
Abstract 
In this paper we address the problem of tracking an 

unknown contour by commanding the translational 
and rotational velocities of a non-holonomic vehicle 
moving on a plane. A TV camera provides measure- 
ments of the distance of the contour from the % axis of 
the moving frame (fixed with the vehicle). We discuss 
an on-line path planning control strategy which leads 
the vehicle to land softly at a desired point ahead on 
the unknown curve and to stay on the curve once it 
has been reached. This strategy could be seen as an 
explicit model-based predictive control scheme. 

1 Introduction 
An autonomous vehicle moving on a plane must fol- 
low a contour described by some unknown curve I? on 
the plane. The contour may describe the boundary 
of some unknown obstacle or one of the borders of an 
unknown road that the vehicle must follow. In most 
applications it is particularly important that the vehi- 
cle avoids overshooting and does not impact with the 
border. A TV camera provides measurements of the 
distance of the curve from the x axis of the moving 
frame (which we assume to coincide with the opti- 
cal axis of the camera) at N points placed at fixed 
distances {Q, .  . . , ZN} from the origin of the vehicle- 
fixed coordinate system {%, y} (the origin convention- 
ally coincides with the optical center of the camera). 
See fig. 1. 
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the past, but mostly in an ad hoc context. A solu- 
tion based on an approximate spline-based stochastic 
state-space model of the dynamics of the unknown 
contour as seen by an observer sitting on the moving 
vehicle-fixed frame has been proposed in [4]. An Ex- 
tended Kalman Filter built from this model serves to 
estimate the approximate contour on-line. The con- 
tour estimate is then tracked by applying a suitable 
state feedback control law. 

This idea has been shown to work well for tracking 
unknown smooth contours in simulations. There are, 
however, fundamental control issues on the problem 
which were not fully understood. One basic issue is 
for example understanding the controllability of the 
moving contour model and describing explicitely the 
manifold of steerable variables of the system. This 
has been clarified recently by Frezza and Soatto [5]  
and Ma et al. [7]. This paper takes a further step in 
this direction and studies path planning and track- 
ing control strategies which automatically adapt to 
the unknown shape of the contour and to the current 
position of the vehicle. 

From the sensor data the on-board computer must 
reconstruct on-line a current local model of the chunk 
of curve seen on the image plane. The reconstruction 
should be continuously updated based on both the 
current measurements and on some a priori model of 
the contour. 

Assume that the controller drives the vehicle by 
imposing the translational ( U )  and angular velocity 
( U )  of the camera-fixed frame. Then the on-board 
local model of the environment changes depending 
on the imposed motion. In particular the contour 
model permits to predict at each instant t a set of N 
future distances {f~, . . . , f ~ }  of the vehicle from the 
contour corresponding to the chosen control actions. 
This framework is clearly reminiscent of ”predictive 
control” [8], altough it does not necessarily rely on 
building an actual predictor. 

I 

X 

Figure 1: Path-following of an unknown trajectory 
in a plane. 

This is a prototype problem of autonomous nav- 
igation and has been studied rather intensively in 

2 The model 
In this section we describe a simple model for a vehicle 
following an unknown road. The kinematic model is 
a single wheel that rolls without slipping. The road 
is described as a parametrized planar curve that can 
be represented locally as a continuous function. 
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In this paper we restrict ourselves to consider a pla- 
nar  road, which we represent in an inertial reference 
frame (0, X ,  Y} as a parametrized curve 

r = ( ( X ( ~ ) , Y ( S ) )  E R ~ ,  s E [o,s] c R} (1) 

where s is the curve parameter, for instance arc-length. 
We will assume that l? is of class at least C1, i.e. that 
it is continuous along with its tangent. We model 
the vehicle as a wheel that is allowed to roll without 
slipping. This can be represented as a moving f rame  
{o,z,y} that rotates about the normal to the road- 
plane, but can only translate along one independent 
direction. Without loss of generality we let such a di- 
rection coincide with the x-axis, so that the instan- 
taneous inertial velocity of the vehicle, in the moving 
frame, is represented by 

. We assume to be able to where G = 

control the longitudinal speed v and the steering angle 
w.  Such a restriction on the velocity of the wheel 
does not impose limitations on the positions it can 
reach. Constraints on the velocity of a system that 
cannot be integrated into constraints on position are 
called non-holonomic,  and there is a vast literature 
on controllability, stabilization and path planning for 
such systems [9, 101. 

In the moving frame, the road is represented as a 
contour r(t) that changes over time under the action 
of the motion of the vehicle: 

[ - U  0 1  

r(t) = { ( 4 , t ) , Y ( L t ) )  E R2, 1 E [O,LI c RI. (3) 

In order to simplify the representation, we will assume 
that - locally at time t - r(t) satisfies the conditions 
of the implicit function theorem, so that we can let 
z(2, t )  = 1 V t and 1 E [0, L]. Consequently the contour 
can be represented as a function 

Y = Y(Z, t )  3 E [O, 4- (4) 

Such a representation breaks down, for instance, when 
the road winds-up or self-intersects or when the vehi- 
cle is oriented orthogonal to it. 

2.1 Measurement process 
When we drive a car we measure the perspective pro- 
ject ion of the 3-D world onto a 2-D surface, such 
as our retina or the CCD surface of a video-camera, 
which can be modeled as a plane. We choose a camera 
reference-frame centered in the center of projection, 
with the x-axis orthogonal to the retinal line. For 

the sake of simplicity, we consider the optical cen- 
ter of the camera to1 coincide with the center of the 
wheel. What we can measure is then the perspective 
projection 

(5) 

up to a white, zero-mean Gaussian noise n. In prac- 
tice it is computationally prohibitive to measure the 
projection of the whole contour 

while it is more convenient to process few regions of 
interest and localize the position of the projection of 
the contour at a few, controlled locations on the image 
121: 

Note that the positions xi can be considered control 
parameters that can therefore be chosen according to 
some optimality criterion. 

In the remainder of the paper, we will assume that 
we can measure directly pairs of coordinates 

(Xi, y(Xi,  t ) )  i = 1..  1 N 

on the road-plane from the image coordinates. 

2.2 

The controls v ,w  act on the vehicle’s moving frame 
generating a vector field. A point which is stationary 
in inertial coordinates has coordinates on the moving 
frame (2, y )  that evolve according to 

Local evolution of the contour 

In particular, points on the contour, that is pairs of 
the form (z, y )  = (x, y(x, t ) ) ,  evolve according to 

The above is a Riccati-type Partial Differential Equa- 
tion that can be interpreted as governing the evo- 
lution of the surface {y(x,t),x E [O,L],t E [ O , t f ] .  
If we couple the above dynamics with the measure- 
ments from the previous section, we end up with a 
distributed dynamical system: 

(10) 
{ E  = -wx - q + ( W Y ( X , t )  - U )  

y z ( t )  = y(xi,t) + nz(t) i = I . .  . N .  

Our goal is that of using the inputs v ,w  to control 
the evolution of y ( z , t )  in order to drive the vehicle 
along the contour. 
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2.3 Local representation of the mov- 
ing contour 

Consider a local representation of the contour around 
the point z = 0 via the moments 

(11) 
. .  
. - .  

The first two moments and encode a notion of 
“relative pose” between the vehicle and the contour. 
In particular could be interpreted as an approxima- 
tion of the distance from the vehicle to the contour, 
and E2 as the relative orientation between the two (of 
course the approximation becomes more accurate as 
the vehicle gets closer to parallel to the tangent to 
the contour at z = 0). The terms Jk IC > 2 encode 
curvature and higher terms, which characterize the 
‘(shape” of the contour, which is an invariant prop- 
erty in the Euclidean plane and therefore does not 
depend upon the particular choice of the reference 
frame. 

We can then derive the dynamics of such a repre- 
sentation. This can be done easily using the above 
definitions and the dynamics of the contour in the 
viewer’s reference (10): 

The chain of derivatives does not close in general. 
The above system tells us, however, that this hap- 
pens when the contour l7 can be computed as the 
solution of a finite-dimensional differential equation 
with appropriate boundary values. 

2.4 Conventional control obtained by 
feedback linearization 

The relative pose variables (1 and E2 satisfy 

which can be solved for [w,w] assigning any desired 
dynamics. Choosing, for example, to regulate (1 and 
& to zero exponentially by assigning 

{ ? : E 2  

2 - - 4 1  - PE2 

where cy and p are positive real numbers, one obtains 
the following feedback control law 

Clearly, once on it, the contour is tracked exactly 
applying the control law U = J3v. This can be seen 
from (12) by imposing (1 = & = 0 with the initial 
conditions (l(0) = 0, &(O)  = 0 which imply that the 
vehicle is on the contour. 

Of course the method described does not result in 
a practical control law since it demands exact knowl- 
edge of the shape of the contour at all times. The 
control law depends on (3 which is the local curva- 
ture of the contour and, in general, it is not measured. 
Furthermore, in this kind of problems it is natural to 
assign the dynamics of the pose variables with re- 
spect to the arc-length (lateral dynamics) of the tra- 
jectory followed by the vehicle and then parametrize 
the arc-length with the desired velocity (longitudi- 
nal dynamics). In practice, to achieve robustness, it 
is also necessary to implement a “predictive” control 
action. 

All these considerations motivate the introduction 
of a novel control strategy which will be described in 
the following sections. 

It is first necessary to model the contour y(x, t )  ‘U’ t. 

2.5 Model of the contour and the “Splina- 
tor” 

In order to render the model (10) finite-dimensional, 
we can restrict the contour y to belong to a partic- 
ular class. For instance, F’rezza and Picci [4] have 
proposed the set of cubic B-splines [l]: 

N + 2  

y(z,t) = Bi(Z)Pi(t) 5 E [O,LI, t L 0 (16) 
i=l 

where Bi(x) are cubic polynomials with support on 
[xi-l,xi+3]. The coefficients pi(t) can be chosen ei- 
ther to interpolate or to approximate the nodes (xi, g i ) ,  
i = 1..  . N .  If we organize the measurements yi into 
an N-dimensional vector y, we can write the mea- 
surement equation in (10) as 

Y = B(%)P(t) + n(t) (17) 

where B is as an N x (N+2) tri-diagonal matrix and p 
an N-dimensional vector. Substituting equation (16) 
into (lo),  we obtain a model of the form 

= w x  + BZ(z )p ( t ) (wB(z )p ( t )  - .) (18) { Y = B(X)P(t) + 4 t ) .  

Ideally, one would like to invert the matrix B and 
write a filter having as state the coefficients p(t). If 
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this was possible, the estimates of the coefficients p(t )  
could be used to  approximate the whole contour: 

i=l 

However, in order to invert B one needs to specify 
two additional conditions. Frezza and Picci [4] have 
introduced a nonlinear, finite-dimensional filter that 
estimates the coefficients p ( t )  on-line using two ad- 
ditional stochastic conditions. Such a filter is called 
the “Splinator” in [4]. 

2.6 Planning a connecting contour 

Suppose at time t = 0 the vehicle is at a given position 
and orientation relative to the contour, which results 
in initial conditions &(O) = ti, V i. We could design 
a piece of contour yn (connecting contour) that starts 
at the current position of the vehicle with the tangent 
pointing along the x-direction, and ends at a point 
(zc,r(xc,O)) on the contour with the same tangent. 
Overall the contour yn must satisfy the minimal set 
of conditions: 

(20) 
h ( 0 )  = 0 

%(xc) = Z(xc,o). a yn(0) = 0 ax 
yn(xc) = y(xc,o) 

The simplest curve that satisfies the four above con- 
ditions is a polynomial of degree 3. For instance, we 
can consider a cubic Bez ier  curve: a ~ P o . ~ ( x )  + . . . + 

scaled) Bernstein polynomials of degree j = 3. After 
the coefficients ai are chosen to satisfy the conditions 
(20), we have 

Then, if we consider the composite contour 

and we apply the control w = 5 w  to track it exactly, 
we may hope to  be able to converge onto the contour 
and then follow it with no error. 

This strategy is bound to failure for several reasons. 
First the composite contour is not a feasible path €or 
the vehicle since continuity of the second-derivative 
(and therefore of the control) is not guaranteed at 
xc. Second, while the connecting contour is being 
planned, the vehicle may have moved, so that the 
initial conditions (20) are violated. More in general, 
such a control strategy does not tolerate measurement 
noise, errors due to computation delays, uncertainty 
in the model of the road etc. 

2.7 
Consider the evolution of the spline model (18), after 
having added two extra conditions: 

The “Splinator” as a controller 

If we augment B with the two extra rows resulting 
from the above constraints, we can invert the model 
(18) and end up with 

P(t) = E - l ( z ) w x  1- B-l(z)B,(z)p( t ) (wB(x)p(t )  - w) { [ ; ] = B(.)P(t) + [ nt) ] 
(24) 

where B denotes the augmented matrix B. We now let 
p(t) be the current estimate of the state of the above 
model obtained, for instance, through and Extended 
Kalman Filter. We call such a filter the “Splinator 
control”. The reason why it is a controller follows by 
defining 

to be the control spline, and then considering the con- 
trol action 

YC(G t )  A B(x)P(t) (25) 

Observe that this control law is feasible, since the con- 
necting contour is at least C2 at the origin and, by 
construction, it passes through the current position 
of the vehicle with the correct direction. The effec- 
tive trajectory of the vehicle is the envelope of the 
contours yc, which is updated at each time-instant. 

While the control action just defined depends upon 
the curvature of the road at the control points xi, 
which are positive. Therefore, in this sense, the splina- 
tor implements a “predictive” control action. 

In figure 2 we report the trajectory generated by 
a P-D linear controller, a Ljapunov-based controller 
and the controller based on the splinator trying to 
follow a trajectory with a cusp. It can be seen that 
the Splinator control exhibits some “predictive” ac- 
tion. We are in the process of performing thorough 
experimentation with the Splinator controller. 
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Figure 2: Convergence of a linear H, controller 
(top), a Ljapunov-based controller (center) and the 
spline-controller (bottom) following a curved road 
with a cusp. The spline-controller exhibits a ‘$re- 
dictive” behavior. 
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