
ESTIMATING THE ASYMPTOTIC VARIANCE
OF CLOSED LOOP SUBSPACE ESTIMATORS

Alessandro Chiuso and Giorgio Picci ∗,1

∗ Department of Information Engineering, University of
Padova, Via Gradenigo 6/b, 35131 Padova, Italy.

e-mail:{chiuso,picci}@dei.unipd.it

Abstract: Subspace identification for closed loop systems has been recently studied
by several authors. Recent results are available which express the asymptotic
variance of the estimated parameters (and hence of any system invariant) as a
function of the “true” underlying system parameters and of certain conditional
covariance matrices.
When it comes to using these formulas in practice one is faced with the problem
of computing an estimator for the variance from input-output data alone.
In this paper we discuss this problem, we propose an algorithm which computes
an estimate of the variance from data alone and we show, through some simple
simulation examples, how this estimate behaves as compared both to the “true”
asymptotic variance and to its Monte Carlo estimate.
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1. INTRODUCTION

It is well known that subspace methods compare
very favorably to prediction error methods (PEM
hereafter) for identification of linear multi-input
multi-output (MIMO) stochastic models. Only
very recently however (see for instance (Chiuso
and Picci, 2003; Chiuso and Picci, 2005a; Qin
and Ljung, 2003; Lin et al., 2004; Larimore, 2004;
Jansson, 2003; Jansson, 2005)) new subspace pro-
cedures have been proposed which can effectively
deal with feedback, making them very appealing
for application areas where feedback is present
either due to intrinsic mechanisms or physical
controllers which cannot be removed due (e.g.) to
safety or production quality constraints. However,

1 This work has been supported in part by the RECSYS
project of the European Community and by the national
project New methods and algorithms for identification and
adaptive control of technological systems funded by MIUR.
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it comes to using an estimated model for
urpose of control design or decision making
ault detection), it is mandatory that some
ity tags” should be attached to the estimated
l telling us how reliable the estimated model
taining practically computable expressions
e (asymptotic) variance of subspace esti-
has long been recognized to be a central is-
system identification, see e.g. (Ljung, 1997).

pen-loop subspace methods recent results
vailable regarding the computation of the
ce of the system parameter estimates (see
tance (Bauer, 2005; Chiuso and Picci, 2004;

on, 2000) and references therein) while, for
loop operating conditions, expressions for

ymptotic variance of the system parameters
two recently developed subspace methods
e found in the paper (Chiuso, 2004). The
ssions found in the paper (Chiuso, 2004)
d on the “true” system parameters and



on certain covariance matrices involving input,
output and state process. Similar considerations
hold for the formulas found in (Chiuso and Picci,
2004) and for the results reported in (Bauer,
2005).

Of course when performing an identification ex-
periment one is only given input-output data and
therefore both parameters and variance have to be
estimated. A natural question therefore arises of
assessing the reliability of the asymptotic variance
formulas when using solely input-output data. In
this paper we shall address this question provid-
ing both an explicit algorithm to estimate the
asymptotic variance from the data and also some
experimental study on simulated data concerning
the reliability of these variance estimators.

Our purpose is to convince the reader that the
somewhat complicated-looking formulas given in
the references, can in practice be implemented by
rather simple algorithms. Moreover we shall show
that the computation of the asymptotic variance
can indeed be done from the observed data hence
allowing an effective use of the theoretical results.
The outline of the paper is as follows: Section 2
we state the problem and set up notation while
Section 3 recalls the variance formula derived in
(Chiuso, 2004). In Section 4 we describe an algo-
rithm to compute the variance which can be im-
plemented using few lines of Matlab and in Section
5 we report some experimental results comparing
the estimated variance with its theoretical value.
We refer the reader to the work (Chiuso, 2004)
for comparison between asymptotic and sample
variance. Also 5% and 95% percentiles for the
estimated variance obtained from Monte Carlo
simulations will be reported.

2. STATEMENT OF THE PROBLEM AND
NOTATION

Let {y(t)}, {u(t)} be jointly (weakly) stationary
second-order ergodic stochastic processes of di-
mension p and m respectively, which are repre-
sentable as the output and input signals of a linear
stochastic system in innovation form{

x(t + 1) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t) t ≥ t0.

(2.1)
where in general there may be feedabck from
{y(t)} to {u(t)} (Granger, 1963; Caines and
Chan, 1976; Gevers and Anderson, 1982), so that
we shall consider “closed loop” identification here-
after. Without loss of generality we shall assume
that the dimension n of the state vector x(t) is as
small as possible, i.e. the representation (2.1) is
minimal. For simplicity we assume that D = 0, i.e.
there is no direct feedthrough. For future reference
we define Ā := A − KC and let ρ := λmax(Ā) be
an eigenvalue of maximum modulus of Ā; we shall
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e that |ρ| < 1. We shall denote the “joint”
ss as z :=

[
y� u�]� of dimension q := p+m.

hite noise process e, the innovation of y
the joint past of y,u, is defined as the one
head prediction error of y(t) given the joint
) past of u and y up to time t. It variance
x is denote with the symbol Λe.

ymbol Ip shall denote the identity matrix of
sion p, A� shall indicate the transpose of
atrix A.

eral the aim of an identification experiment

dentify the system parameters (A,B, C,K)
in a suitable canonical form), or equivalently
he transfer functions F (z) = C(zI −A)−1B
nd G(z) = C(sI−A)−1K +I, starting from
nput-output data {ys, us}, s ∈ [t0, T + N ],
enerated by the system (2.1)
ompute the asymptotic variance of the esti-
ated parameters (of any system invariant to
e precise) from input output data {ys, us},
∈ [t0, T + N ] alone.

is paper we shall be concerned with point
bove. In particular we shall consider the
totic variance of the estimated frequency

nse using some recently proposed closed loop
ace methods. We shall report results for the
n of the “innovation estimation” algorithm
n and Ljung and of the “predictor based”
ace identification as described in (Chiuso
icci, 2005a; Chiuso, 2004; Chiuso and Picci,
). For reasons of space we shall not report
etails of the algorithms for which we refer
terested reader to the paper (Chiuso, 2004).
ver we shall only describe the algorithm to

ute the asymptotic variance for the “predic-
sed” subspace identification of (Chiuso and
2005b), the other being completely simi-

all use the standard notation of boldface
case) letters to denote random variables or
nfinite tail sequences. Lower case letters will
e sample values of the corresponding random
les. More specifically, we shall denote by
he output random vector at time t or the
nfinite tail [yt yt+1, . . . yt+k . . . ] where
the sample value of y(t). It can be shown
Lindquist and Picci, 1996)) that the Hilbert
s of second order stationary random vari-
and the Hilbert space of semi-infinite tails
ining sample values of a (second order) sta-
y stochastic process are isometrically iso-
ic and therefore random variables and semi-
e tails can be regarded as being the same

lab code is available upon request from the authors.



object. For this reason we shall use the same
symbol without risk of confusion.

We shall use capitals to denote a “tail matrix” of
length N . For instance Yt := [yt yt+1, . . . yt+N−1],
Ut := [yt yt+1, . . . yt+N−1] and Zt := [Y �

t U�
t ]�.

These are the block rows of the usual data Hankel
matrices which appear in subspace identification.

For −∞ ≤ t0 ≤ t ≤ T ≤ +∞ we define
the Hilbert space of scalar zero-mean random
variables

U[t0, t) := span {uk(s); k = 1, . . . ,m, t0 ≤ s < t }
and similarly for Y[t0, t) where the bar denotes clo-
sure in mean square, i.e. in the metric defined by
the inner product 〈 ξ, η 〉 := E{ξη}, the operator
E denoting mathematical expectation. These are
the past spaces at time t of the processes u and
y. Similarly, let U[t, T ], Y[t, T ] be the future input
and output spaces up to time T .

The joint future, Z[t, T ] and joint past Z[t0, t)

spaces are defined as U[t, T ] ∨ Y[t, T ] and U[t0, t) ∨
Y[t0, t) respectively, the ∨ denoting closed vec-
tor sum. By convention the past spaces do not
include the present. When t0 = −∞ we shall
use the shorthands U−

t , Y−
t for U[−∞, t), Y[−∞, t),

and Z−
t := U−

t ∨ Y−
t . Subspaces spanned by

random variables at just one time instant (e.g.
U[t, t ], Y[t, t ], etc) are simply denoted Ut, Yt,
etc. while for the spaces generated by u(s) and
y(s), −∞ < s < ∞ we shall use the symbols
U, Y, respectively. For convenience of notation we
denote by f := T − t the future horizon.

We shall let Σab := E
[
ab�]

denote the covariance
matrix of the random vectors 3 a and b.

Given a subspace C ⊆ U ∨ Y, we shall denote
with a slight abuse of notation, by E[a | C] the
orthogonal projection of the random variable a
onto A; in the Gaussian case the linear projection
coincides with conditional expectation, i.e. E[· |
A] = E[· | A].

In the finite dimensional case E[a | C] will be given
by the usual formula 4

E[a|C] = ΣacΣ−1
cc c. (2.2)

Given a subspace C we define the projection
errors ã := a − E[a|C] and b̃ := b − E[b|C];
the symbol Σab|c (or sometimes also Σab|C) will
denote projection error covariance (conditional
covariance in the Gaussian case) Σab|c := Σãb̃ =
Σab − ΣacΣ−1

cc Σcb.

For column vectors formed by stacking past
and/or future random variables (or semi-infinite
Hankel matrices) we shall use the notation:

3 Zero mean.
4 Provided Σcc is invertible.
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:=
[
y�(t) y�(t + 1) . . . y�(s)

]�
. Finite

el data matrices will be denoted by capitals,

t,s] :=
[
Y �

t Y �
t+1 . . . Y �

s

]�
se of notation we shall reserve the following
l symbols for the finite past and future

el data matrices:

Y − := Y[t0,t) Y
−

:= Y[t0,t]

Y + := Y[t,T−1] Y + := Y[t+1,T ]

. (2.3)

ame notation shall be used for all signals
ed (e.g. U−,U+,Z−, Z+ etc.). Spaces gen-
by finite tails, i.e. row spaces generated

ite Hankel data matrices, will be denoted
the same symbol used for the matrix itself.
le covariances will be denoted with the same
ol used for the corresponding random vari-
with a “hat” on top. For example, given
sequences At := [at, at+1.., at+N−1] and
[bt, bt+1.., bt+N−1] we shall define the sam-
variance matrix

Σ̂ab :=
1
N

N−1∑
i=0

at+ib
�
t+i.

r our ergodic assumption lim
N→∞

Σ̂ab
a.s= Σab.

rthogonal projection onto the row space of
rix will be denoted by the symbol Ê; for in-
, given a matrix Ct := [ct, ct+1, .., ct+N−1],
t] will be the orthogonal projection onto the

pace of the matrix Ct; the symbol Ê[At|Ct]
enote the orthogonal projection of the rows
matrix At onto the row space of Ct, and is
by the formula

Ê[At|Ct] = Σ̂acΣ̂−1
cc Ct (2.4)

ove, given a matrix Ct, we define the pro-
n errors Ãt := At − Ê[At|Ct] and B̃t :=
[Bt|Ct]. The sample covariance (conditional
e covariance) of the projection errors is de-
with the symbol Σ̂ab|c := Σ̂ãb̃ and com-
by the formula

Σ̂ab|c := Σ̂ab − Σ̂acΣ̂−1
cc Σ̂cb.

3. PRELIMINARY RESULTS

is section we shall provide simplified for-
for the asymptotic variance of closed loop

ace identification methods. For convenience
all only discuss the variance expression for
redictor based” algorithm 5 . The simplified
las below are valid when either (i) ρ = 0
he system is of the ARX type) or (ii) the
horizon t − t0 goes to infinity at a suit-
rate with N (see for instance (Bauer and

rred to as “whitening filter ” algorithm in (Chiuso,



Ljung, 2002)). Denote by ÂN , B̂N , ĈN the esti-
mators with N data points and by AN , BN , CN

the “true” (but unknown) matrices in a suitable
data dependent basis; it is shown in the literature
that the basis in which AN , BN , CN is represented
can be chosen in such a way that (AN , BN , CN ) →
(A,B,C) as N → ∞. Define also the error ÃN :=
ÂN − AN ; it is shown in (Chiuso, 2004) that√

Nvec
(
ÃN

)
,
√

Nvec
(
B̃N

)
and

√
Nvec

(
C̃N

)
are jointly asymptotically normal with asymptotic
covariance matrix given by the formula⎛
⎝ MA1P MA2P̄

MB1P MB2P̄
MCP 0

⎞
⎠ Σ

⎛
⎝ MA1P MA2P̄

MB1P MB2P̄
MCP 0

⎞
⎠

�

(3.1)

where:

Σ =
(

Σ11 Σ12

Σ�
12 Σ22

)
and

(a) P and P̄ are suitable permutation matrices
(b) Σij are conditional covariance matrices of

input-output data to be defined later on
(c) MA1, MA2, etc. are matrices which depend

only on the system parameters and on some
conditional covariances involving input, out-
put, state and innovation processes.

For the extact definition of P and P̄ we refer the
reader to (Chiuso, 2004), while we report in the
sequel the quantities in points (b) and (c) above.

Let Γ̄ :=
[
C�, Ā�C�, ..,

(
Āf−1

)�
C�

]�
and

Mx1 :=
(
K[I 0] − AΓ̄−L

)
, Mx2 := Γ̄−L,

My :=
(
[I 0] − CΓ̄−L

)
, where −L denotes the left

inverse Γ̄−L :=
(
Γ̄�W�W Γ̄

)−1 Γ̄�W�W for a
suitable weighting matrix W .

Using the symbol x̂(t) for the Kalman state
E

[
x(t) | Z[t0,t)

]
and defining the transient inno-

vation ê(t) := y(t) − E
[
y(t) | Z[t0,t)

]
and g(t) :=

[u�(t) ê�(t)]� we have

MA1 :=
[(

Σ−1
x̂x̂|g Σ�

z−x̂|g
)
⊗ Mx1

]
MA2 :=

[(
Σ−1

x̂x̂|g Σ�
z̄−x̂|g

)
⊗ Mx2

]
MB1 :=

[(
Σ−1

uu|(x̂,ê) Σ�
z−u|(x̂,ê)

)
⊗ Mx1

]
MB2 :=

[(
Σ−1

uu|(x̂,ê) Σ�
z̄−u|(x̂,ê)

)
⊗ Mx2

]
MC :=

[(
Σ−1

x̂x̂ Σ�
z−x̂

) ⊗ My

]
(3.2)

In order to define the matrices Σij in (3.1) we need
to introduce 6 the following quantities

zzk
[t0+τ,t+τ) := E

[
z[t0+τ,t+τ) | Z⊥

[t+τ,t+τ+k]

]
,

z̄zk
[t0+τ,t+1+τ) := E

[
z[t0+τ,t+1+τ) | Z⊥

[t+1+τ,t+τ+k]

]
,

6 The superscript zk is meant to remind that the process
z is taken conditionally on the k lags of the joint future.

and le

Σ

Simila
Let a

and 7

With
have f
by
Σ11(k

Σ2

and
Σ12
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t

zzkzzh(τ) := E

[
zzk
[t0+τ,t+τ)

(
zzh
[t0,t)

)�]
.

rly we introduce Σz̄zkz̄zh(τ) and Σzzkz̄zh(τ).
lso define τ := h − k, Qk :=

(
Σ−1

zz|zk ⊗ Ip

)
Q̄k :=

(
Σ−1

z̄z̄|zk ⊗ Ip

)
.

this notation the matrices Σ11, Σ22 and Σ12×f blocks given, for h = 1, .., f , k = 1, .., f ,

, h) := Qk−1

(
Σzz(k−1)zz(h−1) (τ) ⊗ Λe

)
(Qh−1)�

(3.3)

2(k, h) := Q̄k

(
Σz̄z(k)z̄z(h) (τ) ⊗ Λe

) (
Q̄h

)�
(3.4)

(k, h) := Qk−1

(
Σzz(k−1)z̄z(h) (τ) ⊗ Λe

) (
Q̄h

)�
.

(3.5)

4. ALGORITHM

purpose of this section is to present and
thm to estimate the quantities in formula
from data. We shall assume that the fol-
g quantities are given as a byproduct of the
ace identification algorithm:

stimates of the system matrices Â, B̂, Ĉ, K̂
nd of the innovation variance Λ̂e

he finite sequences X̂t (state) Êt := Yt −
ˆ [

Yt | Z[t0,t)

]
(transient innovation)

he QR decompositions 8

Z :=
[

Z+

Z−

]
= R · Q Z :=

[
Z+

Z
−

]
= R · Q

(4.1)

so Ind and Ind be set of indexes so that, us-
atlab notation, Z(Ind, :) = Z− and Z(Ind, :
−

. Then, for k = 0, .., f − 2, define the finite
f length 9 N − f :

= R(Ind, k ∗ q + 1 : (f − 1) ∗ q)∗
(k ∗ q + 1 : (f − 1) ∗ q, f − k : N − k − 1)

= R(Ind, k ∗ q + 1 : f ∗ q)∗
(k ∗ q + 1 : f ∗ q, f − k − 1 : N − k − 2)

heir “normalized” versions:

:=

⎡
⎣(

Zk
(
Zk

)�
N − f

)−1

⊗ Ip

⎤
⎦ (

Zk ⊗ Λ̂1/2
e

)

:=

⎡
⎢⎢⎣

⎛
⎜⎝Z

k
(
Z

k
)�

N − f

⎞
⎟⎠

−1

⊗ Ip

⎤
⎥⎥⎦ (

Z
k ⊗ Λ̂1/2

e

)

that Σzz|zk = Σzzkzzk (0).

he price of some complication one can compute just
decomposition, however for ease of exposition we

to assume both decomposition in (4.1) are available.
te tails here will be shorter than N since we need to
er shifted version of the data.



Then Σ can be estimated as:

Σ̂ :=
1

N − f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z0
n
...

Zf−2
n

Z
0

n
...

Z
f−2

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z0
n
...

Zf−2
n

Z
0

n
...

Z
f−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Remark 4.1 The estimation of Σ needs to be
done with some care. For instance, the naive
approach of estimating all the block matrices
Σij(h, k) and then putting them together to form
Σ̂ij would not guarantee that the estimated Σ̂ is
positive definite. Note instead the we have con-
structed Σ̂ by taking a “square” which guarantees
positive semi-definiteness. �

The task to estimate MA1,MA2 etc. is sim-
pler as one just need to substitute true pa-
rameters (A,B, C, K,Λe) with their estimates
(Â, B̂, Ĉ, K̂, Λ̂e) and replace the conditional co-
variance matrices with their sample version which
are easily computable using the Hankel data ma-
trices Z−, Z̄−, Ut and the state and innova-
tion sequences X̂t, Êt which are available as
a byproduct of the identification experiment as
mentioned in point (b) above. Note that the fi-
nite tail corresponding to g(t) can be defined as

Gt :=
[
U�

t Ê�
t

]�
.

5. EXPERIMENTS

We consider two systems (i = 1, 2) in state space
form{

x(t + 1) = Aix(t) + Biu(t) + Kie(t)
y(t) = Cix(t) + e(t)

where e(t) is unit variance white noise.

Example 1 is a first order system A1 = 0.9,
B1 = 1, C1 = 1.4, K1 = 1, with a proportional
controller u(t) = 5r(t)−y(t); the reference signal
r(t) is unit variance white noise.

Example 2 instead is a fifth order (marginally
stable) system

A2 =

⎡
⎢⎢⎢⎢⎣

4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4 0 0 0 1
0.86 0 0 0 0

⎤
⎥⎥⎥⎥⎦

B2 =
[
0.00098 0.01299 0.01859 0.0033 −0.00002

]�
C2 =

[
1 0 0 0 0

]
K2 =

[
2.3 −6.64 7.515 −4.0146 0.86336

]�
controlled with u(t) = r(t) − H(z)y(t) where

H(z) =
0.63 − 2.083z−1 + 2.8222z−2 − 1.865z−3 + 0.4978z−4

1 − 2.65z−1 + 3.11z−2 − 1.75z−3 + 0.39z−4
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t − t0 f N

Example 1 10 5 1000

Example 2 25 15 2000

Table 1. Simulation setup.

gain r(t) is unit variance white noise. The
iment is carried out as follows: 1000 Monte
runs are repeated using the parameters

ted in Table 1. For each run the variances
transfer functions are estimated using the

thm in Section 4. Then we have computed
ean of the estimated variance (solid line in
1) together with 5% and 95% percentiles.
are obtained frequency by frequency (not to

derstood as 5% and 95% percentiles over the
frequency axis) using the function prctile
Matlab Statistics Toolbox.

e would expect, the variation of the esti-
variance grows large as the variance itself

.

6. CONCLUSIONS

s paper we have addressed the problem of
totic variance computation of subspace es-

es from data. We have shown that the for-
derived in (Chiuso, 2004) can be effectively

to assess the quality of estimated models;
plementation just requires computing some
e covariance matrices and relies on quanti-
hich come as a byproduct of the identifi-
experiment. Matlab code is available upon

st from the first author.

itation of the theory is the fact that the
ce expressions rely on the (rather strong)
ption that the true model belongs to the
l class, i.e. no undermodeling occurs or, in
words, that the “true” order is chosen. In
nse, even though order selection is one of the
in subspace identification, the asymptotic
s are valid “conditionally” given the true
Further research is necessary to overcome

imitation; this is in fact of paramount im-
nce in practice, where identification has to
derstood as model approximation/reduction
than estimation of a “true” system.
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Fig. 1. Asymptotic variance estimated using data (1000 Monte Carlo runs) vs. true asymptotic variance.
Solid: mean estimated variance. Dashed: 5% and 95% (frequency by frequency) percentiles computed
from the Monte Carlo experiment. Dashed-dotted: true asymptotic variance. Black with crosses (+):
predictor based subspace identification. Blue with circles (o): innovation estimation algorithm.
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