Ln−1, . . . , L1}.

Note that upper or lower banded block-circulant matrices
of bandwidth N − 1; i.e. with UN−1 6= 0, are just full
block-circulant matrices. In this case the concept of upper
or lower banded block-circulant degenerates. U or L are
said to be normalized when U0 = I or L0 = I . Later in this
paper the number of blocks will actually be 2N according
to the conventions established in the previous section. The
modifications to be introduced to adapt to this situation are
obvious.
Note that while the inverse of a upper or lower triangular
matrix is still upper or lower triangular, the inverse of a upper
(lower) banded block-circulant matrix is in general neither
upper nor lower banded.

Consider a stochastic process y on Z2N described by the
unilateral AR model

n∑
k=0

Aky(t− k) = w(t) , t ∈ Z2N . (III.2)

where w is stationary white noise on Z2N ; that is

E {ww>} = diag{D, . . . ,D} ; D > 0 .
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Lemma 5: If the recursion (III.2) is associated to the
cyclic boundary values

y(−n) = y(N − n) , . . . ,y(0) = y(N) (III.3)

then the process y is reciprocal of order n.
The covariance matrix of a reciprocal process of order n has
a symbol whose inverse is a bilateral polynomial matrix of
degree n. Therefore computing unilateral AR representations
leads to a particular kind of polynomial spectral factorization
of the symbol. Before discussing this point we shall address
spectral factorization in general terms.

Since the frequency samples Φ(ζk) of a spectral density
matrix (II.4) are Hermitian positive definite, they admit a
factorization

Φ(ζk) = Ŵ (ζk)Ŵ (ζk)∗ , k = −N + 1, . . . , N (III.4)

where Ŵ (ζk) can be chosen square and invertible whenever
Φ(ζk) is such. Since Φ(ζ−k) = Φ(ζk)>, we may also choose
Ŵ (ζ−k) to be the complex conjugate of Ŵ (ζk). The inverse
Fourier transform of the sequence {Ŵ (ζk)},

Wk :=

N∑
j=−N+1

Ŵ (ζj) ζ
k
j

∆

2π
,

is therefore a sequence of real matrices whose “Zeta-
transform”

W (ζ) :=

N∑
k=−N+1

Wk ζ
−k (III.5)

takes by construction, the values Ŵ (ζj) at the frequencies
ζj ; i.e.

W (ζj) := Ŵ (ζj) , j = −N + 1, . . . , N . (III.6)

Hence by (III.4) the function W (ζ) satisfies the Spectral
Factorization equation

Φ(ζ) = W (ζ)W (ζ−1)> , ζ ∈ T2N . (III.7)

Since Φ(ζ) is the symbol of the circulant covariance matrix
Σ and in force of the isomorphism of Theorem 2, this
equation is equivalent to the factorization of the circulant
covariance matrix of the process as

Σ = WW> (III.8)

where W is the block circulant matrix with symbol W (ζ).
Hence spectral factorization of the symbol Φ(ζ) is equiva-
lent to circulant covariance factorization. Note that this is
generally not true for the Toeplitz covariance of stationary
processes defined on the integer line.
Consider the matrix polynomial W (z) obtained by substitut-
ing the discrete variable ζ in (III.5) by the complex variable
z. Since for ζ running on the discrete torus T2N the sample
values W (ζj) determine uniquely the matrix coefficients
Wk by means of the inverse finite Fourier transform, the
matrix polynomial W (z), z ∈ C is uniquely determined by
the discrete counterpart W (ζ), ζ ∈ T2N and there is an

isomorphic continuous polynomial spectral density Ψ(z); z ∈
C such that

Ψ(z) = W (z)W (z−1)> , z ∈ C . (III.9)

which is in fact the spectrum of a stationary (non periodic)
process of the Moving Average (MA) type. Hence it fol-
lows that the discrete spectral factorization problem (III.7)
becomes isomorphic to the ordinary spectral factorization of
a matrix polynomial spectrum Ψ(z), z ∈ C. Even if the
two processes have little to do with each other, once the
problem (III.9) is solved the discrete factors W (ζ) can be
obtained just by identifying the coefficients of the two matrix
polynomials W (z) and W (ζ). In fact the polynomial spectral
factorization (III.9) can be solved by a number of known
techniques, see e.g. [Rissanen(1973)]. Therefore we have
the following discrete version of a well-known continuous
spectral factorization result.

Theorem 6: Every nonsingular spectral density of a full
rank reciprocal process on T2N admits square spectral factors
satisfying (III.7). Any such factor is determined modulo right
multiplication by an arbitrary collection of (square) unitary
matrices U(ζk) ; k ∈ T2N such that

U(ζk)U(ζ−1
k )> = I , k = −N + 1, . . . , N .

Equivalently, every symmetric positive definite block circu-
lant matrix Σ admits a block-circulant factorization

Σ = W W> , (III.10)

where each block-circulant factor W is unique modulo right
multiplication by a unitary block-circulant matrix U which
satisfies U U> = I.
If the process y is full-rank, namely Σ > 0, the square factor
W in (III.10) must be invertible. Hence we may define the
random process w on Z2N by setting

w := W−1 y

This process is (periodic) white noise since

Ew w> = W−1ΣW−> = I

therefore whitening and spectral factorization are related
exactly as in the standard theory of stationary processes on
Z. In particular, from the existence of block-circulant factors
of the covariance Σ in Theorem 6, it follows that every
stationary periodic process can be whitened; i.e. there always
exist a sequence {Wk ; k = −N + 1, . . . , N} such that the
process

w(t) =

N∑
k=−N+1

Wk y(t− k) , t ∈ Z2N

is white noise.
Matrix symbols whose coefficients of the positive powers

of ζ are equal to zero are called Analytic. These factors are
of the form

A(ζ) =

N∑
k=0

Ak ζ
−k
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while coanalytic symbols have all coefficients of the negative
powers equal to zero. They have an obvious dual expres-
sion. Analytic symbols correspond to block-upper banded
circulant matrices and, dually, coanalytic symbols correspond
to block-lower banded circulant matrices (naturally, “lower
banded and upper banded” circulant matrices are not exactly
lower banded and upper banded in the ordinary sense because
of the circulant structure). A relevant question in this respect
is the following.

Problem 7: Characterize the spectral densities which ad-
mit analytic (or coanalytic) spectral factors. In other words,
under what conditions does a spectral density Φ(ζ) admit
matrix functions

A(ζ) :=

n∑
k=0

Ak ζ
−k , B(ζ) :=

n∑
k=0

Bk ζ
k (III.11)

with n < N , such that

Φ(ζ) = A(ζ)A(ζ−1)> , Φ(ζ) = B(ζ)B(ζ−1)> .
(III.12)

Essentially the same argument used in the continuous case
yields the following result.

Theorem 8: A positive definite Hermitian block-circulant
matrix M admits lower or upper banded factors of bandwidth
n if and only if it is bilaterally banded of bandwidth n.
Therefore a periodic process y with a block-circulant covari-
ance matrix Σ admits causal or anticausal whitening filters.
Define

w := A−1y , w̄ := B−1y (III.13)

then both w and w̄ are white noise processes since their
variances are block-diagonal; that is,

Eww> = I , E w̄w̄> = I

and hence any process y having a banded covariance admits
the representations y = Aw and y = Bw̄ which can be
written as causal and anticausal Moving Average (MA)-
type models which may formally be written as y(t) =
A(ζ)w(t) and y(t) = B(ζ)w̄(t). As we shall see in a
moment this result applies in particular to the conjugate of a
reciprocal process. Below is the main result of this section.
The statement appeared already in [Carli and Picci(2010)].
Due to length the proof is skipped; it can be found in the
forthcoming paper [Picci(2015)].

Theorem 9: Every full rank reciprocal process of order n
can be described by a n-th order unilateral AR-type model
(either causal or anticausal) with cyclic initial (or terminal)
conditions. Conversely, every stationary full-rank process
described by a unilateral AR-type model of order n < N ,
can also be described by a bilateral model of the same order.
Hence the class of full-rank processes of order n described
by unilateral AR-type models on Z2N coincides with the
class of reciprocal processes of order n.
This equivalence has been briefly addressed in
[Levy et al.(1990)Levy, Frezza, and Krener, Sect. V]
for non stationary reciprocal processes of order one and as
a limit case for stationary processes on a doubly infinite

interval, in the paper [Levy(1992)]. We have generalized
these representation results to reciprocal processes of
arbitrary order n.

IV. CIRCULANT BAND EXTENSION

In practice the data of an estimation problem are neces-
sarily finite and may just consist of (estimates of) a finite
sequence of n+ 1 covariance matrices {Ck} which we shall
collect in a block-Toeplitz matrix

Tn :=


C0 C1 . . . Cn
C>1 C0 C1 . . .
. . . . . .
C>n . . . C>1 C0

 , (IV.1)

assumed to be positive definite. The problem we shall
discuss in this section, is how to compute bilateral AR
representations of finite order of the type (I.4), starting
from the initial covariance data (IV.1) of the process. This
realization problem can be phrased as a moment problem
with complexity constraints and has been discussed in detail
in [Carli et al.(2011)Carli, Ferrante, Pavon, and Picci]. Here
we shall propose an approach which is not based on opti-
mization but rather on spectral factorization.

Consider a unilateral n-th order AR model (III.2) asso-
ciated with cyclic boundary conditions on [−N + 1, N ],
namely y(−N) = y(N) , . . . ,y(−N + n) = y(N − n)
which can be written in matrix form as Ay = w where
A = Circ{I, A1, . . . , An, 0, . . . , 0} is an invertible block-
circulant matrix and w is white noise of covariance D. The
covariance of y must admit the factorization

Σ = Eyy> = A−1DA−>

which, rewritten in terms of symbols reads

Φ(ζ) = A(ζ)−1DA(ζ−1)−> . (IV.2)

This formula is reminiscent of the well-known formula of the
classical maximum entropy Toeplitz extension of the block-
Toeplitz matrix of covariance data (IV.1) which we shall very
briefly review in the following paragraphs.

Recall that the (Toeplitz) maximum entropy extension
of Tn is the infinite covariance matrix of a process y
admitting an autoregressive description of order n of the form
Ln(z−1)y(t) = w(t) where Ln(z−1) is the n-th Levinson-
Whittle polynomial associated to the data matrix (IV.1) and
w is a white noise on Z having the same variance matrix of
the forward innovation process of memory n, denoted en(t).
In fact this extension is the unique covariance extension
having a banded inverse of (symmetric) bandwidth n.
Note that the so-called Toeplitz extension is not really a
Toeplitz matrix since its elements vary along the diag-
onals. In particular, in the main diagonal are listed the
variance matrices of the sequance e1(t), . . . , en(t), .. of
the finite memory innovation processes which are gener-
ally different. For more details see for example the survey
[Carli and Picci(2010)] presented at the 2010 MTNS confer-
ence.
Instead of the classical banded Toeplitz extension it will be
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more convenient to consider the banded Laurent extension
problem of Tn, as this avoids dealing with the “transient”
phenomenon alluded at before.
Now a block-Laurent matrix Λ is a doubly infinite array of
matrix blocks [ Λi,j ]i,j∈Z, having a Toeplitz structure that
is Λi,j = Λj−i for all i, j ∈ Z. Every south-east principal
corner of a Laurent matrix is Toeplitz. The symbol of Λ is

Ψ(z) :=

+∞∑
k=−∞

Λkz
−k , z ∈ C

which we shall assume to be well defined and invertible a.e.2.
We shall say that Λ is positive definite if it is symmetric, the
principal minors of any order are positive and convene to say
that Λ has a banded inverse of bandwidth n if all elements
of Λ−1 external to the two n-th diagonals, are zero.

Problem 10: Given a positive definite data matrix (IV.1)
find an infinite positive definite symmetric block-Laurent
matrix Λ satisfying the moment conditions

Λk =

∫ π

−π
Ψ(ejθ)ejkθ

dθ

2π
= Ck k = 0, 1, . . . , n ,

(IV.3)
and such that Λ−1 is banded of bandwidth n.
This problem can also be restated by saying that the inverse
symbol Ψ(z)−1 should be a finite symmetric Laurent (i.e.
bilateral) polynomial matrix of degree n. It is then immediate
that Λ−1 will be banded of bandwidth n if and only if
Ψ(z)−1 admits polynomial spectral factors of degree n. In
particular analytic and co-analytic polynomial factors will
correspond to doubly infinite upper and lower banded block-
Laurent matrix factors.

The solution of Problem 10 is essentially the same as
that of the well-known Toeplitz band extension problem of
[Dym and Gohberg(1981)].

Theorem 11: There is a unique banded Laurent extension
of Tn whose symbol is

Ψn(z) = Ln(z)−1DnLn(z−1)−> , z ∈ C , (IV.4)

where Ln(z) is the n-th Levinson-Whittle polynomial as-
sociated to the data matrix (IV.1) and Dn is the variance
matrix of the forward, memory n innovation en(t), of the
underlying stationary process y.

Proof: Since the Levinson-Whittle polynomials
Ln(z) = I +

∑n
k=1 Lkz

−k associated to Tn are analytic,
the infinite Laurent matrix L with symbol Ln(z) is upper
triagular. An arbitrary principal submatrix of L has the
following structure

L =


I L1 . . . Ln 0 . . . 0 0
0 I L1 . . . Ln 0 0 . . .

. . .
. . . . . . . . . . . . . . .

. . . 0
. . . 0 I L1 . . . Ln 0
0 0 0 . . . . . . . . . . . .

 .
(IV.5)

2Invertibility conditions of infinite Toplitz and Laurent matrices in
terms of their symbol are discussed in many places in the literature. See
[Hartman and Wintner(1950)] for the first original characterization.

Each row of this matrix is a whitening filter which applied
to the underlying stationary process y, written as a semi-
infinite column vector

y =
[
y(t)> y(t− 1)> . . . y(t− n)> . . .

]>
produces the memory n innovation at successive times
t, . . . , t− n, . . ., so that

en(t)
. . .

en(t− n)
. . .

 = Ly

Computing the covariance matrix of both members in this
expression we find

LΣL> = DnI

where Σ is the Toeplitz covariance matrix of y. Since the
symbols of the Laurent extension Λ and of Σ are the same,
this relation can also be written Ln(z)Ψn(z)Ln(z−1)> =
Dn, which is equivalent to (IV.4). 2

Return now to the circulant band ex-
tension problem. It has been shown in
[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci] that,
for N large enough the data (IV.1) have a unique extension
to a symmetric block circulant covariance matrix of N
blocks having a banded inverse. This unique extension
can in fact be computed by solving a variational problem
[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci]. Hence,
for N large enough and positive Toeplitz data matrix (IV.1),
there is a unique process y, reciprocal of order n, defined on
Z2N ≡ [−N + 1, N ], whose covariance is a block-circulant
extension of Tn. This N ×N blocks covariance has in fact
a banded inverse of bandwidth n.

By Theorem 9 this process admits a description by nor-
malized causal (or anticausal) AR models of order n on
Z2N of the form (III.2). The question is how to compute
the coefficients. The following argument is inspired by the
similarity of the formulas (IV.2) and (IV.4).

V. A CIRCULANT LEVINSON-WHITTLE ALGORITHM

We want to see if there is a circulant analog of the
Levinson-Whittle algorithm.
Assume that N is large enough for Tn to admit a circulant
extension. Then there is a stationary n-reciprocal periodic
process y on Z2N , whose initial covariance lags are the
entries of the matrix Tn. Now, inspired by the procedure
explained in e.g. [Carli and Picci(2010)], we introduce the
innovation process of finite memory n of y, defined as

en(t) := y(t)− Ê [y(t) | y[t−n,t )] , (V.1)

where the time interval is Z2N with modular arithmetic mod
2N .

Proposition 12: The process en(t) is the output of a
circulant convolution filter depending only on the previous
n+ 1 variables of the process

en(t) =

n∑
k=0

A(k) y(t− k) , t ∈ Z2N (V.2)
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where the coefficients {A(k)} are independent of t and are
uniquely determined by the initial data (IV.1). They coincide
with the coefficients Ln(k) of the n-th Levinson-Whittle
polynomial Ln(z) computed from the initial covariance data
(IV.1).

Proof: Time invariance follows from the joint station-
arity of en(t) and {y(t), y(t− 1), y(t− 2) . . . , y(t− n)}
for all t ∈ Z2N which implies that all cross covariances of
these random elements do not depend on t. The coefficients
A(k) are determined by the orthogonality condition en(t) ⊥
{y(t − 1), y(t − 2) . . . , y(t − n)} which must hold for
all t ∈ Z2N . To make formulas easier to read we shall
provisionally shift the time axis from [−N + 1, N ] to
[1, 2N ] as an isomorphic representation of Z2N . Due to
stationarity this shift does not change the cross covariances
and since the coefficients {A(k)} are determined by the cross
covariances of the process intervening in the orthogonality
condition, they will also remain unchanged. Without loss of
generality, for this proof the variable t will run from 1 to
2N with arithmetics mod 2N .

For n < t, (V.1) is just the same forward innovation of
memory n introduced in the standard Toepltz case. Note
however that, when n ≥ t, the subinterval of [t− n, t ) with
nonpositive times gets “folded around” by the arithmetics
mod 2N , so that we have3

en(1) := y(1)− Ê [y(1) | y[1−n,0 ]]

= y(1)− Ê [y(1) | y(0),y(−1), . . . ,y(−n+ 1) ]

= y(1)− Ê [y(1) | y(2N),y(2N−1),. . .,y(2N−n+1)]

en(2) := y(2)− Ê [y(2) | y[2−n,1 ]]

= y(2)− Ê [y(2) | y(1),y(0), . . . ,y(−n+ 2)]

= y(2)− Ê [y(2) | y(1),y(2N), . . . ,y(2N − n+ 2)]

. . . . . .

en(n) := y(n)− Ê [y(n) | y[0,n−1 ]]

= y(n)− Ê [y(n) | y(0),y(1), . . . ,y(n− 1) ]

= y(n)− Ê [y(n) | y(2N),y(1), . . . ,y(n− 1) ]

and so on, for all t ∈ Z2N . Rearranging the variables of the
process y into a column vector with the endpoint variable
y(2N) in the last block and y(1) at the top, the expressions
above can be rewritten as a causal filter of the form (V.2) as

en(1):=
[
I 0 . . . 0 A(n) A(n− 1) . . . A(1)

]
y

en(2):=
[
A(1) I 0 . . . 0 A(n) A(n− 1) . . . A(2)

]
y

. . . . . .

en(n):=
[
A(n− 1) A(n− 2) . . . I 0 . . . 0 A(n)

]
y

en(n+1):=
[
A(n) A(n− 1) . . . A(1) I 0 . . . 0

]
y .

(V.3)

which has a block-circulant structure. Now, enforcing the pe-
riodic boundary conditions on y, the orthogonality condition

en(1) ⊥ {y(0), y(−1), . . . ,y(−n+ 1)}

3The symbol Ê [· | ·] denotes wide-sense conditional expectation.

is the same as en(1) ⊥ {y(2N), y(2N − 1) . . . , y(2N −
n+ 1)}. Rearranging the first equation in (V.3), we obtain[
I A(1) . . . A(n− 1) A(n)

]
×

E


y(1)

y(2N)
y(2N − 1)

...
y(2N − n+ 1)




y(2N)
y(2N − 1)

...
y(2N − n+ 1)


>

= 0

(V.4)

On the other hand E en(1)y(1)> = E en(1)2 = Dn, which
yields[

I A(1) . . . A(n− 1) A(n)
]
×

Σ0 Σ>2N−1 Σ>2N−2 . . . Σ>2N−n
Σ2N−1 Σ0 Σ1 . . . Σn−1

Σ2N−2 Σ>1 Σ0 Σ1 . . .

. . .
. . . . . . . . .

Σ2N−n . . . Σ>1 Σ0

=
[
Dn 0 . . . 0

]

Substituting the known boundary values Σk = Ck ; Σ>N−k =
Ck ; k = 1, 2, . . . , n imposed by circulant symmetry, one
obtains the “circulant” Yule-Walker equation[

I A(1) . . . A(n− 1) A(n)
]
×

C0 C1 C2 . . . Cn
C>1 C0 C1 . . . Cn−1

C>2 C>1 C0 C1 . . .
. . . . . .
C>n C>n−1 . . . C>1 C0

=
[
Dn 0 . . . 0

]
(V.5)

which is exactly the same holding for the Toeplitz case see
[Whittle(1963)] and has the unique solution[
A(1) . . . A(n− 1) A(n)

]
= −

[
C1 C2 . . . Cn

]
T−1
n−1 ;

Dn = C0 +

n∑
k=1

A(k)C>k (V.6)

so that
A(1) = Ln(1), . . . , A(n) = Ln(n) , (V.7)

where Ln(k), k = 1, 2, . . . , n are the coefficients of the
Levinson-Whittle polynomial of order n for the data matrix
(IV.1). It can be checked that, imposing the orthogonality
condition en(t) ⊥ {y(t − 1), y(t − 2) . . . , y(t − n)} and
taking into account the periodic boundary values, all other
model equations in (V.3) yield exactly the same Yule Walker
equation (V.5).
Remarks

1. This result clearly agrees with the statement of Theorem
11. Since the circulant Yule Walker equation is exactly the
same as that for the Toeplitz case then determining the
polynomial Ln(ζ) =

∑n
k=0 Ln(k)ζ−k can be done by the

same recursive algorithm used to compute the n-th order
Levinson-Whittle polynomial in the Toeplitz case.

2. Let N be large enough and Σ be the unique
circulant extension of Tn with a banded inverse, see
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[Carli et al.(2011)Carli, Ferrante, Pavon, and Picci]. We
have just proved that the correspondence

Tn ↔ ({Ln(k) k = 1, 2, . . . , n}, Dn = Var {en(t)} )

is one-to-one. This is so because the coefficients L(k) and
the innovation covariance Dn are uniquely determined by
Tn as it follows from (V.6). On the other hand Tn is in
turn uniquely determined by the n-th order Levinson-Whittle
polynomial Ln(z−1) and by the relative innovation variance
Dn since equation (V.5) can be interpreted as a recursion in
the Ck’s, namely

Cn +

n∑
k=1

A(k)Cn−k = Dnδn,0

which, of course, also follows from classical Toeplitz ex-
tension theory. Hence the circulant extension Σ, must be
uniquely determined by the parameters Ln(k) and Dn. How
this circulant extension is concretely implemented is the
content of the next theorem.

Theorem 13: Assume N is large enough for (IV.1) to
admit a positive circulant extension and form the upper
triangular N ×N block-circulant matrix

L := Circ{I, Ln(1), Ln(2), . . . , Ln(n), 0 . . . 0} (V.8)

having symbol Ln(ζ). Let

M := L>D−1L (V.9)

where D := DnI, Dn being the covariance matrix of en(t)4.
Then M is a non-singular block-circulant symmetric matrix
which is banded of bandwidth n.
Then the covariance matrix Σ, solution of the circulant band
extension problem for the data (IV.1), satifies the equation

MΣ = I (V.10)

which is equivalent to the sequence {Σk ; k ∈ ZN} being
the solution of the two point boundary value problem:

n∑
j=−n

M(j)Σk−j = Iδk ; k ∈ ZN (V.11)

Σk = Ck ΣN−k = C>k ; k = 1, 2, . . . , n . (V.12)
Proof: Clearly (V.9) is a block-circulant positive def-

inite banded symmetric matrix of bandwidth n as required
for modes of reciprocal processes of order n, in (I.2). Then
(V.10) implies that

Σ = M−1 = L−1DL−>

and it obvioous that Σ is a block-circulant matrix having a
banded inverse of bandwidth n. We just need to show that
it is an extension of Tn.
The last equation, once rewritten in terms of symbols shows
that the symbol of Σ is isomorphic to that of the Laurent
extension of Tn as stated in Theorem 11, namely we have
Φ(ζ) = Ψ(ζ) as it follows from (IV.2) and (IV.4). Therefore,

4Note that we do not need to assume that D is the covariance of en; i.e.
that en is a white process.

since their symbols are isomorphic matrix polynomials, Σ−1

turns out to be a circulant N -section of the inverse Laurent
extension Λ−1 (see Definition 14 and Lemma 15 in the
appendix). This implies that both Σ and Λ are banded
extensions of the same Tn.
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APPENDIX

Definition 14: Let H = [Hi,j ]i,j∈Z be a banded sym-
metric block-Laurent (or Toeplitz) matrix of (not necessarily
symmetric) bandwidth n and let N > n. A block-circulant
N -section of H is a circulant completion of a finite principal
submatrix of N ×N blocks, namely

HN = Circ {H0, H−1 . . . H−n , 0 , . . . , 0 , Hn , . . . , H1}
(.1)

We have the following immediate but important fact.
Lemma 15: Let H be a banded infinite block-Laurent ma-

trix. Then H and HN have isomorphic polynomial symbols
H(z) and H(ζ). Hence for every factorization H(z) =
A(z)B(z−1)> there corresponds a circulant factorization
HN = ANB>N where AN has symbol A(ζ) and BN has
symbol B(ζ)..
The lemma in particular applies to upper or lower triangular
matrices.
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