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Abstract—Stationary reciprocal processes defined on a finite
interval of the integer line can be seen as a special class of Markov
random fields restricted to one dimension. Nonstationary recip-
rocal processes have been extensively studied in the past especially
by Jamison et al. The specialization of the nonstationary theory
to the stationary case, however, does not seem to have been pur-
sued in sufficient depth in the literature. Stationary reciprocal
processes (and reciprocal stochastic models) are potentially useful
for describing signals which naturally live in a finite region of the
time (or space) line. Estimation or identification of these models
starting from observed data seems still to be an open problem
which can lead to many interesting applications in signal and
image processing. In this paper, we discuss a class of reciprocal
processes which is the acausal analog of auto-regressive (AR)
processes, familiar in control and signal processing. We show
that maximum likelihood identification of these processes leads
to a covariance extension problem for block-circulant covariance
matrices. This generalizes the famous covariance band extension
problem for stationary processes on the integer line. As in the
usual stationary setting on the integer line, the covariance exten-
sion problem turns out to be a basic conceptual and practical step
in solving the identification problem. We show that the maximum
entropy principle leads to a complete solution of the problem.

Index Terms—Circulant matrices, covariance extension, covari-
ance selection, maximum entropy, reciprocal processes.

I. INTRODUCTION

Reciprocal processes have been introduced at the beginning
of the last century [2], [35], [36] even earlier than the idea of
Markov process was formalized by Kolmogorov. The basic
defining property is conditional independence given the values
taken by the process at the boundary, which resembles a widely
accepted definition of Markov random fields. When the “time”
parameter is 1-D, reciprocal processes can in fact be seen as
Markov random fields restricted to one dimension. For this
reason, reciprocal processes are actually more general than
Markov processes (a Markov process is reciprocal but not con-
versely). In fact, these processes naturally live in a finite region
of the time (or space) variable and specification of boundary
values at the extremes of the interval is an essential part of
their probabilistic description. In discrete-time they are natu-
rally defined on a finite interval of the integer line. Reciprocal
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processes have been extensively studied in the past notably by
Jamison, Krener, Levy and co-workers, see [15], [19]–[23],
[26], [27]. However, the specialization of the nonstationary
theory to the stationary case, except for a few noticeable excep-
tions, e.g. [19], [33], [34], does not seem to have been pursued
in sufficient depth in the literature. Stationary reciprocal pro-
cesses (and reciprocal stochastic models) are potentially useful
for describing signals which naturally live in a finite region
of the time or space line. They can be described by constant
coefficient models which are a natural generalization of the
Gauss-Markov state space models widely used in engineering
and applied sciences. Estimation and identification of these
models starting from observed data seems to be a completely
open problem which can lead to many interesting applications
in signal and image processing.

In this paper, after a general introduction to stationary pro-
cesses defined on a finite interval (Section II), we discuss a
class of reciprocal processes described by models which are
the acausal analog of auto-regressive (AR) processes, familiar
in control and signal processing (Section III). In Section IV we
show that maximum likelihood identification of these processes
leads to a covariance extension problem for block-circulant co-
variance matrices. This generalizes the famous covariance ex-
tension problem for stationary processes on the integer line. As
in the usual stationary setting on the integer line, the covari-
ance extension problem turns out to be a basic conceptual and
practical step in solving the identification problem. The circu-
lant covariance extension problem looks similar to a classical
extension problem for positive block-Toeplitz matrices widely
studied in the literature, [13], [17], which belongs to the class of
band extension problems for positive matrices. All problems of
this kind are solvable by factorization techniques. However, the
banded algebra framework on which this literature relies does
not apply to circulant matrices, see [5]. Circulant band exten-
sion appears to be a new kind of matrix extension problem.

In the present context, we are seeking a (reciprocal) AR ex-
tension. One may speculate that this extension should possess
the analog of the so-called “maximum entropy” property, which
holds for stationary processes on the line. In the literature, this
property is usually presented as a final embellishment of the so-
lution which is obtained by factorization techniques (typically
computed via the Levinson–Whittle algorithm [24], [40]). In our
case, where there are no factorization techniques at hand, we
resort to maximum entropy as the main tool at our disposal to
attack the problem. In Sections V and VI we show that the max-
imum entropy principle indeed leads to a complete solution of
the problem. Finally in Section VII we discuss the relation with
the covariance selection results in Dempster’s paper [11].

0018-9286/$26.00 © 2011 IEEE
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Band extension problems for block-circulant matrices of the
type discussed in this paper occur in particular in applications
to image modeling and simulation. For reasons of space, we do
not provide details but rather refer the reader to the literature,
see e.g. [6], [7] and [32].

II. STATIONARY PROCESSES ON A FINITE INTERVAL

In this paper, we work in the wide-sense setting of
second-order, zero-mean random variables. For the benefit
of the reader, we recall here that a second-order random vector
(or more generally process) is just an equivalence class con-
sisting of all zero-mean random vectors (or processes), each
defined on some canonical probability space, say the space of
their sample values, that have the same covariance matrix, see
e.g. [29, Chap. X]. Hence, each second-order random vector
contains in particular a Gaussian element which may be taken
as the representative of the equivalence class, [12, p. 74]. All
statements of this paper do, therefore, apply to the particular
case of Gaussian distributions. In our setting, however, explicit
assumptions of Gaussianness will not be needed. We also recall
that there is a basic correspondence, established by Kolmogorov
in the early 1940’s, between probabilistic concepts depending
only on second-order moments and geometric operations on
certain subspaces of the Hilbert space of finite variance random
variables, see e.g. [12, p. 636–637] for historical remarks on
this. We assume henceforth that the reader is familiar with this
correspondence.

Orthogonality of two random vectors will be understood as
componentwise uncorrelation, i.e. means .
The symbol denotes orthogonal projection (conditional
expectation in the Gaussian case) onto the subspace spanned by
a family of finite variance random variables listed in the second
argument.

A -dimensional stochastic process on a finite interval
, is just an ordered collection of (zero-mean) random

-vectors which will be written
as a column vector with , -dimensional components. We
say that is stationary if the covariances depend
only on the difference of the arguments, namely

in which case the covariance matrix of has a symmetric block-
Toeplitz structure; i.e.,1

...
. . .

. . .
. . .

(1)

Processes which have a positive definite covariance are
called of full rank (or minimal). In this paper, we shall usually
deal with full rank processes.

1Boldface capitals, e.g. � , ��� , etc. denote block matrices made of �
blocks, each of dimension � ��.

Definition 2.1: A block-circulant matrix with blocks, is
a finite block-Toeplitz matrix whose block-columns (or equiva-
lently, block-rows) are shifted cyclically. It looks like

...
. . .

...
...

. . .

where . A block-circulant matrix is fully spec-
ified by its first block-column (or row). It will be denoted by

(2)

For an introduction to circulant matrices, we refer the reader
to the monograph [8]. Block-circulant matrices of a fixed size
form a real vector space which is actually an algebra with respect
to the usual operations of sum and matrix multiplication. The
invertible elements of this algebra form a group.

Consider now a stationary process on the integer line ,
which is periodic of period , i.e. a process satisfying

(almost surely) for all . We can think
of as a process indexed on the discrete circle group,

with arithmetics mod .2 Clearly, its covariance
function must also be periodic of period , namely,

for all . Hence, we may also see the covariance se-
quence as a function on the isomorphic discrete group

with arithmetics mod . But more must be true.
Proposition 2.1: A (second-order) stochastic process on

is the restriction to the interval of a wide-sense sta-
tionary periodic process of period defined on , if and only
if its covariance matrix is symmetric block-circulant.

Proof: (only if) Let . By assumption there is
an -dimensional stationary process on the integer line ,
which is periodic of period , satisfying
(almost surely) for arbitrary . By wide-sense stationarity,
the covariance function of must depend only on the difference
of the arguments, namely

Moreover, it is a well-known fact that, for any wide-sense sta-
tionary process the following symmetry relation holds

(3)

that is the covariance matrix of has a symmetric
block-Toeplitz structure. Now since is periodic of pe-
riod , its covariance function must also be periodic of period

; i.e. for arbitrary . Assume, just to fix
the ideas, that is an even number and consider the midpoint

2Whence � � � � � so that � plays the role of the zero element.
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of the interval . The periodicity combined with
the symmetry property (3) yields that

(4)

and since (4) holds for , we can say that
the function must be symmetric with respect to the midpoint

of the interval. Hence, we can conclude that the co-
variance matrix of the process restricted to ; that is the
covariance of , is a symmetric block-circulant matrix, i.e.
it must have the following structure:

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
. . .

...
...

. . .
. . .

. . .
. . .

which we write

Similarly, if is odd, it must hold that
, and can be

written as

which proves the first part of the statement.
(if) We want to prove that if is a process defined on a fi-

nite interval with a symmetric block-circulant covariance
matrix , then it admits a wide-sense stationary periodic ex-
tension, , defined on of period .

Let be the process obtained by periodically extending the
process to the whole integer line by setting

for arbitrary and let us denote by its (infinite)
covariance matrix. Since is a covariance matrix, it must be
positive semidefinite. What we need to show is that it is a sym-
metric block-Toeplitz matrix. By definition, is the covari-
ance matrix of the infinite column vector formed by stacking

in that order, it is formed
by subblocks which replicate to produce a square matrix of
infinite size. Since is symmetric block-circulant, then is,
in particular, symmetric block-Toeplitz, which implies that is
stationary. This concludes the proof.

Remark 2.1: The periodic extension to the whole line of
deterministic signals originally given on a finite interval
is a common device in (deterministic) signal processing. This
simple periodic extension does, however, not preserve the struc-
ture of a stationary random process since the covariance of a
periodically extended process will not be stationary unless the

covariance function of the original process on was center-
symmetric to start with. This counter-intuitive fact has to do with
the quadratic dependence of the covariance of the process on its
random variables.

Let for example be a scalar process on the finite interval
[1,4]; i.e. let and . Suppose has covariance
matrix , the notation
meaning that is a symmetric Toeplitz matrix with first
column given by the vector . The upper-left corner
of the covariance of the periodic extension of is

This matrix is clearly not Toeplitz unless , in which case
would be symmetric circulant. Hence, the extended process

is in general not stationary.
Remark 2.2: In many applications to signal and image pro-

cessing, the signals under study naturally live on a finite interval
of the time (or space) variable and modeling them as functions
defined on the whole line appears just as an artifice introduced in
order to use the standard tools of (causal) time-invariant systems
and harmonic analysis on the line. It may indeed be more log-
ical to describe these data as stationary processes defined on
a finite interval . The covariance function, say , of such
a process will be a symmetric positive definite block-Toeplitz
matrix which has in general no block-circulant structure.

It is, however, always possible to extend the covariance func-
tion of to a larger interval so as to make it center-symmetric.
This can be achieved by simply letting for

. In this way is extended to a symmetric
block-circulant matrix of dimension ,
but this operation does not necessarily preserve positivity. Pos-
itivity of a symmetric, block-circulant extension, however, can
always be guaranteed provided the extension is done on a suit-
ably large interval. The details on how to construct such an
extension are postponed to Section V, see the proof of The-
orem 5.1. The original process can then be seen as the re-
striction to the interval of an extended process, say ,
which lives on an interval of length . Since
the extended covariance is, in any case, completely determined
by the entries of the original covariance matrix , any statis-
tical estimate thereof can be computed from the variables of the
original process in the interval (or from their sample
values). Hence, there is no need to know what the random vec-
tors look like. Indeed, as soon as we
are given the covariance of the process defined on , even
if we may not ever see (sample values of) the “external” random
vectors , we would in any case have
a completely determined second-order description (covariance
function) of .

In this sense, one can think of any stationary process given
on a finite interval as the restriction to of a wide-
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sense stationary periodic process, , of period ,
defined on the whole integer line . This process naturally lives
on the “discrete circle” . Hence, dealing in our future study
with the periodic extension , instead of the original process ,
will entail no loss of generality.

III. AR-TYPE RECIPROCAL PROCESSES

In this section, we describe a class of random processes on
a finite interval which are a natural generalization of the recip-
rocal processes introduced in [27], discussed in [26] and, for the
stationary case, especially in [33], [34], see also [15]. In a sense,
they are an acausal “symmetric” generalization of auto-regres-
sive (AR) processes on the integer line.

Let be a zero-mean -dimensional stationary process on
and let denote its covariance matrix.

We assume that is a symmetric block-circulant matrix, so
that may be seen as a process on the discrete circle . In
line with what argued in Remark 2.2, we may, if we wish so,
imagine that the matrix was obtained by extending a posi-
tive block-Toeplitz matrix as (1) to make it symmetric block-cir-
culant. Then will have to be identified with an enlarged
interval on which is the periodic extension of some underlying
stationary process.

Let be a natural number such that . This inequality
will be assumed to hold throughout. We introduce the nota-
tion for the -dimensional random vector obtained
by stacking in that order. Similarly,

is the vector obtained by stacking
in that order. Likewise, the vector is obtained by ap-
pending as last block to , etc.. The sums and

are to be understood modulo . Consider a subinterval
where and

denotes the complementary set in .
Let be subspaces of zero-mean second-order random

variables in a certain common ambient Hilbert space. Recall that
and are said to be conditionally orthogonal, given if

(5)

Conditional orthogonality is the same as conditional uncorrelat-
edness (and, hence, conditional independence) in the Gaussian
case. Various equivalent forms of this condition are discussed in
[28]. When are generated by finite-dimensional random
vectors, condition (5) can equivalently be rewritten in terms of
the generating vectors, which we shall normally do in the fol-
lowing. The following definition does not require stationarity.

Definition 3.1: A reciprocal process of order on
is characterized by the property that the random variables of
the process in the interval are conditionally orthogonal
to the random variables in the exterior, , given the
boundary values and . Equivalently, it must
hold that

(6)

for .

In particular, we should have

(7)

for , where the estimation error

(8)

must clearly be orthogonal to all random variables
; i.e.,

(9)

where is the Kronecker function and is a square matrix. The
actual meaning of will be clarified a few lines below. In the
spirit of Masani’s definition [31], is called the (unnormalized)
conjugate process3 of . Since is a linear combination
of the components of the random vector , it fol-
lows from (9) that both and are orthogonal to

as soon as . Hence, the process has correla-
tion bandwidth ; i.e.,

(10)
It follows from (8) that a reciprocal process of order on ,
can always be described by a linear double-sided recursion of
the form

(11)

where the ’s are matrices, in general dependent on
, with and a process of correlation bandwidth ,

orthogonal to in the sense of (9). In fact, it follows from (9)
that , and hence, is the variance matrix of

, symmetric and positive semidefinite.
Equation (11) requires the specification of boundary values,

which will be described in Theorem 3.1 below.
Lemma 3.1: If is stationary, the matrices in the rep-

resentation (11) do not depend on . If is full rank, they are
uniquely determined by the covariance lags of the process up to
order .

Proof: The ’s are determined by the orthogonality
condition , which can be expressed as

(12)

where

...
...

. . .
(13)

3Also called double-sided innovation.
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and

...
. . .

...
(14)

Note that, because of stationarity, none of the covariance ma-
trices depends on . The determinant of the large block-matrix
in (12) is a principal minor of order of . If is full rank,
it must be nonzero and the matrix must be invertible. Therefore,
the matrices do not depend on and are uniquely deter-
mined.

For stationary reciprocal processes on , the boundary-
values to be attached to the linear model (11) are a straightfor-
ward consequence of the fact that has a stationary periodic
extension to the whole axis .

Theorem 3.1: A stationary reciprocal process, , of order
on satisfies a linear, constant-coefficients difference equa-
tion of the type (11), associated to the cyclic boundary con-
ditions

(15)

The model can be rewritten in matrix form as

(16)

where is the -block banded circulant matrix of bandwidth

(17)

If the process is full rank this description is unique.
Proof: By definition

which is a linear function of , whereby we
can express as

for some coefficient matrices . The process has a pe-
riodic extension of period , and hence, the missing initial
boundary vector is actually the same as ,
so that

By stationarity, the various blocks in the matrices must
satisfy the same system of (12) which was derived by imposing
the orthogonality condition , for all
times . Since the solution is unique, it must hold that ,

where the ’s are the same block matrices
introduced before for (18). Hence, we have

which is the first block equation in (11) once the first
set of boundary conditions in (15) is used to replace the missing
random variables . Similar expressions can be derived
for and for . From this it
readily follows that satisfies (16) where has the banded
circulant structure (17).

Using the notations and for and
respectively, the error covariance

can be expressed as

(18)

The following proposition is a simple generalization of analo-
gous statements in [27], [34] for .

Proposition 3.1: A stationary reciprocal process is full rank
if and only if the variance matrix of the conjugate process is
positive definite.

Proof: (if) Suppose . Multiplying both members of
(16) from the right by and taking expectations, in virtue of
the orthogonality relation (9), we get

(19)

Thus, implies that the square matrices and are
invertible which, combined with the positive semidefiniteness
of , implies .

(only if) Suppose now that is only positive semidef-
inite. This implies that there exists s.t.

, i.e. s.t. a.s.. This means that
the scalar components of are linearly dependent, which, by
(11), implies that are linearly
dependent. Thus, must be singular, which contradicts the
assumption .

Solving (19) we can express the inverse as

(20)

so that is symmetric block-circulant and positive definite,
being the inverse of a matrix with the same properties. Further-
more, , and , must
form a center-symmetric sequence of bandwidth ; i.e.,4

(21)

If we normalize the conjugate process by setting

(22)

so that , the model (11) can be rewritten

(23)

for which the orthogonality relation (9) is replaced by

(24)

4That is to say that model (11) is self-adjoint.
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We shall now show that is actually the covariance matrix of
the normalized conjugate process . For, by the normalization
(22), our reciprocal process satisfies the linear equation

(25)

which implicitly includes the cyclic boundary conditions (15).
Multiplying this from the right by and taking expectations,
we get which, in force of (24), yields

(26)

as announced. We see that the inverse of the covariance matrix
of a full rank stationary reciprocal process of order , must be
a banded block-circulant matrix of bandwidth .

This is in fact a fundamental characterization of stationary
reciprocal processes of order . To prove it, we need to take up
the (inverse) question of well-posedness, namely if an autore-
gressive model of the form (11) associated to the proper cyclic
boundary conditions, determines uniquely a process which is
stationary and reciprocal of order .

To this end we may just as well examine the equivalent nor-
malized model (25).

Theorem 3.2: Consider a linear model (25) where is
a symmetric positive-definite banded block-circulant matrix of
bandwidth and the process is a stationary
process on with covariance matrix .

Then there is a unique full rank stationary reciprocal process
of order , solution of (25). This process satisfies the orthogo-

nality condition (24) and is its normalized conjugate process.
Proof: Pick a finitely correlated process with covariance

matrix (we can construct such a, say Gaussian, process on
a suitable probability space) and let be a solution of the (23)
with boundary conditions (15), equivalently a solution of (25).
Then, since is invertible, the process is uniquely defined
on the interval , i.e. there is a unique random vector, ,
solution of (25). Let be its covariance matrix. We have,

, so that
is a symmetric positive-definite block-circulant matrix and the
process is stationary on (Proposition 2.1).

By multiplying (25) by and taking expectations, we find
, so that , or equivalently

. Therefore, the orthogonality (24)
holds on .

Next, we need to show that is reciprocal of order . To this
end we shall generalize an argument of [34]. Let be two
points in , which for the moment we choose such that

, which is always possible since by assumption
. Expanding (23) and rearranging terms, we get (27), shown

at the bottom of the page, which can be compactly rewritten as

(28)

. . .
...

. . .
. . .

...

. . .
...

. . .

...
. . .

. . .

...

...

...

...

...

...

...
. . .
. . .

...
...

...
...

...
...

...

...
. . .

...

...

(27)
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with an obvious meaning of the symbols. Note that is non-
singular, its determinant being a principal minor of , and
hence, nonzero; while the two random vectors on the right hand
side are uncorrelated since all scalar components of are
orthogonal to the linear subspace spanned by (the scalar com-
ponents of) and hence are in particular or-
thogonal to the boundary condition vectors .
Solving (28) we can express as a sum of two linear func-
tions of and of so that the orthogonal
projection onto the linear subspace spanned by (the scalar com-
ponents of) results in a linear function of (the
scalar components of) alone. This proves the
conditional orthogonality of to the other random variables
of the process, given the boundary values .

The argument remains valid also when the nonoverlapping
condition does not hold; i.e. for an arbitrary interval

of the discrete circle . For, when and
overlap clearly we have , and hence,
all random variables in the subspace spanned by

are contained in the subspace spanned by the boundary
conditions, say . This
means that , or equivalently that

so that the second member in (5) is zero, and hence, the orthog-
onality condition trivially holds.

From this result, we obtain the following fundamental char-
acterization of reciprocal processes on the discrete group .

Theorem 3.3: A nonsingular -dimensional matrix
is the covariance matrix of a reciprocal process of order

on the discrete group if and only if its inverse is a positive-
definite symmetric block-circulant matrix which is banded of
bandwidth .

Note that the second-order statistics of both and are en-
capsulated in the covariance matrix . In other words, the
whole auto-regressive model of is defined in terms of the ma-
trix . Note also that this result makes the stochastic real-
ization problem for reciprocal processes of order conceptu-
ally trivial. In fact, given the covariance matrix (the ex-
ternal description of the process), assuming that it is in fact
the covariance matrix of such a process, the model matrix
can be computed by simply inverting . This is the simplest
answer one could hope for. The solution requires, however, a
preliminary criterion to check whether a (full rank) symmetric
block-circulant covariance matrix has a banded inverse. There
seems to be no simple known answer to this question.

Finally, to make contact with the literature, we note that a full
rank reciprocal process of order can always be represented as
a linear memoryless function of a reciprocal process of order 1.
This reciprocal process, however, need not be of full rank. To
see that this is the case, introduce the vectors

...
... (29)

Letting , we find the representation

(30)

(31)

where and are the block-companion matrices

and has a singular
covariance matrix. This model is in general nonminimal [34].

IV. IDENTIFICATION

Assume that independent realizations of one period of the
process are available5 and let us denote the string of sample
values by . We want to solve the following

Problem 4.1: Given the observations of a reciprocal process
of (known) order , estimate the parameters of the un-

derlying reciprocal model .
Note first that if we are given covariance data

, the identification of an order reciprocal process
can be carried out by a linear algorithm, namely by solving the
Yule-Walker-type system of linear equations (12).

This procedure is, however, unsatisfactory since, due to the
symmetry (21), there are actually only unknown to be
computed. Hence, one would expect only covariance lags
to be needed, while the system (12) requires solving also for the
negative order coefficients. Moreover, in practice, the ’s will
have to be estimated from observed data and estimates of co-
variances with a large lag will unavoidably be more uncertain
and have a larger variance.

In an attempt to get asymptotically efficient estimates for the
’s, we consider maximum likelihood estimation. To this end,

we set up a Gaussian likelihood function (which does not require
to assume that has a Gaussian distribution, see [18, p. 112]),
which uses the density function

where . Taking logarithms and neglecting terms which
do not depend on the parameters, one can rewrite this expression
as

(32)

5For example, a “movie” consisting of � successive images of the same tex-
ture.
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Assuming that the sample measurements are independent, the
log-likelihood function, depending on the matrix param-
eters , can be written

(33)

where each matrix-valued statistic has the structure of
a sample estimate of the lag covariance of the process. For
example, and are given by

From exponential class theory [1], we see that the ’s are
(matrix-valued) sufficient statistics. Indeed, we have the well-
known characterization that the (suitably normalized) statistics

are maximum likelihood estimators of their ex-
pected values, namely

...

(34)

Let us now consider the following matrix completion problem,
which, form now on, will be referred to as the block-circulant
band extension problem.

Problem 4.2: (Block-Circulant Band Extension Problem):
Given initial data matrices , complete
them with a sequence in such a way
to form a positive definite symmetric block-circulant matrix

with a block-circulant banded inverse of bandwidth .
Note that the model parameters are the

nonzero blocks of the (banded) inverse of the covariance matrix
of the process (Theorem 3.3). The invariance principle for

maximum likelihood estimators [42] leads then to the following
statement.

Theorem 4.1: The maximum likelihood estimates of
are the nonzero blocks of the banded

inverse of the matrix solving the block-circulant band ex-
tension problem with initial data the covariance estimates
(34).

Hence, solving the original identification problem 4.1 has
been shown to lead to the solution of a block-circulant band ex-
tension problem. Note, however, that the extension problem 4.2
is nonlinear and it is hard to see what is going on by elementary
means. Below we give a scalar example.

Example 4.1: Let , , and assume we
are given the covariance estimates , forming a pos-
itive definite Toeplitz matrix. The three unknown coefficients
in the reciprocal model (23) of order 2 are scalars, denoted

. Multiplying (25) from the right by , we get
, which leads to

...

where and are the unknown extended
covariance lags. Rearranging and eliminating the last three re-
dundant equations, one obtains

which is a system of five quadratic equations in five unknowns
whose solution already looks nontrivial. It may be checked that,
under positivity of the matrix , it has a unique
positive definite solution (i.e. making positive definite).

At first sight the circulant band extension problem of The-
orem 4.2 recalls the classical band extension problems for
Toeplitz matrices studied in [13], [17], which is solvable by
factorization techniques. However, the banded algebra frame-
work on which these papers rely does not apply here. The
circulant band extension problem seems to be a new (and
harder) extension problem.

General covariance extension problems are discussed in an il-
luminating paper by A. P. Dempster, [11]. Notice, however, that
Dempster’s procedures, having been conceived to solve a gen-
eral covariance extension problem, do not exploit the circulant
structure of the present setting and are computationally very in-
tensive even for small scalar instances. A possible approximate
approach to the circulant band extension problem was proposed
in [6]. This approach, based on a result of B. Levy [25], exploits
the fact that for the problem becomes one of band ex-
tension for infinite positive definite symmetric block-Toeplitz
matrices, for which satisfactory algorithms exist. For finite,
however, this approximation may in some cases turn out to be
poor. In the next section, we propose a new approach to the cir-
culant band extension problem.

V. MAXIMUM ENTROPY ON THE DISCRETE CIRCLE

Dempster’s paper, which deals with general, unstructured
covariance matrices, only considers Gaussian distributions. He
solves the following extension problem: characterize, among
all covariance matrices sharing a given set of entries, the one
corresponding to the (zero-mean) maximum entropy Gaussian
distribution. For our purposes, a key observation is Statement
(b) in [11, p. 160]. In our setting, it reads as follows.

Proposition 5.1: Assume feasibility of the covariance ex-
tension problem. Among all covariance extensions of the data
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, there exists a unique such an extension whose in-
verse’s entries are zero in all the positions complementary to
those where the elements of the covariance are assigned. This
extension corresponds to the Gaussian distribution with max-
imum entropy.

This principle of entropy maximization will lead us to a new
convex optimization procedure for computing the band exten-
sion.

We hasten to remark that in this paper we are not restricting
ourselves to the case of Gaussian distributions. We shall con-
sider to be the matrix variance of a Gaussian distribution
only for the purpose of interpreting the following optimization
problem in the light of Dempster’s result. The far reaching im-
plications of our maximum entropy principle for general prob-
ability distributions is provided in Theorem 7.2 below.

Notations: Let denote the block-circulant “shift” matrix
with blocks,

...
...

. . .
...

where denotes the identity matrix. Clearly,
; i.e. is orthogonal. Note that a matrix

with blocks is block-circulant if and only if it commutes
with , namely if and only if it satisfies

(35)

Recall that the differential entropy of a probability den-
sity function on is defined by

(36)

In case of a zero-mean Gaussian distribution with covariance
matrix , we get

(37)

Let denote the vector space of symmetric matrices with
square blocks of dimension . Let

denote the Toeplitz matrix of boundary data

. . .
...

...
. . .

...
(38)

and let denote the block matrix

. . .
...

...

Maximum Entropy Problem on : Consider the following
Gaussian maximum entropy problem (MEP) on the discrete
circle:

Problem 5.1:

(39a)

(39b)

(39c)

Recalling that and (37), we see that the
above problem indeed amounts to finding the maximum entropy
Gaussian distribution with a block-circulant covariance, whose
first blocks are precisely . The circulant struc-
ture is equivalent to requiring this distribution to be stationary
on the discrete circle . We observe that in this problem we
are minimizing a strictly convex function on the intersection of
a convex cone (minus the zero matrix) with a linear manifold.
Hence, we are dealing with a convex optimization problem.

Note that we are not imposing that the inverse of the solution
of Problem 5.1 should have a banded structure. We shall

see that, whenever solutions exist, this property will be auto-
matically guaranteed.

The first question to be addressed is feasibility of (MEP),
namely the existence of a positive definite, symmetric matrix

satisfying (39b), (39c). Obviously, positive definite is a
necessary condition for the existence of such a . In general it
turns out that, under such a necessary condition, feasibility holds
for large enough. The idea is that for , Toeplitz ma-
trices can be approximated arbitrarily well by circulants [30],
[39], and hence, existence of a positive block-circulant exten-
sion can be derived from the existence of positive extensions
for Toeplitz matrices.

Theorem 5.1: Given the sequence ,
, such that

(40)

there exists such that for , the matrix can be ex-
tended to an block-circulant, positive-definite symmetric
matrix .

Proof: A fundamental result in stochastic system theory is
the so-called maximum entropy covariance extension. It states
that, under condition (40), there exists a rational positive real
function such that:

1) has spectrum strictly inside the unit circle;
2) , ;
3) the spectrum is coercive, i.e.,6

(41)

In fact, has no zeros on the unit circle since it can be
expressed in the form where

is the th Levinson–Whittle matrix polynomial (also
called th matrix Szegö polynomial) of the block Toeplitz ma-
trix , and ; see [40], [9] and [41].

6 Here, and in the following, � denotes the imaginary unit
�
��.
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Let , , so that
, and define

(42)
for odd, and

(43)

for even. We need to show that there exists such that
for . To this aim, notice that is, by definition,

block-circulant so that, a similarity transformation induced by a
unitary matrix reduces to a block-diagonal matrix

where is the Fourier block-matrix whose th block is

and are the coefficients of the finite Fourier transform of the
first block row of

(44)

with , see e.g. [38, Sec. 3.4]. Clearly,
and hence

(45)

where

with

odd
even.

Since is a stability matrix, if , and hence, , is large enough,
is dominated by , i.e. there exists

such that

(46)

so that it readily follows from (41) and (45) that if ,
for all .

We observe that, given , the triple can be explic-
itly computed so that we can compute and for which (46)
holds. In other words, Theorem 5.1 provides a sufficient condi-
tion that can be practically tested. Similar bounds, but valid only
for the scalar case, were derived in [10].

VI. VARIATIONAL ANALYSIS

We shall introduce a suitable set of “Lagrange multipliers”
for our constrained optimization problem. Consider the linear
map defined by

and define the set

Observe that is an open, convex subset of . For
each , we consider the unconstrained minimization
of the Lagrangian function

over . For , we get

We conclude that , if
and only if

Thus, for each fixed pair , the unique mini-
mizing the Lagrangian is given by

(47)

Consider next . We get

This is a strictly concave function on whose maximization
is the dual problem of (MEP). We can equivalently consider the
convex problem

(48)

where (henceforth called dual function) is given by

(49)
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Existence for the Dual Problem: The minimization of the
strictly convex function on the convex set is a chal-
lenging problem as is an open and unbounded subset of

. Nevertheless, the following existence result in the
Byrnes-Lindquist spirit, [3], [14], [16] can be established.

Theorem 6.1: The function admits a unique minimum point
in .

In order to prove this theorem, we need first to derive a
number of auxiliary results. Let denote the vector subspace
of block-circulant matrices in . We proceed to characterize
the orthogonal complement of in .

Lemma 6.1: Let . Then if and only if
it can be expressed as

(50)

for some .
Proof: By (35), is the kernel of the linear map from
to given by . Hence, its orthog-

onal complement is the range of the adjoint map. Since

the conclusion follows.
Next we show that, as expected, feasibility of the primal

problem (MEP) implies that the dual function is bounded
below.

Lemma 6.2: Assume that there exists satisfying
(39b), (39c). Then, for any pair , we have

(51)

Proof: By (39b), we have
. Using this fact and Lemma 6.1, we can now

rewrite the dual function , as follows:

Define which is posi-
tive definite for in . Then

As a function of , this is a strictly convex function on ,
whose unique minimum occurs at where the min-
imum value is .

Lemma 6.3: Let , be a sequence of
pairs in such that . Then also

. It then follows that
implies that .

Proof: Notice that is a linear operator between finite-di-
mensional linear spaces. Denote by the smallest singular

value of the restriction of to (the orthogonal com-
plement of ). Clearly, , so that, since each ele-
ment of the sequence is in ,

.
Assume now that

Since these are all positive definite matrices and all matrix
norms are equivalent, it follows that

As a consequence,
and, finally, .

We show next that the dual function tends to infinity also
when approaching the boundary of , namely

Lemma 6.4: Consider a sequence , in
such that the matrix is
singular. Assume also that the sequence is bounded.
Then, .

Proof: Simply write

Since is bounded, the conclusion follows.
Proof of Theorem 6.1: Observe that the function is a contin-

uous, bounded below (Lemma 6.2) function that tends to infinity
both when tends to infinity (Lemma 6.3) and when it
tends to the boundary with remaining bounded
(Lemma 6.4). It follows that is inf-compact on , namely it
has compact sublevel sets. By Weierstrass’ Theorem,7 it admits
at least one minimum point. Since is strictly convex, the min-
imum point is unique.

VII. RECONCILIATION WITH DEMPSTER’S

COVARIANCE SELECTION

Let be the unique minimum point of in (The-
orem 6.1). Then given by

(52)

satisfies (39b) and (39c). Hence, it is the unique solution of the
primal problem (MEP). Since it satisfies (39c), is in partic-
ular a block-circulant matrix and hence so is

7A continuous function on a compact set always achieves its maximum and
minimum on that set.
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Let denote the orthogonal projection onto the linear sub-
space of symmetric, block-circulant matrices . It follows
that, in force of Lemma 6.1

(53)

Theorem 7.1: Let be the maximum Gaussian entropy co-
variance given by (52). Then is a symmetric block-cir-
culant matrix which is banded of bandwidth . Hence, the solu-
tion of (MEP) may be viewed as the covariance of a stationary
reciprocal process of order defined on .

Proof: Let

...
. . .

. . .
. . .

...

be the orthogonal projection of onto . Since
is symmetric and block-circulant, it is characterized by the or-
thogonality condition

(54)

for all . Next observe that, if we write
and

...
. . .

...

with , then

On the other hand, recalling that the product of two block-circu-
lant matrices is block-circulant, we have that is simply

times the trace of the first block row of times the first
block column of . We get

Hence, the orthogonality condition (54), reads

Since this must hold true forall , we conclude that

...

while from the last equation we get , forall in the
interval . From this it is clear that
the inverse of the covariance matrix solving the primal problem
(MEP), namely has a circulant block-banded
structure of bandwidth .

Since the beginning of Section V, we have been dealing only
with Gaussian distributions in order to facilitate the comparison
with Dempster’s classical results. It is now time to show that the
Gaussian assumption can be dispensed with, and our solution is
indeed optimal in the larger family of (zero-mean) second-order
distributions.

Theorem 7.2: The Gaussian distribution with (zero-mean
and) covariance defined by (52) maximizes the entropy
functional (36) over the set of all (zero-mean) probability densi-
ties whose covariance matrix satisfies the boundary conditions
(39b), (39c).

Proof: Let be the set of (block-circulant) covari-
ance matrices satisfying the boundary conditions (39b), (39c)
and let be a probability density with zero-mean and covari-
ance . In particular, we shall denote by the Gaussian den-
sity with zero-mean and covariance . Now, by a famous the-
orem of Shannon [37], the probability distribution having max-
imum entropy in the class of all distribution with a fixed mean
vector (which we take equal to zero) and variance matrix , is
the Gaussian distribution . Hence

where the maximum in the right-hand side is attained by .
The above can be interpreted as a particular covariance selec-

tion result in the vein of Dempster’s paper; compare in particular
[11, Proposition a]. In fact the results of this section substantiate
also the maximum entropy principle of Dempster (Proposition
5.1). It is, however, important to note that none of our results
follows as a particular case from Dempster’s results, since [11]
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deals with a very unstructured setting. In particular our main re-
sult (Theorem 7.1) that the solution, , to our primal problem
(MEP) has a block-circulant banded inverse, is completely orig-
inal. Its proof uses in an essential way the characterization of the
MEP solution provided by our variational analysis and cleverly
exploits the block-circulant structure.

Actually, our results, together with Dempster’s, may be used
to show that the maximum entropy distribution, subject only to
moment constraints (compatible with the circulant structure) on
a block band and on the corners, is necessarily block-circulant,
i.e. the underlying process is stationary.8

Because of the equivalence of reciprocal AR modeling and
the underlying process covariance having an inverse with a
banded structure, explained in Section III, we see that the
maximum entropy principle leads in fact to (reciprocal) AR
models. This makes contact with the ever-present problem in
control an signal processing of (approximate) AR modeling
from finite covariance data, whose solution dates back to the
work of N. Levinson and P. Whittle. That AR modeling from
finite covariance data is actually equivalent to a positive band
extension problems for infinite Toeplitz matrices has been
realized and studied in the past decades by Dym, Gohberg and
co-workers, see e.g. [13], [17] as representative references of a
very large literature. We should stress here that band extension
problem for infinite Toeplitz matrices are invariably attacked
and solved by factorization techniques, but circulant matrices
do not fit in the “banded algebra” framework used in the litera-
ture. Also, one should note that the maximum entropy property
is usually presented in the literature as a final embellishment
of a solution which was already obtained by factorization
techniques. Here, for the circulant band extension problem,
factorization techniques do not work and the maximum entropy
principle turns out to be the key to the solution of the problem.

This fact, together with Dempster’s observation [11, Propo-
sition b], may be taken as a proof (although referred to a very
specific case) of a very much quoted general principle that
maximum entropy distributions are distributions achieving
maximum simplicity of explanation of the data.

Finally, we anticipate that the results of this section lead to an
efficient iterative algorithm for the explicit solution of the MEP
which is guaranteed to converge to a unique minimum. This
solves the variational problem, and hence, the circulant band ex-
tension problem which subsumes maximum likelihood identifi-
cation of reciprocal processes. This algorithm, which will not be
described here for reasons of space limitations, compares very
favorably with the best techniques available so far.

VIII. CONCLUSION

A new class of stationary reciprocal processes on a finite in-
terval has been introduced which are the acausal analog of au-
toregressive (AR) processes on the integer line. Maximum like-
lihood identification of these AR-type reciprocal models is dis-
cussed. The computation of the estimates of the matrix param-
eters of the model turns out to be a particular instance of a co-
variance selection problem of the kind studied by the statistician

8An alternative proof of this fact can be constructed based on the invariance
properties of the entropy functional and its strict concavity. This has recently
been established (in a more general framework) in [4].

A.P. Dempster in the early seventies. In matrix terminology, the
covariance selection for stationary reciprocal models is equiva-
lent to a special matrix band extension problem for block-circu-
lant matrices. We have shown that this band extension problem
can be solved by maximizing an entropy functional.
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