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Abstract:
In some recent works, the authors have proposed and developed an Empirical Bayes framework
for frequency estimation. The unknown frequencies in a noisy oscillatory signal are modeled as
uniform random variables supported on narrow frequency bands. The bandwidth and the relative
band centers are known as hyperparameters which can be efficiently estimated using techniques
from subspace identification. In the current paper, we examine carefully how the estimated
frequency prior can be used to produce a Bayesian estimate of the unknown frequencies based
on the same data (for hyperparameter estimation). To this end, we formulate the Bayesian
Maximum A Posteriori (MAP) optimization problem and propose an iterative algorithm to
compute its solution. Then, we do extensive simulations under various parameter configurations,
showing that the MAP estimate of the frequencies are asymptotically close to the band centers of
the frequency priors. These results provide an attractive link between the conventional Bayesian
method and the Empirical Bayes method for frequency estimation, and in retrospect justify the
use of the latter.
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1. INTRODUCTION

In this paper we study the identification of a class of quasi-
periodic processes composed of random oscillations ob-
served in additive noise. Data are modeled as trajectories
of a process whose frequencies may deviate slightly about
an unknown nominal value. In a Bayesian setting, it is then
reasonable to model these frequencies as random variables
which are noisy versions of some nominal frequency. Al-
though estimation of quasi-periodic signals, often referred
simply as frequency estimation, is a classical problem in
signal processing with an enormous literature, an approach
based on Empirical Bayes estimation proposed in this
paper, following previous work in Picci and Zhu (2020),
seems to have not been fully pursued in the literature. For
a survey and some further bibliography on Empirical Bayes
methods, we refer to Lehmann and Casella (1998, p. 262);
Efron (2010, 2014); Chiuso (2015); Petrone et al. (2014);
Aravkin et al. (2012). A general underlying motivation for
the Empirical Bayes approach is that in some cases it has
been proven to yield a mean squared error (MSE) which
can even be smaller than that of maximum likelihood
(Reinsel, 1985; Yuan et al., 2016).

The underlying model is a variant of the classical white-
noise-corrupted sum of harmonic oscillations in that the
hidden frequencies are modeled as randomly varying pa-
rameters. When frequencies are deterministic, such quasi-
� B. Zhu was supported by the “Hundred-Talent Program” of the
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periodic stationary processes are well-known to be purely
deterministic signals. This character persists when, as in
the Bayesian setting of this paper, the frequencies are
random but described by a natural class of a priori dis-
tributions. The prior for each hidden frequency is chosen
as a parametric uniform distribution on a small frequency
range of unknown width, which can be interpreted as an a
priori confidence interval centered about some unknown
nominal frequency. The width and the relative center
frequencies are the hyperparameters of the prior which
are estimated from data. This simple model seems to be
reasonable for a variety of applications.

In this frame, we have shown that the estimation of the
hyperparameters can be approached by a simple efficient
subspace algorithm (Favaro and Picci, 2015; Picci and Zhu,
2019, 2020). This is in contrast with the standard marginal
likelihood approach as considered for example in Lázaro-
Gredilla et al. (2010); Aravkin et al. (2012). Our approach
fully uses the special structure of the data process and
need not involve numerical optimization. Such a subspace
algorithm to estimate the prior is referred to as the first
step in our Bayesian procedure for frequency estimation.

Assuming that the unknown hyperparameter for the center
frequency has a true value, one can then prove consistency
of the subspace estimation method which justifies our
procedure in the framework of the traditional frequentist
interpretation of the hyperparameter. In this paper, we
shall pursue in more detail the second step of the (Empir-
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seems to have not been fully pursued in the literature. For
a survey and some further bibliography on Empirical Bayes
methods, we refer to Lehmann and Casella (1998, p. 262);
Efron (2010, 2014); Chiuso (2015); Petrone et al. (2014);
Aravkin et al. (2012). A general underlying motivation for
the Empirical Bayes approach is that in some cases it has
been proven to yield a mean squared error (MSE) which
can even be smaller than that of maximum likelihood
(Reinsel, 1985; Yuan et al., 2016).

The underlying model is a variant of the classical white-
noise-corrupted sum of harmonic oscillations in that the
hidden frequencies are modeled as randomly varying pa-
rameters. When frequencies are deterministic, such quasi-
� B. Zhu was supported by the “Hundred-Talent Program” of the
Sun Yat-sen University.

periodic stationary processes are well-known to be purely
deterministic signals. This character persists when, as in
the Bayesian setting of this paper, the frequencies are
random but described by a natural class of a priori dis-
tributions. The prior for each hidden frequency is chosen
as a parametric uniform distribution on a small frequency
range of unknown width, which can be interpreted as an a
priori confidence interval centered about some unknown
nominal frequency. The width and the relative center
frequencies are the hyperparameters of the prior which
are estimated from data. This simple model seems to be
reasonable for a variety of applications.

In this frame, we have shown that the estimation of the
hyperparameters can be approached by a simple efficient
subspace algorithm (Favaro and Picci, 2015; Picci and Zhu,
2019, 2020). This is in contrast with the standard marginal
likelihood approach as considered for example in Lázaro-
Gredilla et al. (2010); Aravkin et al. (2012). Our approach
fully uses the special structure of the data process and
need not involve numerical optimization. Such a subspace
algorithm to estimate the prior is referred to as the first
step in our Bayesian procedure for frequency estimation.

Assuming that the unknown hyperparameter for the center
frequency has a true value, one can then prove consistency
of the subspace estimation method which justifies our
procedure in the framework of the traditional frequentist
interpretation of the hyperparameter. In this paper, we
shall pursue in more detail the second step of the (Empir-
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ical) Bayes procedure, that is, the Maximum A Posteriori
(MAP) frequency estimate based on the estimated prior.
Our goal is to verify that the MAP estimate is asymptot-
ically close to (and ideally coincides with) the true center
frequency which is, on the other hand, consistently esti-
mated by the subspace algorithm (Picci and Zhu, 2021).

This paper is organized as follows. In Sec. 2, we review
the Empirical Bayes framework for frequency estimation
which has emerged in recent literature. The structure of
the signal covariance matrix is briefly described and its
use for the hyperparameter estimation is also discussed.
Then, Sec. 3 addresses the MAP Bayesian estimator of
the random frequency based on the estimated prior. A
linearization strategy to solve the resulting optimization
problem is proposed. In the following Sec. 4, the Bayesian
frequency estimator is tested via simulations under differ-
ent data sizes and a wide range of signal-to-noise ratios.
At last, Sec. 5 concludes the paper.

2. SIGNAL MODEL

In this paper, bold lowercase symbols like x denote random
quantities, while italic lowercase letters like x denote
vectors with numerical entries.

Consider the following noisy measurements of a quasi-
periodic signal

y(t) = x(t) +w(t), t ∈ Z (1)

where t represents time and

x(t) :=

ν∑
�=1

a� cos(ω�t) + b� sin(ω�t) (2)

is the random oscillatory signal, and w is additive white
noise. The angular frequencies ω� are unknown but their
number ν is assumed to be given. In addition, we make
the following assumptions:

• the amplitude pair a�,b� are zero-mean pairwise and
mutually uncorrelated for all � and the two com-
ponents a�,b� have equal variance: σ2

� = var[a�] =
var[b�], � = 1, . . . , ν;

• each angular frequency ω� is a random variable
taking values in the interval [−π, π], independent of
the amplitudes;

• The noise w(t) is white, zero-mean Gaussian, station-
ary of variance σ2

w, independent of everything else.

Since we are considering only real processes, the spectral
content of the processes can be thought of as concentrated
on the half interval [0, π]. Hence, it does not cause any loss
of generality to assume that each random frequency ω�

takes value in [0, π]. We shall let ω := [ω1 . . . ων ]
�

and
denote by a, b two similarly arranged amplitude vectors.
Given the frequenciesω, estimation of the amplitudes a, b
is just a standard linear estimation problem. Therefore,
we shall mainly concentrate in the problem of frequency
estimation.

We impose that each component ω� of the random vector
ω follows a uniform distribution on the frequency band
[θ� − W�, θ� + W�] such that the symmetrized sets w.r.t.
the origin

S� := [θ�−W�, θ�+W�]∪[−θ�−W�,−θ�+W�], � = 1, . . . , ν
(3)

do not overlap. Here 0 ≤ θ� ≤ π is called a center frequency
and 0 ≤ W� < |θ�| a bandwidth. Note that the inequality
for W� implies that the two intervals composing S� in (3)
do not intersect. We can collect the center frequencies
into a vector θ := [θ1, . . . , θν ]

�. For technical reasons,
we further assume that the bandwidths are identical for
different components, i.e., W1 = · · · = Wν = W . In the
literature, both θ and W are called hyperparameters of the
a priori distribution for the frequency vector ω.

It turns out that under the model assumptions above, both
processes y and x are stationary. In fact, let us define the
covariance functions

Σ(t, s) := E {y(t)y(s)} , K(t, s) := E {x(t)x(s)} . (4)

Then after some standard calculations, we have

Σ(t, s) = K(t, s) + σ2
wδ(t, s)

=
ν∑

�=1

σ2
� E (cosω�τ) + σ2

wδ(τ, 0)

=
sinWτ

Wτ

ν∑
�=1

σ2
� cos θ�τ + σ2

wδ(τ, 0)

=
π

2W

∫ π

−π

eiωτ
ν∑

�=1

σ2
�χS�

(ω)
dω

2π
+ σ2

wδ(τ, 0),

(5)

where the new variable τ := t− s, δ(t, s) is the Kronecker
symbol, and χS�

is the indicator function on the set S�

given in (3), namely

χS�
(ω) =

{
1 for ω ∈ S�,
0 for ω ∈ [−π, π] \ S�.

(6)

Since all the covariances depend only on the time difference
τ , stationarity indeed follows. In the following, we will
write Σ(τ) and K(τ) in place of Σ(t, s) and K(t, s),
respectively. Notice that by the last equality in (5), we
can write the covariance of x as the Fourier coefficient of
the function

Φx(ω) :=
π

2W

ν∑
�=1

σ2
� χS�

(ω). (7)

The latter is a weighted sum of indicator functions and is
known as the spectral density of the process x. Since the
indicator function (6) can be viewed as the spectrum of
a bandlimited white noise within the frequency band S�,
the process x can be thought of as a sum of independent
bandlimited noises, each having variance σ2

� .
1 Given the

assumption that the union ∪ν
�=1S� is a strict subset of

[−π, π], we can conclude that x is a purely deterministic
process with an absolutely continuous spectral distribu-
tion, since the logarithm of the density is obviously not
integrable. See e.g., Lindquist and Picci (2015, p. 144).

2.1 Properties of the Covariance Matrix

In practice, we often observe sample paths of finite lengths
from the process y. With an abuse of notation, it is
convenient to collect the observed random variables into a
column vector

yN := [y(t),y(t+ 1), . . . ,y(t+N − 1)]�. (8)

1 Our setting here is somehow reminiscent of Multiple Kernel
methods as in Hoffmann et al. (2008); Bach et al. (2004).



110 Giorgio Picci  et al. / IFAC PapersOnLine 54-7 (2021) 108–113

Consider then the N × N covariance matrix ΣN :=
E{yNy�

N}. Due to the independence of the noise to the
signal, we have the additive structure

ΣN = KN + σ2
wIN , (9)

where KN is defined as the covariance matrix of the signal
string

xN := [x(t),x(t+ 1), . . . ,x(t+N − 1)]�, (10)

namely

KN := E{xNx�
N}

=




K(0) K(1) · · · K(N − 1)
K(1) K(0) · · · K(N − 2)
...

...
. . .

...
K(N − 1) K(N − 2) · · · K(0)




(11)

which is symmetric Toeplitz as a consequence of station-
arity.

As shown in the papers Favaro and Picci (2015); Picci
and Zhu (2019, 2020), the eigenvalues of KN (arranged in
nonincreasing order) initially remain constant, and then
starting from a certain index (known as the Slepian fre-
quency in the theory of Prolate Spheroidal Wave Func-
tions), decay extremely fast to zero. This property proves
to be important for the estimation of the hyperparameters
(θ,W ) from the noisy measurements. To avoid repetition,
the reader may consult the aforementioned papers for some
eigenplots of KN which resemble the shape of a step.
Next, we present a formal argument for such decay of
eigenvalues, alternative to the proof given in Picci and
Zhu (2020), yet more general since now we have allowed
the signal variances σ2

� to be different.

Proposition 1. The covariance matrix KN asymptotically,
i.e., as N → ∞, has rank equal to 2νWN/π.

Proof. The spectral density Φx(ω) in (7) of the signal
process x has support in the union S := ∪ν

�=1S�. By a
famous theorem of Szegö for the eigenvalue distribution of
Toeplitz matrices (Grenander and Szegö (1958), see also
e.g., Gray (2006)), we have the relation

lim
N→∞

rank(KN )

N
=

m(S)

2π
=

4νW

2π
wherem(·) denotes the Lebesgue measure of a set. In other
words, the fraction of positive eigenvalues of KN in N is
asymptotically equal to the fraction of the spectral support
of the signal in the whole frequency domain. The assertion
of the proposition then follows immediately. �

2.2 Hyperparameter Estimation

From Proposition 1, we see that the bandwidth W can be
directly recovered from the rank of KN when the matrix
size N is sufficiently large. The band centers θ, on the
other hand, can be reliably estimated using a subspace
method. We quote the following result from Picci and Zhu
(2020) without a proof.

Proposition 2. For N large enough, let n ≈ 2νWN/π.
Then there is an n × n orthogonal matrix A and an n-
dimensional row vector c such that the random oscillatory
signal x in (2) can be represented by the system

ξ(t+ 1) = Aξ(t) (12a)

x(t) = c ξ(t) (12b)

where ξ(t) = [ ξ1(t), ξ2(t), . . . , ξn(t) ]
� is an n-dimensional

basis vector spanning the Hilbert space H(x) linearly
generated by the N random variables of the set {x(s) :
t ≥ s ≥ t−N + 1}.

This representation suggest the use of a subspace algorithm
to estimate the center-frequency vector θ. To implement
the procedure we start from an estimate of the covariance
matrixKN extracted from the signal covarianceΣN in (9).
This last estimate is computed given multiple snapshots
of measurements (1). Notice that multiple snapshots are
necessary due to the fact that sinusoidal signals with
random frequencies are not ergodic. Then, a state-space
realization (12) is estimated from KN , and the band
centers can be recovered from the phase angles of the
eigenvalues of A which have unit moduli. A detailed
discussion can be found in Picci and Zhu (2020) where
some simulation results are also reported, showing good
performance of the subspace estimator. It can actually be
shown that the procedure is statistically consistent in the
sense that for N → ∞ the estimated finite rank purely
deterministic approximate process (12) converges to the a
posteriori process (2). We refer to Picci and Zhu (2021)
for technical details

3. BAYESIAN ESTIMATION

Assume now that we have a consistent estimate of the
parameters of the prior, in particular of the center fre-
quencies {θ�}. The question is what this estimate has to
do with (say) the Bayesian MAP estimate 2 of the random
angular frequencyω, computed from the relative posterior
distribution. Is there any reason why the MAP estimate
should coincide, at least asymptotically, with the center
frequencies of the prior?

In Sec. 4 we shall provide experimental evidence that in
our setting the inherent optimization problem leads to a
MAP estimate of ω which is practically indistinguishable
from the subspace estimate of the center frequency θ.
This fact is verified experimentally but should be also
evident from the theoretical analysis which follows. For the
purpose of simplifying the presentation, we only describe
the procedure in the case of one snapshot of data.

The MAP estimator of ω is obtained by maximizing the
log of the unnormalized posterior distribution of ω given

N observations 3 y := [y(t) . . . y(t−N)]
�
, neglecting

the denominator p(y) which does not depend on the
parameters. The prior for one frequency is

p(ω� | θ�,W ) =
1

2W
χ[θ�−W, θ�+W ]

and since the intervals do not overlap we have indepen-
dence and the overall prior ofω is the product of the priors
for each ω� so that, recalling that the noise is Gaussian
i.i.d., we have

ω̂MAP = argmax
ω∈[0,π]ν

{
− 1

2σ2
w

‖y − V (ω)u‖2

+
∑
�

log p(ω� | θ�,W )

}

2 MAP is known to be the best estimate in a variety of norms.
3 The estimation from multiple snapshots data can be dealt with in
a similar way even in case of unequal measurement error variances.
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Consider then the N × N covariance matrix ΣN :=
E{yNy�

N}. Due to the independence of the noise to the
signal, we have the additive structure

ΣN = KN + σ2
wIN , (9)

where KN is defined as the covariance matrix of the signal
string

xN := [x(t),x(t+ 1), . . . ,x(t+N − 1)]�, (10)

namely

KN := E{xNx�
N}

=




K(0) K(1) · · · K(N − 1)
K(1) K(0) · · · K(N − 2)
...

...
. . .

...
K(N − 1) K(N − 2) · · · K(0)




(11)

which is symmetric Toeplitz as a consequence of station-
arity.

As shown in the papers Favaro and Picci (2015); Picci
and Zhu (2019, 2020), the eigenvalues of KN (arranged in
nonincreasing order) initially remain constant, and then
starting from a certain index (known as the Slepian fre-
quency in the theory of Prolate Spheroidal Wave Func-
tions), decay extremely fast to zero. This property proves
to be important for the estimation of the hyperparameters
(θ,W ) from the noisy measurements. To avoid repetition,
the reader may consult the aforementioned papers for some
eigenplots of KN which resemble the shape of a step.
Next, we present a formal argument for such decay of
eigenvalues, alternative to the proof given in Picci and
Zhu (2020), yet more general since now we have allowed
the signal variances σ2

� to be different.

Proposition 1. The covariance matrix KN asymptotically,
i.e., as N → ∞, has rank equal to 2νWN/π.

Proof. The spectral density Φx(ω) in (7) of the signal
process x has support in the union S := ∪ν

�=1S�. By a
famous theorem of Szegö for the eigenvalue distribution of
Toeplitz matrices (Grenander and Szegö (1958), see also
e.g., Gray (2006)), we have the relation

lim
N→∞

rank(KN )

N
=

m(S)

2π
=

4νW

2π
wherem(·) denotes the Lebesgue measure of a set. In other
words, the fraction of positive eigenvalues of KN in N is
asymptotically equal to the fraction of the spectral support
of the signal in the whole frequency domain. The assertion
of the proposition then follows immediately. �

2.2 Hyperparameter Estimation

From Proposition 1, we see that the bandwidth W can be
directly recovered from the rank of KN when the matrix
size N is sufficiently large. The band centers θ, on the
other hand, can be reliably estimated using a subspace
method. We quote the following result from Picci and Zhu
(2020) without a proof.

Proposition 2. For N large enough, let n ≈ 2νWN/π.
Then there is an n × n orthogonal matrix A and an n-
dimensional row vector c such that the random oscillatory
signal x in (2) can be represented by the system

ξ(t+ 1) = Aξ(t) (12a)

x(t) = c ξ(t) (12b)

where ξ(t) = [ ξ1(t), ξ2(t), . . . , ξn(t) ]
� is an n-dimensional

basis vector spanning the Hilbert space H(x) linearly
generated by the N random variables of the set {x(s) :
t ≥ s ≥ t−N + 1}.

This representation suggest the use of a subspace algorithm
to estimate the center-frequency vector θ. To implement
the procedure we start from an estimate of the covariance
matrixKN extracted from the signal covarianceΣN in (9).
This last estimate is computed given multiple snapshots
of measurements (1). Notice that multiple snapshots are
necessary due to the fact that sinusoidal signals with
random frequencies are not ergodic. Then, a state-space
realization (12) is estimated from KN , and the band
centers can be recovered from the phase angles of the
eigenvalues of A which have unit moduli. A detailed
discussion can be found in Picci and Zhu (2020) where
some simulation results are also reported, showing good
performance of the subspace estimator. It can actually be
shown that the procedure is statistically consistent in the
sense that for N → ∞ the estimated finite rank purely
deterministic approximate process (12) converges to the a
posteriori process (2). We refer to Picci and Zhu (2021)
for technical details

3. BAYESIAN ESTIMATION

Assume now that we have a consistent estimate of the
parameters of the prior, in particular of the center fre-
quencies {θ�}. The question is what this estimate has to
do with (say) the Bayesian MAP estimate 2 of the random
angular frequencyω, computed from the relative posterior
distribution. Is there any reason why the MAP estimate
should coincide, at least asymptotically, with the center
frequencies of the prior?

In Sec. 4 we shall provide experimental evidence that in
our setting the inherent optimization problem leads to a
MAP estimate of ω which is practically indistinguishable
from the subspace estimate of the center frequency θ.
This fact is verified experimentally but should be also
evident from the theoretical analysis which follows. For the
purpose of simplifying the presentation, we only describe
the procedure in the case of one snapshot of data.

The MAP estimator of ω is obtained by maximizing the
log of the unnormalized posterior distribution of ω given

N observations 3 y := [y(t) . . . y(t−N)]
�
, neglecting

the denominator p(y) which does not depend on the
parameters. The prior for one frequency is

p(ω� | θ�,W ) =
1

2W
χ[θ�−W, θ�+W ]

and since the intervals do not overlap we have indepen-
dence and the overall prior ofω is the product of the priors
for each ω� so that, recalling that the noise is Gaussian
i.i.d., we have

ω̂MAP = argmax
ω∈[0,π]ν

{
− 1

2σ2
w

‖y − V (ω)u‖2

+
∑
�

log p(ω� | θ�,W )

}

2 MAP is known to be the best estimate in a variety of norms.
3 The estimation from multiple snapshots data can be dealt with in
a similar way even in case of unequal measurement error variances.

with V (ω) = [C(ω) S(ω)] where

C(ω) =




cosω1 . . . cosων

...
. . .

...
cosω1N . . . cosωνN


 := [c(ω1) . . . c(ων)]

S(ω) =




sinω1 . . . sinων

...
. . .

...
sinω1N . . . sinωνN


 := [s(ω1) . . . s(ων)]

and u = [a1 . . . aν b1 . . . bν ]
�

:= [a b]
�
.

Now for each � = 1, . . . , n, the log of the prior for ω� is
−∞ outside the interval J� := [θ� −W, θ� +W ] and equal
to log 1

(2W )ν inside. Hence the MAP estimator of ω can be

found by solving the constrained minimization problem

ω̂MAP = argmin
ω

{
1

2σ2
w

‖y − V (ω)u‖2 + ν log(2W )

}

subject to : ω� ∈ J�, l = 1, . . . , ν. (13)

Suppose that θ̂ and Ŵ are our subspace estimates of the
hyperparameters of the prior. Since these are consistent
as discussed in the previous section, substituting these
estimates for the true values leads to an asymptotically
equivalent optimization problem. Here W appears as a
nuisance parameter which shall be fixed to the estimated
width Ŵ . The Bayes MAP estimate of ω can then in
principle be compute by minimizing the quadratic criterion
‖y−V (ω)u‖2 subject to the fixed deterministic constraint

J : an hypercube in Rν centered in θ̂ of edge length 2Ŵ .

The minimization problem (13) can then equivalently be
interpreted as the Maximum Likelihood estimation of a
deterministic angular frquency ω ranging on the compact
set J . On this set the likelihood function is smooth and,
according to standard statistical theory, the estimate must
be consistent, that is converging for N → ∞ to some
“true value” ω0 which has generated the observations, and
asymptotically efficient.

For a finite data set, problems of the type (13) have in
general several local minima. However, because of the
compact feasible set constraint ω ∈ J , the solution must
stay in a small neighborhood of the center frequency. Also,
the squared norm term in (13) depends on ν sinusoidal
functions of ω and hence, for a small enough W there are
no equivalent values of the frequency ω leading to the same
value of the cost. The function has generically a unique
minimum.

We now propose a local-search algorithm for the problem

(13) by using the a priori estimate θ̂ as a starting point.

Since the subspace estimate θ̂ asymptotically tends to the
center frequency, for large N we are allowed to identify θ

with θ̂. As a first preliminary step, solve a least squares

problem minimizing ‖y− V (θ̂)u‖2 to get an estimate 4 of
the amplitude vector u and use the estimated amplitude
vector,

û = [V (θ̂)�V (θ̂)]−1V (θ̂)�y

in place of u in the formulas.

4 The estimate can also be justified based on a noninformative prior
as in Zacharias et al. (2013).

Let ỹ(θ̂) := y − V (θ̂)û and introduce the deviation

ω̃ := ω−θ̂. The gradient of V with respect to ω computed

at θ̂, is an array of 2ν rectangular N×ν gradient matrices
of the form

∇V (θ̂)=
[
∇ω1c(θ̂1),. . . ,∇ωνc(θ̂ν),∇ω1s(θ̂1),. . .,∇ωνs(θ̂ν)

]

(14)

where each matrix entry has only the k-th column nonzero,
equal (in Matlab notation) to

∇ωk
c(θ̂k)[:, k] = −DNs(θ̂k), ∇ωk

s(θ̂k)[:, k] = DNc(θ̂k),
(15)

where DN = diag{1, 2, . . . , N}. Hence ∇{V (θ̂)û} turns
out to be a linear combination of these 2ν, N×ν matrices,
properly combined by the corresponding components of
the vector u ∈ R2ν . By this operation the zero columns
are superseded and the linear combination leads to a N×ν
matrix made by linearly combining the 2ν nonzero column
vectors in (14) to form a final matrix which we denote

M(θ̂). For ν = 1 we have for example u = [a b]
�

and

M(θ̂) = DN (−s(θ̂)a+ c(θ̂)b) ∈ RN×1 .

With this gradient calculation established, we proceed
to approximate (13) by a constrained local linear Least
Squares minimization

minimize
ω̃

{
‖ỹ −M(θ̂) ω̃‖2

}

subject to: |ω̃�| ≤ Ŵ (equivalent to ωl ∈ J�) (16)

for � = 1, . . . , ν. The solution can be refined iteratively by
an algorithm of the form

ω̃(k + 1) = [M(ω(k))�M(ω(k))]−1×
M(ω(k))�ỹ(ω(k)) k = 1, 2, , . . . (17)

where at each step ω(k) := ω̃(k) + θ̂ is substituted back

in place of ω(k − 1) or, initially, of θ̂ in the expression of
the gradient. The scheme is initialized for k = 0 setting

ω(0) = θ̂ and then stopping when the difference ω̃(k +
1) = ω(k + 1) − ω(k) becomes small enough. It requires

to check at each step if |ω̃�| ≤ Ŵ otherwise the estimator
should be re-initialized. Alternatively, we may try to keep
‖ω̃‖ small by adding a ridge penalty term λ(k)‖ω̃(k)‖2
with λ(k) → 0 for k large (in order to retain consistency),
to the least squares formulation. This may in fact also
make the computation of the inverse better conditioned.

Remark 1. The reasoning above can be extended to in-
clude multiple snapshots of data in a straightforward
manner. Since the conditional likelihood function for each
snapshot multiplies given the hidden frequencies, the
squared-norm term in the objective function of (13) be-
comes ‖Y − V (ω)U‖2F, where Y and U are matrices whose
columns are the data and the amplitude vectors, respec-
tively, and the subscript F denotes the Frobenius norm.
A similar linearization scheme can be devised to solve the
enlarged optimization problem.

4. SIMULATIONS

In this section, we present simulation results showing that
the Bayesian MAP estimate described in Sec. 3 works
very well in the case of two hidden frequencies (ν = 2).
We do Monte-Carlo simulations under different parameter
configurations. The main parameters are three: the signal
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length N , the number of snapshots (cross sections) L, and
the signal-to-noise ratio (SNR). The latter is defined as
20 log10(σ/σw) where for simplicity we have taken the
signal variances σ2

1 = · · · = σ2
ν = σ2. The key steps in

each trial are outlined below:

(1) Randomly generate the hyperparameters (θ1, θ2,W ).
More precisely, first the bandwidth W is drawn from
the uniform distribution in 2π× [0.01, 0.05], and then
the center frequencies θ1 and θ2 are drawn from
U [W,π − W ] such that |θ1 − θ2| > 2W and the
supporting intervals for the two frequencies do not
overlap.

(2) Given the frequency hyperparameters, generate L
independent measurement sequences (snapshots) y
of length N according to the model (1) and the
assumptions after it.

(3) Given the multiple snapshots of data, run the Empir-
ical Bayes procedure for hyperparameter estimation
described in Subsec. 2.2 to compute the estimates

(θ̂1, θ̂2, Ŵ ).
(4) Given the estimated hyperparameters (Step 3) and

the multiple snapshots of measurements (Step 2), run
the algorithm for Bayesian MAP estimation explained
in Sec. 3 to compute the frequency estimate ω̂MAP

and compare it with the true band center θ = (θ1, θ2).

In the first set of Monte-Carlo simulations, we fix the
signal length N = 100 and SNR = 15 dB, and change the
number L of cross sections. Each Monte-Carlo simulation
consists of 100 trials. The relative errors 5 of ω̂MAP with
respect to the true center-frequency vector θ under each
parameter configuration are shown in Fig. 1. In each box,
the red line indicates the median of the 100 errors, while
the upper and lower bounds of the box represent the 75%
and 25% percentiles, respectively. The dashed lines (called
“whiskers”) extend to the 95% and 5% percentiles of the
errors, and the red crosses are considered as outliers. It
appears that the MAP estimate of the frequencies is close
to the true band centers with a cumulative relative error
below 6%. Moreover, the estimation accuracy improves as
more snapshots of data are available.

We repeat the simulation with the same SNR and change
N to 500 and 1000, and the results are depicted in Figs. 2
and 3, respectively. It is evident that the cumulative
relative errors reduce as N increases (i.e., more data are
available). In the case of N = 1000, the relative errors are

within 1%, which means that the MAP estimate ω̂MAP is
very close to the true band centers θ. Notice that these
new data sets are quite large, and we have used them
only to investigate the asymptotic behavior of the Bayesian
MAP estimate (see our conjecture in Remark 2). We do
not suggest that this corresponds to any realistic settings.

Next, we test our algorithm versus the SNR. For example,
we fix N = 100, L = 200, and do Monte-Carlo simulations
of 50 trials under different SNRs. The relative errors in
each Monte-Carlo simulation are averaged and plotted in
Fig. 4. The average relative errors are still quite small even
in the low SNR regime. Moreover, the flatness of the curves
seems to indicate that the Bayesian MAP estimate is very
robust against noise.

5 The relative error here is defined as ‖ω̂MAP − θ‖/‖θ‖.
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Fig. 2. Relative estimation errors of two hidden frequencies
(ω1,ω2) using the Bayesian MAP method in Sec. 3
versus the number L of cross sections while N = 500
and SNR = 15 dB.

Remark 2. The above simulations all empirically support
the conjecture mentioned in Picci and Zhu (2020), which
states that for N → ∞ and small enough W , the Bayesian
estimate ω̂MAP should converge to the true center fre-
quency θ.

5. CONCLUSIONS

We have formulated the problem of frequency estimation
in an Empirical Bayesian framework by first imposing a
natural uniform prior probability density on the unknown
frequency. In this way the estimation of the hyperpa-
rameters of the a priori distribution can be accomplished
via essentially linear techniques of subspace identification,
exploiting the special structure of the covariance matrix
of the posterior process. Using the estimated hyperparam-
eters one can adapt the prior to the data and this leads
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1 = · · · = σ2
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respect to the true center-frequency vector θ under each
parameter configuration are shown in Fig. 1. In each box,
the red line indicates the median of the 100 errors, while
the upper and lower bounds of the box represent the 75%
and 25% percentiles, respectively. The dashed lines (called
“whiskers”) extend to the 95% and 5% percentiles of the
errors, and the red crosses are considered as outliers. It
appears that the MAP estimate of the frequencies is close
to the true band centers with a cumulative relative error
below 6%. Moreover, the estimation accuracy improves as
more snapshots of data are available.

We repeat the simulation with the same SNR and change
N to 500 and 1000, and the results are depicted in Figs. 2
and 3, respectively. It is evident that the cumulative
relative errors reduce as N increases (i.e., more data are
available). In the case of N = 1000, the relative errors are

within 1%, which means that the MAP estimate ω̂MAP is
very close to the true band centers θ. Notice that these
new data sets are quite large, and we have used them
only to investigate the asymptotic behavior of the Bayesian
MAP estimate (see our conjecture in Remark 2). We do
not suggest that this corresponds to any realistic settings.

Next, we test our algorithm versus the SNR. For example,
we fix N = 100, L = 200, and do Monte-Carlo simulations
of 50 trials under different SNRs. The relative errors in
each Monte-Carlo simulation are averaged and plotted in
Fig. 4. The average relative errors are still quite small even
in the low SNR regime. Moreover, the flatness of the curves
seems to indicate that the Bayesian MAP estimate is very
robust against noise.

5 The relative error here is defined as ‖ω̂MAP − θ‖/‖θ‖.
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Remark 2. The above simulations all empirically support
the conjecture mentioned in Picci and Zhu (2020), which
states that for N → ∞ and small enough W , the Bayesian
estimate ω̂MAP should converge to the true center fre-
quency θ.

5. CONCLUSIONS

We have formulated the problem of frequency estimation
in an Empirical Bayesian framework by first imposing a
natural uniform prior probability density on the unknown
frequency. In this way the estimation of the hyperpa-
rameters of the a priori distribution can be accomplished
via essentially linear techniques of subspace identification,
exploiting the special structure of the covariance matrix
of the posterior process. Using the estimated hyperparam-
eters one can adapt the prior to the data and this leads

L=500 L=1000 L=2000

0

1

2

3

4

5

6

7

10
-3
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Fig. 4. Average relative estimation error in one Monte-
Carlo simulation of two hidden frequencies (ω1,ω2)
using the Bayesian MAP method in Sec. 3 versus the
SNR with three data sets of different sizes.

to Bayesian estimates which are asymptotically maximum
likelihood and therefore the best possible in a variety of
metrics. Extensive simulations indicate that the Bayesian
MAP estimate of the frequencies given multiple snapshots
of data is very close to the true band centers of the
prior distribution, which empirically justifies our Empiri-
cal Bayes philosophy for the frequency estimation problem.
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