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We discuss identifiability of dynamic SISO errors-in-variables (EIV) models with white measurement
errors. Although this class of models turns out to be generically identifiable, it has been pointed out
that in certain circumstances there may be two EIV models which are indistinguishable from external
input-output experiments. This lack of (global) identifiability may be prejudicial to identification and
needs better understanding. The identifiability conditions found in the literature guarantee uniqueness
under certain coprimality assumptions on the (rational) transfer function of the ideal “true” system and

the spectral density of the noiseless “true” input. Unfortunately these conditions are not testable since
they concern precisely the unknowns of the problem which are not available to the experimenter. We
provide new identifiability conditions which are instead expressible in terms of the external description
of the observable signals, namely their joint power spectral densities.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of errors-in-variables (EIV) models is a
classical subject which has been studied in the statistical literature
since the beginning of the last century and has generated many
papers, initially dealing with static EIV models, Frisch (1934),
Gini (1921), Kalman (1982), Madansky (1959), and, more recently
with dynamic models, see e.g. Anderson (1985), Soderstrom
(1981). The interest is motivated by the fact that these models
provide a more realistic description of systems where the input
signal may also be affected by noise or by random errors of
various kinds. This in contrast to the use of standard ARMAX
or Box-Jenkins models, where the input signal is invariably
supposed to be measured exactly by the data acquisition device.
Yet, a main difficulty with EIV models is that they are generally
non-identifiable. This is by now well-known, in particular for
dynamic EIV models, and many papers have appeared dealing
with identifiability of general dynamic EIV models such as Aguero
and Goodwin (2008), Anderson and Deistler (1984), Deistler and
Anderson (1989), Picci and Pinzoni (1986), Schachermayer and
Deistler (1998), and Scherrer and Deistler (1998). In order to
overcome this structural difficulty, dynamic EIV models with
white measurement errors, often called Frisch scheme models,
have recently been considered and identification of these models
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is now a rather active research subject. Although this model
class is rather restricted because of the assumption of white
measurement errors, it appears to be a natural generalization of
ARMAX or Box-Jenkins models of the output error (OE) type, where
the standard identification techniques may generalize naturally.
Indeed the identification of these models has greatly advanced in
recent years and seems to have reached the maturity to become
a standard tool in applications, see e.g. Beghelli, Guidorzi, and
Soverini (1990), Chen and Yang (2005), Fernando and Nicholson
(1985), Soderstrom, Mahata, and Soverini (2003); Soderstrom,
Soverini, and Mahata (2002), Zheng (1999), Zheng and Feng
(1992), the recent survey paper Soderstrom (2007) and Diversi
and Guidorzi (2009), Guidorzi and Diversi (2009), Soderstrom,
Mossberg, and Hong (2009).

Although EIV models with white measurement errors turn out
to be generically identifiable (where the attribute “generic” can
here be given an intuitive meaning of “almost always”), it has
been pointed out by Picci, Gei, and Pinzoni (1993) and Stoica and
Nehorai (1987) that in certain circumstances there may be two EIV
models which are indistinguishable from external input-output
experiments. This lack of (global) identifiability, although should
hopefully almost never be encountered in practice, is a fact which
still seems rather obscure. Besides, for theoretical understanding
of the phenomenon, we believe that a better comprehension of
when two different models can describe the data equally well is
needed for practical reasons, for example in order to avoid possible
causes of ill-conditioning of identification algorithms. Now the
identifiability conditions found in the literature, e.g. in Castaldi and
Soverini (1996), Stoica and Nehorai (1987), guarantee uniqueness
under certain coprimality assumptions on the (unknown) rational
transfer function of the ideal “true” system and the (unknown)
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Fig. 1. Scheme of EIV model.

spectral density of the noiseless “true” input. Unfortunately
these conditions are not testable since they concern precisely
the unknowns of the problem which are not available to the
experimenter. Ideally, identifiability conditions should instead be
expressible in terms of the external description of the observable
signals; namely their joint power spectral densities. Adhering
to this point of view, in this paper we provide conditions on
the spectral densities of the external (measurable) signals under
which a SISO EIV structure with white measurement noises is non-
identifiable. Our conditions state that a necessary condition for non-
identifiability is the existence of a linear affine relation between
the spectra of the two external signals. This condition turns out
to be “almost” sufficient, modulo the nonlinear constraint of
positivity of the variances of the additive noises. We provide some
conditions on the parameters of the affine relation under which the
condition is actually also sufficient. All of this will be explained in
detail in Section 5.

2. Background on dynamic EIV models

In this paper, t € Z denotes the discrete time variable and
boldface symbols denote random variables or processes.

Consider a pair of real scalar second-order stationary zero-mean
discrete-time stochastic processes (y,u), whose joint spectral
density matrix function

so =20 TG 2eo M

will be assumed positive definite almost everywhere on the
unit circle {|z| = 1}. Recall that by Hermitian symmetry of the
spectrum we have Syy(z) = Suy(z™ ).

The background motivation for EIV models is to describe the
pair (y, u) as measurements corrupted by additive noise of two
internal' non observable, stochastic processes denoted z and X,
which are related by a time-invariant linear transfer function G(z),
z € C. We shall make no assumptions on G(z) like causality,
stability or other. A EIV model is thus described by the equations
(see Fig. 1):

{y(t) = G2)x(t) + ey(1)
u(t) = x(t) + ey(t),

where the processes ey (t) and ey (t) called measurement noises are
mutually uncorrelated and uncorrelated also with the process x(t).

Note that even in the case when G(z) is assumed causal,
the causal appearance of (2) is actually misleading. According to
the standard notions of causality in the literature Caines (1988),
Granger (1963) it is in fact generally not true that y(t) is caused
by u(t), as it is easy to check that for EIV models there is in general
feedback from one variable to the other. Nevertheless it is common
practice to call u the input and y the output processes.

For brevity, we shall say that an EIV model (2) is a realization
of the joint spectrum of the (y, u) processes it represents. This
joint spectrum is in a sense an external description which is
uniquely attached to the (y, u) processes, while specifying an EIV
description requires the introduction of additional non observable
variables so that there are in general many EIV realizations of the

(2)

1 These are often called “true” variables in the literature.

same spectrum. A basic identifiability question of EIV models that
has been studied in the literature and we shall also address in this
paper is how many different EIV models can realize the same joint
spectrum (1).

As it is well-known (Anderson & Deistler, 1984), any joint
spectral density matrix S(z) admits decompositions of the form,
S(z) = §(z) + S(z) where the spectrum §(z) has rank one almost
everywhere on the unit circle, and S(z) is a diagonal spectral
density. It is then easy to see that by defining the internal variables
X, Z, ey, ey such that their spectral densities satisfy
A _ Sz(z) Szx(z) < _ Sey(z) 0
5®‘hﬂ)&@] 5@—[0 %@] 3
and S (z) := Syu(2), one has indeed a representation of the form
(2) with
52(2)5x(2) = Syu(D)Suy(z) Vz:|z| =1 (4)
and G(z) := Sx(z)/Sx(z). Hence all joint spectra (1) admit EIV
representations.

From now on, we shall only consider EIV models where e,(t)
and ey(t) are white processes; i.e. Se,(z) = 07,5¢,(2) = og
(not depending on z). This is a classical model class, often called
the Frisch scheme which is discussed in many papers, see e.g the
survey Soderstrom (2007). Naturally the Frisch scheme is a very
simple model which will in general provide only an approximation
of the real spectra. In particular it postulates that the equation

(Sy(z) - Sey(Z))(Su(Z) - Seu(z)) = Syu(Z)S“y(Z), (5)
in the unknowns Se,Se,, should admit constant (positive)

solutions, Se, = 0y, Se, = 0y, Which of course will generically
not happen.

3. The family of EIV models with white measurement errors
(Frisch scheme)

It is well-known that, given the joint spectrum, the family of
EIV models realizing it can be parametrized in terms of the two
variances (oryz, 02), subjected to a non-negativity plus a rank one
condition which we illustrate below. Letting

Ry(z) = Sy(z) — %‘s";y(z)
e Sy@Su@ ©)
Ru(2) == Su(2) Syi(z) s

the non-negativity constraint (see e.g. Anderson, 1985) is

0 <oy <Ry:=min{Ry(2),z: |z| = 1}

0 <02 <Ry := min{Ry(2), 2 : |z| = 1}.

(7)

Given (o, o), satisfying (7), let S,(z) := Sy(z) — oy and S (z) =
Su(2) — af; then S,(z) and Sx(z) are bona-fide spectral densities
since they certainly satisfy the non-negativity constraints, Sy(z) —
oy > 0and Sy(z) — o > 0on the unit circle {z : |z| = 1}.

The rank one constraint comes from rewriting (4) as

(Sy(2) — 0D (Su(@) — 0) = Su@Suy(@) {21 |2z = 1). 8)
It follows from a well-known result in the literature (see e.g.
Anderson, 1985; Picci & Pinzoni, 1986) that if the noise variances
o;, a,f satisfy these two constraints then they are valid noise
variances of an EIV model realizing the given spectrum.

Since the very definition of an EIV model entails that the cross
spectral density of z and x must coincide with that of y and u, we
can obtain G(z) from

Sx(z Syu(z
by = 2O __Sw@
Sx(2) Su(2) — Oy
the reciprocal formula providing the symmetric representation of

X in terms of z. Our problem then reduces to investigating how
many pairs (o, 0,2) can lead to EIV (Frisch) realizations of a given
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joint spectral density. To avoid trivial pathological cases of non
uniqueness, from now on we shall assume that Sy, (2)Syy(2) is not
identically zero and that neither y nor u are white noise processes.
The following result (Picci et al., 1993; Stoica & Nehorai, 1987) lies
at the background of our investigations.

Theorem 1. There are at most two pairs of noise variances (of, alf)
which satisfy condition (8). Equivalently, there are at most two EIV
models (with white measurement errors) which are compatible with
the joint spectrum (1).

For ease of reference we also recall here the following obvious
fact.

Lemma 2. For every variance pair (aj, aj) satisfying the rank one
condition (8), one of the two variance values uniquely determines the
value of the other.

4. Conditions for non-identifiability

Conditions under which two EIV models exist both describing
the same joint spectrum (non-identifiability), have been described
in Stoica and Nehorai (1987). However these conditions are given
in terms of unknown signal spectra and transfer functions and
are not testable. It is therefore important to characterize this
occurrence in terms of the available external spectral data.

An explicit necessary condition for non-identifiability is given
in the following theorem.

Theorem 3. Ifthere are two EIV models realizing the same joint spec-
trum, then there are constants L > 0 and K such that the follow-
ing linear-affine relation holds

Sy(z) = LSu(2) + K. 9

Assume the pair (asﬁz, ol/‘z) parametrizes an EIV realization with
internal signal spectra S,(z), Sx(z). Then if there is another model re-
alizing the same joint spectrum, it must have the following structure:

Sy(z) = LS(2) + U//Z, Su@) = Lilsz(z) + 04/2’ (10)

so that one model is obtained by switching and renormalizing the in-
ternal spectra of the other.

Proof.? Assume there are two distinct variance pairs (0,2, 0,?)

and (0372, 0,?) describing two EIV realizations of the same joint

spectrum. From Eq. (5) it must hold that

(Sy(2) — 6,1)(Su(2) — 6,7) = Syu(2)Suy(2)
(Sy(z) - 0;2)(5“(2) - Ul/l/z) = Syu(z)suy(z)

are simultaneously true. Subtracting the second equation from the
first we obtain

(002 — 0)Sy(2) = (0,2 — 0,2)Su(2) + (0,%0,° — 0,%00). (1)

Being (0> — 0,%) # 0 we can rewrite (11) as

O_/z 2

y y y "u y

Sy(Z) =0 _ . n Su(2) + o2 — g2

Oy u u Oy

which, denoting

2 "2 "2 12 2 2
L= O'y O'y O'y Uu Oy Ou
- o — g2’

u u

"2 12 2 12
— 0, 0y

)

"2 __ 512
Oy Oy

leads to (9). From (11) we can also obtain
2 _ O_//Z

7 (Iy/z (Su(2) — Ul/|2) + 0';2 = L5%(@2) + U;Z
u

Sy(2) = .

2 We thank the associate editor for supplying this shorter and direct proof, which
is much simpler than the original.

and Sy(z) = L7'S,(z) + o> Finally, that L is always positive
follows since, as pointed out in Anderson and Deistler (1984), the
admissible variance pairs lay on a hyperbola. Hence whenever
0,? > o, necessarily 0> < 0,7, and conversely. One can then
see that for any variance pair determining two (non-identifiable)
EIVmodelsonehasL > 0. O

5. Sufficiency of the linear-affine relation

Theorem 3 provides a nice and simple necessary condition for
non-identifiability of EIV models. In this section we shall take up
the question of assessing when the linear-affine relation (9) is also
sufficient for non-identifiability. Naturally, we shall have to assume
that the joint spectrum (1) admits EIV (Frisch-scheme) realizations.

5.1. Checking for non-identifiability given a model

Let us consider a joint spectrum satisfying the linear-affine
relation (9) admitting an EIV realization with variance pair
(0%, 0,%). Defining

2y =K + Lo (12)

and substituting S, (z) = Sx(z) + ol’lz into (9), one gets a candidate
alternative model

Sy(2) = LS(2) + Xy, (13)

which would prove non-identifiability just in case Xy turns out to
be avalid variance, say o}ﬁ/z. A similar argument leads to a candidate
companion equation

Su@) =L17'5,(2) + Ty, Ty :=L""(0)? = K).

Hence the question of proving existence of a second valid EIV
model reduces to discussing what range of parameters L and K
guarantee that Xy in (13) is a valid output noise variance, that
is, such that the positivity condition (7) is satisfied. It is actually
easy to show that if one of the two variances, say o2, satisfies
the condition af € [0, Ry], then the second inequality in (7) is
automatically satisfied. For this reason we shall henceforth just
concentrate on Xy. We may distinguish three different situations:

e Either ¥y < Oor Xy > Ry: in this case Xy cannot be interpreted
as a noise variance and (13) cannot give rise to a second EIV
model. The given model is identifiable.

e Xy = o,*: by Lemma 2 it must also hold that ¥, = o,?. This is
the case in which the two EIV models coincide and G(z) turns
out to be all-pass with gain L; see Section 5.2. The model is
identifiable.

e0< Xy <Ry X # of: in this case Xy can be interpreted as

output noise variance; i.e. Xy = a{z. The decomposition

Sy(2) = LSx(2) + Zy (14a)
Su@) =L7'S,(2) + Zy (14b)

is a valid EIV realization of the given joint spectrum which is
different from the given one as Xy # 0,%, Xy # o,%. Therefore
the model is non-identifiable.

Fig. 2 provides a graphical description of the three situations.

5.2. EIV models with an all-pass transfer function

Consider EIV models with an all-pass transfer function, namely
a transfer function satisfying G(e/?)G(e ™) = L. Then the internal
spectra must satisfy

5:(2) = G(2)G(z™")Sx(2) = LSx(2)



548 G. Bottegal et al. / Automatica 47 (2011) 545-551

all-pass: two - —
R coincident identifiable:
v decompositions only one
compatible
l decomposition
N>
non-identifiable:
two compatible f———-->
decompositions
R
or w |

0 o

Fig. 2. Graphical interpretation of identifiability of EIV models.

and since Sy(z) = S,(z) + o, summing o to both members one

gets Sy(z) = LSx(z) +o,. Further recalling that Sx(z) = Su(z) — 0y,
we arrive at

Sy(2) = LSu(2) — Log + 0] = LSy(2) + K

where K = o)? — Lo2. Hence EIV models with an all-pass transfer
function satisfy the linear-affine relation. However it is easy to see
that they are identifiable, since the expression of of is equal to the
one of the candidate alternative variances in (12).

These models are however quite special; in a sense they
correspond to a limit situation, as explained in the following
remark.

Remark 4. As it follows from Eq. (10), Theorem 3, for non-
identifiable EIV models, the spectrum Sy(z) can be written Sy(z) =
LSx(z)+0.?, but for all-pass transfer functions one also has S,(z) =

LS¢(z) and therefore a§’2 = 03;2. For this reason even if formally
there are two EIV realizations with the same all-pass transfer

function, the two realizations actually coincide.

5.3. Checking non-identifiability from the joint spectrum

When (one of) the variance parameters a;, a‘f of an EIV model
is known, it is trivial to check identifiability by checking whether
or not Xy lies in the feasible interval [0, Ry]. This test requires
however knowledge of the variance parameters which in practice
can only be estimated by some identification procedure and are
therefore affected by noise. The result of the test may then
be also uncertain and identification-method dependent. This is
conceptually unsatisfactory, as identifiability should in principle
be a property of a model class alone and should not depend on the
outcome of a particular identification algorithm.

One would like to check identifiability on the basis of the
external spectra only, assuming of course that these spectra are
realizable by an EIV model. Assuming the linear affine relation (9) is
satisfied, one would in particular like to check a priori if Xy belongs
to the feasible interval just on the basis of the parameters L and
K. Note that these are external parameters which can in practice
be computed very accurately by running a linear regression in the
frequency domain. See e.g. the simulation example in Section 7.
Unfortunately there is not enough information about the joint
spectrum in these parameters to provide a definite answer since
Xy is a function also of the unknown value o2. We can nevertheless
obtain some loose sufficient conditions which may turn out useful
in certain situations.

The following proposition, whose proof is skipped for reasons
of space limitations, provides an instance of non-identifiability
criteria based on L and K alone.

K>0
- non-id.  uncertain , identifiable
0  R,—LR, R, K
K<0
identifiable uncertain non-id.
K —LR, R,— LR, 0

Fig. 3. Identifiability for various values of K.

Proposition 5. Assume the joint spectrum (1) admits EIV realizations
and that the linear-affine relation (9) is satisfied. Assume also that
there is no all-pass relation between the internal processes. Then,

o if K > Ry or K < —LRy we have identifiability;
e if K = Ry — LR, we have non-identifiability.
The situation is described by the Fig. 3. We have excluded the

presence of zeros on the unit circle of either Sy(z) or Sy(z). The
presence of such zeros would in fact imply either that crf =0

(i.e. Sz(z) = Sy(2)) or alf = 0 (and Sx(z) = Su(2)). In both cases
identifiability analysis would be superfluous.

Use of these conditions is illustrated in the examples of the next
section.

6. Examples

To illustrate the results of this paper we shall first discuss two
academic examples.

6.1. A non-identifiable model

Consider the following power spectra:

0.11z%> — 4.864z — 14.57 — 4.864z" 1 +0.11z2

Sv(2) =
v(@) 72 —0.1382 —2.83 — 0.1382~1 + 22
0.01z> — 0.971z — 2.88 — 0.971z" ! + 0.01z72
Su(?) = 2 [ —
z2—0.1382 —2.83 —0.138z7 1+ z
0.033z* + 0.0262> 4 0.005z% — 0.0002z
Syu(z) =

z4+0.2z3 — 0.83z2 — 0.084z + 0.176

also represented in Fig. 4 (solid line). In this case the input and
output spectra satisfy the linear-affine relation (9) with L = 5 and
K = 0.06. In order to check identifiability we use Proposition 5.
This requires a preliminary computation of Ry and Ry. For this
example we find Ry = 2.6521, Ry = 0.5184 and in this case we
have exactly K = Ry — LRy. In force of Proposition 5, the model
is non-identifiable. As a check we may use the geometric method
proposed in Beghelli, Castaldi, and Soverini (1997), interpreting (8)
as the intersection of an infinite family of hyperbolas in the plane
{olf, aj}. The intersection of all these branches in the plane is a
point in the plane {07, 0.} corresponding to the error variance
pairs of candidate EIV models. Points of intersection, lying outside
of the positive orthant do not correspond to valid EIV models. As
we can see from Fig. 5 there are two nonnegative intersections
(07, 0y7) = (0.3,2.65), (0% 0,%) = (0.52, 1.56) and we may
check that o, = Ry and 0,2 = Ry. The resulting spectra are drawn
in Fig. 4.

6.2. An identifiable model satisfying the linear-affine relation

Assume the input, output and cross spectra are described by

Sy(2)
_ —0.223 4+ 30.922 — 71.52 — 387.2 — 71.3z7 ' + 30.9272 — 0.2z 3
T z3-6.3522 4+ 14.137 — 34.014 + 14.13z71 — 6.35272 + 23
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_Sy(z) al

20| oS |
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25¢
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0.5 .
oL

3 2 1 o T 2 3

Fig. 4. Input-output and internal spectra for model 1 (dashed line) and model 2 (dotted line), Example 3.

Fig. 5. Intersections of hyperbolas for example 6.1.

Su(2)
2> —10.12% — 24.04z — 252.9 — 24.04z7' —10.1z72 + z"°
T 22— 6.3522 + 14.13z — 34.014 + 14.1327 1 — 6.3522 + 2
Syu(2)
_9.297% + 4.242° — 0.95z* — 0.322> — 0.037z% + 0.003z + 0.0001
© 25 -0.822% +0.59z% — 0.252% + 0.074z% — 0.015z + 0.001

and shown in Fig. 6. We see from the picture that there may be
a linear affine relation between the two spectra. By imposing a
relation of the type (9), we find L = 1.8, K = —2. In this case
the necessary condition of Theorem 3 is satisfied. However non-
identifiability is not guaranteed. According to Proposition 5, since
here K < 0, we need to check if K < —LRy, in which case the
model would be identifiable. _

Computing R, one gets Ry = 0.902, and so —LR, = —1.624.
Hence we have K < —LRy, and the model is identifiable. We may
in fact check that we have two possible variance pairs but only one
of them, (0,7, 0y?) = (0.5, 0.7) is positive. The other, (0,2, 0,?) =
(1.5, —1.1), is not feasible having a negative component. Note that
this happens because 0,/? > R, (the theoretical upper limit).

35

; Su(z)‘
---S,(2)

30 L PN

1.5

0.5F : b

0—3 -2 -1 0 1 2 3

Fig. 7. Spectral profile of the noise filter.

7. A simulation experiment

We consider an experimental setup suggested by one of the
referees. A vector time series realization of the bivariate process
[y(t) u(t)] is generated from an EIV model with correlated
non-white additive noise errors obtained as a filtered linear
combinations of two uncorrelated white noises w; and w; of unit
variance, avzvi = 1, according to the scheme

ey(t) = \JoF(@)(cy. 1w (€) + 6, oWa (1))
eult) = \JoZF(@) (0w (1) + W (1),

where ¢, + cfz = 1and F(z) is a linear FIR filter, whose spectral
profile is plotted in Fig. 7. The filter introduces a sort of realistic
attenuation of the noise spectra at high frequencies.

From the sample time series of y(t), u(t) the power spectra of
the simulated system are estimated by a standard non parametric
method (Welch). These spectra will be called the “true” or
“rough” spectra hereafter. The frequency plots of these spectra
are the solid lines drawn in Figs. 8 and 9: naturally these
true spectra do not comply with the Frisch scheme. One may
produce a Frisch scheme approximation which is “best” according
to some chosen identification/approximation procedure, see for
example Soderstrom (2007). We come up with an estimated joint

2
15
]
05
0
-05
-1
-15
2

0 0.5 1 1.5 2
(52
u

Fig. 6. Input-output spectra and intersection of hyperbolas, Example 2.
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S,

u

S, (2)
10 w w !

- - - Frisch approximation Lo
——Non par. estimation .

= = =Frisch approximation PR
——Non par. estimation <

0 05 1 15 2 25 3

Fig. 8. Input-output estimated spectra and their approximations.

. Syu(z)‘Suy(z)
= = = Frisch approximation
30F | ——  Non par. estimation ]
25+ B
20+ B
15+ B
10| R
5 |- -
0 : i
0 05 3
Fig.9. Estimated cross-spectrum and its approximation.
spectrum of the Frisch type described by>
$0) —2.333z 4+ 10.3 — 2.333z7! (153)
= ad
v z+3.633+2!
A —0.25z + 1.705 — 0.25z7!
Su(z) = (15b)
0.3z + 1.09 + 0.3z!
. —1.3332% + 4.667z — 3.333
Syu(2) = (15¢)

z24+3.633z+1

The plots of the approximate spectra are the dashed lines in Figs. 8
and 9.

At this point we may want to check for possible non-
identifiability. The existence of a linear-affine relation between
the two approximate output spectra (Theorem 3) is tested by
fitting a linear regression of S,(e”) versus S,(e) for various
frequencies. The regression line is the dashed line shown in
Fig. 10. In this case we can see that the linear regression is
quite accurate, We find L = 2.1556 and K = —0.537. Hence
we conclude that there may be another Frisch scheme model
compatible with the joint spectra (15). One may argue that at this
stage it may be simpler to use a specific algorithm to get estimates
of aj, aj from the given spectra (15), and thereby check directly
for non-uniqueness. Alternatively one may check if the quantities
Xy, Xy are positive and are therefore interpretable as true noise
variances. Experimental procedures of this kind may however be
very imprecise and turn out estimates of the model variances
which are affected by noise and ultimately provide wrong answers.
For this reason we shall instead attempt to use the a priori criteria

3 As we do not want to be tied up with any specific EIV identification procedure
(each of which may give different estimates) we won’t even mention which method
was used in the experiment.

10

Fig. 10. Regression line on Frisch spectra vs rough spectra.
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Fig. 11. Hyperbolas intersection for the spectra (15).

of Proposition 5 of Section 5.3, which only depend on the model
spectra (15) and not on specific variance estimates. We find

Ry~1 R, =0.713;

and we see that K = Ry — LRy, with good approximation, whence
we can conclude, on the basis of Proposition 5, that the Frisch
model describing the data (15) is non-unique and we have non
identifiability. This can also be checked graphically by intersect-
ing hyperbolas in the plane {ayz, alf} corresponding to different
frequencies, see Fig. 11.

8. Discussion

Although testing for non-identifiability on the rough (true)
spectra does not make sense since these spectra are in general not
realizable by EIV (Frisch) models, still one may want to see how
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these tests perform on the rough data in order to get a feeling for
the sensitivity of the procedure.

Running a linear regression of the rough spectrum Sy(z) on
Su(z), we obtain slightly different values of L and K, namely L =
2.1572,K = —0.5706, and the straight line gives an average error
of fit of the linear approximation Y := LS4(z) + K versus the
measured output spectrum,

_ 1
- N

(N = 4097 is the sample size) which indicates that a linear-
affine relation is a good approximation. Hence in this case we
may conclude that there is a warning for the possible presence
of two compatible models. Checking for actual non-identifiability
cannot however be done on rough spectra and requires fitting
a realizable spectrum to the data. The hyperbola intersection
test is inconclusive due to sharp differences between rough and
approximate spectra for certain frequencies, see Fig. 8 and also the
computation of the bounds Ry and Ry on the rough spectra may
easily become meaningless. This may happen either because of
approximation errors, or also because of noise correlation. In our
case we get the values Ry = —0.1048 and R, = —0.0516, which
are negative, and therefore meaningless.

e IY — Sy(2)|l, = 0.0463,

9. Conclusions

In this paper we have derived necessary conditions on the
spectral densities of the external (measurable) signals under which
a SISO EIV structure with white measurement noises (Frisch
scheme) is non-identifiable. These conditions are almost sufficient,
in the sense that they only disregard the nonlinear constraints of
positivity of the variances of the additive noises. Our identifiability
conditions for EIV models are expressible directly in terms of
the external description of the observable signals, namely their
joint power spectral densities. The linear-affine criterion for non-
identifiability given in Theorem 3 is simple and direct and is
believed to be new. Also identifiability criteria are derived in terms
of the parameters K and L of the linear-affine relation.
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