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Abstract

We study modeling and identification of stationary processes with a spectral density matrix of low rank. Equivalently, we
consider processes having an innovation of reduced dimension for which Prediction Error Methods (PEM) algorithms are not
directly applicable. We show that these processes admit a special feedback structure with a deterministic feedback channel
which can be used to split the identification in two steps, one of which can be based on standard algorithms while the other is
based on a deterministic least squares fit. Identifiability of the feedback system is analyzed and a unique identifiable structure
is characterized. Simulations show that the proposed procedure works well in some simple examples.
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1 Introduction

Quite often in the identification of large-scale time series
one has to deal with low rank signals which have a rank
deficient spectral density. Such low rank time series may
arise in diverse areas such as control systems, economics,
networked systems, biology and other fields.
Suppose we want to identify an (m + p)-dimensional
vector time series y by modeling it as a weakly stationary
zero-mean purely non deterministic (p.n.d.) process y ≡
{y(t) ; t ∈ Z}, having a rank deficient rational spectral
density Φ(z) of rankm. This spectral density can always
be written in factorized form

Φ(eiθ) = W (eiθ)W (e−iθ)>, (1)

with W an (m+p)×m full rank stable rational spectral
factor. It is well-known that there are in general many
such factors only one of which has the property of being
minimum phase, see the appendix B for a definition.
This factor is essentially unique, that is unique modulo
right multiplication by an arbitrary (m × m) constant
orthogonal matrix.

? An abridged version of this paper, [15], was presented at
the IFAC SYSID 2021 meeting in Padova.

Email addresses: wenqicao@sjtu.edu.cn (Wenqi Cao),
picci@dei.unipd.it (Giorgio Picci), alq@math.kth.se
(Anders Lindquist).

The rank deficiency of the spectrum Φ and consequently
of the process y appears in models used in a variety of
applications and is discussed in the literature from dif-
ferent points of view.
Singular autoregressive (AR) or autoregressive moving
average (ARMA) models are discussed in [31], [23], [12].
These models make contact with dynamic factor analy-
sis representations; see [24], [14] where an essential role
is played by a rank-deficient component driven by the
common factors. They occur in biological networks re-
construction as discussed in [4], [38]. Low rank processes
are also encountered in graphical models which are com-
mon in social networks, see [6], [11], [7], [39]. Specific en-
gineering examples where identification of rank-deficient
processes is involved are discussed in [20],[26].

The identification of singular processes has recently been
addressed in [1], [13], [16], [31], [17], [32], and [15]. Some
of these papers, like [13], [17], propose an ingenious adap-
tation of the Prediction Error Method (PEM) identifi-
cation and are of special interest. We shall briefly com-
ment on their approach later in this paper. For a recent
survey of the literature see [25].
Let the process y be partitioned as

y(t) :=

[
y1(t)

y2(t)

]
, (2)
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where y1(t), y2(t) are jointly stationary of dimension m
and p. By properly rearranging the components of y,
we can assume that y1 is a process of full rank m. The
spectral density can then be partitioned as

Φ(z) =

[
Φ11(z) Φ12(z)

Φ21(z) Φ22(z)

]
, (3)

where Φ11(z) is full rank.
It is well-known that the PEM identification procedure
requires that there must be a unique representation of
the predictor in terms of past y. This is not the case un-
less the minimum phase spectral factor W (z) is square
full rank. In fact, let e(t) be the m-dimensional normal-
ized innovation of y and let us expand the innovation
representation y(t) = W (z)e(t) as

y(t)= [W (∞)+z−1Ŵ (z)] e(t) = W (∞)e(t)+Ŵ (z)e(t−1),

where the last term is a causal function of the strict past
innovations and is therefore (by the well-known causal
equivalence of a process and its innovation) must be the
predictor, although expressed as a function of e. Now
since W (z) is not invertible, there is no unique expres-
sion of e(t) as a function of past y and therefore there
is no unique expression of the predictor as a function of
past y. Although W (z) is full column rank, its left in-
verse is not unique, and one could end up with many
expressions for the predictor. This difficulty is exacer-
bated when one is working with (parametric) estimates
of the transfer function. Therefore a direct application
of the PEM principle seems to be forbidden due to the
reduced-rank noise. However in [19], [17] the authors es-
sentially show that the past of the first component y1
acts as a sufficient statistic for the predictor so that
there is a unique expression of the joint predictor which
is a function only of the past of y1. This remarkable rep-
resentation unfortunately requires a crucial minimum
phase condition which is not always satisfied.

In this paper we follow a different approach based on
ideas first presented in [36], [37] and especially in [15]. In
the early paper [33] it was shown that there must exist
a, in general non-causal, deterministic relation between
the components of a singular vector process y. In [36],
[37] and in [15] the existence and structure of such deter-
ministic relations is elucidated and specified as a com-
ponent of a special feedback model for the joint process.
We should advise the reader that in the setting of this
paper, the deterministic relation between the variables
y1(t) and y2(t), is in a sense “dual” of that introduced
in [36] and also studied in [37]. This relation is described
by a rational transfer function which can be identified
quite easily by a least squares algorithm.

The structure of this paper is as follows. In Section 2 we
introduce the feedback model representation of low-rank

processes and prove the existence of a deterministic dy-
namical relation which reveals the special structure of
these processes. In Section 3 we exploit the special feed-
back structure for identification of the deterministic re-
lation and of the transfer functions of the two stochastic
components driven by white noise. In Section 4 we study
the identifiability of the transfer functions of a feedback
representation. The feedback structure is in general not
identifiable and a characterization of all equivalent for-
ward loop transfer functions is provided based on classi-
cal result of stabilization theory in robust control. Even
under the constraint of stability of the forward loop,
yet there are infinitely many equivalent (stable) forward
transfer functions which realize the same transfer func-
tion of the feedback model. The existence of a canonical
(unique) pair of transfer functions of the feedback loop
is discussed in Subsection 4.2. This canonical structure
is a causal Wiener filter plus an orthogonal error term.
The identification of this canonical feedback structure
is discussed in Section 5. The canonical model has an
output-error representation where the additive error is
not necessarily white. Two possible approaches to the
identification of this model are briefly discussed.
From Section 3 to Section 5 we discuss the identifica-
tion of low rank time series. The identification of pro-
cesses with an external measurable input is considered
in Section 6, where we also make a brief comparisons
with the work of [19], [17]. Several simulation examples
are reported in Section 7. Finally, in Section 8 we come
to some conclusions.

Notation: All random processes in this paper are
discrete-time (t ∈ Z), wide sense stationary with zero
mean and finite variance. Most notations comply with
those used in the book [5] and should be quite standard
in the system identification literature. In particular,
multiplication by z is the one step ahead shift operator
acting as: zy(t) = y(t + 1) and y(t) = W (z)u(t) des-
ignates the response of a linear system with transfer
function W (z) to an input function u ≡ {u(t); t ∈ Z}. A
rational vector or matrix function is called stable if all
of its poles belong to the interior of the unit disk. The
strictly proper stable rational vector functions written
as n-dimensional column vectors form a distinguished
subspace of the vector Hardy space H2

n which, with
some abuse of notation, in this paper will be denoted by
the same symbol. H̄2

n will denote the direct sum of H2
n

plus the constants. This space contains the causal ratio-
nal functions which are finite for z → ∞ (but are not
necessarily strictly causal). The notation [·]+ stands for
the orthogonal projection operator onto H̄2

n. It should
be remembered that it maps rational functions into
proper stable rational vector functions.

2 Feedback models of stationary processes

In this section, inspired by classical references such as
[28] [29], [27] and [5, Sect. 17.1], we review the definition
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and some properties of general feedback models which
have been also used in our recent papers [36], [15] and
[37] in the context of rank-deficient vector processes.
Then we derive a special feedback model for low-rank
processes and prove the existence of a deterministic re-
lation between y1(t) and y2(t).

Definition 1 (Feedback Model) A Feedback model

of the process y(t) :=
[
y1(t)> y2(t)>

]>
of dimensionm+

p, is a pair of equations

y1(t) = F (z)y2(t) + v(t), (4a)

y2(t) = H(z)y1(t) + r(t), t ∈ Z (4b)

satisfying the following conditions:

• v and r are jointly stationary uncorrelated processes
called the modeling error and the input noise;

• F (z) andH(z) arem×p, p×m causal transfer function
matrices, one of which is strictly causal, i.e., has at
least one delay;

• the closed loop system mapping

[
v

r

]
→

[
y1

y2

]
is well-

posed and internally stable ;

The block diagram illustrating a feedback representa-
tion is shown in Fig. 1. Note that the transfer functions
F (z) and H(z) are in general not stable, but the overall
feedback configuration needs to be internally stable [9,
Chap. 3.2]. In the sequel, we shall often suppress the ar-
gument z whenever there is no risk of misunderstanding.
The following construction shows that feedback repre-

+
++

+

Fig. 1. Block diagram illustrating a feedback model

sentations of p.n.d. jointly stationary processes always
exist. Let H−t (y1) be the closed span of the past compo-
nents {y11(τ), . . . , y1m(τ)} | τ ≤ t} of the vector process
y1 in an ambient Hilbert space of second order zero-mean
random variables [5] and let H−t (y2) be defined likewise
in terms of {y21(τ), y22(τ), . . . , y2p(τ) | τ ≤ t}. A repre-
sentation similar to (4) may be gotten from the formulas
for causal Wiener filters expressing both y1(t) and y2(t)
as the sum of the best linear estimate based on the past

of the other process plus an error term

y1(t) = E{y1(t) | H−t−1(y2)}+ v(t), (5a)

y2(t) = E{y2(t) | H−t (y1)}+ r(t). (5b)

For a processes with a rational spectral density the
Wiener predictors can be expressed in terms of causal
rational transfer functions F (z) and H(z) as in Fig 1.
Here we choose F (z) to be strictly causal. An alterna-
tive representation with H(z) strictly causal can also
be given, to guarantee well-posedness of the feedback
system. Although the errors v and r obtained by the
procedure (5) may be correlated, in Appendix A we will
show that there exist feedback model representations
where they are uncorrelated. The following theorem de-
scribes basic properties of feedback representations of
stationary processes. It has been proven in [36], [15] and
is also reported in the companion paper [37], therefore
its proof is omitted.

Theorem 2 The transfer function matrix T (z) from[
v

r

]
to

[
y1

y2

]
of the feedback model is given by

T (z) =

[
P (z) P (z)F (z)

Q(z)H(z) Q(z)

]
, (6a)

with

P (z) = (I − F (z)H(z))−1,

Q(z) = (I −H(z)F (z))−1
(6b)

where the inverses exist. Moreover, T (z) is a full rank
(invertible a.e.) and (strictly) stable function which yields

Φ(z) = T (z)

[
Φv(z) 0

0 Φr(z)

]
T (z)∗, (7)

where Φv(z) and Φr(z) are the spectral densities of v and
r, respectively, and ∗ denotes transpose conjugate.

Since T (eiθ) has full rank a.e., Φ is rank deficient if and
only if at least one of Φv or Φr is. Thus the rank of Φ is
equal to the sum of the ranks of Φv and Φr. The next
lemma will play a crucial role in this paper. Although
it can be seen as a dual of a continuous-time result in
[36], for the benefit of the reader we shall provide a proof
anyway.

Lemma 3 Suppose (FΦrF
∗ + Φv) is positive definite

a.e. on the unit circle. Then

H = Φ21Φ−111 − ΦrF
∗(Φv + FΦrF

∗)−1(I − FH), (8)
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that is
H = Φ21Φ−111 (9)

if and only if Φr ≡ 0.

PROOF. From (6) and (7), we have

Φ21 = Q(HΦv + ΦrF
∗)P ∗ = QHΦvP

∗ +QΦrF
∗P ∗,

Φ11 = P (Φv + FΦrF
∗)P ∗,

and using the easily verified relations

PF = FQ, HP = QH.

we get
Φ21 = HPΦvP

∗ +QΦrF
∗P ∗.

Adding and subtracting the term HPFΦrF
∗P ∗ we end

up with

Φ21 = HΦ11 + (Q−QHF )ΦrF
∗P ∗

= HΦ11 + ΦrF
∗P ∗

since Q − QHF = I. Then (9) follows if and only if
Φr = 0 since P is invertible and F times a spectral
density can be identically zero only if the spectral density
is zero as otherwise this would imply that the output
process of a filter with stochastic input would have to be
orthogonal to the input. 2

In the following we specialize to feedback models of rank
deficient processes. We shall show that there are feed-
back model representations where the feedback channel
is described by a deterministic relation between y1 and
y2.

Theorem 4 Let y be an (m+ p)-dimensional process of
rank m. Any full rank m-dimensional subvector process
y1 of y can be represented by a feedback scheme of the
form

y1 = F (z)y2 + v, (10a)

y2 = H(z)y1. (10b)

where the transfer functions F (z) and H(z) satisfy the
conditions of Definition 1 and the input noise v is of full
rank m.

PROOF. Recall that n-tuples of real rational functions
form a vector space Rn(z) where the rank of a rational
matrix is the rank almost everywhere.

The claim is equivalent to the two statements
1. If we have the structure (10), i.e. Φr ≡ 0; then y1 is
of full rank m = rank(Φ).

2. Conversely if y1 is of full rank m = rank(Φ) then
Φr ≡ 0.

Part 1 follows from Lemma 3 since because of (7) then
Φv must have rank m(= rank(Φ)).
Part 2 is not so immediate. One way to show it could be
as follows.

Since Φ(z) has rank m a.e. there must be a full rank
p×(m+p) rational matrix which we write in partitioned
form, such that

[A(z) B(z)]Φ(z) = 0 ⇔ [A(z) B(z)]

[
Φ11(z)

Φ21(z)

]
= 0

(11)

⇔ [A(z) B(z)]

[
y1(t)

y2(t)

]
= 0

whereA,B are p×m, p×pmatrices and the last formula
has the usual interpretation.

We claim that B(z) must be of full rank p. One can
prove this using the invertibility of Φ11(z). For, suppose
B(z) is singular, then pick a p-dimensional non-zero
row vector a(z) in the left null space of B(z) and mul-
tiply from the left the second relation by a(z). This
would imply that also a(z)A(z)Φ11(z) = 0 which in
turn implies a(z)A(z) = 0 since Φ11 is full rank. How-
ever a(z)[A(z) B(z)] cannot be zero for the matrix
[A(z) B(z)] is full rank p and hence a(z) must be zero.
So B(z) must be full rank.
Now take any nonsingular p×p rational matrixM(z) and
consider instead M(z)[A(z) B(z)], which provides an
equivalent relation to (11). By choosing M(z) = B(z)−1

we can reduce B(z) to the identity to get

[−H(z) I ]

[
y1(t)

y2(t)

]
= 0

where H(z) is a rational matrix function, so that one
gets the deterministic dynamical relation

y2(t) = H(z)y1(t) .

Substituting in the general feedback model one con-
cludes that y2(t) must then be a functional of only the
noise v since y1(t) is such. Therefore by the uncorrela-
tion of v and r one must conclude that in the second
equation of (4) r must be the zero process i.e. Φr = 0.
Hence a representation like (10) must hold. 2

3 Identification of low rank processes

Suppose we want to identify by a PEM method a model
of an (m+p)-dimensional time series y of rankm. To this
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purpose, the model class should be selected to guarantee
identifiablility (i.e. uniqueness) and it is specific of the
PEM method that it should actually be an innovation
representation of y which is well known to be essentially
unique. This representation involves a minimum phase
spectral factor W (z) satisying (1) whereby

y(t) = W (z)e(t), (12)

where e(t) is the m-dimensional normalized innovation
process of y, a white noise of covariance Im.
Consider then the model (12) block-partitioned as in (2),

y(t) =

[
y1(t)

y2(t)

]
:=

[
W1(z)

W2(z)

]
e(t), (13)

where y1 and y2 are described by the special feedback
model (10). From the defining property of y1 and y2 in
our partition,W1(z) must be squarem×m, stable, causal
and non singular (invertible a.e.) and W2(z) stable and
causal.

Proposition 5 The transfer function of the feedback
channel in model (10) is given by the expression

H(z) = W2(z)W1(z)−1 (14)

and is unique. In fact, it depends only on the joint spec-
trum (3). Stability of H holds if and only if W1 is mini-
mum phase.

PROOF. The formula follows from the partition (13)
since both components are driven by the same full rank
process e(t). Formula (9) in Lemma 3, provides the
alternative expression H(z) = Φ21(z)Φ11(z)−1 which
must obviously coincide with (14) since Φ2,1(z) =
W2(z)W1(z)∗ and Φ1(z) = W1(z)W1(z)∗. It is then
clear that H(z) depends only on the joint spectrum (3)
and must therefore be unique for a given partition of the
vector process y. That stability of H holds if and only
if W1 is minimum phase follows since there cannot be
cancellations in forming the quotient (14). It is shown
in Appendix B that if W (z) is minimum phase then
W2(z) and W1(z) cannot have common unstable zeros
which could cancel in forming the product (14). 2

Remark: Proposition 5 is in agreement with [37], where
it was shown that H(z), (called F in [24]) is unique but
in general not stable by a counterexample provided in
Section V-A. (Also see the conference version [36]). In-
cidentally this answered a question by Manfred Deistler
in the negative. On the contrary we shall see that there
are in general infinitely many transfer functions F (z)
generating y by means of the model (10).

3.1 Estimation of H(z)

Since the relation between y2 and y1 is completely deter-
ministic we can identify H(z) by imposing a determin-
istic transfer function model to the observed data. The
model can be written as A(z−1)y2(t) − B(z−1)y1(t) =
0, t = 1, . . . , N (the minus sign is for convenience) where
A(z−1) and B(z−1) are matrix polynomials in the delay
variable z−1, of dimension p× p and p×m such that

H(z) = A(z−1)−1B(z−1) .

One can always choose A(z−1) monic and parametrize
the matrix polynomial B(z−1) so that the transfer func-
tion corresponds to the difference equation

y2(t) = −
q∑

k=1

Aky2(t−k)+

r∑
k=0

Bky1(t−k), t = 1, . . . , N,

(15)
where we have written A(z−1) = I +

∑q
k=1Akz

−k and
B(z−1) =

∑r
k=0Bkz

−k. The above equation involves
delayed components of the observed trajectory data of y.
The coefficients can then be estimated by solving a deter-
ministic overdetermined linear system by least squares
and a strongly consistent and unbiased result can be ob-
tained whether the system is stable or not, assuming we
know the true degrees of A and B. See the example in
subsection 7.2.
Then, once W1 is identified, the transfer function W2

can be calculated using the relation

W2(z) = H(z)W1(z). (16)

This procedure however may fail if the true W1(z) in
(12) is not minimum phase and the identification is done
by a time-recursive least squares algorithm. In fact if
W1(z) has unstable zeros then H(z) is unstable and in
this case the noise superimposed to the data may tend
to excite the unstable modes of the system (33) and
cause divergence. To bypass the constraint of minimum
phase of the true system one should rely on algorithms
processing the whole data batch in one shot.

3.2 Identification of W1

Next, since y1 (and W1) is full rank, it seems that one
could easily identify, say an ARMA innovation model
for y1 based only on observations of y1(t) on some large
enough time interval. By this procedure we would ideally
identify an innovation representation for y1, say y1(t) =
G1(z)e1(t) where however the minimum phase transfer
function G1(z) does not necessarily coincide with the
upper block of the joint innovation representation of y.
This would be true only if the upper block W1(z) of the
minimum phase W (z) was also minimum phase, which
in general may not be true (the same clearly holding also
for the lower block). See Appendix B for a discussion
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of this point. In other words, the partitioned innovation
representation of the full process y may not necessarily
coincide with the separate innovation representations of
the two components y1 and y2.
Therefore a PEM method applied to measurements of y1
may not lead to a consistent estimate of the upper block
W1(z) of the model (13) since there may be a nontrivial
inner function Q1(z) such that

W1(z) = G1(z)Q1(z) (17)

One may then wonder if the identification problem we
are after is well-posed and if there actually is a procedure
to recover a non-minimum phase W1(z) from the data.
To this end we shall first show that estimating G1 can
nevertheless lead to a consistent estimate of the joint
spectrum.

Proposition 6 Assume that the transfer function H(z)
is estimated as described in the previous subsection, that
is using the data (y1, y2) and asymptotically satisfying
the relation (16). Then, even if the upper block W1(z) of
the joint (minimum phase) transfer function W (z) is not
minimum phase, a consistent estimate of the minimum
phase transfer function G1(z) does nevertheless produce
a consistent estimate of the joint spectral density of the
(joint) process y.

PROOF. The statement is obviously true for the auto
spectral density Φ11(z). Then just recall that the cross
spectral density of y2 and y1 can be expressed as

Φ21(z) = H(z)Φ11(z) = H(z)G1(z)G1(z)∗.

Using the estimate Ĝ1(z) in place of W1(z) in formula

(16) to compute the estimate Ŵ2(z), although Ŵ2(z) :=

Ĥ(z)Ĝ1(z) may be a non-consistent estimate ofW2(z), it
does result in a consistent estimate of the cross spectrum
Φ21(z). A similar argument can be used for Φ22. 2

Hence a consistent estimate of the minimum phase trans-
fer function G1(z) does produce a consistent estimate of
the the joint (minimum phase) transfer function W (z)
of the (joint) process y and therefore also of its m ×m
upper block.

3.3 Procedure to recover W1 and W2 from consistent
estimates of G1 and H. (Equivalently, recovering
the missing inner factor Q1 in the outer-inner fac-
torization (17)).

From the expression H(z) = W2(z)Q∗1(z)G1(z)−1, that
is from

H(z)G1(z) = W2(z)Q∗1(z) = W2(z)Q1(z)−1 . (18)

One can get estimates of W2 and Q1 by performing a
right-coprime factorization in the rationalH∞ space (see

e.g. [21, sect. 5.4]), of the estimated product Ĥ(z)Ĝ1(z)
imposing that Q1 should be inner (see e.g. [10]). This
guarantees uniqueness, see again [21, p. 368]. The con-
jugate inner function Q∗1 must contain exactly all the
unstable poles of the left member.
In this way we are in principle able to obtain a consis-
tent estimate of the full minimum phase model W even
when W1 is not minimum phase. The calculations are
easy when W1 is scalar but may be quite involved in the
matrix case where one should need to use coprime fac-
torization algorithms in terms of state-space realizations
which we shall not dwell into.

4 Identification of the feedback model

The procedure described so far does not take into ac-
count the possibility of modeling the system by the struc-
ture (10), in particular by the “internal” feedback de-
scription of y1 involving the transfer functions F, K and
H. Assume that the model (13) is in innovation form,
with e(t) the innovation of the joint process y(t) and let

y1 = F (z)y2 +K(z)e, (19a)

y2 = H(z)y1. (19b)

be the corresponding feedback representation withK(z)
a square spectral factor such that v(t) := K(z)e(t),
which we assume minimum phase for identifiability.
From (6) we have[

W1

W2

]
= T

[
K

0

]
=

[
PK

QHK

]
=

[
PK

HPK

]
, (20)

with both P (z)K(z) and H(z)P (z)K(z) submatrices of
a minimum phase transfer function.
One may ask how one could recover the direct trans-
fer function F (z) from the identified W1(z) and H(z).
This would amount to solving for F the relation W1 =
(I − FH)−1K which, assuming H is given, contains
two unknowns. Hence F (z) and K(z) are not identifi-
able as they do not correspond uniquely to the mini-
mum phase representation (13) and hence do not corre-
spond uniquely to the joint spectral density of y(t). In
other words, there are in general infinitely many pairs
(F (z),K(z)) realizing in feedback form the innovation
representation (13). This actually agrees with the well-
known identifiability analysis of feedback systems which
dates back to [18], see the example in Sect. VI.

4.1 On equivalent feedback structures

In our setting the causal transfer function H(z) of the
feedback channel is uniquely determined by the two com-
ponents of the process y, once the partition is fixed and
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known, while there are in general a multitude of pairs
(F,K) yielding the same transfer function W1(z). Note
that each such pair should make W1 stable. In particu-
lar, once H is given, each F should make the feedback
configuration (10) internally stable. In this subsection
we shall characterize the set of such equivalent F ’s. This
problem can be regarded as the “dual” of a stabiliza-
tion problem in control, which is also discussed in our
companion paper [37] on modeling of low rank vector
processes. Here we have a more limited scope than in
[37] as we only want to analyze the identifiability of the
system by explicitly describing all pairs of transfer func-
tions (F,K) which realize the same stable W1.

Since the feedback system must be internally stable the
sensitivity function P (z) defined in (6b) needs to be an-
alytic in the complement of the open unit disk, without
unstable pole-zero cancellation between F (z) and H(z).
Assuming for the moment that H(z) is a proper stable
rational function, there is a whole class of proper rational
functions F (z) which accomplish this job. In the scalar
case they are all described by the formula [9, Chapter
5.1],

F (z) =
S(z)

1 + S(z)H(z)
(21)

where S(z) is an arbitrary proper stable rational func-
tion. The corresponding sensitivity function is given by

P (z) = 1 + S(z)H(z)

linearly parameterized by an arbitrary such S(z). All
corresponding K(z) are then obtained from the relation
(19a), that is

K(z) = P (z)−1W1(z)

so that all such (F,K) yield the same transfer function
W1(z).
When W1(z) is not minimum phase and H(z) =
W2(z)W1(z)−1 fails to be stable, closed-loop stability
can still be characterized by using a coprime stable
proper-rational factorization of H(z) yielding a more
general parametrization of all F ’s as described in [9,
Sect. 5.4] (involving the so-called Youla parametriza-
tion).

In the matrix case, still assuming a stable H, there is
a parametrization formula similar to (21), see e.g. ref-
erence [21]. But for the unstable case one needs to use
matrix coprime factorizations to obtain the stabilizing
F . This issue is fully discussed in the dual context of our
companion paper [37].

4.2 A canonical feedback model

As seen from (21), there are infinitely many possible
transfer functions F (z) (and also companion K(z)) real-
izing the same closed loop transfer function W1. In this

subsection we shall ask the following natural question:
If one restricts F to be stable and causal, does there
exists a unique feedback representation (19)? Since the
identifiability analysis of the previous section involves
also the transfer function K(z), it is quite evident that
the answer should be negative. The following example
provides in fact a few different pairs (F,K), all with a
strictly causal stable F , which realize the same transfer
function W (z).

Example Let a 2 × 1 transfer function W (z) be parti-
tioned by two scalar blocks of respective transfer functions

W1(z) =
z3

(z − 0.5)(z + 0.5)(z − 0.2)
, (22a)

W2(z) =
z3

(z − 0.5)(z − 0.2)(z + 0.1)
. (22b)

the corresponding transfer function H being (from (14))

H(z) =
z + 0.5

z + 0.1
.

We can provide three different pairs F,K realizing the
system, all three with a stable strictly causal F . The first
being

F1 =
−0.4

z + 0.5
, (23a)

K1 =
z3

(z − 0.5)(z − 0.2)(z + 0.1)
. (23b)

the second,

F2 =
0.4

z + 0.5
, K2 =

z3(z − 0.3)

(z + 0.5)(z − 0.5)(z − 0.2)(z + 0.1)
.

(24a)

and finally

F3 =
(0.2z2 + 0.25z − 0.5)(z + 0.1)

(z + 0.5)z3
, (25a)

K3 =1. (25b)

To check that all three pairs realize the minimum phase
W1 in the example, just calculate the noise transfer func-
tions Ki from Ki = (I − FiH)W1, yielding all Ki to
be minimum phase, and the corresponding Pi = (I −
FiH)−1 = W1K

−1
i being stable.

However, the last example offers a hint leading to the
characterization of uniqueness: one can choose a partic-
ular function F (z) which, besides being stable with at
least one unit delay, acts as the transfer function of the
Wiener predictor of y1(t) based on the (strict) past of y2.

7



Then one should have a representation like (19a) where
v(t) is the prediction error, uncorrelated with (i.e. or-
thogonal to) the past space H−t−1(y2).
The proof of uniqueness of such a representation is just
based on the uniqueness of the orthogonal decomposi-
tion of y1(t) as a linear causal functional of the strict
past of y2 plus an error part orthogonal to the past space
H−t−1(y2). By the orthogonal projection lemma [5, p. 27],
given such a decomposition, the linear causal functional
of the strict past of y2 must then be the (unique) orthog-
onal projection E[y1(t) | H−t−1(y2)] onto H−t−1(y2), i.e.
the Wiener predictor.

In particular, when K(z) is a constant matrix as in the
third example, the noise K3e(t) is automatically orthog-
onal to the strict past space of y2 and we automatically
get the remarkable interpretation of F (z) as the transfer
function of the Wiener predictor. Indeed, below we shall
show that this will surely happen when W2 is minimum
phase.

Theorem 7 Assume that W2 is minimum phase; then
there is a representation (19) where F is stable and
strictly causal, that is F (z) = z−1F̄ (z) with F̄ (z) causal
and stable (analytic in {|z| ≥ 1}) and K(z) is a constant
matrix K+. In fact, this F̄ (z) coincides with the transfer
function F+(z) of the one-step ahead Wiener predictor
based on the strict past of y2, that is

F+(z)y2(t− 1) = E{y1(t) | H−t−1(y2)} (26)

and the prediction error ỹ1(t) := y1(t)− F+(z)y2(t− 1)
can be written K+e(t) where e(t) is the innovation of the
joint process y. The representation

y1(t) = F+(z)y2(t− 1) +K+e(t) (27)

is the unique feedback representation of y1(t) in which
v(t) is uncorrelated with the strict past of y2.

PROOF. Let W2(z) = G2(z)Q2(z) with Q2(z) the in-
ner factor of W2(z); it is a standard fact explained for
example in [5, Chap. 3] that the Fourier representative
of H−t−1(y2) is the subspace Q2H

2
m of H2

m. Denoting by

PQ2H
2
m the orthogonal projection operator onto Q2H

2
m,

we can write the formal representative of the error pro-
cess ỹ1(t) := y1(t)− E[y1(t) | H−t−1(y2)] as

ỹ1 := W1e− [PQ2H
2
mW1] e

so that

K(z) := W1(z)− [PQ2H
2
mW1](z) (28)

is the transfer function of the error process v(t) :=
K(z)e(t) which by construction is uncorrelated with the

strict past H−t−1(y2). In other words,

K(z) ⊥ Q2H
2
m (29)

the orthogonality being understood as holding column-
wise in theL2 space of vector functions on the unit circle.
Now if (and only if) Q2(z) = Im then K(z) ⊥ H2

m which
means that K(z) (in fact its column functions) belong
to the orthogonal complement (H2

m)⊥. But sinceK(z) is
analytic, this can happen only when K(z) is a constant
matrix. 2

Naturally, for a general representation (19a) with a
strictly causal F , the error process v(t), given by
v(t) = [W1(z) − F (z)W2(z)]e(t) := K(z)e(t) may not
necessarily be orthogonal to the past of y2.

5 Structure and estimation of the predictor

Denoting for convenience the one-step ahead predictor
E{y1(t) | H−t−1(y2)} by the symbol ŷ1(t), we may calcu-
late F+ by the Wiener predictor formula. see e.g. [5, p.
105]. Introducing the cross spectral density of the pro-
cesses y1(t) and e2(t− 1) ≡ z−1e2(t), one has

F+ = [Φŷ1,z−1e2 ]+G
−L
2 = [zW1Q

∗
2]+G

−L
2 . (30)

where [·]+ denotes the (causal) orthogonal projection of
a function onto the complete H̄2

m space,G2(z) is the min-

imum phase factor of W2(z), G−L2 its (Moore-Penrose)
left inverse and Q2(z) the inner factor of W2 so that the
innovation of y2 is e2(t) = Q2(z)e(t). Hence, if W2 is
minimum phase the above simplifies to

F+(z) = [zW1(z)]+W
−L
2 (z) . (31)

and one gets ŷ1(t + 1) = F+(z)y2(t) = [zW1(z)]+ e(t)
and so, when W1 is also minimum phase, e(t) =
W1(z)−1y1(t) and

F+(z)y2(t) = z[W1(z)−W1(∞)]W1(z)−1y1(t) (32)

is exactly the one-step Wiener predictor of y1(t+1) given
its own past. This agrees with the sufficient statistic role
of the past of y1 in the predictor formulas (12) and (13)
of [19].

5.1 Estimation of F+(z)

A conceptually simple way to estimate F+(z) is to resort
to estimates of the transfer functions H(z) and the min-
imum phase factor G1(z). From consistent estimates of
these functions one can perform the coprime factoriza-
tion (18) to obtain estimates of W2(z) and of the inner
factor Q1(z). To estimate G2(z) and compute the inner

8



factor Q2(z) one can then perform an outer-inner fac-
torization on the estimate of W2(z), i.e.,

W2(z) = G2(z)Q2(z).

With these data one may in principle compute F+(z)
by formula (30) and the companion noise transfer func-
tion K(z) by implementing the formula (28) or by K =
(I − z−1F+H)W1. Although this may look like a rather
complicated indirect procedure, for scalar transfer func-
tions it can be implemented quite easily, see Example 2
in Section 7.2.

One may instead attempt to estimate the transfer func-
tion F+(z) directly from the data. For simplicity we shall
restrict to the case of scalar processes, the generaliza-
tion to the vector case being relatively straightforward.
We assume a rational structure, say

F (z) = D(z−1)−1N(z−1)

where D(z−1) and N(z−1) are polynomials in the delay
variable z−1, of degree n andm. ChoosingD(z−1) monic
and the numerator polynomial N(z−1) with a zero con-
stant term, the transfer function corresponds to the dif-
ference equation

ŷ1(t) = −
n∑
k=1

Dkŷ1(t−k)+

r∑
k=1

Nky2(t−k) t = 1, . . . , N,

(33)
involving delayed components of the unobserved trajec-
tory of the predictor ŷ1 and of the “ input” time series
y2. Assuming we know the true orders, this could act
as a parametric representation of the predictor transfer
function. Of course ŷ1 is not observed and the identifica-
tion problem needs to be formulated in an output-error
setting. Introducing the prediction error

v(t) := y1(t)− ŷ1(t)

and letting

ϕ(t−1) :=
[
y1(t− 1) ... y1(t− n) y2(t− 1) ... y2(t− r)

]>
=

[
y1(t− 1)

y2(t− 1)

]
, where the boldface symbols y1(t −1),

y2(t− 1) represent arrays made of n- and r-dimensional
delayed variables y1(t− k) and y2(t− k) as specified by
the model (33), the representation (19a) can be written
as a “constrained” pseudo-linear structure

y1(t) = ϕ(t− 1)>θ + ε(t) . (34)

where θ is the (n + r)-dimensional vector of unknown
parameters and ε(t) := D(z−1)v(t) still dependent on
the parameter θ. From what we have seen previously, in
general v(t) and hence ε(t) may be far from being white

so attempts to use ARX identification may lead to badly
biased estimates. In addition, for F+(z)y2(t−1) to be the
Wiener predictor, v(t) must be orthogonal to the strict
past of y2 which should be added as a further constraint
to the model.

The output-error model (34) could be identified by an
instrumental-variable method see [22, p. 192-198]. In the
standard procedure the unknown parameters should first
be roughly estimated by minimizing the average squared
prediction error v(t) i.e. minimizing

JN (θ) :=
1

N

N∑
t=1

v(t)2

by least squares pretending v is white, that is imposing
orthogonality to the delayed data ϕ(t− 1), i.e.

1

N

N∑
t=1

ϕ(t− 1) v(t) = 0 . (35)

which leads to the normal equations

1

N

N∑
t=1

ϕ(t− 1)ϕ(t− 1)> θ =
1

N

N∑
t=1

ϕ(t− 1)y1(t) .

In the limit for N →∞ we are led to solve an equation
of the form

H θ = E[ϕ(t)y1(t)] . (36)

where the matrix

H =

[
Σy1

Σy1,y2

Σy2,y1 Σy2

]

is formed by obvious limit covariance matrices of the ob-
served data. Due to the non-identifiability caused by the
deterministic feedback y2(t) = H(z)y1(t) the matrix H
turns out to have a large nullspace and the minimization
does not lead to a unique estimate. Most standard soft-
ware can however compute a solution via the Moore Pen-
rose pseudoinverse. A constraint which should be satis-
fied in order to get a consistent estimate of the transfer
function F (z) = z−1F+(z) is the stability of the esti-
mated D(z) polynomial. This condition can be imposed
by implementing a spectral factorization procedure by
which the estimated parameters Dk are substituted by a
spectrally equivalent stable set via a fast Cholesky spec-
tral factorization algorithm due to [8],[30].

The estimated D̂k (and D̂(z)) can then be used to filter
the prediction error to improve the output error estimate
obtained as ε̂(t) := D̂(z−1)v(t) and thereby implement
an iteratively refined parameter estimation algorithm by
solving a sequence of weighted least squares problems.
We shall however leave the analysis of this procedure to
a future publication.
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As a simpler alternative, assuming W2 minimum phase,
one may revert to the simpler model (27) which is unique
and hence identifiable and therefore a Prediction Error
method should be able to identify the transfer function
directly from observed data, [22, p. 203 ]. One may at-
tempt a simple least squares estimation method by using
a rational (or matrix-fraction) descriptions and trans-
forming (27) to a constrained output-error model with
a white output error. It is well-known that this model
leads however to a predictor which is a nonlinear func-
tion of the parameters of the denominator and the es-
timation procedure needs to be carried on iteratively.
Moreover the estimate is still constrained by the stabil-
ity condition on F+(z). The naive least squares method
can be consistent only if F+(z) is a FIR-type transfer
function, that is the denominator of F+(z) is a constant
(see again [22, Sect. 7.3]). As a first approximation one
may use models of this kind. With this proviso, in spite
of feedback, a suitably constrained PEM method may
work anyway [35, p. 416], [22].

6 Identification of a low rank model with an ex-
ternal input

Suppose we want to identify a multidimensional system
with an external input u(t), say

y(t) = F (z)u(t) +K(z)e(t) (37)

where e is a white noise process. The input u is as-
sumed to be completely uncorrelated with e (no feed-
back) and persistently exciting of an appropriate order.
When dim e = dim y and K(z) is square invertible, one
could attack the problem by a standard PEM method.
The method however runs into difficulties when the noise
is of smaller dimension than y since, exactly for the same
reasons explained in Sect. 1, the predictor and the pre-
diction error are not well-defined.
When the dimension of e is strictly smaller than the
dimension of y the model (37) is also called low-rank.
This low-rank problem is actually the one discussed in
[13], [16] and [17] where the authors propose an approxi-
mate solution depending on a regularization parameter.
In this section we shall propose a two-stage scheme to
compute estimates of F and K which in principle does
not use approximations.

Referring to the general feedback model for the joint
process we can always assume F causal and K(∞) full
rank and normalized in some way. Consider then the
prediction error of y(t) given the past history of u. We
have

ỹ(t) := y(t)− E[y(t) | H−t (u)] = K(z)e(t) (38)

since, by causality of F (z), the Wiener predictor is ex-
actly F (z)u(t). Hence ỹ is a low rank time series in the
sense described in the previous sections (now with the

current K(z) playing the same role of W (z)). In prin-
ciple we could then use the procedure described above
for time series as we could preliminarily estimate F (z)
by solving a deterministic regression of y(t) on the past
of u and hence get ỹ(t). If we choose linear least square
methods, we will obtain a consistent estimation. Then
a standard ARMA identification can be applied to es-
timate the minimum phase K(z) in terms of the pre-
processed data ỹ(t).

Compared with the approach in [13], [16] and [17], we use
a composition of basic least squares and ARMA identi-
fication methods which avoids the approximations, and
the possible complex computations of a regularized op-
timization problem with a tuning parameter.

7 Simulation Examples

7.1 Example 1 [Both W1 and W2 minimum phase]

As a first simulation example consider a two-dimensional
process of rank 1 described by

y(t) =

[
W1(z)

W2(z)

]
e(t) (39)

where both W1(z) and W2(z) are minimum phase ra-
tional transfer functions and e is a scalar Gaussian
white noise of zero mean and variance λ2. By simulation
we produce a sample of two-dimensional output data of
the system (39). With these data we shall:

• Identify W1 and W2 by two separate AR models.
• Identify a transfer function model for y1 and estimate
H(z) according to the first procedure described in Sec-
tion 3.2. And then do the same for the other compo-
nent.
• Estimate F+(z) andK+(z) in (27) using the estimated

value of W1(z) and H(z).

We choose W1 and W2 as in (22) and e a scalar zero
mean white noise of variance λ2 = 1. The process y(t)
has rank 1. The two transfer functions functions W1

and W2 are normalized at infinity and minimum phase
rational transfer functions. Note that in this particular
example both y1 and y2 are full rank so that our proce-
dure would work for both.
We have generated 100 samples of the two-dimensional
time series with N = 500 data points {yi(t); t =
1, . . . , N, i = 1, 2} and used Monte-Carlo simulations in
MATLAB. The results are condensed in Box plots.

Assume the orders of W1 and W2 are known. Since the
two AR models of y1 and y2 are of order 3, we just im-
plement two AR identification in MATLAB for models
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Fig. 2. Box plots of â1k for k = 1, 2, 3 in example 1, where
the true values are a11 = −0.2, a12 = −0.25, a13 = 0.05.

of the form

yi(t) = −
3∑
k=1

ai,kyi(t− k) + e(t), t = 1, . . . N,

The box plots of the estimated parameters in Ŵ1 and Ŵ2

are shown in Fig. 2 and Fig. 3. 1 In the two box plots,
all median estimated values are close to the real ones,
with the ranges of estimation values acceptable and only
one outlier for â12. We also use the average of 100 runs
of Monte-Carlo simulation to estimate the asymptotic
covariance of the estimated parameters which are of the
order of magnitudes 10−4, quite small compared with
the magnitude of parameters. The box plots in Figure 2
and 3 show that our AR estimators work well.

Next we do least-squares estimation of the transfer func-
tion H(z). Since H satisfies the identities

W2(z) = H(z)W1(z), W1(z) = H̄(z)W2(z),

we can use the following theoretical formula for H and
H̄:

H(z) =
1 + 0.5z−1

1 + 0.1z−1
, H̄(z) =

1 + 0.1z−1

1 + 0.5z−1
.

which is equivalent to the difference equation

(1 + 0.1z−1)y2(t) = (1 + 0.5z−1)y1(t),

1 In all box plots, the red horizontal line is the median of
the data, the blue box contains half of the data points, the
horizontal lines are at 25% and 75% level. The black tails
(black horizontal lines) are at the minimum and maximum
values, except for the outliers that are indicated by a red ‘+’
sign.

Fig. 3. Box plots of â2k for k = 1, 2, 3 in example 1, where
the true values are a21 = −0.6, a22 = 0.03, a23 = 0.01.

This is just a theoretical model which we keep for com-
parison.
Assuming now that we don’t know the true degrees of
the model polynomials in (33); then we first carry on an
order estimation to choose the appropriate q and r in
the model

y2(t)− y1(t) = −
q∑

k=1

aky2(t− k) +

r∑
k=1

bjy1(t− j),

and then use least square to get estimates of the param-
eters of the model

Ĥ(z) =
1 +

∑r
k=1 b̂kz

−k

1 +
∑q
k=1 âkz

−k .

From a BIC table values we see that when (q, r) = (1, 1)
the BIC index reaches a minimum. So we do least squares
estimation of a first order model

y2(t)− y1(t) = −a1y2(t− 1) + b1y1(t− 1).

All the parameter estimates turn out to be equal to the
true values of the parameters a1 = 0.1, b1 = 0.5, affected
by extremely small errors. In Monte-Carlo simulations,
the calculated estimated variances are all smaller than
10−29. We don’t show box plots here. For estimating
H̄(z), we obtain very similar results, which are therefore
not presented. Here both H and H̄ are stable functions.
We shall check if our algorithm also works when H is
not stable in the next example.

Next we shall use the previous estimates Ŵ1 and Ĥ
to calculate estimates of F+ and K+. We choose one
estimate from the previous Monte-Carlo simulations,
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namely

Ŵ1 =
1

1− 0.1627z−1 − 0.2256z−2 + 0.0505z−3
,

Ĥ =
1 + 0.5000z−1

1 + 0.1000z−1
.

From Theorem 7, we know that there is one and only
one pair (F+,K+) with F+ the one-step Wiener predic-
tor filter. In our case W1, W2 are both normalized and
minimum phase, and from (32) we obtain the estimate
of F+ described by

F̂+ = z(1− Ŵ1
−1

)Ĥ−1

=
(0.1627 + 0.2256z−1 − 0.0505z−2)(1 + 0.1000z−1)

1 + 0.5000z−1

and K̂+ equal to the constant part of Ŵ1, i.e.,

K̂+ = Ŵ1(∞) = 1.

The parameters of these functions are very close to the
true values and hence appear to be consistent estimates
of zF3, K3 in (25).

In fact, we get K̂+ = 1 each time in different simulations.
What’s more, since we are identifying with true orders
in the previous Monte-Carlo simulations, we obtain a F̂
with true orders as in (25), i.e.,

F+ = zF3 =
0.2 + 0.27z−1 − 0.025z−2 − 0.005z−3

1 + 0.5z−1

The box plot of the estimated parameters in F̂+, repre-
sented as

F̂+ =

∑3
k=0 b̂kz

−k

1 + â1z−1
.

are in Figure 4, showing that the estimate F̂+ obtained

from Ŵ1 and the calculations in Section 5 is a good
estimate of the true causal Wiener filter F+.

7.2 Example 2 [Both W1 and W2 not minimum phase]

In this subsection, a simple simulation example will be
presented to show that our method can identifyH well
also when it is unstable, can recover the minimum
phase factor G1 when W1 is not minimum phase
as discussed in subsection 3.2, and can estimate the
Wiener Filter F+ when W2 is not minimum phase
as explained in the beginning of subsection 5.1.

Consider a two-dimensional process y(t) described by
(13), where e is a zero mean white scalar noise of variance
λ2 = 1, andW has the two blocks with transfer functions

W1 =
z + 2

z − 0.2
, W2 =

z − 2

z − 0.2
.

Fig. 4. Box plots of the parameters in F̂+ in example 1.

It is easy to obtain an outer-inner factorization of W1 as
in (17), where

G1 =
2z + 1

z − 0.2
=

2 + z−1

1− 0.2z−1
, Q1 =

z + 2

2z + 1
.

From these we get the transfer function

H =
1− 2z−1

1 + 2z−1
,

which is not stable.
Here for simplicity, we do not use Monte-Carlo simula-
tions and order estimations. We just generate one group
of data as in Example 1, with e scalar zero mean and of
variance 1. Assume the orders of G1 and H are known.

ThoughG1 is not normalized at infinity, we may still im-
plement an ARMA estimation in MATLAB and obtain
an estimated model

y1(t)− 0.1442y1(t− 1) = ê(t) + 0.5666ê(t− 1),

where the variance of the innovation ê is λ̂2 = 4.3127.
Then calculate the corresponding estimate of G1

Ĝ1 =
λ(1 + 0.5666z−1)

1− 0.1442z−1
=

2.077z + 1.177

z − 0.1442
,

which is minimum phase.
Next we estimate H by least squares on the model

y1(t) + a1y1(t− 1) = y2(t) + b1y2(t− 1),

and obtain the estimate

Ĥ =
1 + b̂1z

−1

1 + â1z−1
=

1− 2.000z−1

1 + 2.000z−1
,
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Fig. 5. Bode diagrams of W1 and Ŵ1 in example 2.

which is practically equal to the true H, with an esti-
mation error variance of 1.0607 × 10−29. Incidentally;
all of our simulation results show that the least squares
method works well in identifying unstable H’s.
Since in this example G1 and W2 are scalar, we do not
need coprime factorization for obtainingQ1. In this case,
Q∗1 is the conjugate inner factor of H of formula (18),
i.e., Q1 is the greatest inner factor of H−1. From

Ĥ−1 =
z + 2.000

z − 2.000
=

2.000z + 1

z − 2.000
· z + 2.000

2.000z + 1
,

we have the estimate,

Q̂1 =
z + 2.000

2.000z + 1
.

Hence the estimate of W1 is

Ŵ1 = Ĝ1Q̂1 =
1.039z2 + 2.666z + 1.177

z2 + 0.3558z − 0.0721
,

whose magnitude Bode graph is compared with the true
W1 in Fig. 5. The Bode diagrams show that we can ob-
tain a consistent estimate of W1 even if it is not mini-
mum phase. The corresponding estimate of W2 can be
calculate from

Ŵ2 = ĤŴ1 =
1.039z2 − 1.489z − 1.177

z2 + 0.3558z − 0.0721
,

whose Bode diagram is close to that of the true W2. We
omit the graphs due to space limitations. It is easy to
check Ŵ = [Ŵ1 Ŵ2]> is minimum phase.

Next we perform an outer-inner factorization on Ŵ2, i.e.,
Ŵ2 = Ĝ2Q̂2, and obtain

Ĝ2 =
2.077z2 + 0.1385z − 0.5885

z2 + 0.3558z − 0.0721
, Q̂2 =

z − 2.000

2.000z − 1
.

At last, the estimate of F+ can be calculated by (30)

F̂+ = [zŴ1Q̂
∗
2]+Ĝ

−1
2 =

0.3915z(z + 0.6023)

z2 + 0.0667z − 0.2834
,

and the companion noise transfer function K(z) by im-
plementing the formula (28),

K̂ = Ŵ1 − z−1[zŴ1Q̂
∗
2]+Q̂2

=
1.039z3 + 1.7397z2 + 0.4125z − 0.0988

z3 − 0.1442z2 − 0.2500z + 0.0361
.

It can be checked that K̂ satisfies the equation Ŵ1 =
(1−z−1F̂+Ĥ)−1K̂. And we can see that when W2 is not
minimum phase, K is not a constant anymore as stated
in Theorem 7.

7.3 Example 3 [With external input]

In this subsection we consider the identification of a two-
dimensional process of rank 1 subjected to an exter-
nal input u. We generate a scalar white noise u inde-
pendent of e and identify a 2-dimensional process model
(37) as described in the previous section 6.
In this example the true system is described by

F (z) =z−1

[
0.3 + 0.7z−1 + 0.3z−2

0.15 + 0.9z−1 − 0.5z−2

]
,

K(z) =:

[
K1(z)

K2(z)

]
=

[
1+0.1z−1+0.4z−2

1+0.3z−1+0.4z−2

1+0.1z−1+0.4z−2

1−0.2z−1+0.1z−2

]
.

(40)

where we have used the same F as in [13] (called G(q)
there). Since the K2 of [13] is not normalized to 1, we
use a different one. Both components of our K(z) here
are normalized and minimum-phase so the overall model
is an innovation model. By calculation the deterministic
relation from K1(z) to K2(z) is

H(z) = K2(z)K1(z)−1 =
1 + 0.3z−1 + 0.4z−2

1− 0.2z−1 + 0.1z−2
.

For the model (40) we generate 100 groups of two-
dimensional time series of N = 500 data points
{yi(t); t = 1, . . . , N, i = 1, 2}. The Monte-Carlo simu-
lations are run with u and e independent scalar white
noises of variances 2 and 1. Of course here we also mea-
sure the input time series u. Suppose we do not know
the orders of both Fi’s for i = i, 2.

First, let Fi(z) = z−1Ai(z
−1)−1Bi(z

−1) for i = 1.2,
where the polynomials are parametrized as

A1(z−1) = 1 +

q1∑
k=1

a1,kz
−k, A2(z−1) = 1 +

q2∑
k=1

a2,kz
−k.

B1(z−1) =

r1∑
k=0

b1,kz
−k, B2(z−1) =

r2∑
k=0

b2,kz
−k

13



Fig. 6. Box plots of parameters of F̂1(z) in example 3.

Fig. 7. Box plots of parameters in F̂2(z) in example 3.

corresponding to the dynamic relations

Ai(z
−1)yi(t) = Bi(z

−1)u(t− 1) + εi(t), t = 1, . . . , N,

i = 1, 2 where we have added a small white noise error
term. We do a standard least squares regression on these
models, written in the form,

ŷi(t) = −
qi∑
k=1

ai,kyi(t−k)+

ri∑
k=0

bi,ku(t−1−k), (i = 1, 2).

(41)
where the orders are to be estimated. Order estimation
by minimum BIC leads to choose (q1, r1) = (1, 3) and
(q2, r2) = (2, 4). Although we don’t get the right model
structures, with these orders we get the reasonable box
plots shown in Fig. 6 and Fig. 7, with very few outliers.

Fig. 8. Box plots of parameters in Ĥ(z) in example 3.

Next we compute the deviations (38) by

ỹi(t) = yi(t)− F̂iu(t), i = 1, 2

which are components of a 2-dimensional low rank pro-
cess. With these data we estimate K1(z) and K2(z) by
the procedure illustrated in Section 3. This time, to
smooth the influence of the wrong model structure used
in estimating F1 and F2, we assume that the true degrees
of H and K1 are known.

We first use a least square method to estimate H based
on the data ỹ1 and ỹ2, assuming true orders,

Ĥ(z) =
b̂H,0 + b̂H,1z

−1 + b̂H,2z
−2

1 + âH,1z−1 + âH,2z−2
.

Then let K1 = A−11 C1 so that

A1(z−1)ỹ1(t) = C1(z−1)e(t),

where

A1(z−1) = 1 + a1,1z
−1 + a1,2z

−2,

C1(z−1) = 1 + c1,1z
−1 + c1,2z

−2.

The box plot of the Monte-Carlo simulations of the es-
timates of H(z) are shown in Fig. 8. With the estimate
of H(z) we can calculate the estimate of K2 by

K̂2 = ĤK̂1.

Because of multiplication of estimates, K̂2 turns out to
have a large number of parameters. In order to save
space, we do not show their box plot. Instead of draw-
ing box plots, we have compared the average of Monte-

Carlo estimates with the true functions. Denote by
¯̂
Ki
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Fig. 9. Magnitude Bode plots of
¯̂
K1(z) of example 3.
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Fig. 10. Magnitude Bode plots of
¯̂
K2(z) of example 3.

(i = 1, 2) the Monte-Carlo averages of the estimates

K̂i, i = 1, 2; the Bode diagrams of the comparisons are
shown in Fig. 9 and Fig. 10. Both average estimates have
Bode diagrams quite close to those of the true ones. The
results are nice even if we didn’t guess the true model
structures when estimating F .

8 Conclusions

In this paper we have shown that a rank-deficient pro-
cess admits a special feedback representation with a de-
terministic feedback channel, which can be used to split
the identification in two steps, one of which can be based
on standard PEM algorithms while the other is based on
a deterministic least squares fit. Identifiability of these
feedback structures is not guaranteed and we show how
to choose an identifiable representative. A consequent
method of identifying low rank processes with an ex-
ternal input is also proposed. It is shown that standard
identification algorithms can be easily applied to iden-
tify the transfer functions of low-rank models in diverse
circumstances. Several simulations confirm the validity
of the proposed approach.
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A Proof of the existence of models (4) with un-
correlated noises

Consider a feedback model like (5) where the input noises
(r, v) may be correlated and let

r̂(t) := E[r(t) | v(s); s ∈ Z]

be the acausal Winer estimate of r(t) given the whole
history of the process v [5, p. 105]. Since the joint spectral
density is rational there is a rational transfer function
say S(z) by which we can represent r̂ as r̂(t) = S(z)v(t)
(with the usual convention on the symbols). Hence

r(t) = S(z)v(t) + w(t)

where w(t) is a stationary process uncorrelated with the
whole history of v. Now, after substituting into the first
equation, the second equation of (4) can be written

y2(t) = [H(z) + S(z)]y1(t)− S(z)F (z)y2(t) + w(t)

from which

y2(t) = [I + S(z)F (z)]−1[H(z) + S(z)]y1(t)

+ [I + S(z)F (z)]−1w(t) (A.1)

which, after setting r̃(t) := [I+S(z)F (z)]−1w(t) may be

written y2(t) = H̃(z)y1(t)+ r̃(t), of the same form of the
second equation in (4) but now with v and r̃ completely
uncorrelated. 2

B On minimum phase matrix functions

Let W (z) be an (m+p)×m full column rank stable ma-
trix possibly a spectral factor of our (m+ p)× (m+ p)
spectral density matrix Φ(z) of rank m. Minimum phase
functions are called outer in the mathematical literature.
Although our functions are rational it will be convenient
to refer to the general definitions in Hardy spaces of the
literature. For these we shall use the row-vector conven-
tion of the book [5]. The following is an intuitive defini-
tion which matches that for scalar functions [5, Theorem
4.6.11, p.137].

Definition 8 A rational matrix function W (z) is
minimum-phase, i.e., outer , if and only if it has all its
poles in the open unit disc and all its zeros in the closed
unit disc.

One should refer to the definition of (right) zeros [5, Def-
inition 4.6.10, p.136] for full column rank matrix func-
tions with rows in H2

m. For example, α is a zero of a 2×1
matrix W = [W1,W2]′, if and only if it is a common zero
of both W1 and W2. Equivalently there is a scalar inner
function q(z), a Blaschke product with a zero in α, such
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that W (z) = Ŵ (z)q(z) with Ŵ (α) 6= 0. More generally,
we want to consider a partition of W (z)

W (z) =

[
W1(z)

W2(z)

]
(B.1)

where W1(z), W2(z) are m×m, p×m analytic matrix
functions with rows in H2

m. Next we recall the classi-
cal definition of an outer matrix function in the matrix
Hardy space H2

(p+m),m. The matrix function W (z) ∈
H2

(p+m),m is outer, if the row-span

span {φ(z)W (z) ; φ ∈ H∞(p+m)}

is the whole space H2
m. This is equivalent to saying that

in the outer-inner factorization W (z) = Ŵ (z)Q(z), the
inner (matrix) function Q must be a unitary constant,
which we may identify with the the identity Im.

Consider now the outer-inner factorizations

W1(z) = Ŵ1(z)Q1(z), (B.2a)

W2(z) = Ŵ2(z)Q2(z), (B.2b)

where Ŵ1, Ŵ2 are the outer (minimum-phase) factors
andQ1, Q2 are inner (in fact matrix Blaschke products).
The question we want to answer is: if W is outer, does it
follow that any (or both) of the two components W1,W2

should also be outer? We shall see that the answer is in
general negative.
Let us recall the definition of greatest common right in-
ner divisor of two inner functions Q1 and Q2, see [3, p.
188 top] denoted Q1 ∧R Q2. This is the inner function
representative of the closed vector sum H2

mQ1 ∨H2
mQ2.

Theorem 9 Let a full column rank matrix function
W (z) ∈ H2

(p+m),m be partitioned as in (B.1). The W is

outer if and only Q1 and Q2 are right-coprime, equiv-
alently, the greatest common right inner divisor of Q1

and Q2 is the identity, i.e. Q1 ∧R Q2 = Im.

PROOF. Follows from the identity see [3, p. 188 top].

H2
mQ1 ∨H2

mQ2 = H2
m(Q1 ∧Q2)

HenceW (z) ∈ H2
(p+m),m can be outer even if none of the

two submatrices W1 and W2 is. They just need to have
no (unstable) zeros in common. On the other hand, when
W1 orW2 have no unstable zeros, they are automatically
outer.

C Stability of the Moore-Penrose Pseudo-
Inverse

This section was contributed by Augusto Ferrante [2]. It
deals with stability of the Moore-Penrose pseudo inverse
of a minimum phase rational matrix function. We might
only concentrate on stability of a left inverse which is
what is needed in this paper but the result is more gen-
eral.

Suppose we have a rational spectral factor W (z) with
n rows and p ≤ n columns and assume the minimum
phase condition that W (z) has full column rank for any
|z| ≥ 1. This means that the Smith-McMillan form [34,
p.443-445] of W (z) is

W (z) = U(z)G(z)V (z)

where:
1) U(z) is a n×n unimodular polynomial matrix so that
its inverse U−1(z) is polynomial.
2)G(z) is a n×p rational matrix having the formG(z) =[
D(z)

0

]
where D(z) is a p × p diagonal matrix whose

diagonal elements are non-zero rational functions having
only zeros strictly inside the unit circle.
3) V (z) is a square unimodular polynomial matrix with
p rows and p columns so that its inverse V −1(z) is also
polynomial. Thus if W (z) is minimum phase the left
inverse

W−L(z) := V −1(z) [D−1(z) | 0] U−1(z)

is clearly analytic. Since there is an algorithm to compute
the Smith-McMillan form,W−L(z) as defined above can
be effectively computed.
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