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Abstract 

On-line estimation of the direction of feature points 
moving in space from noisy projections on a plane is 
a classical problem occuring in computer vision which 
has traditionally been treated by ad hoc statistical 
methods in the literature. In a previous paper [ll] 
we have formulated it as a Bayesian estimation prob- 
lem on the unit sphere. A natural probabilistic struc- 
ture which makes this estimation problem tractable has 
been introduced. Within this structure, exact recursive 
solutions can be given for sequential observations of a 
fixed target point, while for a moving object in general 
one has to resort to approximations. In this paper an 
approximate ( “wide-sense’’ ) solution is proposed which 
leads to very simple recursions similar to the Kalman 
Filter. In certain situations this solution may provide a 
substantial improvement over the traditional EKF. As 
an example, we discuss estimation of the direction of 
points whose motion is described by a simple dynamic 
model of the random walk type. This model is of in- 
terest in pratical situations when dealing with slowly 
time-varing observed feature points. 

1 Introduction 

The operation of perspective projection onto the image 
plane of an ideal (pinhole) camera can be described ge- 
ometrically as the intersection of the rays ( straight 
homogeneous lines) emanating from the optical center 
of the camera, connecting to the observed object in 
Et3, with the image plane. In practice the projections 
are noisy and the detected feature points on the image 
plane do not correspond exactly to straight projections 
of the real feature points. This occurs because of dis- 
tortion of the optical systems and noise of various kinds 
entering the signal detection and the processing of the 
electronic image formed on the CCD array. For these 
reasons, the task of reconstructing the location in % 
D of an observed object from its noisy projections on 
the image plane, is a non trivial problem which should 
be treated by appropriate statistical methods. So far 
only ad hoc estimation methods have been used (most 
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of the times variations of the Extended Kalman filter) 
with generally poor performance and possible diver- 
gence problems. A sound statistical analysis of the 
problem has been lacking. 

In the simplest case the observed feature objects are 
points moving unconstrained in Et3. Since we cannot 
measure distances along the projecting rays and we 
may at most recover the feature points modulo distance 
from the optical center, we may, without loss of infor- 
mation, normalize the vectors joining the optical center 
to the measured projections on the image plane to unit 
length. In fact, both the target point and its observed 
projections on the image plane, may be described as 
directions and represented, say, by the coordinates of 
the corresponding unit vectors x and Y k  lying on a unit 
sphere centered at the optical center of the camera. In 
this formulation, x is the true unknown direction point- 
ing at the observed point in R3 and y k ,  k = 1,. . . , m 
(vectors on the unit sphere) are noisy measurements of 
the “true” direction x. Hence the problem is formu- 
lated as est imation o n  the unit sphere. 

The precise nature of the observation noise will be dis- 
cussed later, however it should be clear that the way the 
noise affects the ideal perspective projection x cannot 
be additive and a realistic formulation of the problem 
must depart sharply from the standard linear-Gaussian 
setup. In the next section we shall discuss a natural 
family of probability distributions on the unit sphere. 

2 The Langevin Distribution 

A family of probability distributions on the sphere 
which has many desirable properties is defined by the 
Langewin density 

with respect to the spherical surface measure d a  = 
sinOdOdq5. The vector parameter p E 6’ ( p is con- 
ventionally normalized to unit length) is the mode of 
the distribution, while the positive number K > 0 is 
called the concentration of the distribution. For IC --+ 0 
the density becomes the uniform distribution while for 
K --+ 00, p tends to a Dirac distribution concentrated 



at z = p. The density function (l), denoted L ( ~ , K ) ,  
was introduced by Langevin (1905) in his statistical- 
mechanical model of of magnetism [6]. Since then it has 
been rediscovered and used in statistics by a number of 
people, see [12]. Obseive that the Langevin distribu- 
tions form a oncparameter exponential family and are 
invariant with respect t.3 rotations. The functional form 
is preserved under multiplication allowing a straightfor- 
ward application of Bayes rule. Introducing a suitable 
spherical coordinate system, (1) can be rewritten in the 
form 

which shows that L ( p ,  K )  is rotationally symmetric 
around its mode p. 

The expression (1) is for a Langevin distribution on the 
unit, sphere in R3. For higher dimensions, the normal- 
ization constant has a slightly more complicate expres- 
sion. The distribution on Sn-’, n 2 3, has density 

with respect to the spherical surface measure, where 
In/’- (x) is a modified Bessel function of the first kind. 
More generally, an arbitrary probability density func- 
tions on Sn-’ can be expressed as the exponential of 
a finite expansion in spherical harmonics. These are 
discussed, for example, in [12, p. SO-881. In this sense 
the Langevin density is a sort of “first order” approx- 
imation as only the first spherical harmonic, cos@, is 
retained in the expansion and the others are assumed 
to be negligible. 

Rotation-invariant distributions like the Langevin dis- 
tribution are natural for describing random rotations. 
Let x be a fixed direction, represented as a point in 
S2, which is observed by a camera. The observation 
mechanism perturbs x in a random way ( say because 
of lens distortion, pixel granularity etc). Since the out- 
put of the sensor, y, is also a direction represented by 
a vector of unit length, the perturbation may always 
be seen as a random rotation described by a random 
rotation matrix R = R(p) E S0(3 ) ,  where p is the 
polar vector of the rotation, i.e. R(p) := exp{pA} so 
that 

y := R(p)x (3) 

In other words we can always model the noise affecting 
x as multiplication by a rotation matrix. The action 
of the “rotational observation noise” on directions x E 
S2 can in turn be described probabilistically by the 
conditional density function p(y [ x = z) of finding the 
observation directed about a point y on the sphere, 
given that the LLtrue” observed direction was x = x. 

lThe wedge A denotes cross product. 

A very reasonable unimodal conditional distribution, 
rotationally symmetric around the starting direction x 
(no angular bias introduced by the observing device) is 
the Langevin-type density, 

K 
P(Y 1x1 = exp KX‘Y (4) 

In this framework we may think of the ordinary distri- 
bution L ( p ,  K )  as a conditional density evaluated at a 
known point x = p. 

The Angular Gaussian Distribution 
Some of the properties of the Langevin distribution are 
the natural analog of the properties of Gaussian dis- 
tributions on an Euclidean space. There are various 
attempts in the literature to derive the Langevin dis- 
tribution as the distribution function of some natural 
transformation of a Gaussian vector. Perhaps the easi- 
est result in this direction is the observation, first made 
by Fisher [5], that the distribution of a normal random 
vector x with isotropic distribution M ( p ,  a21), condi- 
tional o n  the event { llxll = 1 } is Langevin with mode 
p/llpll and concentration parameter ~ ~ p ~ ~ / a ’ .  

A more useful result, discussed in [12, Appendix C] 
is the remarkable similarity of the so-called Angular 
Gaussian distribution to the Langevin. The angular 
Gaussian is the probability density of the direction vec- 
tor x := (/ll(ll when E has an isotropic Gaussian dis- 
tribution, i.e. - N ( p ,  a’1). The distribution is ob- 
tained by computing the marginal of N ( p  , 0’1) on the 
unit sphere 11z)) = 1. It is shown in [12, Appendix C] 
that the angular Gaussian is a convex combination of 
Langevin densities with varying concentration pararn- 
eter s, 

where X = ,,$, Q = and it is seen from this for- 
mula that A g  depends on p ,  a’ only through the two 
parameters X and a. We shall denote it by A g ( X ,  a’). 
The notation is convenient, since for either moderate 
or large values’ of a,  Ag(X, a’) is, to all practical pur- 
poses, the same thing as L(A,K), where 

Note that all distributions N ( p p ,  p2a21), p > 0, give 
origin to the same angular Gaussian as N ( p ,  a21). 
(This precisely is the family of isotropic Gaussians gen- 
erating the same angular distribution.) 

2“Moderate or large” here means that n := Q:’ should be 
greater than, say, 100 in order to have a fit within a few precent 
of the values of the two functions. In fact the angular Gaussian 
approximates a Langevin distribution also for Q: small, when both 
of them are close to uniform, but the relation between CY and n 
is different. 
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The role of the angular Gaussian in modeling direc- 
tional observations can be illustrated by the following 
example. Let E ,  6 be Gaussian isotropic random vec- 
tors with [ - N ( p ,  a21), < - N(0,  a:1) and assume 
we observe the direction of the vector 

q=c<+< (6) 

If E ,  C are independent and C is an orthogonal ma- 
trix (CC’ = I )  the distribution of q is isotropic 
Gaussian and the direction y := q/11q11 then has an 
angular Gaussian (i.e. Langevin) distribution y z 

11f412 ). &4llPll, 

No matter how 6, < are correlated, the conditional den- 
sity p(y ]  t )  is also angular Gaussian. In fact this fol- 
lows since the conditional distribution of q given t = [ 
is Gaussian with mean C[ and variance U,”. Hence 

where x is the direction vector of E .  We are interested 
in the conditional density p(y 1 x). We shall state the 
result in a formal way as follows. 

Proposition 2.1 If  the conditional variance a:, of q 
given = E i s  proportional t o  llE112, i.e. a: = a;11[112, 
then the conditional density p(y I x) for the model (6) 
is  angular Gaussian. 

Proof Denote r := 11t11. Then the claim follows 
from 

P(Y I x) = p P ( Y  I Z, r)P(r I .)d. 

since p(y, r I z) = P(Y I x, rMr I 2) = P(Y I O P ( ~  I 

depend on r .  rn 
x) and in the stated assumption, p(y I x, r )  does not 

The [-dependence of the conditional variance (i.e. of 
the power of the additive noise in the Euclidean model 
(6)) is a condition of “angular noise” for the directions. 
Note that the condition precludes independence of t ,  6. 
This agrees with the intuition of (infinitesimal) angular 
noise which, for each direction x, should be represented 
locally as an additive vector on the tangent plane of the 
unit sphere at the particular point x. 

For the Langevin density, the parameters (p )  K )  can be 
expressed as a function of the mean vector m of the 
distribution. In S2 one has for example 

m 

and it can be checked generally that the formula pro- 
vides a one-one correspondence between m and (p ,  6). 

In other words, m is a vector parameter which deter- 
mines L(p, 6) completely. The following is the coun- 
terpart on Sn-l of a well-known characterization of the 
Gaussian distribution on the Euclidean space R”. 

Proposition 2.2 Among all probability densities o n  
the unit sphere having the same mean  vector m, the 
Langevin distribution i s  the one of maximal entropy. 

Proof: Denote by 

the entropy of the density f (or of the distribution 
d F ( z )  := f(x)da,). Let Z(x) be the Langevin den- 
sity with mean m; from the expression of 1 it is evident 
that 

- - 

for an arbitrary f of mean m. It follows that the dif- 
ference 

- H1- Hf - 

= - Jsn-1 log i(x) f(2) dux + Jsn- 1 log f(z) f (x )  h z  

= J8n-l log f(x) d ~ z  

is the Kullback-Leibler distance of f from 1, which is 
known to be nonnegative unless f = 1. Therefore Hl 2 

rn H f  for all f of mean m. 

Best Approximation by a Langevin distribution 
Let P be an arbitrary probability measure on the unit 
sphere, absolutely continuous with respect to the sur- 
face measure d a  = sine de dp;  we want to approximate 
the density f (x) = d P / h  by means of a density of the 
Langevin type, i.e. by a density in the class 

K 
c = {[(x) = exP{KPW , K 2 0, IIPII = 11; 4minh( 6) 

( 8) 
using as a criterion of fit the Kullback-Leibler pseudo- 
distance, 

~, 

The problem of finding the minimum: 

can be solved by introducing Lagrange multipliers and 
taking derivatives with respect to p and K .  It can be 
shown [4] that the minimum is attained for: 

coshK 1 
sinhr; K 
K m - - A p = O  

(11) 
- p’m = 0 
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where m is the mean vector of P 

Proposition 2.3 Thc: best Langevin approximant of a 
probabilty distribution P o n  the sphere in the sense of 
minimal Kullback-Leibler pseudo distance, i s  the one 
having the same mean vector m of P.  

and our approximation problem is solved simply by 
equating the mean vectors of the two distributions. In 
other words, to find the best Langevin approximant 
of P ,  the only thing we need to know is its mean vec- 
tor. This result leads to a kind of wide-sense estimation 
theory on spheres with the mean parameter playing the 
same role of the second order statistics in the Gaussian 
case. 

3 MAP Estimation 

Assuming that. the n priori  model for x is of the 
Langevin type say, 

and assuming independence of x and p ,  we can form 
the a posteriori distribution p(x I y)  by Bayes rule. The 
joint density is 

P ( Z ,  Y )  = P(Y I Z ) P ( x )  = A ( K >  6 0 )  exp k b‘Z 
where 

K 6 0  

4n sinh K 4n sinh KO 
A (K ,Ko)  = ___ 

k j i ’z  := Kiy’Z + KoZbZ. 

Here k = k(y, 20) > 0 and ji = j i ( y ,  20) are 
of 9 and of the a priori mode xo defined by 

functions 

Note that 11ji11 = 1. Dividing by the marginal one o b  
tains the a posteriori density 

which is still Langevin. The conditional mode vector 
@(y) ( the Bayesian Max imum a Posteriori estimate of 
x, given the observation y) and the conditional con- 
centration R(y) are trivial to compute in this case and 
in fact still given by formula (13). These formulas can 
be generalized to the case of sequential observations of 
a fixed target point 1111. 

Assume we have a sequence of observations 

y ( t )  := R ( p ( t ) )  x = exp{p(t)A} x t = 1,2, .  . . (14) 

where the p’s  are identically distributed independent 
random rotations, also independent of the random vec- 
tor x. The y(t)’s are conditionally independent given 
x, and p ( y ( t )  I x) = L(x, K ) ,  where K, is the concentra- 
tion parameter of the angular noise. Hence, denoting 
yt := [y(l), . . . , y( t )]’ ,  we may write 

where (. , .) denotes inner product i n R3. Assuming 
an a priori density x - L(z0, K O ) ,  one readily obtains 
the a posteriori measure 

e x p k ( t ) ( b ( t )  , z) (16) 
’(.: = (47r sinh k ( t ) )  

which is still of the Langevin class with parameters 

t 

t 

q t )  = I I K C Y ( S )  + K O Z O I I  (18) 
s= 1 

These formulas can be easily updated for adjunction of 
the t+ 1-st measurement, obtaining formulas which look 
like a nonlinear version of the usual “Kalman-Filter” 
updates for the sample mean which one would obtain 
in the Gaussian case. 

Proposition 3.1 The MAP estimate (conditional 
mode) P ( t ) ,  of the f i e d  random direction x observed 
corrupted by independent angular noise { p ( t ) }  of con- 
centration K ,  propagates in t ime according to the recuT- 
sions 

with initial conditions ji(0) = xo and k(0)  = K O .  More- 
over,as Eb(t)  = p and b(t) + p w.p.1 ast + 00. 

4 Dynamic estimation 

Generalizing the recursive MAP estimation to the case 
of a moving target point is a nontrivial problem. 

Dynamic Bayes formulas 
Assume the random motion of the target point x(t), 
forms a stationary Markov process on the sphere and 
denote by p ( z t  [ut)  the a posteriori density given the 
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observations yt .  A standard application of Bayes rule, 
see e.g. [13, p.1741, provides the formulas 

where N is a normalization constant. Note that if both 
the observation noise model and the a priori condi- 
tional density p(zt+llyt) are Langevin-like, so is the 
a posteriori density p(zt+l)yt+l). In this ideal situ- 
ation the evolution of the conditional mode ,G(tlt) of 
p(zt]yt) for adjunction of the (t + 1)-st measurement 
is described by recursive formulas analogous to (19), 
(20), Unfortunately, for this to be true, the Chapman- 
Kolmogorov transition operator in (22) should map 
Langevin distributions into Langevin distributions, ap- 
parently a rather unlikely situation, if we exclude very 
trivial examples. Anyway, in this fortunate situation 
(assuming a Langevin initial distribution for x(O)), the 
Bayes iteration wuold preserves the Langevin structure 
and an exact finite-dimensional filter would result, de- 
scribed completely in terms of conditional mode and 
conditional concentration, (22) providing an updating 
relation for the a priori mode of the form 

where F and g are in principle computable from the 
Markovian model. In reality, nontrivial examples where 
the Langevin distribution is preserved exactly in the 
prediction step, are hard to find. There are however 
extensive comparison studies, reported e.g. in [12] 
showing that some classical models (say Brownian m e  
tion on the sphere) tend in certain cases to preserve 
the Langevin structure, at least approximately. These 
examples are well-suited for the wide-sense approach 
based on best Langevin approximation, which we have 
mentioned in the previous section. 

The wide-sense filter 
Assume we are given a Markov model describing the 
motion of the target point on the Sphere. The steps of 
the estimation algorithm are the following 

1. Let p(yt)x(t) = zt) - L(Q,K,) (Langevin- 
distributed angular observation noise and assume 
p(zt)yt-l) - L(fitlt-l, R t l t - l )  is available. 

2. (Measurement update) when the measurement yt 
becomes available one has p(ztlyt) - L(,btlt, & I t )  
where 

1 
K t J t  

3. (Lifting ) compute the conditional mean 

f k ( t  + 1 I t )  = E [ ~ ( t  + 1) I y t ]  

btp = Y P t l t - & I t - 1  + b Y t )  

&It = ll~tp-lbt/t-l + SoYt l l .  

4 
usingp(st lyt) above and the given Markov model. 
the best Langevin approximation of the condi- 
tional distribution of x(t + 1) given yt, is com- 
puted by solving 

5. pretend p ( ~ ~ + ~ l y ~ )  is Langevin. Repeat the 
first step when yt+l is available to compute 
p(zt+1Iyt+l), etc. 

Estimation of a Brownian motion evolving on a 
sphere 
Brownian motion on spheres can be defined axiomati- 
cally as the natural analog of the process in E” and is 
discussed by several authors. The classical references 
are Perrin [lo], McKean [SI and Brockett [2]. 

The stochastic differential equation 

P 
dx(t) = Ax(t)  dt + C B i x d b ( t )  Jlx(0)II = 1, (25) 

where b(t) is pdimensional standard Brownian motion 
(in RP) and A is the sum of a skew symmetric matrix 
plus a It8 “correction term”, i.e. 

i=l 

defines a homogeneous Markov process with values in 
Sn-’ which, in fact, represents a rotational Brownian 
motion on the sphere. This can be seen by rewriting 
(25) a little more explicitely as: 

where WA := R and L is defined in an obvious way. 
The term between square brackets is an infinitesimal 
random angular velocity vector dw( t ) ,  so that, 

dx(t) = &(t) A x(t) + (It6 correction) . (26) 

Now, assume that the observation process is governed 
by a conditional law of the Langevin type p ( y t  1 s t )  - 
L(zt ,  60) and that after the last available measure- 
ment, y(to), the a posteriori conditional distribution, 
p(zt,lytO) - L(ji(tolto), R ( t o l t 0 ) )  is available at time t o .  
We shall compute the best Langevin approximant of 
the a priori  conditional density before the next mea- 
surement, say p ( z t  (y to) ,  t > t o  . 

To this end we don’t need to solve the Fokker-Planck 
equation to obtain p(zt I g t o )  and then approximate it 
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via minimization of the Kullback distance; we just need 
to compute the conditional mean m,(t I t o )  = E(x( t )  I 
ytO). The conditional mean is immediately computed 
from the equation (25), making use of the zero-mean 
property of the ItG’s integral, as 

( 27) 
If 

with o2 a positive scalar variance paramenter,(isotropic 
diffusion on the sphere) we obtain 

which incidentally shows that the conditional mean 
tends to zero as t -+ 00, a natural phenomenon for dif- 
fusion processes. The parameters @(t I t o )  and k( t  1 
t o )  of the conditional Langevin distribution L(b(t I 
t o ) , k ( t  I t o ) )  approximating p ( z t  I y t o )  are obtained 
from step 4 of the “wide-sense” algorithm above. Note 
that in order to get k ( t  I t o )  we need to solve a trascen- 
dental equation. One may take advantage of the fact 
that for moderately large R ( t  1 t o )  the second equation 
is well approximated by : 

Conclusions 

In this paper we have discussed a simple Bayesian esti- 
mation problem on spheres related to  a prototype direc- 
tional reconstruction problem in computer vision. For a 
k e d  direction in space, a simple closed-form recursive 
MAP estimator is derived. For a general Markovian 
target an approximate “wide-sense” filtering algorithm 
is presented which only requires the a priori updating 
of the conditional mean. An example of wide-sense fil- 
ter tracking a Brownian trajectory on the unit sphere, 
has been discussed. Much work remains to be done. 
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