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Abstract: Although frequency estimation is a nonlinear parametric problem, it can be cast
in a non-parametric framework. By assigning a natural a priori probability to the unknown
frequency, the covariance of the prior signal model is found to admit an eigenfunction expansion
alike the famous prolate spheroidal wave functions, introduced by D. Slepian in the 1960’s.
This leads to a technique for estimating the hyperparameters of the prior distribution which
is essentially linear. This is in contrast to standard parametric estimation methods which are
based on iterative optimization algorithms of local nature. The approach seems to be new and

quite promising.
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1. INTRODUCTION

Frequency estimation is an old nonlinear problem of
paramount importance in various branches of engineer-
ing which has generated an enormous literature, see e.g.
Quinn and Hannan [2001]. Besides spectral analysis, which
tends to produce nonconsistent estimates, in the literature
the problem has been mostly approached by optimization
techniques which by their very nature are generally local
and non robust. In the last two decades, mostly due to the
availability of ultrafast and very powerful computers, there
has been a dramatic growth in research and applications
of nonparametric Bayesian identification and estimation
methods. These tools have made non-parametric statistics
based on the Bayesian paradigm almost routine. In this
paper we shall attempt to formulate and indicate a possible
solution of the frequency estimation problem by using a
nonparametric Bayesian approach. There seems to be very
little prior research in this area and we may adventure to
say that our approach seems to be original.

The advantage of the Bayesian point of view is that it pro-
vides a rich probabilistic setting in which parameters may
appear at a higher level as hyperparameters in the a priori
distribution. As we shall see this is also the case for our
problem setting. In this way frequency estimation, which is
naturally an exquisitely parametric problem, can be recast
in a Bayesian framework as a problem of hyperparameter
estimation for a natural class of prior distributions.

We use a very natural prior density on the unknown fre-
quency which describes the samples of the observed signal
as those of a particular class of stationary processes, called
Bandlimited white noise processes. Stationary a posteriori
descriptions of harmonic signals are also considered in
Lazaro-Gredilla et al. [2010] but our work goes far beyond
this reference. We exploit the fact that the covariance of
these processes turns out to be of the modulated Sinc type.
It came as a pleasant surprise for us to discover that the

eigenfunction expansion of Sinc-type kernels has been well
studied in the 60’s and 70’s by David Slepian and co-
workers in a famous series of papers the first of which
Slepian and Pollak [1961] has about 1700 citations. These
eigenfunction expansions have the remarkable property of
involving only a finite and known number of terms, as most
eigenvalues decay very fast to zero for index greater than a
known a priori computable number (the so-called Slepian

frequency).

The paper is organized as follows:

In Sect. 2 and 3 we formulate the frequency estimation
problem in a Bayesian framework. We derive the covari-
ance Kernel of the oscillatory signal x and of the observa-
tion process.

In Section 3 we discuss the problem of estimating the
hyperparameter of the prior distribution. The estimate can
be computed by a prediction error method. The general
structure of the linear Bayesian predictor is discussed in
Sect. 4.

In Sect. 5 we illustrate by experiments the spectral ex-
pansion of the covariance kernel (Sinc and Modulated
Sinc kernels) and pinpoint the special properties of the
eigenvalues eigenfunctions of these kernels, discovered by
Slepian. The Bayes predictor can be expressed in terms of
these spectral data.

Section 6 uses the special properties of the eigenstructure
to reveal the dependency of the predictor on the center
frequency and the prediction error estimate.

The appendix contains a restatement of some facts which
relate to the eigenstructure of the covariance Sinc and
modulated Sinc Kernel.

We deal with signals with just one hidden sinusoidal
component; signals with multiple harmonic components
of unknown frequency can be treated in a similar way
by assigning non-overlapping rectangular (uniform) prior
distribution to the unknown frequencies wy ;k =1,2,...
so that the a posteriori process model results in a sum of
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uncorrelated components each having spectrum supported
on non-overlapping frequency intervals. In this way the
overall covariance kernel becomes the sum of the individual
covariances of the harmonic components and Multiple Ker-
nel methods as Hoffmann et al. [2008], Bach et al. [2004]
can be applied; although some of the details still need to
worked out. This issue is a subject of current research and
will be discussed in a future publication.

2. PROBLEM STATEMENT

Consider the following simple model of a (wide-sense)
stationary random oscillation in additive noise
y(t)=acos(2rft)+bsin(2nft)+w(t):=x(t)+w(t), t€Z,
(1)
where, by stationarity, a, b must be uncorrelated zero-
mean random variables of the same variance o2. We
shall model the normalized angular frequency f as a
random variable taking values in the interval [—1/2, 1/2],
independent of a, b. The process w(t) is a stationary white
noise of variance o2, independent of everything else.
Our goal is to estimate the unknown random parameters of
the model and their variances. To this end we shall propose
a nonparametric approach which seems to be original.
Note that the model is linear in a, b and hence estimation
of the amplitudes and their variance when the frequency
is given is just a standard linear estimation problem. For
this reason, in this paper we shall just concentrate on the
estimation of frequency.
The covariance function of the process y has the form

S(t,s) = Ey(t)y(s) = K(t,s) + 0g,8(t, s)
where ¢ is the Kronecker symbol and K is the a priori
covariance of the signal x(t), that is

K(t,s) = E{a® cos(2nft) cos(2nfs) + ab cos(2nft) sin(27fs)

+ absin(2nft) cos(27fs) 4+ b?sin(2nft) sin(27fs)}
We shall put a prior distribution on the normalized fre-
quency f assuming a uniform distribution on the frequency
band [fo — W, fo + W] where 0 < W < 1/2.
Computing first the conditional expectation with respect
to f = f and then integrating with respect to the prior on
f one gets

K(t,s)=E [02 cos 2nf(t — 5)] —

) fo+W df
2 2nf(t — s)—=
o /fo_W cos 27 f ( 8)4W

9 sin 20Wr
2 _— 2
cos 2w foT Sy om (2)

where 7 := (¢t — s). The signal x(¢) is therefore stationary.
For fy = 0, the function K is the well-known Sinc Kernel.
For fo # 0 it will be called a Modulated-sinc Kernel
Khare [2006]. Since the Sinc kernel is the inverse Fourier
transform of a rectangular function of frequency

sin 27 W7 _ /W Lemﬁdf

2nWr _w 2W

it follows that for f, = 0 the process x(¢) has a uniform
spectral density supported on the normalized frequency
interval [-W, W]

=0

Bulf) = 0" groxiow w(f)

where ya denotes the characteristic function of the set A.
In other words, the process x(t) is just a bandlimited white
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noise signal within the frequency band [—W, W1].
For W < 1/2 the process is purely deterministic with an
absolutely continuous spectral distribution (the logarithm
of the density being obviously not integrable) while for
W = 1/2 the a priori model of the process is just a
stationary white noise of variance o2.
When fy # 0, assuming |fo — W| < 1/2, the spectral
density is supported on the two intervals [fo — W, fo+ W]
and [—fo — W, —fo + W] and has the expression

1 1 1 1
by (f) = 502WX[f07W, fo+W]+§ U2WX[ffofW, —fo+W]
The signal x can therefore be described as a deterministic
carrier of frequency 27 fy, amplitude-modulated by the
bandlimited white noise process described before.
To simplify notations we shall denote the center frequency
of the prior by the symbol 0 := 27 fy with fo < 0.5. In the
literature both 6 and W are called hyperparameters of the
prior distribution. In the Bayesian nonparametric setting
estimation is posed as estimation of the hyperparameters;
see Chiuso [2015] for a critical survey and an extensive
bibliography.

3. A BAYESIAN PARADIGM FOR FREQUENCY
ESTIMATION

Estimation of the hyperparameter is usually done by
maximum likelihood based on a (hopefully) long data set.
Let yn(t) := [y(t) y(t—1) ...yt — N + 1)]—r be a string
of N successive observed data and let

Y =yn(yn(t)"
The Gaussian log-likelihood function based on N data can
be written Hannan and Deistler [1988]

N N 1
1(0) = -5 log 2%—5 log det X(6, W)—ﬁtr{E(H, W) tyn}

(3)
where 3(6, W) is the covariance matrix of y . One should
minimize this function with respect to 6, W. For N mod-
erately large, say of the order of hundred data points, the
numerical maximization of this function turns however out
to be an impossible task. This is so also if we approximate
the problem by just attempting to minimize the trace
tr{Z(0, W)~ 1 Yn}. The reason being that the inversion
of large Toeplitz matrices is an extremely time-consuming
and ill-conditioned problem. One may try several variants
of so-called “fast” Toeplitz inversion algorithms e.g. Golub
and van Loan [1983] but going beyond N = 100 turns out
to be very hard anyway. See however Stoica et al. [2011]
for a brute-force solution of a similar problem.

To circumvent the Toeplitz inversion problem we shall
resort to a Prediction-Error (PE) minimization approach.
It is well-known that under very mild assumptions on
the true model describing the data, the two procedures
are asymptotically equivalent; see e.g. Ljung [1999]. It is
shown for example in Ljung’s book that a PE estimator
will generally be consistent and asymptotically Gaussian.
The estimation by a prediction-error method, although
being not exactly equivalent to maximum likelihood for
small data lenght, has the advantage of not requiring the
inversion of large Toeplitz matrices.

Assume that we have a (long enough) data series of 2N
samples {y(—N +1),...,y(0),...,y(T)} and for each t =
0,...,7 — 1 construct a one step ahead linear predictor,
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say y(t + 1 | t) of y(¢t + 1) based on the past history
yn(t) = {y(s);t > s >t — N+ 1} of the most recent
N observations at time t. Such a predictor will be based
on a linear Bayesian estimation approach. The details will
be given in Section 4. Note that since in the model (1)
the additive noise is uncorrelated with the signal x one
actually has the identity

yEt+1]t)=x(t+1]1), (4)
so that the predictor y(¢ + 1 | ¢) will coincides with the
predictor of the process x having covariance kernel K (t —
s), based on observations corrupted by the additive white
noise w. As such, this predictor will be a linear function
of the past data yn(t), denoted

y(t+11t)=al0) yn(t) ()
where the vector a depends and on the hyperparameter 6
and W (not shown) but is independent of ¢ by stationarity.
Now it is quite obvious and can be formally justified
that for W — 0 the process x becomes a sinusoidal
signal of deterministic frequency equal to the a priori
centerfrequency fo. As W increases, there trivially will be
more uncertainty associated to f. Intuitively W could be
interpreted as a confidence interval about the true signal
center frequency. In the approach proposed in this paper
the minimization of the prediction error will be done only
with respect to 6 keeping W fixed. We shall just minimize
the sample prediction error variance with respect to ; i.e.
1 X
min > (y(t+1) = y(t+1[1)? (6)

t=1

which will yield a PE estimate 61 of course depending
on W. The parameter W will then be adjusted iteratively
in function of the statistical dispersion of the center fre-
quency estimate.
In general, even if the minimization (6) does not involve
large Toeplitz matrix inversion, it needs to be done numer-
ically. Later we shall argue that our problem has a special
structure which will make this task quite straightforward.
Note that, by consistency of PE estimation, for N — oo
the residual average squared prediction error minimized in
(6), approximates the one step prediction error variance.
Therefore a consistent estimate of the noise variance can be
obtained as the average residual squared prediction error
1 « .
62 = T > (y(t+1) = a(br) "yn(t)*. (7)
t=1

which will converge when T — co to E (y(t+1) — (¢t +1 |
t))?, the innovation variance of y(t). Since (for W < 1/2)
x(t) is a purely deterministic process, the innovation of
the process y(¢) is just the additive white noise w(t) in the
model (1) and hence, for T  large enough we have 62, ~ o2,
Now stack each scalar linear predictor next to each other
fort=0,1,...,N — 1 to form a vector

r=[F10)y2[1) ... yT|T-1)] (@8
and let

yn(0)" y(1)
o | w7 | e
yn(T—1)7 y(T)

The minimization (6) will be done in two steps. First step
will be a least squares minimization of the Euclidean norm

. ~ 2 . 2
m — = min -Y . 9
ae]lg%’ lyr =yl aenlw lyr nall (9)
Next (see Sect. 6) we shall compute the estimate 07 using

the analytic expression of a(#) which will be derived in the
following two sections of the paper.

4. STRUCTURE OF THE LINEAR PREDICTOR

The normalized N x N covariance matrix ! of an observed
string yn (t) of N data, has the form

. 1 .
By (i, k) =5 [Ey(@O)y ()i poro,...n (10)
. sin2a7W (i — k)] = 5,.
=cosb(i — k)—————— (i —k
cosO(i — k) 2 (i — k) +p<0(i — k)
(11)
where p? 1= 02 /0? is the inverse of the signal to noise

ratio, which we shall assume is known a priori. This “noise
perturbed” Modulated-Sinc Kernel matrix depends on 6
and on W. Likewise let K be the N x N normalized
covariance of the vector xy(t), the N-vector of previous
signal samples x(s), t < s <t — N + 1. We have

sin[27W (i — k)]

K, = cos0(i—k) Wi —F)

i k=0,1,...,N-1

(12)

The linear predictor (4) can be computed by the classical
formula

yt+1]1t)

%Cov {y(t+1),yn(t)}=; yn(t)

= 5 Cov {x(t 4 1), xx (D) Sy 'yw(t) - (13)

Here xx(t) is substituted in place of yn(t) due to the
uncorrelated additve noise structure of the model. Note
that all covariances do not depend on ¢ by stationarity.
The cross-covariance string Cov {x(t + 1),xn(t)} is just
the first row of the N x N matrix Cov {xn(t+1),xn(t)},
which, after normalization has entries

sin[27W (i — k + 1)]
2wW(i—k+1)

and is also made of the same modulated Sinc Kernel

expressions as in formula (12) but shifted by one time unit.

Letting k; be the first row of K;, the predictor at time ¢

can be represented by the explicit Bayes formula

~ — —1
yt+11t) =k By yn(t) =ki [K+p°In] yn(t)
14

Ki)ix=cosf(i — k+1)

(here we have simplified 62 in both members).

Formula (14) requires the inversion of a large covariance
matrix. To this end it is customary to introduce its spec-
tral expansion in term of eigenvalues/eigenfunction and
express the estimate directly in terms of the eigenfunctions
Wahba [1990].

Consider then the eigendecomposition of the N x N
symmetric positive semidefinite matrix K,
N—1

K=Y meper, Kep=mep, k=012, N-1
k=0
(15)

1 Covariance matrices of random variables will also be denoted by
bold symbols.
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where the eigenvalues are all positive and ordered in
decreasing magnitude. In vector notation the expansion
(15) can be written

K=0ADT where A := diag{uo,...,un-1} (16)
where the matrix ® := [¢pg ... ¢y_1] is unitary, that is
®PdT = ®TP = Iy. Likewise we shall have

K =®, A0 (17)

where ®; is made of the eigenvectors of the matrix (15)
bordered to dimension (N + 1) x (N + 1) with the first
row chopped off so as to make its columns of length N.
Assuming N large enough, the first N eigenvalues of the
bordered matrix are with very good accuracy the same of
the original N x N kernel K. See later for a discussion of
this point.

Denote by c the first row of ®;. Then, the first row of (17)
isky =cA®T and

Jt+1]t)=cAd [K+p*Iy]  yn(t)

—c [®TKD+p2In] @ yn () (18)
. Ho HN—-1 T
= cdia, sy P t
g{uo+p2 ,UN—1+,02} yn(®)

so that each predictor is a linear combination of the
generalized Fourier coefficients

yn(t) = [ yn(t) ... ok _1yn(t)] €RV

The last expression in (18) will be central in the following.
We need to understand how the prediction error depends
on the hyperparameters. Although in general it may look
like the eigenvalues should depend on 6, W and on N, the
situation turns actually out to be much simpler due to the
very special structure of the kernels. We shall first analyze
the case of center frequency equal to zero.

It has been shown by Slepian [1978] that for § = 0, in the
eigendecomposition of the Sinc kernel,

- sin2aW (i — k)] sin27W (i — k)
T T W(i— k) 2aW(i—k)

i k=0,1,....N

(19)
there is a magic integer number n very closely approxi-
mated by 2NW, sometimes called the Slepian frequency,
such that the eigenvalues A\ of S are, with very good ap-
proximation, all equal to one when k& < n, while the others
are very small and can be neglected. This fact will be also
discussed in some detail in the appendix A.The fact that
there are only a relatively small number of non-negligible
eigenvalues is of course of great practical importance. That
this should also be the case for the eigenvalues py of the
modulated Sinc kernel K has been conjectured in Khare
[2006] but as far as we know, there is no rigorous proof
in the literature. This is of course of great importance for
our application. In the paper we shall keep this fact for
granted. Extensive simulations indicate that this is indeed
the case. See Section 5 below.

Assuming that po = w1 = ... = pup ~ 1 and pipgr ~ 0

for k > 0, the last expression in (18) can be simplified to
involve only the first n eigenfunctions. Letting

K=2,A,® , A, =diag{uo,..., ttn_1} (20)

z(t) = ® yn(t) €R? (21)

where ®,, € RV*" is the matrix of the first n eigenvectors

and z(t) is an n-dimensional random vector of covari-
ance A. The expression of the predictor simplifies to

481
9t +1]6)=cdiag {— L yat)=—ca(t)
= 1 =
y cdiag T2 T2 z 1+p2cz

(22)

which depends on y n(¢) only through its components with
respect to the first n eigenfunctions.

In the next section we shall provide some experimental
evidence that this behavior of the eigenvalues is actually
occurring also for the modulated Sinc kernel K, as conjec-
tured in Khare [2006].

5. EXPERIMENTAL STUDY OF THE EIGENVALUES
OF THE SINC AND MODULATED SINC KERNEL

As for the Sinc kernel, we have generated a matrix S
of dimension NXN with N = 1000 for values of the
bandwidth W := 0.02. Here n = 2NW is then equal 40.
Figures 1c shows the behavior of the eigenvalues Ay of the
Sinc kernel for these two values of N, W. We can clearly see
that for n < 40 the eigenvalues are all equal to the same
constant while for n > 40 the A\ very quickly decrease to
zZero.

As for the modulated Sinc kernel, we shall only report
here the eigenvalues of a matrix K of dimension N = 1000
and fo = 0.3, for W = 0.02. In Fig. 2 we see that the
eigenvalues have exactly the same behavior as those of the
Sinc kernel. Only the value of n such that for k > n, ur ~ 0
is now equal to 2(2NW); i.e. twice the value of n for the
Sinc kernel. Moreover the amplitudes of the eigenvalues
wur for k < n are half of those of the Sinc kernel, for equal
values of W. This follows the from the symmetry of the
spectrum and matches exactly the findings of Khare [2006].
We should note that in Slepian [1978] the eigenvalues of a
slightly different Sinc kernel equal to 2W'S are analyzed.
Their behavior is the same of ours except that the nor-
malization makes the A all practically equal to one for
k < n. In order to get the same normalization we just
need to substitute A\, with 2W \,. This fact is evident in
the simulations and will be explained in the appendix A.

25

20+ |

Fig. 1. Sinc Kernel Eigenvalues, n = 40

As regards the modulated Sinc kernel, in order to get the
largest eigenvalues equal to one, a normalization should
be made by substituting A\; with 4W ;. This also agrees
with the findings of Khare [2006].

6. COMPUTING THE ESTIMATE

For a fixed N and W we shall here assume that the N x N
covariance kernel K has exactly rank n ~ 4NW.
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Fig. 2. Modulated Sinc Kernel Eigenvalues, n = 80

Proposition 1. There are a n X n matrix A and an n-
dimensional row vector ¢ such that

2(t + 1) = Az(t) (23)
y(t) = cz(t) + w(t) (24)

where z(t) is the n-dimensional vector defined in (21).

Proof : In fact by the analysis of the previous section, all
covariances obtained by bordering K will still have rank n.
Now a rank-deficient covariance matrix (of rank n ) must
necessarily be the covariance of a purely deterministic
process 2 which can be represented by a deterministic
linear recursion of order n [Lindquist and Picci, 2015,
p. 138, 276] or equivalently, by a n-dimensional state
space model. In geometric terminology this means that
the Hilbert space H of random variables spanned by
the random components of the vectors xy(t) will be n-
dimensional and the same as that spanned by x;(t) for all
M > N. In fact this will be also equal to the Hilbert spaces
spanned by xs(t + k) for any & > 0. Any n-dimensional
basis vector & = [£,&, ...€, ] in H yields such a state
space representation for the process x(t), say

E(t+1) = AL(t)

x(t) = c&(t)
so that y(t) can be represented as y(t) = c€(t) + w(t). It
is easy to check that for such a model the one step ahead

predictor of y(t) is a linear function of the state at time ¢,
given by
y(t+1]t) = cAE(t)

but the predictor (22) has a similar form, involving the
n-dimensional random vector z(t) defined in (21) in place
of €. Since the predictor must be a linear function of the
state, it follows that z(t) can also serve as a state process
and hence y(t) can be described by the model (23), (24).
O

The matrices ¢ and A can be computed from the matrix ®,,
made of the first n columns of ®, which are clearly also
eigenvectors of the output covariance X, the eigenvalues
being now uy + p?, by a standard “shift-invariance” pro-
cedure of subspace identification. The eigenvector matrix

®,, and its one block shifted counterpart must have the
structure

2 For W < 1/2 x(t) is indeed a purely deterministic process.
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c cA

2

o= | A La, = |
cAV ! cA”

from which one can extract ¢ and the dynamic matrix A by
solving (in a least squares sense) the equation | ®,, = &, A.
Since, as we have seen, the eigenvalues do not depend
on 6, the whole dependence on the centerfrequency must
be in cA. Hence equating a = cA(f), where a = a(f) is
the predictor vector introduced in (5), estimated from the
real data by least squares, provides a rule to compute an
estimate of 6.

In conclusion, the estimation of 6 can be done by first
computing the least squares estimate a of a and then
selecting the fundamental frequency among the zeros of
the polynomial A"+ ZZ=1 ar A" "% which describes the dif-
ference equation for y equivalent to the state space model
(23), (24). Subspace methods such as those developed in
Favaro and Picci [2012] which are properly adapted to
oscillatory signals could also be used. In the algorithm one
must constrain the eigenvalues of the estimate of A() to
lie on the unit circle to extract easily the fundamental
frequency.

6.1 Simulation results

Below we show plots of the PEM cost function to be
minimized w.r.to the center frequency hyperparameter ¢
T

1
== 1) — T 2
V(6o) T;(y(“r ) —a(f) (1))
It is convenient to use the variable bandwidth W as a
des}gn parameter. In the figure below the cost function
V(0r) is shown for three values of the bandwidth W:
1072,1073,1076.

10 \

\ W= 1072
—w=10"3
ol w=107"%||

Cost functions

I
1.35 1.4

I
1.25 1.3 1.45

theta0

Notice that as the bandwidth W decreases, the cost func-
tion V(éT) becomes sharper and the minimum becomes
more pronounced. This minimum can be chosen as a new
center frequency in an iterative algorithm where the prior
distribution is iterated by refining the center frequency
and concurrently restricting W in a suitable way. We skip
the details for reasons of space.

7. CONCLUSIONS

The frequency estimation problem is an intrinsecally non
linear parametric problem which has been approached
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in the literature by a variety of techniques which most
of the times lead to iterative optimization algorithms of
local nature. By formulating the problem as nonparametric
Bayesian estimation of the hyperparameters of a prior dis-
tribution, the solution can be based on linear techniques,
say subspace identification. This permits to rephrase the
problem in a linear way. Simulations seem to indicate
that the performance of this approach could be good but
much further analysis is need to better understand and
evaluate the idea. The approach could be extended to the
estimation of signals with multiple harmonic components.
This will be discussed in future publications.

REFERENCES

F. R. Bach, G.R.G. Lanckriet, and M. I. Jordan. Multiple
kernel learning, conic duality and the smo algorithm. In
Proc o fthe 21st Int. Conf. on Machine Learning, Banff
Canada, 2004.

A. Chiuso. Regularization and bayesian learning in dy-
namical systems: Past, present and future (invited pa-
per). In Proc of the SYSID15, Beijing China, 2015.

M. Favaro and G. Picci. A subspace algorithm for ex-
tracting periodic components from multivariable signals
in colored noise. In Proc. of 16th IFAC Symposium
on System Identification (SYSID), pages 1150 —1155,
Bruxelles, 2012.

G. Golub and C van Loan. Matriz Computations. Johns
Hopkins U.P., N.Y., 1983.

E. J. Hannan and M. Deistler. The statistical theory of
linear systems. John Wiley, N.Y., 1988.

T. Hoffmann, B. Schélkopf, and A. J. Smola. Kernel
methods in machine learning. Annals of Statistics, 36
(3):1171-1220, 2008.

Kedar Khare. Bandpass sampling and bandpass analogues
of prolate spheroidal functions. Signal Processing, pages
1550 — 1558, 2006.

M. Lazaro-Gredilla, J. Q. Candela, C. E. Rasmussen, and
A. R. Figueiras-Vidal. Sparse spectrum Gaussian pro-
cess regression. Journal of Machine Learning Research,
11:1865-1881, 2010.

A. Lindquist and G. Picci. Linear Stochastic Systems: a
Geometric Approach to Modeling Estimation and Iden-
tification. Springer Verlag, 2015.

L. Ljung. System Identification; theory for the user.
Prentice Hall, Upper Saddle River N.J., 1999.

B. G. Quinn and E. J. Hannan. The Estimation and
Tracking of Frequency. Cambridge U.P., 2001.

David Slepian. Prolate spheroidal wave functions, fourier
analysis and uncertainty v: The discrete case. Bell Syst.
Tech. Jour., 57(5):1371-1430, 1978.

David Slepian and H.O. Pollak. Prolate spheroidal wave
functions, fourier analysis and uncertainty i. Bell Syst.
Tech. Jour., 40:43-63, 1961.

Petre Stoica, Prabhu Babu, and Jian Li. Spice: a sparse
covariance-based estimation method for array process-
ing. IEEE Trans. on Signal Process., 59(2):629-638,
2011.

Grace Wahba. Spline models for observational data. STAM,
Philadelphia, USA, 1990.

Appendix A. THE DISCRETE PROLATE
SPHEROIDAL (DPS) SEQUENCES

One can relate the eigensequences (written as column
vectors) ¢, to the Slepian’s discrete prolate spheroidal
sequences Slepian [1978] introduced in Slepian and Pollak
[1961].

Let N be a fixed natural number. Without loss of gen-
erality we shall assume hereafter that N is odd equal to

inTN
2M +1 for some integer M. The function M
sinm f

a Dirichlet Kernel denoted Dy (f). For f € R this is a
periodic function. It is well-known that for N — oo the
Dirichlet kernel acts like a delta function, which is the
commonly made approximation when using the FFT. The
discrete prolate spheroidal sequences are solutions to the
eigenvalue problem

/*W sin N7(f —n)

sinw(f —n)

is called

w ¢N,k(n) dn = A ‘PN,k(f) , (AT

Since the kernel of the integral operator above has finite
rank NV,there are just N eigenvalues A9 > ...\ >
...An—1 > 0. Since the kernel is defined for all f € R,
the eigenfunctions are also defined (and periodic) on the
whole real line.
Since for N — oo the operator tends to the identity
all eigenvalues must tend to 1. On the other hand, for
W =1/2 and N finite the frequency convolution theorem
(for finite Fourier transforms) implies that (A.1) has the
time domain counterpart

rect_ s, an (D)W N k(1) = M P (), Yy p(t) =F " (Phn )

which also implies that all eigenvalues must be equal to
one. In this case there are exactly N linearly independent
eigenfunctions, that is IV trigonometric polynomials which
can be chosen orthogonal, say, each supported on a single
time point in the interval [—M, M]. In other words, when
W =1/2 the v, are time limited functions.When W <
1/2 it is not a priori clear if the support of 9 ;. (¢) is finite.
In fact it is; see Theorem 2 below.

Consider now the Sinc function Sinc w (k) := W,
k =0,4+1,+2... where, as before 0 < W < 1/2 and form
the N x N matrix (N odd)

sin 27W (t — s)
Sy = |—————— t < < —
N { 27W (t — 5) } 1< o< =5

which is a positive definite Toeplitz matrix with eigende-
composition

Sn@r =Mpr k=0,1,2,...,N—1 (A.2)
The following is the key result which permits a direct
computation of the eigenexpansion of (A.1).

N -1 N -1

Theorem 2. The (nonzero) eigenvalues of the two oper-
ators (A.1) and (A.2) coincide modulo the factor 2W;
ie. \p = 2WA,, k = 0,1,...,N — 1. The eigenvec-
tors coincide modulo a factor of modulus one, namely
Yy pt) =20Wi @ (t)  tEZ.



